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Abstract—Connected Autonomous Vehicles (CAV) have 

attracted significant attention, specifically due to successful 

deployment of ultra-reliable low-latency communications with 

Fifth Generation (5G) wireless networks. Due to the safety-

critical nature of CAV, reliability is one of the well-investigated 

areas of research. Security of in-vehicle communications is 

mandatory to achieve this goal. Unfortunately, existing 

research so far focused on in-vehicle isolation or resilience 

independently. This short paper presents the elements of an 

integrated in-vehicle isolation and resilience framework to 

attain a higher degree of reliability for CAV systems. The 

proposed framework architecture leverages benefits of Trusted 

Execution Environments to mitigate several classes of threats. 

The framework implementation is also mapped to the 

AUTOSAR open automotive standard. 
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I.  INTRODUCTION 

Despite considerable progress in the last decade, the 

development of fully self-driving vehicles is still largely 

under research and experimentation. In such safety-critical 

systems, the resilience of in-vehicle and inter-vehicle 

communication is a key element to ensure the security of the 

vehicle. While in-vehicle relates to on-board communication 

between Electronic Control Units (ECUs) acting based on 

inputs from different sensors, inter-vehicular 

communications enable data exchange with the external 

environment including other vehicles, broadband clouds and 

roadside-infrastructures [1]. 

In this system of systems model, the diversity, autonomy 

and connectivity of vehicles mean vulnerabilities at the level 

of the vehicle affect the larger environment [2]. While both 

types of communication enable safety-critical decision-

making, in-vehicle communication requires special 

attention. The disparity of coding practices among the 

diversity of specialised vendors in different functionalities 

(e.g., infotainment, braking and steering assistance), and the 

trust model induced by the high degree of connectivity and 

unrestricted interactions between vehicle components to 

enable comfort features (e.g., adjusting the sound volume 

according to the velocity) widen the attack surface [1].  

Internal security barriers to detect and react to an 

intrusion are therefore needed to limit the impact of a 

compromise and to mitigate its propagation to different 

subsystems within a vehicle [1]. Moreover, the adoption of 

new technologies in the automotive domain is opening new 

safety and security challenges. For example, the advent of 

new generations of ECUs that are virtualized as lightweight 

execution environments (e.g., virtual machines, containers) 

on different types of virtualization platforms, (e.g., OKL4 

Microvisor, Proteus Hypervisor, ETAS STA-HVR [3]) may 

face system-level isolation challenges such as side-channels. 

This short paper introduces our approach to detect and 

limit the impact of intrusions for in-vehicle networks that 

can compromise the safety of autonomous vehicles. This 

will be a step towards enhancing the robustness of in-

vehicle communications through the isolation of ECUs, the 

detection of and recovery from intrusions. Focusing on 

spoofing, replay, and side-channel attacks, we present 

principles of a framework for in-vehicle isolation and 

resilience and discuss technical considerations for its 

implementation according to the AUTomotive Open System 

ARchitecture (AUTOSAR) open standard. 

This paper is structured as follows: Section II presents 

related work. Section III introduces our framework and 

Section IV discusses considerations to adhere to the 

AUTOSAR standard. We conclude our paper in Section V. 

II. RELATED WORK  

A significant body of work focuses on improving 

resilience of connected autonomous vehicles. Solutions 

against threats can be categorised as i) Proactive Defence, 

ii) Active Defence and iii) Passive Defence [4]-[8]. We give 

next a brief overview of each family of techniques. 

 

A. Proactive Defence 

Proactive defence is underpinned by the “security by 

design” principle practiced in the software industry [6],[7]. 

Integration of common security practices, public key 

encryption and hash-based message authentication fall 

under this category [4],[9]. 



B. Active Defence 

Active defence mitigates threats as they occur. For 

instance, continuous monitoring can be applied to detect 

intrusions and preserve the security hygiene of the vehicle 

and take adequate remediation actions [10]; in this sense, 

real-time monitoring enables the identification and isolation 

of faulty applications in safety-critical systems [11]. 

Detection approaches for the in-vehicle network can be 

categorised as i) Signature-Based Detection, ii) Anomaly-

Based Detection and iii) Hybrid Approach [12]-[15]:  

 Signature-Based Detection: These approaches use 

information about attacks (signatures) as a pattern 

characterizing known threats, comparing signatures 

against observed events to identify possible attacks.  

 Anomaly-Based Detection: These approaches are based 

on continuous monitoring of system activities, checking 

against a reference model (e.g., profile of the system). 

An alarm is raised if deviation from the reference 

model is observed. Various mechanisms can be applied 

to derive the reference model, such as machine learning 

[16],[17], frequency-based [18]-[20], and statistical-

based methods [21],[22]. 

 Hybrid Approach: This family of approach comprises 

several intrusion detection techniques (e.g., signature- 

and anomaly-based detection). 

In addition to in-vehicle intrusion detection, several 

approaches explore detection of side channel attacks for the 

automotive domain - at the physical layer [23], using cache-

based [24] or interface-based approaches [25],[26]. 

C. Passive Defence 

Passive defence mainly focuses on detecting, responding 

to, and recovering from an attack once it has occurred. This 

type of defence is notably suitable to prevent malwares and 

code injection and modification threats. Therefore, passive 

defences are not suitable for safety-critical systems, like 

autonomous vehicles, as these approaches do not facilitate 

detection and mitigation of adversaries in real-time 

[8],Error! Reference source not found.. 

It should be noted that proactive defence and passive 

defence are not suitable to handle adaptive security 

requirements, very common in the cyber and the automotive 

domains. Proactive defence recommends designing control 

features to meet the security objectives at system design 

time and embedding such features in the system. However, 

this approach is unable to cover new types of threats once 

the system has been developed. On the other hand, passive 

defences alone are not suitable for safety-critical systems, 

such as autonomous vehicles, as these approaches detect the 

attack once it has occurred. Also the active defence 

techniques approaches found in the literature apply 

continuous monitoring to detect anomalies, but did not 

consider their application to secure execution environments 

for ECUs. As described in the next sections, our approach 

aims to address these limitations. 

III. IN-VEHICLE ISOLATION AND RESILIENCE 

We adopt the active defence approach to improve in-

vehicle resilience: security properties related to the 

communication among ECUs will be continuously 

monitored in order to detect security threats, and actions 

will be taken to mitigate the impact of and gracefully 

recover from the detected threat. Recovery in our context 

consists of rolling back (or forward) to a stable state to 

overcome intrusions [27]. 

 

 
 

Figure 1. Reference Architecture of Isolation and Resilience Framework 

 

Figure 1 shows the proposed reference architecture for 

threat detection and mitigation in the in-vehicle network. 

ECUs are grouped into different domains according to 

similarity of functionalities. All ECUs in a domain are 

connected to the same communication bus and activities of 

each ECU in a domain are controlled by one domain 

controller. Domain controllers are connected through a 

common gateway in order to enable communication among 

the ECUs belong to different domains [4],[9]. The major 

components of the architecture are: 

A. Trusted Execution Environment (TEE) 

Trusted Execution Environments enable to specify 

isolated execution environment in the main processor 

[28],[29]. The TEE provides security features such as 

isolated execution, integrity of applications executing in the 

TEE, and confidentiality of application assets. Several 

hardware vendors provide embedded technologies that can 

be used to support TEE implementations, including AMD 

PSP [30], ARM TrustZone [31], EVITA Hardware Security 

Modules (HSM) [32] and Intel SGX Software Guard 

Extensions [33].  We aim to explore if TEEs could be 

applied as secure execution environment for ECUs, thereby 

ensuring secure/isolated communication from ECU to ECU. 



B. Side Channel Attack Monitor 

While TEEs aim to provide secured execution 

environments, they are vulnerable to side-channel attacks 

[34],[35]. This component focuses on runtime detection of 

the variants of side-channel attacks (e.g., SGX interface-

based attacks) that are relevant in a vehicular context. 

 

C. Monitoring and Certification Manager 

The responsibility of this component is to perform real-

time monitoring of security properties related to components 

(e.g., ECUs) in the in-vehicle network to detect security 

threats. This component applies the hybrid approach 

(including frequency-based, statistical-based, and deep 

packet inspection approaches) to detect spoofing and replay 

attacks. Based on the validity of the security properties, this 

component also maintains the certificates (detailed in 

Section IV.B) that certify the valid state of the ECUs. 

IV. IMPLEMENTATION CONSIDERATIONS 

We adopt the AUTOSAR open standard for automotive 

software architecture and framework to implement the 

architecture presented in Section III. The AUTOSAR 

consortium was formed by major automotive OEMs like 

BMW, Ford, Daimler and Chrysler to standardize the 

automotive software architecture and framework, thereby 

facilitating scalability, reusability and interoperability across 

the products lines from different OEMs [36]. The use of 

AUTOSAR in the implementation would therefore 

inherently enable the prototype to have the same benefits. 

Next, we briefly introduce AUTOSAR, and then discuss 

the mapping between our framework and AUTOSAR. In 

AUTOSAR, the ECU software is abstracted in a layered 

architecture, built on top of the underlying micro-controller 

hardware [37]. As shown in Figure 2, this architecture is 

composed of three layers, namely Basic Software (BSW), 

Runtime Environment (RTE), and Application Layer. 
 

 
 Figure 2. Overview of AUTOSAR components [37] 

 

Basic Software Layer (BSW) is the bottom layer of the 

architecture and provides core system functionalities. This 

layer has 3 sub-layers. First, the Micro-controller 

Abstraction Layer (MCAL) contains internal driver modules 

that access the underlying micro-controller and internal 

peripherals directly. Second, the ECU Abstraction Layer 

(ECUAL) interfaces the drivers of the MCAL and offers an 

API for accessing the peripherals and external devices, thus 

making higher software layers independent of the hardware 

layout. And third, the Services Layer (SL) provides top-

level services (e.g., operating system functionality, 

communication services, management services, memory 

services, etc.) to application software components. 

The Run-Time Environment (RTE) layer provides 

communication services to the application software, acting 

as a bridge between the application and the BSW layer. 

The Application Layer mainly consists of software 

components (SWC) interconnected to other SWCs and 

BSW modules. This layer is component-based, which 

enhances SWC scalability and re-usability. 

    Figure 3 shows the mapping of the major components of 

our framework to the AUTOSAR architecture. We propose 

to add an ECU that takes the role of monitoring existing 

ECUs in the system, and to isolate ECUs.  

The left side (yellow box) of the Figure 3 shows the 

deployment of virtual ECUs within the TEE, following the 

AUTOSAR architecture.  The right side of the Figure 3  

shows the Domain Controller, Monitoring & Certification 

Manager and Side Channel Attack Monitor components of 

the framework developed as SWCs in the AUTOSAR 

application layer, i.e., these software components will reside 

within a trusted virtual ECU and will collect the data 

transmitted among the virtual ECUs of the in-vehicle 

network. Such data will be used for monitoring the security 

properties related to different ECUs. 
 

 
Figure 3. Mapping the framework to AUTOSAR 

     

A. Monitoring 

As shown in Figure 3, the Monitoring and Certification 

Manager and the Side Channel Attack Monitor will collect 

the data transmitted among the virtual ECUs of the in-

vehicle network. A sub-component, namely DataCollector, 

will be deployed for transforming the data from a legacy 

format (e.g., CAN bus, being the most widely used protocol 

in the automotive industry [38]) to a format that used for 

monitoring. 



This design may help to support multiple 

communication standards in the framework (e.g., 

Automotive Ethernet) by implementing a dedicated 

DataCollector (e.g., converting in-vehicle data from 

Automotive Ethernet to network monitoring format). Using 

multiple monitoring ECUs (e.g., for each sets of Domain 

Controllers) may help addressing safety constraints to avoid 

single points of failure. 

B. Certificate Model 

The Monitoring & Certification Manager and Side 

Channel Attack Monitor perform real-time monitoring of 

security properties related to ECUs to detect security threats 

and produce a certificate for the in-vehicle network. 

Monitoring is driven by security properties expressed as 

condition-action rules verified by a rule engine (e.g., CLIPS 

[39]) against runtime facts (i.e., runtime data). Monitoring 

results are accumulated to produce a certificate that certifies 

the state of the monitored components (e.g., ECUs). 

The certificate structure includes the following elements: 

1) CertificateID: represents the unique identifier of a 

generated certificate during the monitoring process. 
 

2) MonitoringResultAggregator: aggregates monitoring 

results produced by monitoring different components (e.g., 

ECUs, CAN bus etc.) of the in-vehicle network. This 

element contains the following sub-elements: 

 AggregationTime: denotes the time of aggregation.  

 Duration: specifies the timespan between   

monitoring results considered for aggregation.  

 ToMLis: specifies a list of TargetOfMonitoring 

considered for the aggregation operation. 

 AggregationRule: defines how monitoring results 

should be aggregated, e.g., for results with 

numerical values by applying statistical methods.  

 AggregationResult: stores the aggregation result. 
 

3) TargetOfMonitoring (ToM): a component (e.g., ECU, 

CAN bus, etc.) monitored to identify security threats 

associated with it.  

The ToM has the following sub-elements 

 ToMType: the type of component to be monitored. 

 ToMID: a unique identifier of the component in the 

in-vehicle network. 

 MonitoringRule: the security property related to this 

component to be monitored. 

 MonitoringEvidenceAggregator: contains the 

aggregation of results by monitoring the 

MonitoringRule related to this component.  

 

The MonitoringEvidence Aggregator contains the 

following sub-elements: 

 AggregationTime; denotes the time of aggregation. 

 Duration: specifies the time span between in-

vehicle network data considered for monitoring.  

 AggregationRule:  defines how monitoring results 

should be aggregated, e.g., for results with 

numerical values by applying statistical methods.  

 AggregationResult:  stores the aggregation result. 

V. CONCLUSION AND OUTLOOK 

This position paper provided an overview of defence 

strategies to mitigate common threats to in-vehicle 

networks. We proposed an architecture and framework to 

enhance in-vehicle isolation and resilience focusing on 

spoofing, replay and side-channel attacks. The framework 

follows an active defence strategy to detect and react to 

intrusions on the in-vehicle network and to recover from 

attacks. This recovery may be rolling back to a stable state 

to overcome an intrusion (e.g., in [27]), or to estimate the 

stable state by applying different techniques (e.g., in [5]). 

This framework may also be used to detect anomaly or 

misbehavior, which are not necessarily resulting from 

cyberattacks but simply from system faults and to limit their 

propagation in such a system of systems (e.g., in [40]). 

Next steps are to implement the framework, and to evaluate 

its isolation and resilience benefits in a simple setting, first 

using simulations, before a possible testbed implementation. 
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