# A novel method for interval-value intuitionistic fuzzy multi-criteria decision making problems with immediate probabilities based on OWA distance operators 

Ya Qin<br>Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, Sichuan, P.R. China<br>School of Mathematics and Information, Neijiang Normal University, Neijiang 641000, Sichuan, P.R. China<br>Yi Liu<br>Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, Sichuan, P.R. China<br>Jun Liu<br>School of Computing, Ulster University, Jordanstown Campus, Northern Ireland, UK


#### Abstract

The goal of this work is to develop a novel decision making method which can solve some complex decision making problems that include the following three aspects information: (1) information represented in the form of interval-valued intuitionistic fuzzy values (IVIFVs) not only intuitionistic fuzzy values, (2) the probability information and the weighted information and (3) the degree of importance of each concept in the process of decision making. Firstly, by integrating OWA operator, probabilistic weight (PW) and individual distance of two IVIFNs in the same formulation, we introduce two new distance operators named PIVIFOWAD operator and IPIVIFOWAD operator, respectively. Secondly, satisfaction degree of an alternative is proposed based on the positive ideal IVIFS and the negative ideal IVIFS and applied to MCDM. Finally, we use an illustrative example to show the feasibility and validity of the new method by comparing with the other existing methods.


Keywords: IVIFS, probability, distance measures, aggregation operators, MCDM

## 1. Introduction

Atanassov and Gargov [1, 2] introduced the theory of Interval-Valued Intuitionistic Fuzzy Set (IVIFS), which is a generalization of the Intuitionistic Fuzzy Set (IFS) proposed by Atanassov [3], where the membership degree and nonmembership degree of each element belonging to an 5 IVIFS are represented by interval-valued intuitionistic fuzzy values (IVIFVs), which is a subinterval of $[0,1]$, respectively. The IVIFS has received more and more attention since its appearance. Some decision making methods under IVIF environment have been developed by many

[^0]scholars. To sum up, there are mainly four aspects on the decision making under IVIF environment: (1) some decision making methods are developed based on information measures (specially, distance, similarity, and entropy) because information measure for IVIFSs have great effects on the development of the IVIFS theory and its applications. Such as similarity measures[5, 20, 31], inclusion measure[45], entropy measure[29], cross-entropy measure[46] and distance measures[42] are developed and applied to corresponding MCDM and MADM problems; (2) many new aggregation operators are also investigated in the IVIFSs and applied to some decision making problems, such as linguistic intuitionistic fuzzy power Bonferroni Mean operators[10], Hamacher aggregation operators[11], fuzzy power Heronian aggregation operators[12], fuzzy generalized aggregation operator[13, 15, 16, 17, 18, 19], (fuzzy Einstein) hybrid weighted aggregation operators[36, 21], fuzzy prioritized hybrid weighted aggregation operator[38], fuzzy Hamacher ordered weighted geometric operator[40] and so on; (3) other methods for decision making with IVIF information are also explored, such as evidential reasoning methodology[4], particle swarm optimization techniques[5], transform technique[? ], nonlinear programming methods[39], VIKOR methods in IVIFS[30]and others methods[6, 7, 14, 33, 37, 47] are also developed for decision making problems. Distance measure has great effects on obtaining the desirable choice in some decision problems. Motivated by the OWA operator, Xu [41] introduced ordered weighted distance operator based on known Haming distance. Many extensions of distance operator has been developed, such as Merigo et al. [28] introduced a series of aggregation operator related to distance measures[23, 25, 27, 26] and were applied to related decision problems[24, 27, 34].

In some real decision problems, many problems are very complex. Aim at solving some these complicated decision problems, it is necessary to develop a new kind of decision making method to solve this kind of problems including the following three aspects information: (1) information is represented in the form of IVIFVs not only IFVs, (2) the weighted information and the probability information and (3) the degree of importance of each concept in the process of decision making. Motivated by the ideas of existed operators, we propose new IVIF distance measures by using related weighted operators with probabilistic information, and their applications in MCDM in the present work.

The rest of the paper is organized as follows. In Section 2, we review some related definitions on IVIFSs which are in the analysis throughout this paper. Section 3 is focused on PIVPFOWAD and IPIVIFOWAD. In Section 4, the concept of satisfaction degree is proposed and the MCDM approach based on the satisfaction degree is also constructed. Section 5, a practical example is given to explain proposed method, compare and analyse the validity of proposed MCDM methods. This paper is concluded in Section 6.

## 2. IVIFSs and OWA Distance Operator

In this section, some related basic concepts of VIFSs, OWA operator and OWAD operator are recapped.

### 2.1. Interval-valued intuitionistic fuzzy sets

Let $\operatorname{Int}([0,1])$ denote the collection of all closed subintervals of $[0,1]$, and $X$ be a universe of discourse. An IVIFS [1, 2] on $X$ has such a structure

$$
\tilde{A}=\left\{\left\langle x,\left(\mu_{\tilde{A}}(x), v_{\tilde{A}}(x)\right)\right\rangle \mid x \in X\right\} .
$$

where $\mu_{\tilde{A}}: X \rightarrow \operatorname{Int}([0,1])$ denotes the membership degree and $v_{\tilde{A}}: X \rightarrow \operatorname{Int}([0,1])$ denotes the nonmembership degree of the element $x \in X$ to the set $\tilde{A}$, respectively, with the condition that $0 \leq \sup \left(\mu_{\tilde{A}}(x)\right)+\sup \left(v_{\tilde{A}}(x)\right) \leq 1$.

For each $x \in X, \mu_{\tilde{A}}(x)$ and $v_{\tilde{A}}(x)$ denote $\mu_{\tilde{A}}(x)=\left[\mu_{\tilde{A}}^{-}(x), \mu_{\tilde{A}}^{+}(x)\right], v_{\tilde{A}}(x)=\left[v_{\tilde{A}}^{-}(x), v_{\tilde{A}}^{+}(x)\right]$, respectively. Therefore, $\tilde{A}$ can also be expressed in another style as follows:

$$
\begin{equation*}
\tilde{A}=\left\{\left\langle x,\left(\left[\mu_{\tilde{A}}^{-}(x), \mu_{\tilde{A}}^{+}(x)\right],\left[v_{\tilde{A}}^{-}(x), v_{\tilde{A}}^{+}(x)\right]\right\rangle\right| x \in X\right\} . \tag{1}
\end{equation*}
$$

where Eq.(1) satisfies the condition $\mu_{\tilde{A}}^{+}(x)+v_{\tilde{A}}^{+}(x) \leq 1$.

$$
\pi_{\tilde{A}}(x)=\left[\pi_{\tilde{A}}^{-}(x), \pi_{\tilde{A}}^{+}(x)\right]=\left[1-\left(\mu_{\tilde{A}}^{+}(x)\right)-\left(v_{\tilde{A}}^{+}(x)\right), 1-\left(\mu_{\tilde{A}}^{-}(x)\right)-\left(v_{\tilde{A}}^{-}(x)\right)\right]
$$

50 is called the indeterminacy degree. For the convenience, $\tilde{A}=\left(\left[\mu_{\tilde{A}}^{-}, \mu_{\tilde{A}}^{+}\right],\left[v_{\tilde{A}}^{-}, v_{\tilde{A}}^{+}\right]\right)$is called an interval-valued intuitionistic fuzzy value (IVIFV).

For two IVIFVs $\tilde{A}_{1}=\left(\left[\mu_{\tilde{A}_{1}}^{-}, \mu_{\tilde{A}_{1}}^{+}\right],\left[v_{\tilde{A}_{1}}^{-}, v_{\tilde{A}_{1}}^{+}\right]\right)$and $\tilde{A}_{2}=\left(\left[\mu_{\tilde{A}_{2}}^{-}, \mu_{\tilde{A}_{2}}^{+}\right],\left[v_{\tilde{A}_{2}}^{-}, v_{\tilde{A}_{2}}^{+}\right]\right)$, a relation $\leq$on the IVIFVs is defined as follows:

$$
\begin{equation*}
\mu_{\tilde{A}_{1}}^{-} \leq \mu_{\tilde{A}_{2}}^{-}, \mu_{\tilde{A}_{1}}^{+} \leq \mu_{\tilde{A}_{2}}^{+} \text {and } v_{\tilde{A}_{1}}^{-} \geq v_{\tilde{A}_{2}}^{-}, v_{\tilde{A}_{1}}^{+} \geq v_{\tilde{A}_{2}}^{+} . \tag{2}
\end{equation*}
$$

In order to compare two IVIFVs, concepts of score function and accuracy function[32] of an IVIFV are introduced:

For any IVIFV $\tilde{A}=\left(\left[\mu_{\tilde{A}}^{-}, \mu_{\tilde{A}}^{+}\right],\left[v_{\tilde{A}}^{-}, v_{\tilde{A}}^{+}\right]\right)$, the score function $\tilde{s}(p)$ of $\tilde{A}$ is defined as follows:

$$
\begin{equation*}
\tilde{s}(\tilde{A})=\frac{1}{2}\left(\left(\mu_{\tilde{A}}^{-}\right)+\left(\mu_{\tilde{A}}^{+}\right)-\left(v_{\tilde{A}}^{-}\right)-\left(v_{\tilde{A}}^{+}\right)\right), \tag{3}
\end{equation*}
$$

where $\tilde{s}(\tilde{A}) \in[-1,1]$.
For any IVIFV $\tilde{A}=\left(\left[\mu_{\tilde{A}}^{-}, \mu_{\tilde{A}}^{+}\right],\left[\nu_{\tilde{A}}^{-}, v_{\tilde{A}}^{+}\right]\right)$, the accuracy function $\tilde{a}(p)$ of $\tilde{A}$ is defined as follows:

$$
\begin{equation*}
\tilde{a}(\tilde{A})=\frac{1}{2}\left(\left(\mu_{\tilde{A}}^{-}\right)+\left(\mu_{\tilde{A}}^{+}\right)+\left(v_{\tilde{A}}^{-}\right)+\left(v_{\tilde{A}}^{+}\right)\right), \tag{4}
\end{equation*}
$$

where $\tilde{s}(\tilde{A}) \in[0,1]$.
Based on above definitions, comparison rules between two IVIFVs are defined as follows:
For any two IVIFVs $\tilde{A}_{1}, \tilde{A}_{2}$,
(1) if $\tilde{s}\left(\tilde{A}_{1}\right)<\tilde{S}\left(\tilde{A}_{2}\right)$, then $\tilde{A}_{1}<\tilde{A}_{2}$.
(2) if $\tilde{s}\left(\tilde{A}_{1}\right)=\tilde{s}\left(\tilde{A}_{2}\right)$, then
(a) if $\tilde{a}\left(\tilde{A}_{1}\right)<\tilde{a}\left(\tilde{A}_{2}\right)$, then $\tilde{A}_{1}<\tilde{A}_{2}$;
(b) if $\tilde{a}\left(\tilde{A}_{1}\right)=\tilde{a}\left(\tilde{A}_{2}\right)$, then $\tilde{A}_{1} \sim \tilde{A}_{2}$.

### 2.2. OWA Distance Operator

In this section, we will review the OWAD operator and then introduce IVIFOWAD operator.
An OWA operator [43] of dimension n is a mapping $O W A: R^{n} \rightarrow R$ that has an associated weighting $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$ with $\omega_{j} \in[0,1]$ and $\sum_{j=1}^{n} \omega_{j}=1$, such that

$$
\begin{equation*}
O W A\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\sum_{j=1}^{n} \omega_{j} b_{j} \tag{5}
\end{equation*}
$$

where $\left(a_{1}, \cdots, a_{n}\right) \in R^{n}$ and $b_{j}$ is the $j$ th largest of $a_{i}$.
Let $A=\left(a_{1}, \cdots, a_{n}\right), B=\left(b_{1}, \cdots, b_{n}\right)$ be two collections of arguments. An OWAD operator [25] is a function $O W A D: R^{n} \times R^{n} \rightarrow R$ that has an associated weight vector $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$ with $\omega_{j} \in[0,1]$ and $\sum_{j=1}^{n} \omega_{j}=1$, such that

$$
\begin{equation*}
O W A D(A, B)=\sum_{j=1}^{n} \omega_{j} d_{j} \tag{6}
\end{equation*}
$$

where $d_{j}$ is the $j$ th largest of $\left|a_{i}-b_{i}\right|$.
Let $\tilde{A}=\left\{\tilde{\alpha}_{i}=\left(\mu_{\tilde{\alpha}_{i}}, v_{\tilde{\alpha}_{i}}\right)\right\}$ and $\tilde{B}=\left\{\tilde{\beta}_{i}=\left(\mu_{\tilde{\beta}_{i}}, v_{\tilde{\beta}_{i}}\right)\right\}$ be two collections of IVIFVs, where ${ }^{75}\left(\mu_{\tilde{\alpha}_{i}}, v_{\tilde{\alpha}_{i}}\right)=\left(\left[\mu_{\widetilde{\alpha}_{i}^{-}}, \mu_{\tilde{\alpha}_{i}^{+}}\right],\left[v_{\tilde{\alpha}_{i}}^{-}, v_{\tilde{\tilde{\alpha}}_{i}}^{+}\right]\right),\left(\mu_{\tilde{\beta}_{i}}, v_{\tilde{\beta}_{i}}\right)=\left(\left[\mu_{\tilde{\beta}_{i}}^{-}, \mu_{\tilde{\beta}_{i}}^{+}\right],\left[v_{\tilde{\beta}_{i}}^{-}, v_{\tilde{\beta}_{i}}^{+}\right]\right), i=1,2, \cdots, n$. We first recall the distance [42] between two IVIFVs $\tilde{A}_{1}=\left(\left[\mu_{\tilde{A}_{1}}^{-}, \mu_{\tilde{A}_{1}}^{+}\right],\left[v_{\tilde{A}_{1}}^{-}, v_{\tilde{A}_{1}}^{+}\right]\right)$and $\tilde{A}_{2}=\left(\left[\mu_{\tilde{A}_{2}}^{-}, \mu_{\tilde{A}_{2}}^{+}\right],\left[v_{\tilde{A}_{2}}^{-}, v_{\tilde{A}_{2}}^{+}\right]\right)$.

$$
\begin{align*}
d\left(\tilde{A}_{1}, \tilde{A}_{2}\right) & =\frac{1}{4}\left(\left|\left(\mu_{\tilde{A}_{1}}^{-}\right)-\left(\mu_{\tilde{A}_{2}}^{-}\right)\right|+\left|\left(\mu_{\tilde{A}_{1}}^{+}\right)-\left(\mu_{\tilde{A}_{2}}^{+}\right)\right|+\left|\left(v_{\tilde{A}_{1}}^{-}\right)-\left(v_{\tilde{A}_{2}}^{-}\right)\right|+\left|\left(v_{\tilde{A}_{1}}^{+}\right)-\left(v_{\tilde{A}_{2}}^{+}\right)\right|\right. \\
& \left.+\left|\left(\pi_{\tilde{A}_{1}}^{-}\right)-\left(\pi_{\tilde{A}_{2}}^{-}\right)\right|+\left|\left(\pi_{\tilde{A}_{1}}^{+}\right)-\left(\pi_{\tilde{A}_{2}}^{+}\right)\right|\right) . \tag{7}
\end{align*}
$$

## 3. IPIVIFOWA Distance Operator

In this subsection, by combining OWA operator, individual distances and PWs, two new distances named PIVIFOWAD operator and IPIVIFOWAD operator will be introduced. PIVI-
FOWAD operator is defined as follows:
Definition 1. A PIVIFOWAD is a function PIVIFOWAD: IVIF $\mathcal{V}^{n} \times I \mathcal{V} \mathcal{F} \mathcal{V}^{n} \rightarrow \mathbf{R}$, that has an associated weight vector $\omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)^{T}$ with $\omega_{i}>0, \sum_{i=1}^{n} \omega_{i}=1(i=1,2, \cdots, n)$, such that

$$
\begin{equation*}
\operatorname{PIVIFOWAD}(\tilde{A}, \tilde{B})=\xi \sum_{i=1}^{n} \omega_{i} d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)+(1-\xi) \sum_{j=1}^{n} p_{j} d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right), \tag{8}
\end{equation*}
$$

where $d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)$ is the ith largest of $d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right)$ and each $d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right)$ has associate a probabilistic $p_{j} \in[0,1], \sum_{i=j}^{n} p_{i}=1$.

In Def.1, if $\xi=1$, it will be reduced to interval-valued intuitionistic fuzzy ordered weighted distant (IVIFOWAD) operator:

$$
\begin{equation*}
\operatorname{IVIFOWAD}(\tilde{A}, \tilde{B})=\sum_{i=j}^{n} \omega_{j} d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right) \tag{9}
\end{equation*}
$$

where $d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right)$ is the $j$ th largest of $d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)$ and $d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)$ is the argument variable represent in the form of individual distance between IVIFVs $\tilde{\alpha}_{i}, \tilde{\beta}_{i}$.

90 Example 1. Let

$$
\begin{aligned}
\tilde{A} & =\{([0.3,0.7],[0.2,0.3]),([0.7,0.8],[0.1,0.2]),([0.2,0.3],[0.5,0.6]),([0.5,0.6],[0.3,0.4])\} \\
\tilde{B} & =\{([0.4,0.5],[0.2,0.4]),([0.5,0.6],[0.2,0.3]),([0.2,0.4],[0.5,0.6]),([0.4,0.7],[0.2,0.3])\}
\end{aligned}
$$

be two collections of IVIFVs on the set $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and the weight vector is $\omega=$ ( $0.2,0.3,0.1,0.4$ ). Take $\xi=0.3$, according to Def. 1, we have

$$
\begin{aligned}
\operatorname{PIVIFOWAD}(\tilde{A}, \tilde{B})=\quad & 0.3 \times(0.2 \times 0.2+0.3 \times 0.175+0.1 \times 0.175+0.4 \times 0.05) \\
& +0.7 \times(0.3 \times 0.175+0.2 \times 0.2+0.4 \times 0.05+0.1 \times 0.175)=0.13
\end{aligned}
$$

Now, we can also develop the IPIVIFOWAD operator by applying IVIF information, individual distance and immediate probability (IP)[44].

95 Definition 2. An IPIVIFOWAD is a function IPIVIFOWAD: IVIF $\mathcal{V}^{n} \times$ IV VFF $^{n} \rightarrow \mathbf{R}$ which has an associated weight vector $\omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)^{T}$ with $\omega_{i}>0, \sum_{i=1}^{n} \omega_{i}=1(i=$ $1,2, \cdots, n)$, such that

$$
\begin{equation*}
\operatorname{IPIVIFOWAD}(\tilde{A}, \tilde{B})=\sum_{i=1}^{n} \hat{\rho}_{i}\left(d\left(\alpha_{i}, \beta_{i}\right)\right. \tag{10}
\end{equation*}
$$

where $d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)$ is the ith largest of $d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right)$ and $d\left(\tilde{\alpha}_{j}, \tilde{\beta}_{j}\right)$ is the argument variable represent in the form of individual distance between IVIFVs $\tilde{\alpha}_{i}, \tilde{\beta}_{i}$ and a PW $p_{i}>0, \sum_{i=1}^{n} p_{i}=1 . \hat{\rho}_{i}=\frac{\omega_{i} p_{i}}{\sum_{i=1}^{n} \omega_{i} p_{i}}$ and $p_{i}$ is the probabilistic $p_{j}$ according to $d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)$, that is, according to the ith largest of the $d\left(\tilde{\alpha}_{i}, \tilde{\beta}_{i}\right)$.

It is worth pointing out that IPIVIFOWAD operator is a good approach for unifying probabilities and IVIFOWAD in some particular situations. But it is not always useful. In order to show why this unification does not seem to be a final model, we could also consider other ways of representing $\hat{p}_{i}$ as in [34].

Example 2. In Exa.1, since the following weight vector $\omega=(0.2,0.3,0.1,0.4)$ and the $P W$ ( $0.3,0.2,0.4,0.1$ ). Now we aggregate this information according to IPIVIFOWAD. As we have calculated the $d\left(\alpha_{i}, \beta_{i}\right)$ by employing the Eq.(5) as follows,

$$
d\left(\alpha_{1}, \beta_{1}\right)=0.175, d\left(\alpha_{2}, \beta_{2}\right)=0.2, d\left(\alpha_{3}, \beta_{3}\right)=0.05, d\left(\alpha_{4}, \beta_{4}\right)=0.175
$$

According to the above distance, we reorder the $P W(0.2,0.3,0.1,0.4)$,

$$
\sum_{i=1}^{5} \omega_{i} p_{i}=(0.2,0.3,0.1,0.4)(0.2,0.3,0.1,0.4)^{T}=0.3
$$

${ }_{110}$ Therefore, $\hat{\rho_{1}}=\frac{\omega_{1} p_{1}}{\sum_{i=1}^{S} \omega_{i} p_{i}}=\frac{0.2 \times 0.2}{0.3}=0.133$, Similarly, we have $\hat{\rho_{2}}=0.3, \hat{\rho_{3}}=0.033, \hat{\rho_{4}}=0.534$. Therefore, we have
$\operatorname{IPIVIFOWAD}(\tilde{A}, \tilde{B})=0.133 \times 0.2+0.3 \times 0.175+0.033 \times 0.175+0.534 \times 0.05=0.112$.
Monotonicity is a kind of vital property in the research of aggregation operators. The aggregation operator with monotonicity will be more reliable in decision making process. The lack of monotonicity may depress the reliability of the final results. PIVIFOWAD and IPIVIFOWAD 15 are new distance measure, whist are aggregation operators. We can prove PIVIFOWAD and IPIVIFOWAD have the propoerties of boundness, monotonicity and reflexivity. The proof of these properties are similar to Theorem 1-3 in [22].

## 4. Method for MCDM based on IPIVIFOWA operator

### 4.1. Formal description of MCDM with IVIFs

The MCDM with IVIF information can be formally presented as follows:
Let $X=\left\{x_{1}, \cdots, x_{m}\right\}$ be a set of $m$ alternatives, $C=\left\{G_{1}, \cdots, C_{n}\right\}$ the collection of attributes and $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)^{T}$ be the weight vector of all attributes, which satisfy $0 \leq \omega_{i} \leq 1$. Assume that alternative $A_{i}(i=1, \cdots, m)$ w. r. t. attribute $C_{j}(j=1, \cdots, n)$ is evaluated by an IVIFVs $C_{j}\left(x_{i}\right)=\left(\left[\mu_{i j}^{-}, \mu_{i j}^{+}\right],\left[v_{i j}^{-}, v_{i j}^{+}\right]\right)(j=1,2, \cdots, n ; i=, 2, \cdots, m)$ and $R_{m \times n}=\left(C_{j}\left(x_{i}\right)\right)_{m \times n}$ is an IVIF decision matrix. A new kind MCDM approach will be developed based on the distance operators proposed in the Section 3.

For a MCDM problem with IVIFVs, the decision matrix $R=\left(C_{j}\left(x_{i}\right)\right)_{m \times n}$ and be constructed or given in advance.

$$
R_{m \times n}=\left(\begin{array}{cccc}
\left(\left[\mu_{11}^{-}, \mu_{11}^{+}\right],\left[v_{11}^{-}, v_{11}^{+}\right]\right) & \left(\left[\mu_{12}^{-}, \mu_{12}^{+}\right],\left[v_{12}^{-}, v_{12}^{+}\right]\right) & \cdots & \left(\left[\mu_{11}^{-}, \mu_{1 n}^{+}\right],\left[v_{1 n}^{-}, v_{1 n}^{+}\right]\right) \\
\left(\left[\mu_{21}^{-}, \mu_{21}^{+}\right],\left[v_{21}^{-}, v_{21}^{+}\right]\right) & \left(\left[\mu_{22}^{-}, \mu_{22}^{+}\right],\left[v_{22}^{-}, v_{22}^{+}\right]\right) & \cdots & \left(\left[\mu_{2 n}^{-}, \mu_{2 n}^{+}\right],\left[v_{2 n}^{-}, v_{2 n}^{+}\right]\right) \\
\vdots & \vdots & \vdots & \vdots \\
\left(\left[\mu_{m 1}^{-}, \mu_{m 1}^{+}\right],\left[v_{m 1}^{-}, v_{m 1}^{+}\right]\right) & \left(\left[\mu_{m 2}^{-}, \mu_{m 2}^{+}\right],\left[v_{m 2}^{-}, v_{m 2}^{+}\right]\right) & \cdots & \left(\left[\mu_{m n}^{-}, \mu_{m n}^{+}\right],\left[v_{m n}^{-}, v_{m n}^{+}\right]\right)
\end{array}\right)
$$

We give the concepts of IVIF-PIS, IVIF-NIS and satisfaction degree before the decision making algorithm is given.

Considering that the decision information takes the form of IVIFVs, we utilize the score function Eq.(3) and accuracy function Eq.(4) based comparison approach to identify the IVIFPIS and the IVIF-NIS. We use $A^{+}$to represent IVIF-PIS and $A^{-}$to represent IVIF-NIS, they are determined as following:

$$
\begin{align*}
A^{+} & =\left\{\left\langle C_{j}, \max _{i} s\left(C_{j}\left(x_{i}\right)\right)\right| j=1,2, \cdots, n ; i=1,2, \cdots, m\right\},  \tag{11}\\
A^{-} & =\left\{\left\langle C_{j}, \operatorname{mim}_{i} s\left(C_{j}\left(x_{i}\right)\right)\right| j=1,2, \cdots, n ; i=1,2, \cdots, m\right\} . \tag{12}
\end{align*}
$$

Let D is one of IPIVIFOWAD and PIVIFOWAD, $\mathrm{D}\left(A^{+}, A_{i}\right)$ and $\mathrm{D}\left(A^{+}, A_{i}\right)$ denote the distance of $A^{+}$and alternative $A_{i}$ and the $A^{-}$and alternative $A_{i}$, respectively. Motivated by the well-known TOPSIS, we take both $\mathrm{D}\left(A^{+}, A_{i}\right)$ and $\mathrm{D}\left(A^{-}, A_{i}\right)$ into consideration simultaneously rather than separately. This leads naturally to the concept of satisfaction degree.

Definition 3. Let $A=\left\{A_{1}, \cdots, A_{m}\right\}$ be a collection of alternatives. The satisfaction degree $\lambda\left(A_{i}\right)$ of a given alternative $x_{i}$ over the criteria $C_{j}(j=1,2, \cdots, n)$ defined as:

$$
\begin{equation*}
\lambda\left(A_{i}\right)=\frac{(1-\varepsilon)\left[D\left(A^{-}, A_{i}\right)\right]}{\varepsilon\left[D\left(A^{+}, A_{i}\right)\right]+(1-\varepsilon)\left[D\left(A^{-}, A_{i}\right)\right]}, i=1,2, \cdots, m . \tag{13}
\end{equation*}
$$

where $\varepsilon$ denotes the risk preference of the DM and $\varepsilon \in[0,1]: \varepsilon>0.5$ means that the decision maker is pessimist; while $\varepsilon<0.5$ means the opposite. $\varepsilon=0.5$, satisfaction degree is relative closeness using the classic TOPSIS method. The parameter $\varepsilon$ is provided by the decision making ${ }_{40}$ in advance. It is obviously that $\lambda\left(A_{i}\right) \in[0,1](i=1,2, \cdots, m)$. The higher the satisfaction degree, the better the alternative.

### 4.2. Decision algorithm for MCDM with IVIF

Step 1. Determine the IVIF-PIS and the IVIF-NIS.
Step 2. Calculate the distance between IVIFVs in $A$ and IVIFVs in $A^{+}\left(A^{-}\right)$according to

$$
150
$$

$$
\mathrm{C}
$$

## Eq.(7);

Step 3. Recalculate the probability according to distance calculated in Step 2;
Step 4. Compute the distance $\mathrm{D}\left(A^{+}, A_{i}\right)$ of the positive ideal IVIFS $A^{+}$and alternative $A_{i}$, the distance $\mathrm{D}\left(A^{-}, A_{i}\right)$ the negative ideal IVIFS $A^{-}$and alternative $A_{i}$, respectively;

Step 5. Calculate the satisfaction degree $\lambda\left(A_{i}\right)$ according to Definition 4 . And get the priority of the alternative $A_{i}(i=1, \cdots, m)$ by ranking $\lambda\left(A_{i}\right)(i=1, \cdots, m)$, the bigger the satisfaction degree $\lambda\left(A_{i}\right)$, the better the alternation $A_{i}$.

Step 6. End.

## 5. Case study

In this section, we will given a practical example about the optimal invest strategy to show the application of proposed IPIVIFOWAD and PIVIFOWAD. Let us suppose there is an investment company, which wants to invest a sum of money in the best option (adapted from [8]). There is a panel with five possible alternatives to invest the money:

A1: a car company; A2: a food company; A3: a computer company; A4: an arms company; A5: a TV company.

The investment company must take a decision according to the following five criteria:
$G_{1}$ : the risk analysis;
$G_{2}$ : the growth analysis;
$G_{3}$ : the socialCpolitical impact analysis;
$G_{4}$ : the environmental impact analysis.
$G_{5}$ : Other factors
The five possible alternatives $A_{i}(i=1,2, \cdots, 5)$ are to be evaluated using the IVIFVs and construct the IVIF decision matrix as shown in Table 1.

Table 1: IVIF decision matrix

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $([0.6,0.7],[0.2,0.3])$ | $([0.6,0.7],[0.1,0.2])$ | $([0.5,0.6],[0.3,0.4])$ | $([0.4,0.5],[0.2,0.3])$ | $([0.5,0.6],[0.3,0.4])$ |
| $A_{2}$ | $([0.3,0.4],[0.5,0.6])$ | $([0.2,0.3],[0.6,0.7])$ | $([0.4,0.6],[0.2,0.3])$ | $([0.7,0.7],[0.1,0.2])$ | $([0.4,0.6],[0.1,0.2])$ |
| $A_{3}$ | $([0.5,0.6],[0.2,0.4])$ | $([0.5,0.7],[0.2,0.3])$ | $([0.4,0.5],[0.3,0.4])$ | $([0.2,0.3],[0.5,0.6])$ | $([0.3,0.4],[0.4,0.5])$ |
| $A_{4}$ | $([0.3,0.4],[0.4,0.5])$ | $([0.5,0.6],[0.3,0.4])$ | $([0.5,0.6],[0.2,0.3])$ | $([0.5,0.6],[0.2,0.3])$ | $([0.5,0.6],[0.2,0.3])$ |
| $A_{5}$ | $([0.4,0.6],[0.2,0.4])$ | $([0.5,0.6],[0.2,0.3])$ | $([0.6,0.7],[0.2,0.3])$ | $([0.3,0.4],[0.5,0.6])$ | $([0.6,0.7],[0.2,0.3])$ |

To find the desirable alternative, the expert give the probabilistic weight information as follows: $p=(0.3,0.3,0.2,0.1,0.1)$. They assume that the importance degree of each characteristics is $w=(0.2,0.3,0.1,0.3,0.1)$.

### 5.1. Decision making using IPIVIFOWAD operator

Step 1. Determine the IVIF-PIS $A^{+}$and the IVIF-NIS $A^{-}$by the score function and accuracy function which are shown table 2 .

Table 2: The results by using score function

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $s_{1}$ | 0.4 | 0.5 | 0.2 | 0.2 | 0.2 |
| $s_{2}$ | -0.2 | -0.4 | 0.25 | 0.6 | 0.35 |
| $s_{3}$ | 0.25 | 0.35 | 0.1 | -0.3 | -0.1 |
| $s_{4}$ | -0.1 | 0.2 | 0.3 | 0.3 | 0.3 |
| $s_{5}$ | 0.2 | 0.3 | 0.4 | -0.2 | 0.4 |

we can see from Table 2 that $s_{j}\left(G_{1}\right)(j=1,2,3,4,5)$ all are different, so do $s_{j}\left(G_{2}\right), s_{j}\left(G_{3}\right)$, $s_{j}\left(G_{4}\right), s_{j}\left(G_{5}\right)(j=1,2,3,4,5)$. Therefore, we do not need to compute the accuracy function. And so, IVIF-PIS $A^{+}$and IVIF-NIS $A^{-}$are obtained, respectively and shown as follows:

$$
\begin{aligned}
A^{+}= & \left\{\left\langle G_{1},([0.6,0.7],[0.2,0.3])\right\rangle,\left\langle G_{2},([0.6,0.7],[0.1,0.2])\right\rangle,\left\langle G_{3},([0.6,0.7],[0.2,0.3])\right\rangle,\right. \\
& \left.\left\langle G_{4},([0.7,0.8],[0.1,0.2])\right\rangle,\left\langle G_{5},([0.6,0.7],[0.2,0.3])\right\rangle\right\}, \\
A^{-}=\quad & \left\{\left\langle G_{1},([0.3,0.4],[0.5,0.6])\right\rangle,\left\langle G_{2},([0.2,0.3],[0.6,0.7])\right\rangle,\left\langle G_{3},([0.4,0.5],[0.3,0.4])\right\rangle,\right. \\
& \left.\left\langle G_{4},([0.2,0.3],[0.5,0.6])\right\rangle,\left\langle G_{5},([0.3,0.4],[0.4,0.5])\right\rangle\right\} .
\end{aligned}
$$

Step 2. Denote $A^{+}=\left\{\tilde{\gamma}_{1}, \cdots, \tilde{\gamma}_{5}\right\}, A^{-}=\left\{\tilde{\tau}_{1}, \cdots, \tilde{\tau}_{5}\right\}, A_{i}=\left\{\tilde{\alpha}_{i 1}, \cdots, \tilde{\alpha}_{i 5}\right\}(i=1,2, \cdots, 5)$. Now we calculate the distance $d\left(\tilde{\gamma}_{j}, \tilde{\alpha}_{i j}\right)(i, j=1,2, \cdots, 5)$ between IVIFVs $\tilde{\gamma}_{j}, \tilde{\alpha}_{i j}, d\left(\tilde{\tau}_{j}, \tilde{\alpha}_{i j}\right)(i, j=$ $1,2, \cdots, 5)$ between the IVIFVs $\tilde{\tau}_{j}, \tilde{\alpha}_{i j}$, respectively. The results can be found in the Table. 3 and Table 4.

Table 3: The distance between $\tilde{\alpha}_{i j}$ and $\tilde{\gamma}_{j}$

|  | $\tilde{\gamma}_{1}$ | $\tilde{\gamma}_{2}$ | $\tilde{\gamma}_{3}$ | $\tilde{\gamma}_{4}$ | $\tilde{\gamma}_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 0 | 0 | 0.1 | 0.3 | 0.1 |
| $A_{2}$ | 0.3 | 0.5 | 0.15 | 0 | 0.25 |
| $A_{3}$ | 0.1 | 0.1 | 0.2 | 0.5 | 0.3 |
| $A_{4}$ | 0.3 | 0.2 | 0.1 | 0.2 | 0.1 |
| $A_{5}$ | 0.15 | 0.1 | 0 | 0.4 | 0 |

Table 4: The distance between $\tilde{\alpha}_{i j}$ and $\tilde{\tau}_{j}$

|  | $\tilde{\tau}_{1}$ | $\tilde{\tau}_{2}$ | $\tilde{\tau}_{3}$ | $\tilde{\tau}_{4}$ | $\tilde{\tau}_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | 0.3 | 0.5 | 0.1 | 0.3 | 0.2 |
| $A_{2}$ | 0 | 0 | 0.1 | 0.5 | 0.3 |
| $A_{3}$ | 0.25 | 0.4 | 0 | 0 | 0 |
| $A_{4}$ | 0.1 | 0.3 | 0.1 | 0.3 | 0.2 |
| $A_{5}$ | 0.25 | 0.4 | 0.2 | 0.1 | 0.3 |

Step 3. Calculate IP by using the above probabilities and weights according to Table 3 and Table 4. The results are shown in Table 5 and Table 6.

Table 5: The IP according to Table.3.

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I P_{1}$ | 0.1053 | 0.1579 | 0.1053 | 0.4737 | 0.1579 |
| $I P_{2}$ | 0.2609 | 0.3913 | 0.0435 | 0.2609 | 0.0435 |
| $I P_{3}$ | 0.1053 | 0.1579 | 0.1053 | 0.4737 | 0.1579 |
| $I P_{4}$ | 0.2607 | 0.3913 | 0.0435 | 0.2607 | 0.0435 |
| $I P_{5}$ | 0.0952 | 0.4286 | 0.1429 | 0.2857 | 0.0476 |

Table 6: The IP according to Table.4.

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I P_{1} 0.3158$ | 0.1579 | 0.0526 | 0.3158 | 0.1579 |  |
| $I P_{2} 0.1053$ | 0.1579 | 0.1053 | 0.4737 | 0.1579 |  |
| $I P_{3} 0.2857$ | 0.4286 | 0.0952 | 0.1429 | 0.0476 |  |
| $I P_{4} 0.2857$ | 0.1429 | 0.0476 | 0.4286 | 0.0952 |  |
| $I P_{5} 0.3158$ | 0.1579 | 0.1579 | 0.3158 | 0.0526 |  |

Step 4. Calculate the $\operatorname{IPIVIFOWAD}\left(A_{i}, A^{+}\right)$and $\operatorname{IPIVIFOWAD}\left(A_{i}, A^{-}\right)$according to Step 2 and Step 3. For convenience, we denote $\operatorname{IPIVIFOWAD}\left(A_{i}, A^{+}\right)$and $\operatorname{IPIVIFOWAD}\left(A_{i}, A^{-}\right)$as 185 $D\left(A_{i}, A^{+}\right)$and $D\left(A_{i}, A^{-}\right)(i=1,2, \cdots, 5)$, respectively. The results are as follows.

$$
\begin{aligned}
& D\left(A_{1}, A^{+}\right)=0.0579, D\left(A_{2}, A^{+}\right)=0.2979, D\left(A_{3}, A^{+}\right)=0.1842 \\
& D\left(A_{4}, A^{+}\right)=0.1957, D\left(A_{5}, A^{+}\right)=0.1167 . \\
& D\left(A_{1}, A^{-}\right)=0.2474, D\left(A_{2}, A^{-}\right)=0.1105, D\left(A_{3}, A^{-}\right)=0.2214 \\
& D\left(A_{4}, A^{-}\right)=0.1905, D\left(A_{5}, A^{-}\right)=0.2816 .
\end{aligned}
$$

Step 5. Calculate the satisfaction degree according to the distance in Step 4. The results can be found in Table 7 under different risk preference $\varepsilon$.

Table 7: Satisfaction degree obtained by IPIVIFOWAD under different risk preference parameter $\varepsilon$

|  | $\lambda\left(A_{1}\right)$ | $\lambda\left(A_{2}\right)$ | $\lambda\left(A_{3}\right)$ | $\lambda\left(A_{4}\right)$ | $\lambda\left(A_{5}\right)$ | Ranking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon=0.1$ | 0.9747 | 0.7696 | 0.9154 | 0.8976 | 0.9560 | $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ |
| $\varepsilon=0.3$ | 0.9088 | 0.4641 | 0.7372 | 0.6943 | 0.8492 | $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ |
| $\varepsilon=0.5$ | 0.8103 | 0.2707 | 0.5459 | 0.4933 | 0.7070 | $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ |
| $\varepsilon=0.7$ | 0.6468 | 0.1372 | 0.3400 | 0.2944 | 0.5084 | $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ |
| $\varepsilon=0.9$ | 0.3219 | 0.0396 | 0.1178 | 0.0976 | 0.2115 | $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ |



Figure 1: Satisfaction degree obtained by IPIVIFOWAD under different $\varepsilon$

Table 8: The probabilities according to Table.3.

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{p}_{1}$ | 0.14 | 0.18 | 0.16 | 0.3 | 0.22 |
| $\hat{p}_{2}$ | 0.26 | 0.3 | 0.1 | 0.24 | 0.1 |
| $\hat{p}_{3}$ | 0.14 | 0.18 | 0.16 | 0.3 | 0.22 |
| $\hat{p}_{4}$ | 0.26 | 0.3 | 0.1 | 0.24 | 0.1 |
| $\hat{p}_{5}$ | 0.14 | 0.3 | 0.22 | 0.24 | 0.1 |

Table 9: The probabilities according to Table.4.

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\hat{p}_{1}$ | 0.26 | 0.18 | 0.1 | 0.24 | 0.22 |
| $\hat{p}_{2}$ | 0.14 | 0.18 | 0.16 | 0.3 | 0.22 |
| $\hat{p}_{3}$ | 0.26 | 0.3 | 0.16 | 0.18 | 0.1 |
| $\hat{p}_{4}$ | 0.26 | 0.18 | 0.1 | 0.3 | 0.16 |
| $\hat{p}_{5}$ | 0.26 | 0.18 | 0.22 | 0.24 | 0.1 |

It follows from Table 7 that the order of alternatives are consistent with results by using IPIVIFOWAD when parameter changes. We can obtain the ranking $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$. tic information has an importance of 60 percent. we can rearrange the probabilistic according the distance. The results can be found in the following Table. 8 and Table.9.

Therefore, we can calculate PIVIFOWAD distances $D\left(A_{i}, A^{+}\right), D\left(A_{i}, A^{-}\right)(i=1, \cdots, 5)$ as follows:

$$
\begin{aligned}
& D\left(A_{1}, A^{+}\right)=0.076, D\left(A_{2}, A^{+}\right)=0.281, D\left(A_{3}, A^{+}\right)=0.208, \\
& D\left(A_{4}, A^{+}\right)=0.192, D\left(A_{5}, A^{+}\right)=0.123 . \\
& D\left(A_{1}, A^{-}\right)=0.228, D\left(A_{2}, A^{-}\right)=0.14, D\left(A_{3}, A^{-}\right)=0.179, \\
& D\left(A_{4}, A^{-}\right)=0.198, D\left(A_{5}, A^{-}\right)=0.271 .
\end{aligned}
$$

Therefore, we can obtain the satisfaction degree under difference risk preference parameters $\varepsilon$, please refers the Table. 10 .

Table 10: Satisfaction degree obtained by PIVIFOWAD under different $\varepsilon$ and $\xi=0.4$

|  | $\lambda\left(A_{1}\right)$ | $\lambda\left(A_{2}\right)$ | $\lambda\left(A_{3}\right)$ | $\lambda\left(A_{4}\right)$ | $\lambda\left(A_{5}\right)$ | Ranking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon=0.1$ | 0.9643 | 0.8177 | 0.8857 | 0.9027 | 0.9520 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |
| $\varepsilon=0.3$ | 0.8750 | 0.5376 | 0.6676 | 0.7064 | 0.8372 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |
| $\varepsilon=0.5$ | 0.7500 | 0.3325 | 0.4625 | 0.5077 | 0.6878 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |
| $\varepsilon=0.7$ | 0.5625 | 0.1760 | 0.2694 | 0.3065 | 0.4857 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |
| $\varepsilon=0.9$ | 0.2500 | 0.0525 | 0.0873 | 0.1028 | 0.1967 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |



Figure 2: Satisfaction degree obtained by PIVIFOWAD under different $\varepsilon$ and $\xi=0.4$

It follows from Table 10 that the ranking are consistent with the results by using the PIVIFOWAD operators when parameter changes. We can obtain the order of alternatives: $A_{1}>A_{3}>$ $A_{5}>A_{4}>A_{2}$. All of the results show that $A_{1}$ is the desirable one. Such a conclusion can be also drawn directly from the Fig.2.

If we change the weight important degree $\xi$, we can obtain other satisfaction degree listed in Table 11. From Table 11, we can see that the desirable alternative is consistent with the ranking

Table 11: Satisfaction degree obtained by PIVIFOWAD under difference $\xi$

|  | $\lambda\left(A_{1}\right)$ | $\lambda\left(A_{2}\right)$ | $\lambda\left(A_{3}\right)$ | $\lambda\left(A_{4}\right)$ | $\lambda\left(A_{5}\right)$ | Ranking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\xi=0.1$ | 0.7762 | 0.2740 | 0.5053 | 0.4923 | 0.7008 | $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ |
| $\xi=0.3$ | 0.7584 | 0.3136 | 0.4766 | 0.5027 | 0.6921 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |
| $\xi=0.5$ | 0.7419 | 0.3509 | 0.4487 | 0.5128 | 0.6835 | $A_{1}>A_{5}>A_{4}>A_{2}>A_{2}$ |
| $\xi=0.7$ | 0.7267 | 0.3859 | 0.4217 | 0.5231 | 0.6751 | $A_{1}>A_{5}>A_{4}>A_{3}>A_{2}$ |
| $\xi=0.9$ | 0.7126 | 0.4190 | 0.3955 | 0.5333 | 0.6667 | $A_{1}>A_{5}>A_{4}>A_{2}>A_{3}$ |

obtained by PIVIFOWAD when parameter $\xi$ changes although the ranking of alternatives is not


Figure 3: Satisfaction degree obtained by PIVIFOWAD under different $\xi$ and $\varepsilon=0.5$
the same. All of the results show that $A_{1}$ is the desirable one. Such a conclusion can be drawn directly from the Fig.3.

### 5.3. Effectiveness test of the proposed method

For MCDM problems, Wang and Triantaphyllou [35] established assessing criteria (please refer to [35]) to assess the effectiveness of MCDM methods. In what following, we will use above MCDM criteria to test our proposed methods in Section 4. As far as the proposed method based on IPIVIFOWAD is concerned, we choose the satisfactory degree $\varepsilon=0.5$ to analyze above criteria.

Validity test for criterion 1. In Section 5.2, we obtained $A_{1}$ is the desirable one and the order of alternatives is: $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$. In order to test the effectiveness of the developed IPIVIFOWAD method under criterion 1, the modified IVIF decision matrix (Table.12) is used. This decision matrix is gotten by interchanging the intervals of membership and non-membership grades of alternative $A_{3}$ (non-optimal)and $A_{4}$ (less desirable than $A_{3}$ ) in the original decision matrix (Table 1).

Table 12: Modified IVIF decision matrix

|  | $G_{1}$ | $G_{2}$ | $G_{3}$ | $G_{4}$ | $G_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $([0.6,0.7],[0.2,0.3])$ | $([0.6,0.7],[0.1,0.2])$ | $([0.5,0.6],[0.3,0.4])$ | $([0.4,0.5],[0.2,0.3])$ | $([0.5,0.6],[0.3,0.4])$ |
| $A_{2}$ | $([0.3,0.4],[0.5,0.6])$ | $([0.2,0.3],[0.6,0.7])$ | $([0.4,0.6],[0.2,0.3])$ | $([0.7,0.7],[0.1,0.2])$ | $([0.4,0.6],[0.1,0.2])$ |
| $A_{3}$ | $([0.2,0.4],[0.5,0.6])$ | $([0.2,0.3],[0.5,0.7])$ | $([0.3,0.4],[0.4,0.5])$ | $([0.5,0.6],[0.2,0.3])$ | $([0.4,0.5],[0.3,0.4])$ |
| $A_{4}$ | $([0.4,0.5],[0.3,0.4])$ | $([0.3,0.4],[0.5,0.6])$ | $([0.2,0.3],[0.5,0.6])$ | $([0.2,0.3],[0.5,0.6])$ | $([0.2,0.3],[0.5,0.6])$ |
| $A_{5}$ | $([0.4,0.6],[0.2,0.4])$ | $([0.5,0.6],[0.2,0.3])$ | $([0.6,0.7],[0.2,0.3])$ | $([0.3,0.4],[0.5,0.6])$ | $([0.6,0.7],[0.2,0.3])$ |

Repeating the same steps 1-2 in 5.1. We can obtain the modified IVIF-PIS $A^{+}$and the IVIF-

NIS $A^{-}$and is listed as follows:

$$
\begin{aligned}
A^{+}= & \left\{\left\langle G_{1},([0.7,0.8],[0.2,0.3])\right\rangle,\left\langle G_{2},([0.7,0.8],[0.2,0.3])\right\rangle,\left\langle G_{3},([0.8,0.9],[0.3,0.4])\right\rangle,\right. \\
& \left.\left\langle G_{4},([0.7,0.8],[0.3,0.5])\right\rangle,\left\langle G_{5},([0.7,0.8],[0.4,0.5])\right\rangle\right\}, \\
A^{-}=\quad & \left\{\left\langle G_{1},([0.2,0.4],[0.7,0.8])\right\rangle,\left\langle G_{2},([0.3,0.4],[0.6,0.7])\right\rangle,\left\langle G_{3},([0.3,0.4],[0.6,0.8])\right\rangle,\right. \\
& \left.\left\langle G_{4},([0.3,0.5],[0.5,0.6])\right\rangle,\left\langle G_{5},([0.3,0.4],[0.5,0.7])\right\rangle\right\} .
\end{aligned}
$$

Using the Step 3-Step 5 of IPIVIFOWAD method, the IPIVIFOWAD distances $D\left(A_{i}, A^{+}\right)$ between alternatives $A_{i}$ and $A^{+}$, the IPIVIFOWAD distances $D\left(A_{i}, A^{-}\right)$between alternatives $A_{i}$ and $A^{-}$are calculated, respectively, where $i=1,2, \cdots, 5$.

$$
\begin{aligned}
& D\left(A_{1}, A^{+}\right)=0.0579, D\left(A_{2}, A^{+}\right)=0.2978, D\left(A_{3}, A^{+}\right)=0.3452, \\
& D\left(A_{4}, A^{+}\right)=0.3789, D\left(A_{5}, A^{+}\right)=0.1167 . \\
& D\left(A_{1}, A^{-}\right)=0.3786, D\left(A_{2}, A^{-}\right)=0.3526, D\left(A_{3}, A^{-}\right)=0.0974, \\
& D\left(A_{4}, A^{-}\right)=0.1, D\left(A_{5}, A^{-}\right)=0.3243 .
\end{aligned}
$$

According to the satisfaction degree formula when $\varepsilon=0.5$, we have

$$
\lambda\left(A_{1}\right)=0.8674, \lambda\left(A_{2}\right)=0.5421, \lambda\left(A_{3}\right)=0.2200, \lambda\left(A_{4}\right)=0.2088, \lambda\left(A_{5}\right)=0.7355 .
$$

We can see from above satisfaction degrees that the rank is $A_{1}>A_{5}>A_{2}>A_{3}>A_{4}$, that is, $A_{1}$ is the best one. Therefore, the best alternative coincide with the best alternative obtained in Section 5.1 by the same method, and the relative orders of the rest of the unchanged alternatives keep constant. That is, Criterion 1 is suitable for the proposed method.

Validity test for criterion 2 and criterion 3. According to the requirements of criterion 2 and test criterion 3 introduced in [35], the original problem should be decomposed into two smaller MCDM problems, such as $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $\left\{A_{1}, A_{3}, A_{4}, A_{5}\right\}$. For the sub-problem $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$, we can obtain the satisfaction degree by repeating Step 1 to Step 6 as follows:

$$
\lambda\left(A_{1}\right)=0.7988, \lambda\left(A_{2}\right)=0.2859, \lambda\left(A_{3}\right)=0.56048, \lambda\left(A_{4}\right)=0.48488 .
$$

Therefore, the rankings of the sub-problem is $A_{1}>A_{3}>A_{4}>A_{2}$. For the sub-problem $\left\{A_{1}, A_{3}, A_{4}, A_{5}\right\}$, we can obtain the satisfaction degree by repeating Step 1 to Step 6 as follows:

$$
\lambda\left(A_{1}\right)=0.8577, \lambda\left(A_{3}\right)=0.38, \lambda\left(A_{4}\right)=0.2740, \lambda\left(A_{5}\right)=0.6066 .
$$

the rankings of the sub-problem $\left\{A_{1}, A_{3}, A_{4}, A_{5}\right\}$ is $A_{1}>A_{5}>A_{3}>A_{4}$.
We obtain the final ranking $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$ by combining the order of alternatives of sub-problems $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $\left\{A_{1}, A_{3}, A_{4}, A_{5}\right\}$, the final order is the same with the order of original decision problem and it also exhibits transitive property. Criterion 2 and criterion 3 proposed in [35] also suitable for the proposed method.

### 5.4. Comparison with existing work

Comparison with Hadi-Vencheh and Mirjaberi's method[9]. In the classical TOPSIS method, we often need to compute the relative closeness of the alternative $A_{i}$ w.r.t the PIS $A^{+}$as below:

$$
\begin{equation*}
R C\left(A_{i}\right)=\frac{D\left(A_{i}, A^{-}\right)}{D\left(A_{i}, A_{13}^{-}\right)+D\left(A_{i}, A^{+}\right)} \tag{14}
\end{equation*}
$$

where $D($.$) is a distance measure. The ranking of all alternatives can be determined according$ to the closeness index $R C\left(A_{i}\right)$. If $\varepsilon=0.5$ in our proposed Eq.(15), then Eq.(15) will be Eq.(16).

However, Hadi-Vencheh and Mirjaberi[9] suggested that one may use the following formula instead of the relative closeness index

$$
\begin{equation*}
\zeta\left(A_{i}\right)=\frac{D\left(A_{i}, A^{-}\right)}{D_{\max }\left(A_{i}, A^{-}\right)}-\frac{D\left(A_{i}, A^{+}\right)}{D_{\min }\left(A_{i}, A^{+}\right)} \tag{15}
\end{equation*}
$$

where $D_{\max }\left(A_{i}, A^{-}\right)=\max _{1 \leq i \leq m}\left\{D\left(A_{i}, A^{-}\right)\right\}$and $D_{\min }\left(A_{i}, A^{+}\right)=\min _{1 \leq i \leq m}\left\{D\left(A_{i}, A^{+}\right)\right\}$. Eq.(15) is called the revised closeness used to measure the extent to which the alternative $A_{i}$ is close to the PIS $A^{+}$and is far away from the NIS $A^{+}$, simultaneously. By Eq. (15)

$$
\zeta\left(A_{1}\right)=-0.1213, \zeta\left(A_{2}\right)=-4.751, \zeta\left(A_{3}\right)=-2.3954, \zeta\left(A_{4}\right)=-2.7029, \zeta\left(A_{5}\right)=-1.0151
$$

Therefore, the ranking of $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ is arranged $A_{1}>A_{5}>A_{3}>A_{4}>A_{2}$. which coincide with our proposed method.

## 6. Conclusion

IVIFSs, which is a generalization of the IFSs, have been used widely in decision problems. IVIFS permits the membership degrees and nonmembership degrees to a given set to have an interval value in $[0,1]$, can be considered as a powerful tool to express complex information in the human decision making process. In this paper, we introduced some new distance measures, namely PIVIFOWAD operator and IPIVIFOWAD operator. Whilst, with respect to probabilistic decision-making problems with IVIF information, some new probabilistic decision-making analysis methods are developed. The new distance operators such as IVIFOWAD operator, PIVIFOWAD operator and IPIVIFOWAD operator have been developed in this paper. Whist, the concept of satisfaction degree of alternatives has been introduced based on the some distance measures and applied to MCDM problem with IVIF information.

## Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

## Acknowledgments

This work is supported by National Natural Science Foundation of P.R.China (Grant no. 61673320); The Scientific Research Project of Department of Education of Sichuan Province (15TD0027, 18ZA0273); Natural Science Foundation of Guangdong Province (2016A030310003).

## References

[1] Atanassov, K. and Gargov, G. Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31(1989) 343C349.
[2] Atanassov, K. Operators over interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 64(2)(1994) 159-174.
[3] K.T. Attanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
[4] S.M. Chen, C.H. Chiou, Multiattribute Decision Making Based on Interval-Valued Intuitionistic Fuzzy Sets, PSO Techniques, and Evidential Reasoning Methodology, Ieee Transactions on Fuzzy Systems, 23 (2015) 1905-1916.
[5] S.-M. Chen, Z.-C. Huang, Multiattribute decision making based on interval-valued intuitionistic fuzzy values and particle swarm optimization techniques, Information Sciences, 397-398 (2017) 206-218.
[6] S.-M. Chen, L.-W. Lee, H.-C. Liu, S.-W. Yang, Multiattribute decision making based on interval-valued intuitionistic fuzzy values, Expert Systems with Applications, 39 (2012) 10343-10351.
[7] Z. Chen, X. Yang, Y. Zhu, Approach to multiple attribute decision making with interval-valued intuitionistic fuzzy information and its application, Journal of Intelligent and Fuzzy Systems, 29 (2015) 489-497.
[8] S.S. Hashemi, S.H.R. Hajiagha, E.K. Zavadskas, H.A. Mahdiraji, Multicriteria group decision making with ELECTRE III method based on interval-valued intuitionistic fuzzy information, Applied Mathematical Modelling, 40 (2016) 1554-1564.
[9] A. Hadi-Vencheh, M. Mirjaberi, Fuzzy inferior ratio method for multiple attribute decision making problems, Information Sciences, 277 (2014) 263-272.
[10] P. D. Liu, Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators, Computers and Industrial Engineering, 108 (2017) 199-212.
[11] P.D. Liu, Some Hamacher Aggregation Operators Based on the Interval-Valued Intuitionistic Fuzzy Numbers and Their Application to Group Decision Making, Ieee Transactions on Fuzzy Systems, 22 (2014) 83-97.
[12] P.D. Liu, X. Liu, Multiattribute Group Decision Making Methods Based on Linguistic Intuitionistic Fuzzy Power Bonferroni Mean Operators, Complexity, (2017).
[13] P.D. Liu, F. Teng, Multiple Criteria Decision Making Method based on Normal Interval-Valued Intuitionistic Fuzzy Generalized Aggregation Operator, Complexity, 21 (2016) 277-290.
[14] P.D. Liu, F. Teng, An Extended TODIM Method for Multiple Attribute Group Decision-Making Based on 2Dimension Uncertain Linguistic Variable, Complexity, 21 (2016) 20-30.
[15] P. Liu, S.M. Chen, Multiattribute Group Decision Making Based on Intuitionistic 2-Tuple Linguistic Information, Information Sciences 430-431 (2018) 599-619
[16] P. Liu, J. Liu, J.M. Merig, Partitioned Heronian means based on linguistic intuitionistic fuzzy numbers for dealing with multi-attribute group decision making, Applied Soft Computing 62(2018) 395-422
[17] P. Liu, Multiple attribute group decision making method based on interval-valued intuitionistic fuzzy power Heronian aggregation operators, Computers and Industrial Engineering 108(2017) 199-212
[18] P. Liu, S.M. Chen, Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers, IEEE Transactions on Cybernetics 47(9)(2017)2514-2530
[19] P. Liu, S.M. Chen, J. Liu, Multiple attribute group decision making based on intuitionistic fuzzy interaction partitioned Bonferroni mean operators, Information Sciences 411 (2017) 98C121
[20] D.H. Liu, X.H. Chen, D. Peng, Interval-Valued Intuitionistic Fuzzy Ordered Weighted Cosine Similarity Measure and Its Application in Investment Decision-Making, Complexity, (2017).
[21] Liao, H., Xu, Z. S., Intuitionistic fuzzy hybrid weighted aggregation operators. International Journal of Intelligent Systems, 29(2014)971-993.
[22] Liu, Y., Qin, Y., Han, Y., Multiple creteria decison making with probabilities in interval-valued Pythagorean fuzzy setting. Int. J. Fuzzy Syst. (2017). https://doi.org/10.1007/s40815-017-0349-3.
[23] J.M. Merig, A.M. Gil-Lafuente, New decision-making techniques and their application in the selection of financial products, Inf. Sci. 180 (2010) 2085C 2094.
[24] J.M. Merig, Fuzzy decision making with immediate probabilities, Computers Industrial Engineering, 58 (2010) 651-657.
[25] J.M. Merig, G. Wei, Probabilistic aggregation operators and their application in uncertain multi-person decisionmaking, Technol Econ Dev Eco, 17 (2011) 335-351.
[26] J.M. Merig, Fuzzy multi-person decision making with fuzzy probabilistic aggregation operators, Int. J. Fuzzy Syst. 13 (2011) 163-173.
[27] J.M. Merig, M. Casanovas, Decision-making with distance measures and induced aggregation operators, Computers Industrial Engineering, 60 (2011) 66-76.
[28] J.M. Merig, A unified model between the weighted average and the induced OWA operator, Expert Systems with Applications, 38 (2011) 11560-11572.
[29] H. Nguyen, A new interval-valued knowledge measure for interval-valued intuitionistic fuzzy sets and application in decision making, Expert Systems with Applications, 56 (2016) 143-155.
[30] J.H. Park, H.J. Cho, Y.C. Kwun, Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information, Fuzzy Optimization and Decision Making, 10 (2011) 233-253.
[31] H. Ren, G. Wang, An Interval-Valued Intuitionistic Fuzzy MADM Method Based on a New Similarity Measure, Information, 6 (2015) 880-894.
[32] C. Tan, A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS, Expert Systems with Applications, 38 (2011) 3023-3033.
[33] Z. Tao, X. Liu, H. Chen, L. Zhou, Ranking Interval-Valued Fuzzy Numbers with Intuitionistic Fuzzy Possibility Degree and Its Application to Fuzzy Multi-Attribute Decision Making, Int J Fuzzy Syst, 19 (2016) 646-658.
[34] G.W. Wei, J.M. Merig, Methods for strategic decision-making problems with immediate probabilities in intuitionistic fuzzy setting, Scientia Iranica, 19 (2012) 1936-1946
[35] X. Wang, E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods, Omega, 36 (2008) 45-63.
[36] W. Wang, X. Liu, The multi-attribute decision making method based on interval-valued intuitionistic fuzzy Einstein hybrid weighted geometric operator, Comput Math Appl, 66 (2013) 1845-1856.
[37] Z. Wang, K.W. Li, W. Wang, An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights, Information Sciences, 179 (2009) 3026-3040.
[38] H . Wu, X. Su, Interval-valued intuitionistic fuzzy prioritized hybrid weighted aggregation operator and its application in decision making, Journal of Intelligent and Fuzzy Systems, 29 (2015) 1697-1709.
[39] J. Wu, Q. Cao, H. Li, An approach for MADM problems with interval-valued intuitionistic fuzzy sets based on nonlinear functions, Technol Econ Dev Eco, 22 (2015) 336-356.
[40] S. Xiao, Induced interval-valued intuitionistic fuzzy Hamacher ordered weighted geometric operator and their application to multiple attribute decision making, Journal of Intelligent and Fuzzy Systems, 27 (2014) 527C534.
[41] Xu, Z. S., Chen, J., Ordered weighted distance measure. Journal System Science and System Engineering, 17 (2008) 432-445.
[42] Z. Xu, A method based on distance measure for interval-valued intuitionistic fuzzy group decision making, Information Sciences, 180 (2010) 181-190.
[43] R.R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Trans. Syst. Man Cybern. B 18 (1988) 183-190.
[44] Ronald R. Yager, Kurt J. Engemann, D.P. Filev, On the concept of immediate probabilitie, International Journal of Intelligent Systems, 10 (1995) 373-397.
[45] H.-Y. Zhang, S.-Y. Yang, Z.-W. Yue, On inclusion measures of intuitionistic and interval-valued intuitionistic fuzzy values and their applications to group decision making, International Journal of Machine Learning and Cybernetics, 7 (2015) 833-843.
[46] X.Y. Zhao, S. Tang, S.L. Yang, K.D. Huang, Extended VIKOR method based on cross-entropy for interval-valued intuitionistic fuzzy multiple criteria group decision making, Journal of Intelligent and Fuzzy Systems, 25 (2013) 1053-1066.
[47] Zhou, L., Tao, Z., Chen, H., Liu, J. Continuous interval-valued intuitionistic fuzzy aggregation operators and their applications to group decision making, Applied Mathematical Modelling, 38(2014) 2190-2205.


[^0]:    Email addresses: qinyaqy@126.com (Ya Qin), liuyiyl@126.com (Yi Liu), j.liu@ulster.ac.uk (Jun Liu)

