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REVIEW ARTICLE OPEN

In silico modelling of cancer nanomedicine, across scales and
transport barriers
Namid R. Stillman1, Marina Kovacevic2, Igor Balaz3 and Sabine Hauert 1✉

Nanoparticles promise to improve the treatment of cancer through their increasingly sophisticated functionalisations and ability to
accumulate in certain tumours. Yet recent work has shown that many nanomedicines fail during clinical trial. One issue is the lack of
understanding of how nanoparticle designs impact their ability to overcome transport barriers in the body, including their
circulation in the blood stream, extravasation into tumours, transport through tumour tissue, internalisation in the targeted cells,
and release of their active cargo. Increased computational power, as well as improved multi-scale simulations of tumours,
nanoparticles, and the biological transport barriers that affect them, now allow us to investigate the influence of a range of designs
in biologically relevant scenarios. This presents a new opportunity for high-throughput, systematic, and integrated design pipelines
powered by data and machine learning. With this paper, we review latest results in multi-scale simulations of nanoparticle transport
barriers, as well as available software packages, with the aim of focussing the wider research community in building a common
computational framework that can overcome some of the current obstacles facing efficient nanoparticle design.

npj Computational Materials            (2020) 6:92 ; https://doi.org/10.1038/s41524-020-00366-8

INTRODUCTION
For over three decades, nanomedicine has held the potential to
prevent, delay, control, or even cure cancer. Over two-thirds of
nanomedical research has been focused on oncology1–3. Starting
with Doxil in 1995, there are now around a dozen FDA-approved
anti-cancer nanoparticles4. Nanoparticles, typically between 1 and
100 nm in size5, have been shown to be effective drug-vectors
thanks to their ability to shield therapeutic cargos throughout
transport, accumulate in certain tumour types6, activate through
environmental (e.g. pH, enzymatic activity) or external stimuli
(such as magnetic resonance, ultrasound, or infrared light7–9), or
target specific cells10. Active targeting includes designs where the
nanoparticle surface is functionalized to bind to target receptors
or other proteins expressed on the membrane of the cancer cells,
the extracellular matrix (ECM), or tumour vasculature. On the other
hand, passive targeting is mediated by the size of nanoparticles,
which is thought to favour their accumulation at certain tumour
sites due to the EPR effect6. Increasingly sophisticated nanopar-
ticle functionalisation, or combination strategies, are being
explored as mechanisms to make treatments both smarter and
more effective11.
The versatility of nanomedicine is a result of the vastness of the

design space for nanoparticles. Changing the behaviour of
nanoparticles can be achieved by altering the conventional 4S
parameters, namely size, shape, surface functionalisation and
stiffness12. The surface functionalisation in particular contributes
to the charge of the particle, its stability in (and clearance from)
the bloodstream, as well as active targeting. Further specifications
include the material used (for example, energy receptive or
reactive to the environment), and the loading of the drug (such as
chemotherapy).
Key to predicting clinical impact, such as the correct distribution

of nanoparticles over a tumour, relies on an accurate under-
standing of the interaction between individual nanoparticles and

their environment. These interactions can motivate coordinated
strategies, where sub-populations of nanoparticles might alter
their local environment (such as degrading the ECM13), amplify
signals to other nanoparticles14, create anchored binding sites for
other nanoparticles, or self-assemble/disassemble to improve
transport15,16. Such coordinated strategies, sometimes inspired
by swarm intelligence11, demonstrate the high degree of
customisability inherent to nanoparticle design. While this
customisability can lead to novel nanoparticle strategies, their
discovery and validation can be a challenge.
Despite, or perhaps because of, the many design parameters

that can alter the functioning of nanoparticles, many prototypes
fail to realise success as an alternative (or supplement) to
conventional treatment techniques. Though many pre-clinical
trials demonstrate increased specificity, only 5% of the dose
typically reaches the tumour site during clinical trials17. Transport
barriers to the target site are expected to play a key role in this
disappointing result, including travel through the circulatory
system and avoiding clearance, extravasation to the tumour site,
tissue penetration within the tumour, and delivery to the relevant
part of the cell.
Recent advances in computational power, as well as improved

simulations of nanoparticles, and the biological transport barriers
that affect them, allow for multi-scale simulations that can
investigate the influence of a range of parameters in biologically
realistic scenarios. This presents a new opportunity for high-
throughput, systematic, and integrated nanoparticle-design pipe-
lines. Such future pipelines may enable general design principles
which, when combined with patient-specific data, could provide
personalised treatment and care. Furthermore, utilisation of in
silico models can minimise the costs associated with more
conventional trial and error approaches in the laboratory,
especially when combined with recent machine learning techni-
ques such as ‘active learning’18.
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There are now many computational models and results that
have been reported on different stages of tumour initiation,
growth, and the interaction of nanoparticles within the body and
tumour. Below, we summarise some of the most recent and
relevant in silico models for overcoming nanoparticle transport
barriers. We focus predominantly on cancer nanomedicine, but
note that many of the models we describe are relevant to other
cancer therapies that may not use nanoparticles, such as
immunotherapy or chemotherapy, as highlighted in several
reviews19–21.
Many of the in silico models that we describe have been

integrated with in vitro and in vivo experiments, as well as with
machine learning techniques. We believe that a systematic and
integrated framework for drug development, building on these
examples, can minimise costly trial-and-error approaches and
accelerate the development of effective nanoparticle cancer
therapies. However, such a framework requires a shared modelling
language and a multidisciplinary approach, with ongoing colla-
boration between mathematical and computational modellers,
experimentalists, and clinicians. This paper is an attempt to
provide a comprehensive review that sets the stage for such a
pipeline, as we detail in our concluding remarks.

IN SILICO MODELS OF TUMOURS
Central to in silico modelling of nanoparticle treatments is having
realistic models of the tumours. Malignant tumours caused by the
uncontrolled proliferation of faulty cells, can be separated into
three groups; carcinomas, leukomas, and sarcomas. Of the three
groups, carcinomas are the most common (accounting for 90% of
reported cases22) and predominantly appear in certain cell types
such as breast, lung, prostrate, and colon/rectum. These cell types
alone accounted for more than half of all cancers reported in the
USA in 201823. Carcinomas are typically large, greater than 1 cm3

when detected, and fatal if left untreated22. They are the main
topic of this paper.
Existing mathematical approaches24 can be separated into

three groups: continuum, discrete, and hybrid. The continuum
models, which utilise ordinary and partial differential equations,
are typically faster to compute and are better suited to capturing
global changes to a tumour, such as availability of oxygen and
nutrients (e.g. to predict the development of a hypoxic core in a
solid tumour). However, they are limited in their ability to recreate
heterogeneity, single-cell interactions and other features better
suited to a discrete modelling approach such as agent-based (AB),
cellular potts (CP), and cellular automata (CA). Discrete models
focus on the individual units (such as the cell) that follow a simple
set of rules guiding their growth, death, and interaction with the
local environment and other agents. This could be used to model
the realistic heterogeneous development of a tumour over time,

how cellular resistance emergence, or the growth of angiogenic
vessels.
Both approaches have their strengths and weaknesses, and this

has led some researchers to combine both continuum and
discrete approaches to gain the benefits of both, so-called hybrid
methods. Hybrid models build on discrete models but combine
them with gradients of variables, modelled using continuum
equations25. These models are also able to monitor individual cell
behaviour such as mutation as well as the influence of local
environmental variables. For a review of discrete and hybrid
models and their application to cancer, see, for example work by
Kim et al. and An et al.26,27, for multi-scale cancer modelling, see
work by Deisboeck et al. and Norton et al.28,29, and for agent-
based cancer models, see work by Metzcar et al.30.

MODELLING TRANSPORT BARRIERS FOR NANOPARTICLE
DELIVERY
The use of nanoparticles as drug-delivery vectors requires that the
engineered particles navigate from point of entry into the body to
their prescribed biological target. The nanomedicine is normally
administered topically, orally, intravenously or through direct
injection to the site (e.g. to overcome the blood-brain barrier).
Transportation barriers will present themselves immediately.
Effective use of NPs requires overcoming these transport barriers:
travel through the vasculature31–33, extravasation34–36, avoiding
uptake by the reticulo-endothelial system (RES)37–39, progression
through the tumour tissue35,40–44, endocytosis45–50, and delivery
to the relevant part of the cell51–53. While each of these barriers
presents a considerable individual challenge, the optimum NP
design must seek to overcome several (if not all) of them to reach
maximum efficacy. However, the high number of parameters that
can be altered when designing nanoparticles results in a rich
design space which is difficult to optimise, as shown in Fig. 1.

CIRCULATION, CLEARANCE (CC) AND EXTRAVASATION (EV)
For intravenously injected nanoparticles, remaining in the blood
stream as long as possible (long half-life) will favour their
accumulation in certain types of tumours that benefit from
the leaky nature of angiogenic blood vessels. The longer the
circulation time, the higher the probability of escaping into the
tumour site through multiple arrival ports (as opposed to a single
one with direct injection54). Several direct factors influence
circulation time including nanoparticle size, shape, and charge.
Nanoparticles that are smaller than 5 nm are quickly cleared by
the kidneys55. Nanoparticles larger than 100 nm are more likely to
be detected by macrophages and cleared56. Between 5 and
100 nm, the charge of nanoparticles and resulting protein corona,
or opsonisation, will drive macrophage uptake57. In silico methods
such as molecular dynamics simulations have been used to

Fig. 1 Multi-scale modelling of nanoparticles (NPs) to overcome transport barriers. Models take barrier scenarios as input, and output
suitable NPs designs. Several example inputs and outputs are provided for each barrier, though the list is not intended to be exhaustive.
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examine the influence of these factors (such as protein corona
formation and pH-stability) on nanoparticle transport58–60. For a
further review of factors that affect circulation time for nanopar-
ticles, see, for example, work by Yoo et al.61.
There are other influencing factors that can affect nanoparticle

transport through the vascular system, as shown in Fig. 2. For
example, margination occurs when red blood cells segregate in
the centre of the vessel, creating a ‘cell-free’ layer near to the
vessel wall57. This allows for nanoparticles to more readily escape
from the porous tumour vessel by avoiding interactions with the
blood cells and was demonstrated in silico, using a combination of
dissipative particle dynamics (DPD) (a coarse-graining approach)
and computational fluid dynamics62. By modelling the interaction
between nanoparticles, red blood cells and white blood cells in
the vessel, it was shown that the larger nanoparticles (greater than
500 nm) are able to take advantage of this margination effect
whereas smaller nanoparticles (less than 200 nm) are trapped with
the red blood cells in the ‘core’ region12.
Alternatively, the clustering of red blood cells may prove an

important factor in increasing the biodistribution of nanoparticles,
as clustering behaviour has been observed to create small
variations in the capillary radius that can lead to drastic changes
in the blood flow57. An agent-based model was also used to
investigate the influence of red blood cells on blood-mediated
nanoparticle62. It was shown that polydispersity of nanoparticles is
an important factor, which can influence clearance, tissue
penetration, and the immune system interaction.
Physiologically based pharmacokinetic models are particularly

well suited to predicting nanoparticle transport through the body,
where each relevant region is reduced into compartments and
where each compartment contains permeability-limited, or perfu-
sion-limited, models that describe how drugs, molecules, or
indeed nanoparticles, pass through the individual compartments.
The models are parameterised by properties that can be measured
in vitro or in vivo, such as tissue volume or tissue flow rate, while
drug-specific properties, such as clearance and tissue partition
coefficients, are either scaled based on in vitro measurements or
found using other in silico models where in vitro measurements
are challenging to obtain. These pharmacokinetic models have
been applied to nanoparticle-based drug delivery therapies,
predicting, for example, the plasma and tissue concentrations of
nanoparticles in mice63. For a review of pharmacokinetic models,
see, for example, work by Yuan et al.64.
Along with transport through the body, it is important to be

able to characterise the cytotoxicity of nanoparticle-based
treatments40,63,65. This is because nanoparticles are often used
to address high levels of toxicity caused by other anti-cancer
treatments such as chemotherapies, can be given in conjunction
with such treatments, and are often administered to

immunocompromised patients. Computational models have been
developed to explore the cytotoxicity of these therapies. For
example, pharmacokinetic models have been used to investigate
the difference in interspecies cytotoxicity, an important factor in
translational research63. Alternatively, a continuum model of
tumour growth was combined with experimental work to evaluate
the cytotoxicity of gold nanoparticles carrying chemotherapy
molecules40. It was shown that nanoparticle-based therapies had
an overall increase in efficacy and reduced cytotoxicity when
compared to the free drug. For a review of the application of
computer models to the cytotoxicity of nanoparticles, see, for
example, work by Ding et al.65.
One of the many benefits of nanoparticle-based drug delivery is

that nanoparticles can be designed to take advantage of the so-
called enhanced permeability and retention (EPR) effect which
allows the nanoparticles to passively target the tumour. EPR is a
result of the leaky angiogenic micro-vessels that cause an increase
in the fluid pressure within the tumour66. Nanoparticles tend to
escape from the enlarged pores in the faulty tumour vascular
network into the surrounding tissues. In silico investigations have
highlighted potential best nanoparticle-design to take advantage
of irregularities at the endothelial wall. For example, the influence
of increasing vascular permeability has been considered and
shown to be beneficial for nanoparticle delivery36. However, the
EPR effect has substantial variability both temporally and spatially
and cannot be assumed for all tumours (it is not found in gastric
and pancreatic cancer, for example work by Nakamura et al.67).
Furthermore, the high interstitial pressure developed in certain
tumours can also limit the in-flow of nanoparticles from outside
the tumour68 which can discount the therapeutic usefulness of the
EPR effect in humans. Hence, care should be given when
assuming this means of passive targeting68.
One potential cause for this discrepancy in the usefulness of the

EPR effect may lay with the animal models that are used to study
it. For example, the rapid angiogenesis that is induced for in vivo
experiments leads to tumours that grow on much faster
timescales than commonly occurring in humans. Furthermore,
the ratio of grown animal tumour to the total weight of the animal
used will be far higher than that observed in humans. Both these
features will promote the extravasation potential of nanoparticles,
potentially to unrealistic levels when compared against clinical
studies38,69. As discussed above, the EPR effect can be strong in
some tumours but negligible in others and should not be
assumed as a general feature for all tumour types68.
The design of the nanoparticles can have implications both for

the success of the individual nanoparticles as well as subsequent
injections. For example, if large particles are injected first then
their reduced diffusive ability can clog extravasation points for
successful transport of smaller nanoparticles. This indicates a

Fig. 2 Considerations when modelling nanoparticle (NP) transport through the vascular chamber, as well as extravasation of NPs
through the endothelial wall. Here, NPs are shown travelling through the vascular chamber, where they interact with cells (such as red blood
cells) as well as other NPs. Eventually, NPs leave the vessel through extravasation.
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possible two-phase extravasation profile where fast extravasation
is followed by slow extravasation, highlighting additional design
considerations when engineering nanoparticles69. The structure of
the vascular network will also be influential, especially around the
tumour site. For example, spatial irregularities within the network
can lead to uneven distribution of drugs. This has been considered
in work by Sefidgar et al.32 where the concentration of drug within
the interstitial flow was investigated using a multi-scale model of a
heterogeneous and dynamic vascular network around a tumour.
By allowing feedbacks between hemodynamic and metabolic
stimuli and the capillary network, a more irregular capillary
network was generated with high interstitial fluid pressure (IFP)
within the tumour, as typically observed in vivo. It was shown that
the elevated IFP within this irregular network led to a
heterogeneous distribution of drugs around the tumour region,
highlighting that static or regular vascular networks may be an
overly restrictive assumption when modelling drug delivery.
As extravasation is central to nanoparticle penetration and

accumulation, it is important that general design principles are
known to optimally extravasate into the tumour. Again, in silico
models are of use in testing various designs. For example,
Brownian dynamics were used to investigate the influence of
nanoparticle diameter and aspect ratio on extravasation and
demonstrated that larger aspect ratio increases extravasation by
alignment with the streamlines exiting the pore34. Alternatively,
models that describe nanoparticle vascular transport also include
considerations of extravasation to improve model accuracy36,70.
Both vascular transport and extravasation at the tumour site can
be modelled using agent-based models33. This has been used to
simulate tumour growth with a realistic vessel network structure
(when compared against 3D intravital image). Though this has yet
to be coupled with a nanoparticle design framework, this may
offer a further tool for bioengineers to trial designs prior to in vitro
and/or vivo testing.

TISSUE PENETRATION (TP)
For nanoparticle-based therapies, a substantial challenge is
predicting the depth that the NPs are able to penetrate into the
tumour and where they accumulate, as shown in Fig. 3. In healthy
tissue, the IFP leads to the necessary pressure gradient to
transport nanoparticles away from vessels. However, IFP within
tumour environments can lead to additional barriers for drug

delivery as well as driving the growth of the tumour. Experiments
in vivo have shown that IFP is uniform across much of the tumour
but drops significantly at the edge71. This uniform pressure creates
a diffusive environment across much of a tumour and a steep
outward flow around the edge. The diffusive environment within
the tumour means that extravasated particles move slowly and
can diffuse back into the capillary system rather than entering
deeper into the tumour tissue35,72. Near the edge of a tumour,
there is a risk that the nanoparticles will not be retained, instead
being irreversibly pushed by the steep pressure gradient37.
In silico models offer a means of understanding the obstacles to

tumour penetration. The influence of the IFP on the blood and
lymphatic systems and their influence on drug-delivery has been
investigated using a combination of fluid dynamics and agent-
based modelling73. This work demonstrated how drug distribution
increases as the lymphatic response decreases, due to a reduction
in the clearance of drug-delivery vectors. It also demonstrated that
the dual normalising of both the vasculature and interstitial is
required to improve drug efficacy in order to simultaneously
reduce the IFP within the tumour as well as minimise the
heterogeneity of the drug distribution within the tumour tissue.
The heterogeneous distribution of nanoparticles has recently

been considered using in silico models that combines the growth
of a tumour with angiogenesis and drug delivery74. This work used
a three-dimensional model continuum approach to highlight
conditions of the tumour for enhanced nanoparticle drug delivery
such as high interstitial porosity (to enhance nanoparticle
transport). Alternatively, the connection between tumour growth
and avascular network generation was modelled using a multi-
scale approach that coupled tumour growth with nanoparticle
transport75. The binding affinity of nanoparticles was shown to
play a role in the accumulation within the tumour, where those
with high binding affinity concentrate near the vessels and that
slow nanoparticles failed to penetrate at lethal levels throughout
the tumour tissue76.
This coupled model of tumour growth, vasculature system and

nanoparticle adhesion has since been used as a tool for optimising
nanoparticle design77. Here, the model was used to find the
optimal nanoparticle diameter for accumulation and penetration.
Alternatively, a combination of deterministic and stochastic
mathematical methods were used to find the optimum size and
binding affinity for nanoparticle penetration into a tumour76. Such
approaches demonstrate the feasibility of integrating in silico
methods with nanoparticle design. Other work has also explored
broad biodistribution and tissue distribution of drug-antibody
conjugates78,79. Here, simulations compared the difference in
transport profiles between small molecules and larger macro-
molecular drugs. Four fundamental classes of drug delivery agents
were highlighted (those limited by blood flow, vessel permeability,
interstitial diffusion, and local binding and metabolism) each of
which have strengths and weaknesses.
Along with optimising, in silico models have sought to explain

why, in some instances, novel drug delivery methods lead to
better accumulation and penetration than free-drug alternatives.
For example, a general mathematical model was developed to
investigate why experimental data showed a 3-fold drop in
tumour growth when using nano-vectored drug delivery43. This
mathematical model combined the cell cycle, vasculature net-
work, and the drug diffusion rates, and was validated using in vivo
methods. It demonstrated improved outcome for nanoparticle-
based therapies, thought to be driven by the geometry of the
particles. In vitro models have also confirmed improved tissue
penetration and retention of nanoparticle-based therapies17,80.
These improvements are thought to be in part due to tumour-
scale phenomena such as the vascular network, which prevents
certain cells from being reached. Hence, the combination of
therapy with vasculature normalisation may provide a further
improvement in treatment efficacy.

Fig. 3 Considerations when modelling NP transport through the
tumour tissue, as well as interactions with cells of different types
or other NPs. NPs (shown as black dots) are shown leaving the
vascular system and diffusing through towards endothelial cells. NPs
are required to penetrate deep enough through the tumour tissue
in order to be effective while aiming to be internalised by specific
cell types (cancer cells and cancer stem cells) while avoiding other
cell types (such as healthy cells).
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ENDOCYTOSIS (END) AND INTRACELLULAR TRANSPORT (IT)
Endocytosis can be performed by various cellular uptake
mechanisms46,81,82. The rate and mechanism of cellular uptake
depends on nanoparticle geometry, coating, and other physico-
chemical properties. Yet the specific design of a nanoparticle can
greatly improve efficacy. Nanoparticles can be designed to
increase cellular uptake (endocytosis) as well as to improve
specificity by preferentially targeting cancer cells (through
targeting receptors which are found to be upregulated in various
tumour cells). Most in silico approaches consider a single
nanoparticle or several (no more than ten) nanoparticles on the
cell membrane and use either atomistic simulations or coarse-
grain approaches such as DPD.
These studies have shown that the size and shape83, ligand

multi-valency47 and the role of the protein corona around
nanoparticles45 can all have considerable influence on cellular
uptake. For example, super-selectivity was found to occur in
multivalent nanoparticles, as they demonstrate ‘on-off’ binding
profiles that is particularly well suited for receptor-concentration
selective targeting47. This super-selectivity occurs when the
fraction of bound particles sharply increases with receptor
concentration. In this work, an analytical model was developed
and compared against Monte Carlo simulations of nanoparticles
with various coatings and general design principles were derived,
once again demonstrating the use of in silico models in
nanoparticle design. Other work has considered a thermodynamic
model for nanoparticle–cell interactions84 where uptake rates
were shown to be strongly related to the size of the nanoparticle
and the interaction of multiple nanoparticles with the cell
membrane85. Both works used coarse-grain approaches. For a
comprehensive review of nanoparticle endocytosis see work by
Angioletti-Uberti, and Zhang et al.46,49.
Having successfully been taken up by the cell, nanoparticles

then face the challenge of intracellular transport (see Fig. 4). Post-
endocytosis, nanoparticles can be localised at four major
intracellular organelles: the cytoplasm, mitochondria, nucleus
and lysosome39. Nanoparticles inside a cell face the risk of
degradation by lysosomes. There are several means of overcoming
this risk such as taking advantage of low intra-endosomal pH-
induced osmotic swelling and endosome rupture (the proton
sponge effect)38,86, or by hydrophilic to hydrophobic transition
and endosomal membrane destabilisation induced by pH-
sensitive amphiphilic polymeric nanoparticles17,38,87. Alternatively,
a nanoparticle may be required to travel through the cytoplasm
for highest effectiveness. However, the diffusion of nanoparticles
within the cytoplasm can be significantly reduced due to binding
with intracellular objects or the geometry of the nanoparticle.

Currently, there are no in silico models that deal with intracellular
transport at this level of detail.
Molecular dynamics (MD) simulations allow for in silico

modelling of cellular uptake and intracellular trafficking of
nanoparticles. Such models often give additional data where it
is otherwise difficult to monitor the interaction of nanoparticles
into and through a cell36. For example, MD simulations were used
to show that hydrophobic nanoparticles had preferential entry to
the endosomal pathway via the caveolae88. However, it is
expected that additional data is required before models can be
improved. Such data would allow for nanoparticles that are
engineered with specific physicochemical properties that optimise
intracellular transport and localisation in the areas where they
finally induce their therapeutic effect. Studies considering
nanoparticle geometry and surface functionality have been
performed89. However, there is some way to go before more
general causative effects can be pinpointed. This is further
frustrated by the dynamic property of interactions between
nanoparticles and intracellular objects and the fact that nano-
particles are often small enough to interact with one or many
intracellular regions, simultaneously.

CURRENTLY AVAILABLE TOOLS
We have discussed the biological barriers that prevent
nanoparticle-based drug delivery from effectively treating
tumours. In silico models allow for a more efficient means of
exploring the nanoparticle parameter space than is possible with
in vivo and in vitro models. However, the combination of
nanoparticle behaviour within relevant biological models depends
on the collaboration of multiple fields of research, including
mathematical modellers, experimentalists, and clinicians. As such,
free open-source software can streamline the design process by
reducing model development time and allow more time for
discussions on the most important model features that need to be
included.
In Table 1, we give a summary of the tools, highlighting which

transport barrier they can be used to address, model features such
as the dimensionality, type of modelling framework, the scale and
whether nanoparticles or proliferation have to be included, and if
the codebase is open-source. We discuss some of these simulation
tools in more detail below.
Ultimately, the choice of simulation software will depend on the

tumour scenario that is being investigated, as several platforms
are specifically designed to describe and address physiological
scenarios. One example of this is the recent extension to the
popular CHASTE system. CHASTE (cancer, heart, and soft-tissue
environment) was designed with the specific goal of being a
multi-purpose library for computational simulations of biological
problems. The cancer codebase takes the cell-cycle of an
individual cell as its lowest unit, allowing the user to alter
parameters such as rates of cell division or the oxygen uptake. The
cell-cycle model is connected to a tissue cell model which gives
the user control of cell functionality including age, type,
generation, mutational status and mitosis/apoptosis. The CHASTE
library was introduced with functionality for producing both 2D
crypts of tumour cells as well as 3D spheroid tumours90. More
recently, the ability to model vascular transport has led to the
publication of a library extension known as Microvessel CHASTE33.
Microvessel CHASTE allows for integration of 3D datasets of

vascularised tissue to be incorporated into the simulations for
comparison between in vitro/vivo and computational simulations.
Microvessel CHASTE is able to model microvascular related
phenomena including angiogenesis, tumour growth, and osteo-
genesis. Other computational fluid dynamics packages also
capture behaviour within the vascular network but, as they are
not designed specifically for biologically realistic environments,
they fall out of the scope for this review. For further information

Fig. 4 Considerations when modelling NP transport into, and
throughout the cell. NPs (shown as black dots) are internalised
through a number of different mechanisms. Here, we show
endocytosis and the resulting cell vacuole containing NPS.

N.R. Stillman et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    92 



on fluid dynamics as applied to oncology, see for example work by
Koumoutsakos et al.66.
CHASTE and the subsequent Microvessel CHASTE are examples

of combining clinical 3D datasets with computational simulations.
There is an increasing number of libraries that offer extensive
multi-scale functionality at the point of use, including Compu-
Cell3D, Virtual Cell (or VCell), and PhysiCell. CompuCell3D is
capable of modelling cell-scale to tissue-scale behaviour. It has
been used to describe morphogenesis as well as cell-cell
interactions, the immune response to cancer and spatial models
of drug delivery routes for cancer treatment91,92. Similarly, VCell
covers a wider range of modelling approaches which include
continuum approaches (ODEs and PDEs), discrete models, and
network models (for modelling intracellular signal pathways). It
offers active integration with SpringSaLaD93, a simulation platform
for modelling mesoscopic systems, but it is not currently open-
source. PhysiCell94 is another multi-cellular library that implements
hybrid methods to model 2D and 3D biological systems. It uses
agent-based methods at the individual cell level and combines
this with BioFVM95, a finite volume method specifically designed
for biological systems. PhysiCell has been used to model tumours
including growth and metastasis95,96 and extended to consider
the signalling pathways through combination of the PhysiCell
library with MaBoSS (used to run stochastic simulations of the
signalling pathway), to create PhysiBoSS97.
Many questions on the effectiveness of nanoparticle-based

therapies will depend on the model of interaction between
nanoparticles and individual cells. To answer these questions,
computational simulations are required that consider individual
nanoparticle and their interactions, which ultimately change their
dynamics. A computational framework has previously been
suggested that specifically considers nanoparticle-scale interac-
tions using both deterministic and stochastic methods76. These
models used the stochastic simulation compiler (SSC) and led to
the NanoDoc platform, a means of crowd-sourcing novel
nanoparticle designs through online engagement (http://
nanodoc.org). One of the most popular purpose-built libraries
for modelling intracellular signal pathways is Smoldyn98, an agent-
based model that can effectively describe nanosecond to
microsecond molecular-resolution behaviour. This package is
open-source and has been used to describe macromolecular
crowding and molecular diffusion. Similarly, the stochastic engine
for pathway simulation (STEPS) is an open source package for
stochastic simulations of reaction-diffusion systems where the
geometry of the domain is important99. Originally built to simulate
neuronal signalling pathways, the length-scales consider by this
package make it a viable tool for nanoparticle research.

Furthermore, STEPS has been shown to effectively compute
large-scale simulations using multi-core parallelisation, increasing
the size of simulated systems100. To the best of the authors'
knowledge, neither Smolydn nor STEPS have yet to be applied
specifically to nanoparticle simulation. Finally, there are several
molecular dynamic simulation tools that are available which have
been used to consider nanoparticle design. While not specific to
nanomedicine or oncology, these have been reviewed in, for
example, work by Cummings et al.101.

MACHINE LEARNING AND DATA-DRIVEN APPROACHES
All the above discussions have centred on the overlap between in
silico models of nanoparticle transport barriers. The current state
of the field within nanomedicine is similar to that seen in material
sciences, biology, and medicine where multi-scale simulations
have led to a far wider exploration of system dynamics than
possible prior to increases in computational power and data.
However, in recent years the application of machine learning and
data-driven methods has led to a significant shift in research
methodology and contributed to advances in these (as well as
many other) fields18,102,103. Moreover, it is expected that the
application of these methodologies will accelerate in the future.
Hence, it is important to characterise these techniques in relation
to nanomedicine.
Describing the current state-of-the-art in machine learning is

beyond the scope of this review and has been well described in
other work104,105. Furthermore, while the application of machine
learning tools to the field of nanomedicine is still relatively
uncommon, these methods have already been applied specifically
to characterisation of drug-loaded NPs. For example, artificial
neural networks have been used to predict drug-loaded NP size
and polydispersity106,107, both having clear implications for the
efficacy of nanoparticle-based treatments. Other work has used
machine learning tools to optimise cellular uptake, minimise
cytotoxicity and predict the development of the protein corona
around a nanoparticle108–111. For a recent review of this area, see
for example, work by Jones et al. and Sason et al.112,113. Ultimately,
these techniques further benefit from their integration with in
silico models, as this leads to a speed up in time and reduction in
costs, as output from in silico models become input for machine
learning techniques. This has already been seen in material
sciences, where algorithmic learning of specific models can
massively speed up the exploration of a system’s state space102.
Whereas the characterisation and design of nanoparticles is

expected to greatly benefit from utilisation of machine learning
methods, additional benefits can also be gained from the

Table 1. Potential software tools for modelling nanoparticle transport barriers.

Transport
Barriers

Dimension Nanoparticles Open-
Source

Scale Modelling Framework

PhysiCell TP 2D/3D No Yes Intracellular (with MMBIOS)
to tissue

Discrete

TumourSimulator TP, EV, CC 3D No Yes Tissue to cell Discrete

VCell TP 2D/3D No Yes Cell to intracellular Multiple

Smoldyn IT, END 3D Yes No Intracellular Discrete

STEPS IT, END, TP 3D No Yes Tissue to intracellular Stochastic events via Giussepe
Algorithm

Chaste CC, TP 2D/3D No Yes Tissue to cell Multiple

SSC/NanoDocs TP, END 2D/3D Yes Yes Tissue to cell Stochastic events via Giussepe
Algorithm

Tumopp TP 3D No Yes Tissue to cell Discrete

CompuCell 3D TP, EV, CC 2D/3D No Yes Tissue to cell Discrete

IBCell TP, CC 2D/3D No No Cell Discrete
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combination of machine learning with experiment design. Active
learning uses machine learning techniques (such as reinforcement
learning114 or surrogate-assisted optimisation115) to guide experi-
ment design by selecting for only the most promising candidates
that require testing. This approach, distinct from traditional trial-
and-error, has already shown promise within the fields of clinical
cancer trials, drug discovery and material discovery18,116,117. We
believe that designing nanoparticles to overcome transport
barriers is a rich future area of study118. Furthermore, the
integration of in silico models with active learning will allow for
both the automatic exploration and nanoparticle designs, and a
way to test them, often a pre-requisite when implementing an
active learning approach102.
With recent advances in multi-scale simulations of tumours and

nanomedicines and their combination with machine learning
techniques, the application of in silico methods in a clinical setting
is beginning to become reality. However, establishing the clinical
relevance of computational models requires industry-grade
evidence gained through verification and validation, sensitivity
analysis, and uncertainty quantification, amongst other things119.
The level of rigour of these evidences will depend on both their
intended use and the clarity of such use at the outset. Hence, the
existence of guidance documents is critical in the successful and
safe application of such methods to the clinical setting120. In 2013,
the International Medical Device Regulators Forum (IMDRF)
published the first in a series of guidance documents on ‘Software
as a Medical Device’ (SaMD). They covered key definitions121,
categorisation122, quality management system123 and planning
the process for clinical evaluation of a SaMD124.
Taken together those documents provide a risk-based frame-

work where the level of clinical evidence depends on the risk
profile of a SaMD, where the risk profile is characterised by the
severity of the underlying health condition and the significance of
the information provided by the SaMD to the healthcare decision
maker. Since computational models of physiological systems are
usually nonlinear, highly complex, and contain high numbers of
parameters and time-dependent properties, their proper assess-
ment can be very challenging. On top of this, the introduction of
machine learning into simulation models opens up a new set of
problems including lack of transparency, automation bias (where
there is a tendency of users to non-critically accept computer
recommendations) and changes in input/output relations as an
algorithm learns from real-world use and experience. In 2019, the
FDA published a discussion paper which calls for medical machine
learning algorithms to include the types of anticipated modifica-
tions125. In light of this, we advise developers, as early as possible
in the development pipeline, to get familiar with the possible risks
associated with their simulation platform and take into account
relevant sources of evidence (such as verification, validation, and
uncertainty quantification) that are likely to be required in clinical
settings.

CONCLUSIONS AND FUTURE PERSPECTIVE
Overcoming nanoparticle transport barriers, specifically travel
through the vasculature, extravasation, tissue penetration, endo-
cytosis and the delivery of a therapeutic cargo, is paramount to
the effective use of nanoparticles or anti-cancer treatments. In
silico tools allow for the fast and systematic exploration of the
nanoparticle design space to select nanoparticles with the
potential to deliver their cargo to the right place. General
guidelines extracted from such tools could prove useful in making
more effective treatments. Specific solutions could also be
provided to tailor nanoparticles to patient needs and towards
personalised medicine, or to produce sufficient amounts of data
for machine learning. Building useful in silico tools will require
close validation with in vitro and in vivo results. The overarching
aim is to create a systems approach to nanomedicine which
accounts for multi-scale phenomena, which is repeatedly vali-
dated, and which exists within a shared modelling framework. We
describe these elements in more detail below.
To become effective, nanoparticle cancer therapies require a

systematic approach to prototyping. In silico modelling has now
advanced to the point of being an effective tool that can minimise
costly trial-and-error design methods (see, for example, the review
by Karolak et al.50). However, such modelling cannot exist in
isolation and a collaboration between mathematical modellers,
experimentalists, and clinicians will be required to inform the best
transfer of knowledge. As a first step, this method will help identify
guidelines for the design of suitable nanoparticles for a class of
problems, say a specific tumour type. In the future, integration of
patient data such as MRI scans or biopsies can inform computa-
tional models of tumour growth and offer a route to personalised
nanoparticles126,127. We envisage a pipeline where theoretical
predictions are checked against clinical outcomes and then
returned to inform future simulations, as shown in Fig. 5.
Tumour progression and nanoparticle transport exhibit clear

multi-scale behaviour. This can be understood within a systems
biology framework128,129; individual microscopic effects are more
than the sum of their parts when viewed in aggregate. It is not
straightforward to determine the probability distribution of
emergent behaviour using microstate characterisation, as the
variables in complex biological systems are interdependent and
unlikely to be normally distributed27. Yet, by testing multiple in
silico models, a sufficient sampling of the model outputs allows us
to project microstate knowledge higher up the hierarchy of scales.
This is possible using in silico models as system parameters can be
closely controlled for and many thousands of possible model
scenarios can be investigated in a systematic and efficient way.
Using a systems approach to cancer modelling, covering topics
such as tissue complexity, cell heterogeneity, targeted therapy,
and drug resistance, has been reviewed in, for example, work by
Werner et al.130.
This system approach highlights three immediate advantages of

using multi-scale in silico models: improved hypothesis testing,
strategy generation, and clinical relevance. Brute force simulation

Fig. 5 Integrated pipeline for optimised anti-cancer nanoparticle design. A clinical challenge is identified, in silico models are used to
design NPs for overcoming this challenge, and iterative synthesis and testing of NPs leads to the development of effective translation
medicine.
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experiments allow for much wider characterisation and sampling
of a systems state-space73. These allows the simulations to test
whether microstate phenomena have a verifiable causal relation
to emergent macroscale observables. This is the hypothesis
testing benefit. For example, PhysiCell has been used to run
large-scale parallelised simulations that generate data-driven error
metrics and create in silico validations of biomedical
hypotheses131.
Second, the increased sample rate gained from running many

thousands of simultaneous simulations generates much larger
data. Increased data, combined with optimisation and machine
learning, will lead to novel, more efficient, strategy generation76.
Furthermore, by combining computer simulations with patient
data and experimental results, these novel strategies can be
implemented and checked to explore new medical applications.
This motivates the third advantage of silico models. In silico

models validated and optimised by in vivo and/or in vitro models
have both better explanatory and predictive power. The strength
of multi-scale in silico models is the ability to bridge length-scales
which have traditionally isolated causal factors. By integrating
across scales, the predictive power of in silico modelling
approaches can be increased with a corresponding expected
payoff to clinical relevance. Furthermore, the combination of
simulating across scales with parameters gained from in vitro and/
or in vivo can expand causal relations beyond scale of
observations (such as relating intercellular growth models to the
observed change in the size of a tumour). Finally, the combination
of these methods with machine learning techniques can be used
to build causal models from correlations inferred from big data103.
The three advantages of in silico models (improved hypothesis

testing, strategy generation, and clinical relevance) will require
standardisation between computational models such that relevant
benchmarks can be used to compare various in silico approaches.
Furthermore, a common design framework which includes shared
datatypes will allow for expedited comparison between models
that have a shared common input. This has been advocated
before132–134, but only time will tell whether such a standardisa-
tion becomes successful.
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