
Towards an Integrated In-Vehicle Isolation and Resilience Framework for

Connected Autonomous Vehicles

Khaled Mahbub, Mohammad Patwary, Antonio

Nehme

Birmingham City University

Birmingham, United Kingdom

Email:{firstname.lastname}@bcu.ac.uk

Marc Lacoste, Sylvain Allio, Yvan Rafflé

Orange Labs

France

Email:{firstname.lastname}@orange.com

Abstract—Connected Autonomous Vehicles (CAV) have

attracted significant attention, specifically due to successful

deployment of ultra-reliable low-latency communications with

Fifth Generation (5G) wireless networks. Due to the safety-

critical nature of CAV, reliability is one of the well-investigated

areas of research. Security of in-vehicle communications is

mandatory to achieve this goal. Unfortunately, existing

research so far focused on in-vehicle isolation or resilience

independently. This short paper presents the elements of an

integrated in-vehicle isolation and resilience framework to

attain a higher degree of reliability for CAV systems. The

proposed framework architecture leverages benefits of Trusted

Execution Environments to mitigate several classes of threats.

The framework implementation is also mapped to the

AUTOSAR open automotive standard.

Keywords - Isolation; Resilience; ECU; Monitoring; Trusted

Execution Environment; AUTOSAR; Certification.

I. INTRODUCTION

Despite considerable progress in the last decade, the

development of fully self-driving vehicles is still largely

under research and experimentation. In such safety-critical

systems, the resilience of in-vehicle and inter-vehicle

communication is a key element to ensure the security of the

vehicle. While in-vehicle relates to on-board communication

between Electronic Control Units (ECUs) acting based on

inputs from different sensors, inter-vehicular

communications enable data exchange with the external

environment including other vehicles, broadband clouds and

roadside-infrastructures [1].

In this system of systems model, the diversity, autonomy

and connectivity of vehicles mean vulnerabilities at the level

of the vehicle affect the larger environment [2]. While both

types of communication enable safety-critical decision-

making, in-vehicle communication requires special

attention. The disparity of coding practices among the

diversity of specialised vendors in different functionalities

(e.g., infotainment, braking and steering assistance), and the

trust model induced by the high degree of connectivity and

unrestricted interactions between vehicle components to

enable comfort features (e.g., adjusting the sound volume

according to the velocity) widen the attack surface [1].

Internal security barriers to detect and react to an

intrusion are therefore needed to limit the impact of a

compromise and to mitigate its propagation to different

subsystems within a vehicle [1]. Moreover, the adoption of

new technologies in the automotive domain is opening new

safety and security challenges. For example, the advent of

new generations of ECUs that are virtualized as lightweight

execution environments (e.g., virtual machines, containers)

on different types of virtualization platforms, (e.g., OKL4

Microvisor, Proteus Hypervisor, ETAS STA-HVR [3]) may

face system-level isolation challenges such as side-channels.

This short paper introduces our approach to detect and

limit the impact of intrusions for in-vehicle networks that

can compromise the safety of autonomous vehicles. This

will be a step towards enhancing the robustness of in-

vehicle communications through the isolation of ECUs, the

detection of and recovery from intrusions. Focusing on

spoofing, replay, and side-channel attacks, we present

principles of a framework for in-vehicle isolation and

resilience and discuss technical considerations for its

implementation according to the AUTomotive Open System

ARchitecture (AUTOSAR) open standard.

This paper is structured as follows: Section II presents

related work. Section III introduces our framework and

Section IV discusses considerations to adhere to the

AUTOSAR standard. We conclude our paper in Section V.

II. RELATED WORK

A significant body of work focuses on improving

resilience of connected autonomous vehicles. Solutions

against threats can be categorised as i) Proactive Defence,

ii) Active Defence and iii) Passive Defence [4]-[8]. We give

next a brief overview of each family of techniques.

A. Proactive Defence

Proactive defence is underpinned by the “security by

design” principle practiced in the software industry [6],[7].

Integration of common security practices, public key

encryption and hash-based message authentication fall

under this category [4],[9].

B. Active Defence

Active defence mitigates threats as they occur. For

instance, continuous monitoring can be applied to detect

intrusions and preserve the security hygiene of the vehicle

and take adequate remediation actions [10]; in this sense,

real-time monitoring enables the identification and isolation

of faulty applications in safety-critical systems [11].

Detection approaches for the in-vehicle network can be

categorised as i) Signature-Based Detection, ii) Anomaly-

Based Detection and iii) Hybrid Approach [12]-[15]:

 Signature-Based Detection: These approaches use

information about attacks (signatures) as a pattern

characterizing known threats, comparing signatures

against observed events to identify possible attacks.

 Anomaly-Based Detection: These approaches are based

on continuous monitoring of system activities, checking

against a reference model (e.g., profile of the system).

An alarm is raised if deviation from the reference

model is observed. Various mechanisms can be applied

to derive the reference model, such as machine learning

[16],[17], frequency-based [18]-[20], and statistical-

based methods [21],[22].

 Hybrid Approach: This family of approach comprises

several intrusion detection techniques (e.g., signature-

and anomaly-based detection).

In addition to in-vehicle intrusion detection, several

approaches explore detection of side channel attacks for the

automotive domain - at the physical layer [23], using cache-

based [24] or interface-based approaches [25],[26].

C. Passive Defence

Passive defence mainly focuses on detecting, responding

to, and recovering from an attack once it has occurred. This

type of defence is notably suitable to prevent malwares and

code injection and modification threats. Therefore, passive

defences are not suitable for safety-critical systems, like

autonomous vehicles, as these approaches do not facilitate

detection and mitigation of adversaries in real-time

[8],Error! Reference source not found..

It should be noted that proactive defence and passive

defence are not suitable to handle adaptive security

requirements, very common in the cyber and the automotive

domains. Proactive defence recommends designing control

features to meet the security objectives at system design

time and embedding such features in the system. However,

this approach is unable to cover new types of threats once

the system has been developed. On the other hand, passive

defences alone are not suitable for safety-critical systems,

such as autonomous vehicles, as these approaches detect the

attack once it has occurred. Also the active defence

techniques approaches found in the literature apply

continuous monitoring to detect anomalies, but did not

consider their application to secure execution environments

for ECUs. As described in the next sections, our approach

aims to address these limitations.

III. IN-VEHICLE ISOLATION AND RESILIENCE

We adopt the active defence approach to improve in-

vehicle resilience: security properties related to the

communication among ECUs will be continuously

monitored in order to detect security threats, and actions

will be taken to mitigate the impact of and gracefully

recover from the detected threat. Recovery in our context

consists of rolling back (or forward) to a stable state to

overcome intrusions [27].

Figure 1. Reference Architecture of Isolation and Resilience Framework

Figure 1 shows the proposed reference architecture for

threat detection and mitigation in the in-vehicle network.

ECUs are grouped into different domains according to

similarity of functionalities. All ECUs in a domain are

connected to the same communication bus and activities of

each ECU in a domain are controlled by one domain

controller. Domain controllers are connected through a

common gateway in order to enable communication among

the ECUs belong to different domains [4],[9]. The major

components of the architecture are:

A. Trusted Execution Environment (TEE)

Trusted Execution Environments enable to specify

isolated execution environment in the main processor

[28],[29]. The TEE provides security features such as

isolated execution, integrity of applications executing in the

TEE, and confidentiality of application assets. Several

hardware vendors provide embedded technologies that can

be used to support TEE implementations, including AMD

PSP [30], ARM TrustZone [31], EVITA Hardware Security

Modules (HSM) [32] and Intel SGX Software Guard

Extensions [33]. We aim to explore if TEEs could be

applied as secure execution environment for ECUs, thereby

ensuring secure/isolated communication from ECU to ECU.

B. Side Channel Attack Monitor

While TEEs aim to provide secured execution

environments, they are vulnerable to side-channel attacks

[34],[35]. This component focuses on runtime detection of

the variants of side-channel attacks (e.g., SGX interface-

based attacks) that are relevant in a vehicular context.

C. Monitoring and Certification Manager

The responsibility of this component is to perform real-

time monitoring of security properties related to components

(e.g., ECUs) in the in-vehicle network to detect security

threats. This component applies the hybrid approach

(including frequency-based, statistical-based, and deep

packet inspection approaches) to detect spoofing and replay

attacks. Based on the validity of the security properties, this

component also maintains the certificates (detailed in

Section IV.B) that certify the valid state of the ECUs.

IV. IMPLEMENTATION CONSIDERATIONS

We adopt the AUTOSAR open standard for automotive

software architecture and framework to implement the

architecture presented in Section III. The AUTOSAR

consortium was formed by major automotive OEMs like

BMW, Ford, Daimler and Chrysler to standardize the

automotive software architecture and framework, thereby

facilitating scalability, reusability and interoperability across

the products lines from different OEMs [36]. The use of

AUTOSAR in the implementation would therefore

inherently enable the prototype to have the same benefits.

Next, we briefly introduce AUTOSAR, and then discuss

the mapping between our framework and AUTOSAR. In

AUTOSAR, the ECU software is abstracted in a layered

architecture, built on top of the underlying micro-controller

hardware [37]. As shown in Figure 2, this architecture is

composed of three layers, namely Basic Software (BSW),

Runtime Environment (RTE), and Application Layer.

 Figure 2. Overview of AUTOSAR components [37]

Basic Software Layer (BSW) is the bottom layer of the

architecture and provides core system functionalities. This

layer has 3 sub-layers. First, the Micro-controller

Abstraction Layer (MCAL) contains internal driver modules

that access the underlying micro-controller and internal

peripherals directly. Second, the ECU Abstraction Layer

(ECUAL) interfaces the drivers of the MCAL and offers an

API for accessing the peripherals and external devices, thus

making higher software layers independent of the hardware

layout. And third, the Services Layer (SL) provides top-

level services (e.g., operating system functionality,

communication services, management services, memory

services, etc.) to application software components.

The Run-Time Environment (RTE) layer provides

communication services to the application software, acting

as a bridge between the application and the BSW layer.

The Application Layer mainly consists of software

components (SWC) interconnected to other SWCs and

BSW modules. This layer is component-based, which

enhances SWC scalability and re-usability.

 Figure 3 shows the mapping of the major components of

our framework to the AUTOSAR architecture. We propose

to add an ECU that takes the role of monitoring existing

ECUs in the system, and to isolate ECUs.

The left side (yellow box) of the Figure 3 shows the

deployment of virtual ECUs within the TEE, following the

AUTOSAR architecture. The right side of the Figure 3

shows the Domain Controller, Monitoring & Certification

Manager and Side Channel Attack Monitor components of

the framework developed as SWCs in the AUTOSAR

application layer, i.e., these software components will reside

within a trusted virtual ECU and will collect the data

transmitted among the virtual ECUs of the in-vehicle

network. Such data will be used for monitoring the security

properties related to different ECUs.

Figure 3. Mapping the framework to AUTOSAR

A. Monitoring

As shown in Figure 3, the Monitoring and Certification

Manager and the Side Channel Attack Monitor will collect

the data transmitted among the virtual ECUs of the in-

vehicle network. A sub-component, namely DataCollector,

will be deployed for transforming the data from a legacy

format (e.g., CAN bus, being the most widely used protocol

in the automotive industry [38]) to a format that used for

monitoring.

This design may help to support multiple

communication standards in the framework (e.g.,

Automotive Ethernet) by implementing a dedicated

DataCollector (e.g., converting in-vehicle data from

Automotive Ethernet to network monitoring format). Using

multiple monitoring ECUs (e.g., for each sets of Domain

Controllers) may help addressing safety constraints to avoid

single points of failure.

B. Certificate Model

The Monitoring & Certification Manager and Side

Channel Attack Monitor perform real-time monitoring of

security properties related to ECUs to detect security threats

and produce a certificate for the in-vehicle network.

Monitoring is driven by security properties expressed as

condition-action rules verified by a rule engine (e.g., CLIPS

[39]) against runtime facts (i.e., runtime data). Monitoring

results are accumulated to produce a certificate that certifies

the state of the monitored components (e.g., ECUs).

The certificate structure includes the following elements:

1) CertificateID: represents the unique identifier of a

generated certificate during the monitoring process.

2) MonitoringResultAggregator: aggregates monitoring

results produced by monitoring different components (e.g.,

ECUs, CAN bus etc.) of the in-vehicle network. This

element contains the following sub-elements:

 AggregationTime: denotes the time of aggregation.

 Duration: specifies the timespan between

monitoring results considered for aggregation.

 ToMLis: specifies a list of TargetOfMonitoring

considered for the aggregation operation.

 AggregationRule: defines how monitoring results

should be aggregated, e.g., for results with

numerical values by applying statistical methods.

 AggregationResult: stores the aggregation result.

3) TargetOfMonitoring (ToM): a component (e.g., ECU,

CAN bus, etc.) monitored to identify security threats

associated with it.

The ToM has the following sub-elements

 ToMType: the type of component to be monitored.

 ToMID: a unique identifier of the component in the

in-vehicle network.

 MonitoringRule: the security property related to this

component to be monitored.

 MonitoringEvidenceAggregator: contains the

aggregation of results by monitoring the

MonitoringRule related to this component.

The MonitoringEvidence Aggregator contains the

following sub-elements:

 AggregationTime; denotes the time of aggregation.

 Duration: specifies the time span between in-

vehicle network data considered for monitoring.

 AggregationRule: defines how monitoring results

should be aggregated, e.g., for results with

numerical values by applying statistical methods.

 AggregationResult: stores the aggregation result.

V. CONCLUSION AND OUTLOOK

This position paper provided an overview of defence

strategies to mitigate common threats to in-vehicle

networks. We proposed an architecture and framework to

enhance in-vehicle isolation and resilience focusing on

spoofing, replay and side-channel attacks. The framework

follows an active defence strategy to detect and react to

intrusions on the in-vehicle network and to recover from

attacks. This recovery may be rolling back to a stable state

to overcome an intrusion (e.g., in [27]), or to estimate the

stable state by applying different techniques (e.g., in [5]).

This framework may also be used to detect anomaly or

misbehavior, which are not necessarily resulting from

cyberattacks but simply from system faults and to limit their

propagation in such a system of systems (e.g., in [40]).

Next steps are to implement the framework, and to evaluate

its isolation and resilience benefits in a simple setting, first

using simulations, before a possible testbed implementation.

 REFERENCES

[1] M. Faezipour, M. Nourani, A. Saeed, and S Addepalli, “Progress and
challenges in intelligent vehicle area networks,” Communications of
the ACM, vol. 55, no. 2, pp. 90-100, Feb. 2012.

[2] J. Boardman and B. Sauser, “System of Systems-the meaning of,”
2006 IEEE/SMC International Conference on System of Systems
Engineering, pp. 6-pp, Apr. 2006, IEEE.

[3] A.K. Rajan, A. Feucht, L. Gamer, and I. Smaili, “Hypervisor for
Consolidating Real-Time Automotive Control Units: Its Procedure,
Implications and Hidden Pitfalls,” Journal of Systems Architecture,
vol. 82, pp. 37-48, Jan. 2018.

[4] K. Daimi, M. Saed, S. Bone, and John Robb, “Securing Vehicle’s
Electronic Control Units,” Twelfth International Conference on
Networking and Services, 2016.

[5] V. Marquis et al., “Toward attack-resilient state estimation and
control of autonomous cyber-physical systems,” Systems and
Information Engineering Design Symposium (SIEDS), pp. 70-75,
2018.

[6] D. A. Brown et al. “Automotive Security Best Practices:
Recommendations for security and privacy in the era of the next-
generation car,” McAfee White Paper, Aug. 2016.

[7] A. Chattopadhyay and K. Lam, “Autonomous Vehicle: Security by
Design,” Oct 2018, arXiv:1810.00545v1 [Retrieved: 13-05-2020].

[8] M. Saed, K. Daimi, and S. Bayan, “A Survey of Autonomous Vehicle
Technology and Security,” VEHICULAR 2019.

[9] M. S. Ul Alam, “Securing Vehicle Electronic Control Unit (ECU)
Communications and Stored Data,” Master of Science Thesis, School
of Computing, Queen's University Kingston, Ontario, Canada, Sep.
2018.

[10] V. L. Thing and J. Wu, “Autonomous Vehicle Security: A Taxonomy
of Attacks and Defences,” 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 164-
170, Dec. 2016.

[11] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic,
“IDAMC: A many-core platform with run-time monitoring for
mixed-criticality,” 2012 IEEE 14th International Symposium on
High-Assurance Systems Engineering, pp. 24-31, Oct. 2012, IEEE.

[12] G. Dupont, J. Hartog, S. Etalle, and A. Lekidis. (2019). “Network
intrusion detection systems for in-vehicle network.” Technical report,
https://arxiv.org/abs/1905.11587 [Retrieved: 13-05-2020]

[13] S. F. Lokman, A. T. Othman, and M. H. Abu-Bakar, “Intrusion
detection system for automotive Controller Area Network (CAN) bus
system: a review,” EURASIP Journal on Wireless Communications
and Networking. 2019, doi: 10.1186/s13638-019-1484-3.

[14] P Kaur, M. Kumar, and A. Bhandari “A review of detection
approaches for distributed denial of service attacks” Systems Science
& Control Engineering. pp. 301-320, Dec. 2016.

[15] A. Tomlinson, J. Bryans, and S. Shaikh, “Towards Viable Intrusion
Detection Methods For The Automotive Controller Area Network,”
2nd ACM Computer Science in Cars Symposium, pp. 1-9, Sep. 2018.

[16] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based Intrusion
Detection System for In-Vehicle Network,” 2018 16th Annual
Conference on Privacy, Security and Trust (PST), pp. 1-6, 2018, doi:
10.1109/PST.2018.8514157.

[17] M. J. Kang and J. W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PLoS One, vol. 11,
no. 6, 2016.

[18] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” 2015 World Congress on
Industrial Control Systems Security (WCICSS), pp. 45-49, 2015,
doi:10.1109/WCICSS.2015.7420322.

[19] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
Intrusion Detection Based on Constant CAN Message Frequencies
Across Vehicle Driving Modes,” pp. 9-14, Mar. 2019,
doi:10.1145/3309171.3309179.

[20] H. S. Sánchez, D. Rotondo, T. Escobet, V. Puig, J. Saludes, and
J. Quevedo, “Detection of replay attacks in cyber-physical systems
using a frequency-based signature,” Journal of the Franklin Institute,
vol. 356, no. 5, 2019.

[21] A. A. Sivasamy, and B. Sundan, “A dynamic intrusion detection
system based on multivariate Hotelling’s T2 statistics approach for
network environments,” The Scientific World Journal, 2015,
doi:10.1155/2015/850153.

[22] A. Qayyum, M. H. Islam, and M. Jamil, “Taxonomy of statistical
based anomaly detection techniques for intrusion detection,” IEEE
Symposium on Emerging Technologies, pp. 270-276,
doi:10.1109/ICET.2005.1558893.

[23] S. Jain, Q. Wang, M. T. Arafin, and J. Guajardo, “Probing Attacks on
Physical Layer Key Agreement for Automotive Controller Area
Networks,” Asian Hardware Oriented Security and Trust Symposium,
pp. 7-12, 2018.

[24] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “SpyDetector: An
approach for detecting side-channel attacks at runtime,” International
Journal of Information Security, vol. 18, pp. 393–422,
doi.org/10.1007/s10207-018-0411-7.

[25] J. Wang, Y. Cheng, Q. Li, and Y. Jiang, “Interface-Based Side
Channel Attack Against Intel SGX,” Oct. 2018,
https://arxiv.org/abs/1811.05378 [Retrieved: 13-05-2020]

[26] N. Weichbrodt, P. Aublin, and R. Kapitza, “sgx-perf: A Performance
Analysis Tool for Intel SGX Enclaves,” 19th International
Middleware Conference, pp. 201-213, doi:10.1145/3274808.3274824.

[27] A. Binun, A. Bloch, S. Dolev, M. R. Kahil, B. Menuhin, R. Yagel, T.
Coupaye, M. Lacoste, A. Wailly. “Self-stabilizing virtual machine
hypervisor architecture for resilient cloud,” 2014 IEEE World
Congress on Services pp. 200-207, June 2014. IEEE.

[28] M. Sabt, M. Achemlal and A. Bouabdallah, “Trusted Execution
Environment: What It is, and What It is Not,” 2015 IEEE
Trustcom/BigDataSE/ISPA, Helsinki, pp. 57-64, 2015
doi:10.1109/Trustcom.2015.357.

[29] “Trusted Execution Environment (TEE) 101: A Primer”, Secure
Technology Alliance, White Paper, Version 1.0, April 2018.

[30] AMD, AMD Secure Processor technology (AMD-SP),
https://www.amd.com/en/technologies/security [Retrieved: 13-05-
2020]

[31] “GlobalPlatform based Trusted Execution Environment and
TrustZone-Ready: The foundations for trusted services”, ARM,
White Paper, October 2013.

[32] M. Wolf and T. Gendrullis, “Design, implementation, and evaluation
of a vehicular hardware security module,” International Conference
on Information Security and Cryptology, pp. 302-318, Nov. 2011.

[33] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Trusted Execution
Environments on Mobile Devices,” ACM CCS 2013 Tutorial,
https://www.cs.helsinki.fi/group/secures/CCS-tutorial/tutorial-
slides.pdf [Retrieved : 13-05-2020].

[34] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” WOOT'17 Proceedings of the 11th USENIX Conference
on Offensive Technologies, 2017.

[35] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
In: Polychronakis M., Meier M. (eds) Detection of Intrusions and
Malware, and Vulnerability Assessment. DIMVA 2017. Lecture
Notes in Computer Science, vol 10327. Springer.

[36] AUTOSAR History, https://www.autosar.org/about/history/,
[Retrieved : 10-02-2020].

[37] AUTOSAR, "AUTOSAR: Layered Software Architecture.",
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf [Retrieved:
13-05-2020]

[38] C. Schlegel, “The role of CAN in the age of Ethernet and IoT,”
International CAN Conference (iCC), 2017.

[39] “CLIPS, A Tool for Building Expert Systems,”
http://www.clipsrules.net/index.html [Retrieved: 13-03-2020].

[40] A. Wasicek, M. D. Pesé, A. Weimerskirch, Y. Burakova, K. Singh
“Context-aware Intrusion Detection in Automotive Control Systems,”
5th ESCAR Conference, 2017.

