
                          Lagisz, M., Zidar, J., Nakagawa, S., Neville, V. M., Sorato, E., Paul, E.
S., Bateson, M., Mendl, M. T., & Løvlie, H. (2020). Optimism,
pessimism and judgement bias in animals: a systematic review and
meta-analysis. Neuroscience and Biobehavioral Reviews, 118, 3-17.
https://doi.org/10.1016/j.neubiorev.2020.07.012

Peer reviewed version
License (if available):
CC BY-NC-ND
Link to published version (if available):
10.1016/j.neubiorev.2020.07.012

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://doi.org/10.1016/j.neubiorev.2020.07.012 . Please refer to any applicable terms of use of
the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1016/j.neubiorev.2020.07.012
https://doi.org/10.1016/j.neubiorev.2020.07.012
https://research-information.bris.ac.uk/en/publications/bebfac53-83cd-42bf-927c-abfc43634a86
https://research-information.bris.ac.uk/en/publications/bebfac53-83cd-42bf-927c-abfc43634a86


1	

	

	 1	

Optimism,	pessimism	and	judgement	bias	in	animals:	a	systematic	1	

review	and	meta-analysis	2	

	3	

Lagisz,	Malgorzata	1†,	Zidar,	Josefina2,†,	Nakagawa,	Shinichi1,†*,	Neville,	Vikki3,	Sorato,	Enrico2,	4	

Paul,	Elizabeth	S.3,	Bateson,	Melissa4,	Mendl,	Michael3#,	Løvlie,	Hanne2#	5	

	6	

Addresses:	7	

1	Evolution	and	Ecology	Research	Centre,	School	of	Biological,	Earth	and	Environmental	8	

Sciences,	University	of	New	South	Wales,	Sydney,	New	South	Wales,	Sydney,	NSW	2052,	9	

Australia		10	

2	The	Department	of	Physics,	Chemistry	and	Biology,	IFM	Biology,	Linköping	University,	SE-581	11	

83	Linköping,	Sweden	12	

3	Centre	for	Behavioural	Biology,	Bristol	Veterinary	School,	University	of	Bristol,	Langford,	BS40	13	

5DU,	United	Kingdom	14	

4	Centre	for	Behaviour	and	Evolution,	Biosciences	Institute,	Newcastle	University,	Newcastle	15	

upon	Tyne,	NE2	4HH,	United	Kingdom	16	

	17	

*Correspondence:	Shinichi	Nakagawa	s.nakagawa@unsw.edu.au	and	Michael	Mendl	18	

Mike.Mendl@bristol.ac.uk 19	

	20	

†	These	authors	contributed	equally	to	this	work	21	

#	These	authors	supervised	this	work	equally	and	are	joint	senior	authors	22	

	23	

Author	contributions:	two	groups	of	the	authors,	SN	&	HL	and	MM,	EP	&	MB	conceived	the	idea	24	

independently,	SN	developed	study	design	and	methods	from	the	inputs	from	others.	JZ,	ES,	VN	25	



2	

	

	 2	

and	EP	collected	the	data	with	inputs	from	SN,	ML,	MB,	MM	and	HL.	ML,	JZ	and	SN	conducted	the	1	

analysis	with	inputs	from	MM.	JZ,	ML,	SN,	VN	and	MM	co-wrote	the	first	draft	and	all	contributed	2	

to	revisions	of	the	manuscript.	3	

	4	

Declarations	of	interest:	none	5	

	6	

Abstract	7	

Just	as	happy	people	see	the	proverbial	glass	as	half-full,	‘optimistic’	or	‘pessimistic’	responses	to	8	

ambiguity	might	also	reflect	affective	states	in	animals.	Judgement	bias	tests,	designed	to	9	

measure	these	responses,	are	an	increasingly	popular	way	of	assessing	animal	affect	and	there	is	10	

now	a	substantial,	but	heterogeneous,	literature	on	their	use	across	different	species,	affect	11	

manipulations,	and	study	designs.	By	conducting	a	systematic	review	and	meta-analysis	of	459	12	

effect	sizes	from	71	studies	of	non-pharmacological	affect	manipulations	on	22	non-human	13	

species,	we	show	that	animals	in	relatively	better	conditions,	assumed	to	generate	more	positive	14	

affect,	show	more	‘optimistic’	judgements	of	ambiguity	than	those	in	relatively	worse	conditions.		15	

Overall	effects	are	small	when	considering	responses	to	all	cues,	but	become	more	pronounced	16	

when	non-ambiguous	training	cues	are	excluded	from	analyses	or	when	focusing	only	on	the	17	

most	divergent	responses	between	treatment	groups.	Task	type	(go/no-go;	go/go	active	choice),	18	

training	cue	reinforcement	(reward-punishment;	reward-null;	reward-reward)	and	sex	of	19	

animals	emerge	as	potential	moderators	of	effect	sizes	in	judgement	bias	tests.	20	

Keywords:	research	synthesis,	affective	state,	cognitive	bias,	animal	welfare		 	21	
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Introduction 1	

Accurate	assessment	of	affect	(emotion)	in	non-human	animals	is	an	important	goal	in	2	

disciplines	including	animal	welfare	science,	neuroscience,	psychopharmacology	and	drug	3	

development.	A	prevailing	view	in	the	study	of	human	emotion	is	that	affective	states	comprise	4	

subjective,	behavioural,	neural	and	physiological	components	(Paul	et	al.,	2020;	Scherer,	2005).	5	

Whilst	the	subjective	component	of	animal	affective	states	(feelings)	is	not	currently	accessible	6	

to	direct	measurement	and	we	cannot	be	certain	which	species	consciously	experience	such	7	

states	(see	Paul	et	al.,	2020),	we	can	objectively	assess	the	other	components.	In	his	book	The	8	

Expression	of	Emotions	in	Man	and	Animals,	Darwin	(1872)	focused	on	behavioural	9	

manifestations	of	animal	emotion,	namely	“expressive	movements	of	the	face	and	body"",	and	10	

such	measures	continue	to	be	used	as	indicators	of	animal	affect	today	(e.g.	Girard	&	Bellone,	11	

2020).	But	other	measures	focus	more	directly	on	the	role	of	affect	in	behavioural	control	and	12	

decision-making.	A	relatively	new	and	promising	approach	is	to	measure	biases	in	decision-13	

making	under	ambiguity	as	indicators	of	animal	affect	(Harding	et	al.,	2004;	Mendl	et	al.,	2009).	14	

This	is	because	there	are	empirical	and	theoretical	reasons	to	expect	that	responses	to	such	15	

ambiguity	reflect	affective	valence	(positivity	or	negativity	of	an	affective	state).	For	example,	16	

people	in	negative	states	are	more	likely	to	make	negative	(‘pessimistic’)	judgements	about	17	

ambiguous	events	or	stimuli	than	people	in	more	positive	states	(Blanchette	and	Richards,	2010;	18	

Paul	et	al.,	2005).	Such	assessments	could	reflect	an	adaptive	use	of	background	affect	(or	mood)	19	

as	a	Bayesian	prior	over	the	likelihood	of	future	positive	or	negative	outcomes	(Mendl	et	al.,	20	

2010;	see	Mendl	&	Paul,	2020	for	a	fuller	discussion).		21	

In	line	with	these	findings	and	ideas,	a	generic	assay	for	measuring	these	so-called	‘judgement	22	

biases’	has	been	developed	for	animals	and	has	now	been	used	in	a	large	number	of	studies	23	

across	a	range	of	species.	The	original	assay	(Harding	et	al.,	2004)	involves	training	subjects	to	24	

make	one	response	(positive	response)	to	a	‘positive’	cue	(a	single	frequency	tone)	in	order	to	25	
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achieve	a	positive	outcome	(e.g.	food)	and	a	different	response	(negative	response)	to	a	1	

‘negative’	cue	(a	tone	of	a	different	frequency)	in	order	to	avoid	a	negative	outcome	(e.g.	white	2	

noise)	(Figure	1a).	Once	subjects	have	learnt	this	conditional	discrimination	task,	training	3	

continues	but	includes	occasional	ambiguous	cues	(tones	of	intermediate	frequency)	designed	to	4	

assess	whether	subjects	would	make	the	positive	response	indicating	anticipation	of	a	positive	5	

outcome,	or	the	negative	response	indicating	anticipation	of	a	negative	outcome.	This	allows	one	6	

to	test	whether,	for	example,	animals	in	a	putative	negative	affective	state	(e.g.	as	a	result	of	7	

some	sort	of	experimental	treatment,	Figure	1b)	are	more	likely	to	make	the	negative	response,	8	

as	predicted	(Figure	1c,d).	Making	the	positive	or	negative	response	under	ambiguity	can	be	9	

operationally	defined	as	‘optimistic’	or	‘pessimistic’	(Bateson,	2016)	without	implying	that	10	

animals	experience	optimism	or	pessimism	as	humans	do.		11	

Published	studies	using	this	judgement	bias	task	(also	referred	to	as	an	‘ambiguous	cue	12	

interpretation’	task	(Rygula	et	al.,	2013)),	and	variants	of	it,	have	supported	the	general	13	

prediction,	but	also	generated	null	and	opposite	results.	These	findings	have	been	summarised	14	

narratively	in	a	number	of	review	papers	that	have	also	identified	various	methodological	and	15	

theoretical	questions	regarding	the	task	and	approach	(Baciadonna	and	McElligott,	2015;	16	

Bethell,	2015;	Gygax,	2014;	Hales	et	al.,	2014;	Mendl	et	al.,	2009;	Mendl	&	Paul	2020;	Roelofs	et	17	

al.,	2016).	What	has	been	lacking,	and	much	needed,	is	a	systematic	review	and	meta-analysis	of	18	

the	findings	to	date	to	evaluate	whether	the	general	predictions	behind	the	approach	are	19	

supported,	and	how	results	may	be	influenced	by	a	variety	of	moderators,	including	aspects	of	20	

task	design,	methods	used	to	manipulate	affect,	species	studied,	and	age	and	sex	of	subjects.	21	

Recently,	we	published	the	first	such	meta-analysis	focusing	on	the	effects	of	pharmacological	22	

manipulations	of	affective	state	on	judgement	biases	(Neville	et	al.,	2020).	Here	we	23	

systematically	review	and	meta-analyse	the	much	larger	number	of	studies	that	have	used	non-24	

pharmacological	affect	manipulations.		25	
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We	focus	on	judgement	bias	tasks	based	on	the	Harding	et	al.	(2004)	method,	since	these	have	1	

been	more	widely	studied	in	animals	than	other	cognitive	biases	such	as	attention	(Bethell	et	al.,	2	

2016;	Crump	et	al.,	2018)	and	memory	biases	(Burman	and	Mendl,	2018).	Although	details	of	3	

the	procedures	and	criteria	used	to	select	suitable	studies	and	extract	appropriate	data	for	the	4	

meta-analysis	are	explained	in	the	Methods	section,	three	points	should	be	noted	here.	5	

First,	a	major	challenge	in	any	study	of	animal	affect	is	to	establish	a	‘ground	truth’	for	the	6	

affective	state	that	the	animal	is	in	when	under	study.	This	is	necessary,	for	example,	if	an	aim	of	7	

a	study	is	to	determine	what	behavioural,	physiological	or	neural	changes	occur	in	animals	in	8	

particular	affective	states,	and	hence	to	develop	reliable	indicators	of	such	states.	Therefore,	in	9	

studies	which	seek	to	evaluate	whether	judgement	bias	is	a	valid	indicator	of	affective	valence,	10	

we	need	to	know	whether	the	animal	is	in	a	relatively	positive	or	negative	state,	so	that	we	can	11	

test	whether	animals	that	are	in	a	more	positive	state	do	indeed	show	more	optimistic	decisions	12	

under	ambiguity,	than	those	in	a	more	negative	state.	In	most	judgement	bias	studies,	13	

researchers	attempt	to	use	an	experimental	treatment	to	induce	a	relatively	positive	or	negative	14	

affective	state	compared	to	a	control	or	‘benign’	treatment	group,	or	they	impose	both	a	positive	15	

and	a	negative	treatment,	and	compare	these.	Because	we	cannot	know	for	certain	where	the	16	

intermediate	‘neutral’	state	lies,	we	use	terminology	that	emphasises	the	relative	nature	of	these	17	

manipulations.	Thus,	we	refer	to	‘better’	(more	positive),	‘benign/control’,	and	‘worse’	(more	18	

negative)	treatments,	and	assign	them	to	either	‘relatively	better’	or	‘relatively	worse’	groups	for	19	

pair-wise	comparison	in	the	meta-analysis.	20	

Second,	there	are	two	main	types	of	task	used	in	judgement	bias	trials:	active	choice	(go/go)	and	21	

go/no-go	(Figure	1a).	In	go/go	active	choice	tasks,	the	animal	has	to	choose	between	two	22	

alternative	responses	(e.g.	press	the	left	or	right	lever),	while	in	go/no-go	tasks	the	animal’s	23	

options	are	to	perform	a	response	(e.g.	approach	a	location	or	press	a	lever)	or	supress	it.	The	24	

response	of	animals	can	be	reported	as	a	proportion	(e.g.	proportion	of	trials	in	which	the	25	
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subject	pressed	the	left	lever	or	approached	the	location),	or	a	latency	(e.g.	time	taken	to	press	1	

the	lever	or	approach	the	location).	Latency	and	proportion	data	have	different	statistical	2	

distributions;	they	require	different	transformations	and	use	of	different	formulae	to	calculate	3	

effect	sizes.	There	are	also	biological	reasons	for	separating	latency	and	proportion	data.	4	

Different	measures	may	represent	different	aspects	of	cognitive	processes	and	their	utility	5	

depends	on	the	type	of	cognitive	bias	task	used.	In	go/no-go	tasks,	latency	to	perform	the	6	

response	under	ambiguity	is	a	direct	measure	of	judgement	bias.	For	example,	if	the	positive	7	

response	is	to	approach	the	cue,	then	quick	approach	to	an	ambiguous	cue	indicates	an	8	

‘optimistic’	response.	In	contrast,	go/go	active	choice	tasks	require	responses	to	both	cues	(e.g.	9	

press	left	or	right	lever),	meaning	that	the	latency	to	perform	whichever	response	the	animal	10	

selects	is	more	difficult	to	interpret	in	terms	of	‘optimism’	or	‘pessimism’.	Rather,	the	proportion	11	

of	positive	or	negative	responses	provides	more	definitive	information	about	‘optimistic’	or	12	

‘pessimistic’	decisions.	This	measure	is	also	of	use	in	go/no-go	tasks.	Therefore,	proportion	of	13	

positive	vs.	negative	responses	is	preferable	to	latency	as	a	measure	of	judgment	bias	for	go/go	14	

active	choice	tasks,	whereas	for	the	go/no-go	tasks	both	measures	are,	in	principle,	suitable.		15	

Third,	many	judgement	bias	studies	use	more	than	one	ambiguous	cue	during	test	trials	(Figure	16	

1c).	Often	three	such	cues	are	used;	one	(MID)	which	is	assumed	to	be	perceived	by	the	animal	17	

as	being	at	the	mid-point	of	the	sensory	scale	(e.g.	sound	frequency)	between	the	positive	(P)	18	

and	negative	(N)	training	cues,	one	(near	positive:	NP)	which	is	half	way	between	MID	and	the	19	

positive	(P)	cue,	and	one	(near	negative:	NN)	which	is	halfway	between	MID	and	the	negative	20	

(N)	cue.	There	are	theoretical	and	methodological	reasons	for	why	an	affect	manipulation	21	

treatment	might	have	an	influence	at	one	ambiguous	cue	but	not	at	others	in	the	same	study.	For	22	

example,	non-midpoint	ambiguous	cues	(NP,	NN)	may	be	perceptually	too	similar	to	the	P	and	N	23	

training	cues	for	animals	to	moderate	their	responses	to	them,	whilst	the	midpoint	(MID)	cue	is	24	

usually	ambiguous	enough	for	background	affect	to	influence	responses	to	it.	In	some	studies	25	
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MID	could	be	perceived	as	closer	to	P	or	N	and	the	most	ambiguous	cue	becomes	either	NN	or	1	

NP,	respectively.	Moreover,	the	perceived	payoff	of	the	positive	and	negative	response	2	

outcomes,	and	hence	associated	decisions,	may	be	asymmetrical.	For	example,	if	the	perceived	3	

negative	value	of	a	foot-shock	outcome	is	much	stronger	than	the	perceived	positive	value	of	a	4	

food	pellet,	animals	may	be	strongly	motivated	to	avoid	shock	risk	and	thus	respond	negatively	5	

to	both	MID	and	NN	ambiguous	cues,	with	variation	in	response	limited	to	the	’safest’	NP	6	

ambiguous	cue	(Mendl	et	al.,	2009).	Conversely,	in	a	test	variant	where	negative	cues	are	simply	7	

lacking	a	reward	instead	of	bearing	a	punishment,	animals	may	respond	positively	even	to	8	

negative	cues,	because	the	cost	of	doing	so	is	negligible.	Because	it	is	likely	that	biased	responses	9	

are	unevenly	spread	across	ambiguous	cues	–	in	fact	some	studies	report	effects	which	are	10	

strongest	or	only	statistically	significant	at	one	ambiguous	cue	location	(e.g.	Bethell	and	Koyama,	11	

2015;	Zidar	et	al.,	2018)	–	we	investigate	the	effect	of	relative	cue	position	and	also	conduct	12	

sensitivity	analyses.	These	additional	analyses	use	data	subsets	with	different	decision	rules	for	13	

selecting	the	most	representative	data	points	from	response	curves	(e.g.	using	only	the	14	

ambiguous	cue	with	the	largest	absolute	between-treatment	effect	size;	more	details	in	the	15	

Methods	section).	16	

This	systematic	review	and	meta-analysis	aims	to:	(i)	quantify	the	overall	effect	size	that	affect	17	

manipulations	have	on	measures	of	judgement	bias	in	animals;	(ii)	estimate	heterogeneity	of	the	18	

results	among	different	studies;	(iii)	explore	the	influences	of	different	biological	and	19	

methodological	moderators	(explanatory	variables	for	variation	in	effect	sizes).	20	

Methods 21	

Literature search 22	

We	conducted	a	systematic	literature	search	and	recorded relevant information required in the	23	
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Preferred	Reporting	Items	for	Systematic	reviews	and	Meta-Analyses	statement	(PRISMA;	1	

Moher	et	al.,	2009;	see	Supplementary	Materials	for	additional	search	details).	We	ran	the	first	2	

online	database	search	on	29	October	2015,	a	second	search	in	December	2017,	and	a	final	3	

database	search	to	update	the	dataset	again	on	27	March	2019.	For	these	searches,	we	used	the	4	

broad-coverage	interdisciplinary	databases	Scopus	and	Web	of	Science,	covering	the	titles,	5	

abstracts	and	keywords	of	academic	publications.	6	

The	initial	search	string	used	in	Scopus	was:	TITLE-ABS-KEY	(("cognitive	bias*"	OR	"judgment	7	

bias*"	OR	"judgement	bias*"	OR	"cognitive	affective	bias*")	AND	(pessimis*	OR	optimis*	OR	8	

valence	OR	mood*	OR	emotion*	OR	"affective	state*"	OR	"emotional	state*"	ambig*	OR	animal*	9	

OR	"animal	welfare"))	AND	PUBYEAR	>	2003	and	in	Web	of	Science:	TS=((	"cognitive	bias*"	OR	10	

"judgment	bias*"	OR	"judgement	bias*"	OR	"cognitive	affective	bias*"	)	AND	(	pessimis*	OR	11	

optimis*	OR	valence	OR	mood*	OR	emotion*	OR	"affective	state*"	OR	"emotional	state*"	ambig*	12	

OR	animal*	OR	"animal	welfare"	)	)	AND	LANGUAGE:	(English)	AND	DOCUMENT	TYPES:	13	

(Article),	Indexes=SCI-EXPANDED,	SSCI	Timespan=2004-2015.	We	restricted	the	publication	14	

years	to	those	following	the	seminal	paper	on	animal	judgement	bias	(Harding	et	al.,	2004).	We	15	

restricted	the	subsequent	updates	of	the	literature	search	to	the	years	since	the	previous	search	16	

update	(i.e.	2015-2017	and	2017-2019,	respectively)	and	otherwise	used	the	same	search	17	

strings.	We	collected	additional	relevant	studies	from	the	authors	whom	we	contacted	to	18	

request	data	or	other	additional	information	that	was	missing	from	their	publications.	We	also	19	

performed	searches	of	reference	lists	of	relevant	review	articles	and	research	articles	citing	the	20	

seminal	study	by	Harding	et	al.	(2004).	21	

The	searches	of	the	online	databases	generated	over	900	potential	article	references	and	22	

searches	of	other	sources	generated	almost	500	additional	references	for	screening	(Figure	2).	23	

We	removed	duplicated	results	from	these	separate	search	paths.	Two	authors	(J.Z.	and	E.S.)	24	

independently	screened	482	abstracts	from	the	articles	identified	in	the	2015	search	using	the	25	
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software	AbstrackR	(Wallace	et	al.,	2012).	M.L.	performed	two	updates	of	literature	searches	in	1	

2017	and	2019,	following	the	same	methodology	as	in	the	first	search.	Overall,	we	identified	74	2	

published	studies	as	potentially	suitable	for	inclusion	in	our	meta-analysis	after	screening	of	full	3	

texts	and	removal	of	duplicated	studies.	We	excluded	three	studies	during	the	data	extraction	4	

stage	(due	to	missing	data),	resulting	in	data	from	71	studies	being	included	in	the	meta-5	

analysis.	6	

Inclusion and exclusion criteria 7	

We	screened	titles	and	abstracts	from	bibliometric	records	to	identify	empirical	studies	on	8	

judgement	bias	in	animals	in	which	subjects	were	exposed	to	an	affect	manipulation	aimed	at	9	

inducing	either	a	relatively	positive	or	negative	state.	We	then	screened	full	text	versions	of	the	10	

articles	that	passed	this	initial	screening	stage.	At	the	full-text	screening	stage,	the	following	six	11	

criteria	had	to	be	met	for	the	study	to	be	included	in	the	meta-analysis:	i)	study	had	to	be	12	

experimental	and	designed	to	investigate	variation	in	judgement	bias	(i.e.	‘optimistic’	or	13	

‘pessimistic’	interpretation	of	stimuli)	in	non-human	animals;	ii)	experiments	had	to	include	at	14	

least	two	treatment	groups	(or	control/’benign’	and	treatment	groups);	iii)	experimental	15	

treatments	had	to	be	designed	to	induce	‘relatively	better’	or	‘relatively	worse’	affective	states	16	

(see	decision-tree	in	Supplementary	Materials	Figure	S1);	iv)	for	go/no-go	tasks	studies	had	to	17	

report	either	latency	to	make	a	response	to	ambiguous	cues,	or	proportion	of	go	or	no-go	18	

responses	towards	ambiguous	cues;	for	active	choice	tasks,	studies	had	to	report	proportion	of	19	

positive	or	negative	responses;	if	the	data	available	could	be	translated	into	such	latencies	or	20	

proportions,	they	were	included;	v)	studies	had	to	present	data	usable	for	effect	size	calculation;	21	

if	suitable	data	could	not	be	retrieved	by	contacting	the	authors,	the	study	was	excluded	from	22	

the	meta-analysis;	vi)	studies	had	to	be	published	in	peer-reviewed	journals,	but	student	reports	23	

and	data	from	unpublished	work,	as	well	as	articles	that	were	written	in	languages	other	than	24	

English,	could	have	been	included	if	they	met	the	above	criteria.	25	



10	

	

	 10	

We	also	excluded	studies	for	the	following	additional	reasons.	We	only	considered	data	from	1	

studies	investigating	judgement	bias,	i.e.	we	excluded	studies	investigating	other	cognitive	2	

biases,	such	as	attention	bias	and	memory	bias.	We	also	excluded	studies	only	describing	3	

judgement	bias	theory	or	methods	or	reviewing	previous	findings	and	studies	that	used	the	4	

generic	judgement	bias	task	for	humans,	because	our	focus	was	on	non-human	animals.	As	5	

studies	investigating	effects	of	drugs	on	judgement	bias	often	include	several	doses	that	cannot	6	

easily	be	assigned	into	relatively	better	and	relatively	worse	treatment	groups,	we	also	excluded	7	

all	drug	studies	from	this	meta-analysis.	As	mentioned	earlier,	the	drug	studies	were	recently	8	

subjected	to	a	separate	meta-analysis	by	our	group	(Neville	et	al.,	2020).	9	

Data extraction 10	

After	compiling	a	final	list	of	included	studies,	we	extracted	measurements	representing	11	

behavioural	responses	to	cues	in	the	judgement	bias	tests.	Each	pairwise	comparison	consisted	12	

of	a	pair	of	outcome	measures	comparing	behaviour	of	animals	from	‘relatively	better’	to	13	

‘relatively	worse’	affect	manipulation	groups.	Our	classification	of	treatments	as	inducing	14	

‘relatively	better’	or	‘relatively	worse’	affective	states	was	based	on	a	decision	tree	involving	15	

screening	articles	and	assessing	treatments	based	on	the	following	three	criteria.	First,	if	stated,	16	

we	used	the	a	priori	hypothesis	and	reasoning	outlined	in	the	research	article.	Second,	where	17	

possible,	we	employed	Rolls’	(2005,	p.11)	operational	definition	of	emotion	as	“states	elicited	by	18	

rewards	and	punishers”,	where	“a	reward	is	anything	for	which	an	animal	will	work”	and	“a	19	

punisher	is	anything	that	an	animal	will	work	to	escape	or	avoid”.	Thus,	if	a	treatment	involved	20	

stimuli	that	the	subject	animal	is	known	to	actively	avoid,	we	deemed	it	to	induce	a	relatively	21	

worse	affective	state	than	one	which	involved	neutral	or	preferred	stimuli.	Third,	we	considered	22	

evidence	from	previous	studies	on	the	effects	of	the	treatments	in	question	on	affective	state	23	

(e.g.	their	effects	on	other	putative	indicators	of	affective	state,	such	as	abnormal	repetitive	24	

behaviour	or	physiological	stress	indicators).	25	
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The	decision	tree	for	assigning	affect	treatments	to	relative	affect	manipulation	categories	is	1	

presented	in	Supplementary	Materials	Figure	S1.	If	the	first	criterion	in	the	decision	tree	was	2	

fulfilled	(i.e.	the	authors	of	the	original	paper	explicitly	stated	whether	the	treatment	is	expected	3	

to	have	positive/negative	effect	on	animals’	affective	state),	we	ignored	the	subsequent	decision	4	

criteria.	If	not,	we	evaluated	the	subsequent	decision	criteria.	We	classified	all	extracted	5	

treatment	groups	within	a	study	relative	to	each	other.	For	example,	in	a	study	with	a	control	6	

(benign/unmanipulated)	and	enriched	housing	group,	the	enriched	group	would	be	considered	7	

‘relatively	better’	and	the	control/benign	group	‘relatively	worse’.	Conversely,	in	a	study	with	8	

control/benign	and	stress-induction	groups,	the	stress	group	would	be	considered	‘relatively	9	

worse’,	and	the	control/benign	group	would	be	considered	‘relatively	better’.	10	

We	tackled	variation	in	study	design	and	outcome	measurement	as	follows.	First,	for	the	go/no-11	

go	judgement	bias	tasks	we	extracted	either	or	both	(depending	on	which	was	reported)	latency	12	

and	proportion	outcome	measures	(the	signs	of	the	effect	sizes	calculated	from	latency	13	

measurements	were	later	inverted,	so	that	interpretation	of	the	effect	direction	was	consistent	14	

with	that	for	the	proportion	data).	For	active	choice	go/go	judgement	bias	tasks,	we	extracted	15	

only	proportion	outcome	measures	(as	explained	earlier,	latency	measures	in	active	choice	tasks	16	

cannot	be	clearly	linked	to	more	'optimistic'	or	‘pessimistic’	responding).	The	extracted	mean	17	

and	standard	error	(or	standard	deviation)	of	responses	to	ambiguous	and	non-ambiguous	cues	18	

during	the	tests	were	used	to	calculate	values	of	effect	sizes	(and	their	variances)	for	each	19	

pairwise	comparison	of	the	relatively	better	and	relatively	worse	treatment	groups	at	the	same	20	

cue.	Relevant	sample	sizes	were	also	recorded	representing	the	number	of	animals	from	each	21	

group	participating	in	the	judgement	bias	test.	22	

Second,	included	studies	used	varying	numbers	of	ambiguous	cues	(range	1-13,	mean	2.99,	23	

mode	3).	We	only	extracted	data	for	a	maximum	of	three	ambiguous	cues	per	measurement	24	

(response	curve).	We	always	extracted	data	for	the	middle	cue	(midpoint	between	the	positive	25	
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and	negative	cues,	MID)	and,	if	available,	two	intermediate	cues	between	the	middle	cue	and	1	

positive	and	negative	cues	(near-positive	NP	and	near-negative	NN,	respectively).	If	response	2	

data	to	positive	(P)	and	negative	(N)	cues	were	reported	for	judgement	bias	tests,	these	were	3	

also	extracted.	4	

Third,	when	judgement	bias	was	measured	on	several	consecutive	days	following	a	treatment,	5	

we	extracted	the	first	measure	only	as	it	was	usually	closest	in	time	to	the	acute	affect	6	

manipulation	treatment	(Destrez	et	al.,	2013;	Doyle	et	al.,	2011).	In	a	few	studies,	animals	were	7	

exposed	to	several	judgement	bias	tests	during	a	long-term	treatment	(Douglas	et	al.,	2012;	8	

Hales	et	al.,	2016;	Rygula	et	al.,	2013).	In	these	cases,	we	extracted	the	last	test	occurring	during	9	

each	treatment,	thus	maximising	the	time	available	for	it	to	exert	its	effects.		We	assumed	that	10	

the	cumulative	impact	of	chronic	exposure	to	the	treatment	likely	out-weighed	any	potential	11	

effect	of	learning	about	repeated	tests	that	were	spaced	out	across	time.	12	

Fourth,	some	studies	with	a	within-subject	design	measured	judgement	bias	before,	during	and	13	

after	an	affect	manipulation	(e.g.	pre-stress,	stress,	post-stress),	or	repeated	the	‘baseline’	14	

treatment	(e.g.	enriched,	barren,	enriched)	(Brilot	et	al.,	2010;	da	Cunha	Nogueira	et	al.,	2015;	15	

Hales	et	al.,	2016;	Murphy	et	al.,	2013).	In	these	studies,	we	compared	measures	taken	before	16	

treatment	(‘baseline’)	to	those	taken	during	it	and	did	not	include	measures	taken	after	it.	17	

Fifth,	studies	using	a	between-subject	design	sometimes	tested	both	control/benign	and	18	

treatment	groups	before,	during	and	after	a	manipulation.	In	these	cases,	we	compared	the	19	

control/benign	group	to	the	treatment	group	during	treatment	and	ignored	the	pre-	and	post-20	

treatment	measurements	(Hales	et	al.,	2016;	Oliveira	et	al.,	2016;	Rygula	et	al.,	2013).	21	

Finally,	if	several	treatments	were	applied	where	one	or	more	treatments	were	hypothesized	to	22	

be	intermediate	in	effect	to	the	two	most	extreme	treatments,	only	the	two	extreme	treatments	23	



13	

	

	 13	

were	included	(Ash	and	Buchanan-Smith,	2016;	Burman	et	al.,	2009;	Keen	et	al.,	2014;	Wheeler	1	

et	al.,	2015).	2	

For	each	experiment,	we	gathered	information	on	the	potential	moderator	variables	to	3	

characterise	our	dataset	and	explain	potential	heterogeneity	in	the	data.	Detailed	descriptions	of	4	

all	the	originally	extracted	moderators	are	included	in	Table	S1.	In	brief,	the	three	key	groups	of	5	

extracted	moderators	considered	information	about	the	article,	biological	variables,	and	test	6	

design.	Paper-specific	information	included	authors,	title,	journal,	and	publication	year.	For	each	7	

data	point	(i.e.	comparison	between	two	groups	of	animals),	we	extracted	the	following	8	

biological	variables:	taxa	studied	(mammals,	birds,	insects),	sex	(female,	male,	mixed-sex),	age	9	

class	(juvenile,	adult)	and	source	of	animals	(captive,	wild-caught).	Test-specific	information	10	

included	affect	manipulation	category	(enrichment,	stress,	other),	affect	manipulation	timing	11	

(before/during	test,	long-term),	comparison	category	(Better-Worse,	Benign-Worse,	Better-12	

Benign),	type	of	cue	used	in	judgement	bias	test	(spatial,	visual,	auditory,	tactile,	olfactory),	13	

whether	animals	were	food	deprived	prior	to	behavioural	trials	(yes,	no/no	information),	14	

automation	of	response	measurement	(yes,	no/no	information),	blinding	of	personnel	15	

performing	trials	(yes,	no/no	information),	combination	of		reinforcement	used	during	training	16	

(Reward	Vs.	Null,	Reward	Vs.	Punishment;	Reward	Vs.	Smaller	Reward),	task	type	(active	choice	17	

go/go,	go/no-go),	whether	ambiguous	cues	were	reinforced	(yes,	no/no	information),	18	

measurement	type	(latency,	proportion),	location	of	ambiguous	cues	relative	to	positive	and	19	

negative	cues	(P	–	positive,	NP	–	near-positive,	MID	–	midpoint,	NN	–	near-negative,	N	–	20	

negative).	We	also	noted	any	pertinent	additional	details	about	study	designs	(between-subjects,	21	

within-subjects),	affect	manipulations,	source	of	the	data	in	the	original	studies,	and	any	22	

associated	comments.	When	data	were	provided	in	a	graph	instead	of	a	table	or	text,	we	23	

extracted	the	values	using	GraphClick	3.0.3	(http://www.arizona-software.ch/graphclick/).	24	

Data	extraction	was	performed	by	J.Z.,	M.L.	and	V.N.	and	was	checked	by	M.L.,	V.N.	and	E.S.	25	
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Effect-size	calculation	1	

We	used	Hedges’	unbiased	standardized	mean	difference	(Hedges’	g)	as	the	measure	of	effect	2	

size.	Because	latency	and	proportion	data	are	bounded	(i.e.	latencies	start	at	0	and	are	often	3	

censored,	and	percentages	are	bounded	between	0	and	100,	proportions	between	0	and	1),	we	4	

used	natural	log	(for	latencies)	or	logit-transformed	data	(for	proportions,	and	percentages	5	

expressed	as	proportions)	to	calculate	Hedges’	g	(details	provided	in	Supplementary	Materials	6	

Methods	and	Figure	S2).	In	brief,	to	calculate	Hedges’	g,	we	focused	on	positive	responses	(i.e.	7	

those	which	indicated	that	the	subject	was	anticipating	a	more	rewarding	outcome)	and	8	

subtracted	the	mean	value	of	the	relatively	worse	treatment	from	the	mean	of	the	relatively	9	

better	treatment,	and	divided	the	difference	by	the	pooled	standard	deviation	(SD)	with	10	

correction	for	small	sample	sizes	(Hedges	and	Olkin,	1985).	Thus,	if	animals	from	the	relatively	11	

better	treatment	group	were	making	a	higher	proportion	of	positive	responses	than	animals	12	

from	the	relatively	worse	treatment,	the	difference	between	the	means	would	be	positive	and	13	

the	effect	size	too.	However,	the	expected	pattern	would	be	reversed	when	latencies	to	make	the	14	

positive	response	were	measured	in	go/no-go	tasks:	if	animals	from	the	relatively	better	15	

treatment	group	were	quicker	to	make	the	positive	response	(i.e.	had	lower	latencies),	than	16	

animals	from	the	relatively	worse	treatment,	the	difference	between	the	means	(and	the	17	

resulting	effect	size)	would	be	negative.	To	allow	for	easier	comparison	and	interpretation	of	the	18	

effect	sizes	from	latency	and	proportion	measures,	we	reversed	the	sign	of	the	effect	sizes	based	19	

on	latency	measures.	Thus,	after	the	sign	adjustment,	across	all	data	positive	values	of	Hedges’	g	20	

can	be	interpreted	as	optimistic	responses	of	animals	exposed	to	relatively	better	treatments	21	

compared	to	those	exposed	to	relatively	worse	treatments.	For	the	go/no-go	tests	that	reported	22	

the	outcomes	as	both	latency	and	proportion,	we	calculated	Pearson's	correlation	between	these	23	

two	measures.	24	

Meta-analysis	and	meta-regression	models	25	
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We	ran	all	statistical	analyses	in	R	version	3.6.0	(R	Development	Core	Team,	2019);	we	created	1	

main	forest-like	(orchard)	plots	of	effects	using	orchaRd	package	(Nakagawa	et	al.,	2020).	For	2	

multilevel	meta-analysis	and	meta-regression	we	used	the	rma.mv	function	from	the	package	3	

metafor	(Viechtbauer,	2010).	4	

To	estimate	the	overall	mean	of	the	effect	sizes	we	constructed	intercept-only	models	(i.e.	meta-5	

analysis)	with	study	ID,	experiment	ID,	cue	ID,	and	effect	size	ID	as	random	effects.	To	explore	6	

effect	of	species	identity	and	phylogenetic	relatedness,	we	also	evaluated	meta-analytic	models	7	

with	phylogeny	and	species	ID	added	to	the	random	effects	list.	We	calculated	I
2	values	for	each	8	

random	factor	and	the	overall	heterogeneity,	I
2
Total,	in	the	meta-analytic	models	(Nakagawa	and	9	

Santos,	2012).	10	

To	evaluate	the	effects	of	moderators	of	interest	(e.g.	subject	sex	or	age	class,	test	task	type,	test	11	

cue	type	and	level	of	cue	ambiguity),	we	ran	univariate	multilevel	phylogenetic	meta-regression	12	

models	with	moderators	as	fixed	effects,	and	the	same	random	effects	as	in	the	meta-analytic	13	

models	(except	species	ID).	In	the	multivariate	meta-regression	models	(i.e.	models	with	14	

multiple	moderators),	we	included	only	moderators	that	were	significant	in	the	univariate	meta-15	

regression	models.	We	then	performed	AICc-based	model	selection	using	MuMIn	package	16	

(Barton,	2009)	to	infer	relative	contributions	of	included	moderators.	To	assess	the	fit	of	meta-17	

regression	models,	we	calculated	marginal	R2	values	(sensu	Nakagawa	and	Schielzeth,	2013;	18	

Nakagawa	et	al.,	2017).	19	

Publication	bias	20	

Statistically	significant	results	are	more	likely	to	be	published,	resulting	in	a	non-random	sample	21	

of	data	available	for	meta-analysis	(Rosenthal,	1979).	To	examine	publication	bias	in	our	data	22	

set,	we	visually	inspected	a	funnel	plot	for	asymmetry	in	the	distribution	of	the	residuals	of	23	

effect	sizes	(which	are	the	sum	of	effect	size	level	effects	and	sampling	variance	effects;	i.e.	meta-24	
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analytic	residuals:	sensu	Nakagawa	and	Santos,	2012).	We	also	performed	Egger’s	regression	on	1	

the	residuals	and	measurement	errors	from	the	full	meta-regression	model	(multilevel	version	2	

of	the	publication	bias	test;	Nakagawa	and	Santos,	2012).	Egger’s	regression	indicates	3	

publication	bias	if	the	regression	intercept	is	significantly	different	from	0	(Egger	et	al.,	1997).	4	

Finally,	we	tested	for	a	special	type	of	publication	bias,	a	time-lag	bias,	i.e.	a	tendency	for	studies	5	

with	larger	effects	to	be	published	earlier	(Jennions	and	Møller,	2002).	6	

Sensitivity	analyses	(robustness	of	results)	7	

To	test	robustness	of	our	results	to	the	estimation	method,	we	ran	a	meta-regression	model	and	8	

a	multilevel	mixed-effect	full	meta-regression	model	(with	subject	sex,	task	type,	cue	type,	and	9	

reinforcement	type	as	moderators),	using	a	Bayesian	approach,	as	implemented	in	the	10	

MCMCglmm	package	(Hadfield,	2010).	These	models	were	run	with	110,000	iterations,	10,000	11	

burn-in	periods,	and	thinning	by	every	100	resulting	in	an	effective	sample	size	of	1000.	We	12	

used	a	parameter-expanded	prior	(V	=	1,	nu	=	1,	alpha.mu	=	0,	alpha.V	=	1000),	with	EffectID	13	

(units)	fixed	at	one.	14	

We	also	ran	the	meta-analytic	models	using	four	additional	data	configurations	representing	15	

different	ways	of	interpreting	results	from	pairs	of	response	curves	with	multiple	cues	tested.	16	

First,	we	used	a	dataset	with	positive	and	negative	test	cues	excluded,	so	that	only	responses	to	17	

ambiguous	cues	were	used	(maximum	of	3	effect	sizes	per	comparison	of	pair	of	response	18	

curves:	for	near-positive,	midpoint,	near-negative	cues).	In	the	remaining	data	subsets,	we	19	

selected	only	one	cue	per	response	curve	comparison.	Thus,	to	create	the	second	data	subset,	we	20	

only	included	data	from	the	mid-point	ambiguous	cue	location	(MID	data	points	and	effect	21	

sizes).	In	the	third	data	subset,	we	selected	the	effect	sizes	data	from	the	cue	location	with	the	22	

largest	absolute	value	within	each	response	curve	comparison;	notably,	in	71.3%	of	the	23	

comparisons,	the	largest	absolute	effect	size	was	not	located	at	the	mid-point	ambiguous	cue.	In	24	
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the	fourth	data	subset,	we	used	effect	sizes	with	the	biggest	absolute	value	in	the	direction	of	the	1	

mean	value,	within	each	response	curve	comparison,	as	in	Neville	et	al.	(2020).	2	

  3	
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Results 1	

Description	of	data	set	2	

The	workflow	and	outcomes	of	our	systematic	literature	searches	are	presented	in	a	PRISMA	3	

diagram	(Figure	2).	The	list	of	included	studies	is	provided	in	Supplementary	Table	S2.	Excluded	4	

studies,	with	reasons	for	exclusion,	are	listed	in	Supplementary	Table	S3.	To	retrieve	missing	5	

data,	or	additional	information,	we	contacted	39	authors	about	35	studies.	We	attained	raw	data	6	

for	18	studies	and	additional	information	for	10	studies.	Ultimately,	we	extracted	459	effect	7	

sizes,	representing	91	experiments	published	in	71	articles.	These	studies	were	performed	on	22	8	

species,	ranging	from	bees	to	monkeys.	The	main	characteristics	of	the	included	studies	are	9	

summarised	in	Figure	3,	showcasing	significant	variation	in	study	subjects	and	methodologies.	10	

Individual	studies	contributed	between	1	and	30	effect	sizes	to	our	final	data	set.	11	

Mammals	were	the	best-represented	taxonomic	group	(56	out	of	71	studies;	330	out	of	459	12	

effect	sizes),	and	almost	all	studies	were	performed	on	captive	animals	(65	studies;	414	effect	13	

sizes).	Females	were	more	frequently	used	in	experiments	than	males	or	mixed-sex	groups	(225,	14	

118,	116	effect	sizes,	respectively;	for	the	numbers	of	studies	see	Figure	3),	and	adults	were	15	

more	commonly	used	than	juveniles	(333	and	126	effect	sizes,	respectively).	Most	often,	affect	16	

manipulation	was	a	form	of	stress	induction	compared	to	standard/benign	conditions	(benign-17	

worse	comparison:	230	effect	sizes).	Enrichment	compared	to	control/benign	conditions	was	18	

the	next	most	common	manipulation	(better-benign	comparison:	135	effect	sizes),	and	a	few	19	

studies	compared	positive	treatments	(e.g.	enrichment)	to	negative	treatments	(e.g.	handling)	20	

(better-worse	comparison:	94	effect	sizes).	Manipulations	were	usually	long-term	(292	effect	21	

sizes),	lasting	for	days	or	weeks	before	affect	was	measured.	22	

Between-subject	designs	(independent	groups	of	animals	exposed	to	manipulation	or	23	

control/benign	treatment)	accounted	for	302	effect	sizes	and	within-subject	designs	accounted	24	
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for	157	effect	sizes.	Go/no-go	tasks	dominated	over	active	choice	go/go	tasks	(389	and	70	effect	1	

sizes,	respectively).	Spatial	and	visual	cues	were	most	commonly	used	in	judgement	bias	tests	2	

(177	and	167	effect	sizes	respectively),	and	reward-punishment	training	schemes	were	more	3	

common	than	reward-null	(283	and	132	effect	sizes,	respectively),	with	the	remaining	studies	4	

using	different	reward	strengths	(44	effect	sizes).	Most	studies	did	not	report	whether	the	5	

personnel	performing	measurements	of	animal	behaviour	were	blinded	to	treatments	(only	113	6	

effect	sizes	came	from	blinded	trials),	or	whether	the	measurements	were	automated	(only	71	7	

effect	sizes	came	from	automated	trials).	Finally,	latency	and	proportion	outcome	measures	8	

were	reported	at	similar	levels	(258	and	201	effect	sizes,	respectively).	Only	5	studies	using	9	

go/no-go	tasks	reported	outcome	measures	as	both	latency	and	proportion,	and	these	were	10	

moderately	correlated	(r	=	0.578,	t	=	3.085,	df	=	19,	p-value	=	0.006),	although	not	for	the	data	11	

subset	using	only	the	largest	effect	sizes	from	each	experiment	to	remove	non-independence	12	

(r	=	0.443,	t	=	0.857,	df	=	3,	p-value	=	0.455).	13	

An	overall	effect	and	heterogeneity	among	effect	sizes	14	

Overall,	we	found	a	statistically	significant	effect	of	experimental	treatments	on	judgement	bias	15	

in	animals	(phylogenetic	multilevel	meta-analysis:	Hedges’	g	(Hg)[overall	mean]	=	0.201,	95%	16	

Confidence	Interval	(CI)	=	0.028	to	0.374;	Figure	4,	Table	S4).	A	similar	model,	but	without	17	

controlling	for	phylogeny,	also	showed	a	statistically	significant	overall	effect	(multilevel	meta-18	

analysis:	Hg[overall	mean]	=	0.204,	95%	CI	=	0.087	to	0.320,	Table	S5).	Therefore,	animals	in	a	19	

relatively	better	treatment	usually	behaved	in	a	more	‘optimistic’	way	than	animals	in	a	20	

relatively	worse	treatment,	whereas	animals	in	a	relatively	worse	treatment	were	more	21	

‘pessimistic’.	Notably,	this	overall	effect	is	comparable	to	a	small	effect,	as	suggested	by	the	22	

benchmark	values	(0.2,	0.5	and	0.8	as	small,	medium	and	large	effects;	Cohen,	1969).	The	total	23	

heterogeneity	in	the	whole	data	set	was	high	(I2total	=	76.4%;	according	to	Higgins’	benchmark	24	

25,	50	and	75%	can	be	interpreted	as	low,	moderate	and	high	heterogeneity,	respectively;	25	
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Higgins	and	Thomson,	2002).	About	68.1%	of	the	variability	across	studies	was	due	to	sampling	1	

error,	while	phylogeny	contributed	little	to	account	for	this	heterogeneity	(2.0%),	suggesting	a	2	

weak	phylogenetic	signal	(see	Nakagawa	&	Santos,	2012).	3	

High	observed	total	heterogeneity	in	the	data	set	warrants	investigation	of	potential	moderators	4	

of	heterogeneity.	We,	thus,	present	findings	of	the	univariate	multilevel	phylogenetic	meta-5	

regression	models	examining	the	effects	of	different	moderators	(see	Figures	5,	Figure	6,	Figure	6	

S3).	7	

Species-specific	effects	8	

A	meta-regression	model	estimating	mean	effect	for	each	included	species	did	not	show	a	clear	9	

pattern	of	differences	among	species	(Figure	5;	R2 = 0.070, Table	S6).	Some	of	the	species-10	

specific	point	estimates	were	medium	or	large,	but	they	were	accompanied	by	wide	confidence	11	

intervals	crossing	zero	(no-effect)	line.	We	note	that	the	distribution	of	studies	among	species	12	

was	not	balanced,	with	the	data	set	being	dominated	by	studies	on	rats,	cattle,	and	pig	(15,	11	13	

and	8	studies,	respectively),	while	most	of	remaining	species	are	each	represented	by	a	single	14	

study	(Figure	5).	15	

Sex-effects	16	

Effects	of	judgement	bias	manipulations	on	males	were	small-to-medium	and	statistically	17	

different	from	zero	(Hg[males]	=	0.365,	95%	CI	=	0.155	to	0.575),	while	effects	on	females	were,	on	18	

average,	close	to	zero	(Hg[females]	0.104,	95%	CI	=	-0.063	to	0.271;	Figure	6a).	The	difference	19	

between	mean	effects	in	males	and	females	was	small	(Hg[male	vs.	female	difference]	=	0.261,	95%	CI	=	-20	

0.001	to	0.522;	R2 = 0.024,	Table	S7),	indicating	that	affect	manipulations	on	judgement	bias	21	

measurements	tend	to	be	more	pronounced	in	studies	on	males	than	females.	22	

Tasks	type	effects	23	
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Effects	of	judgement	bias	manipulations	tended	to	be	larger	in	studies	using	active	choice	tasks	1	

in	comparison	to	studies	using	go/no-go	tasks	(Hg[go/no-go	vs.	active	choice	difference]	=	-0.277,	95%	CI	=	-2	

0.567	to	0.012;	Figure	6b).	On	average,	tasks	with	active	choice	had	a	medium	effect	size	and	3	

were	statistically	different	from	zero	(Hg[active	choice]	=	0.432,	95%	CI	=	0.151	to	0.712),	while	the	4	

average	effect	size	in	in	go/no-go	tasks	was	small,	but	still	statistically	different	from	zero	5	

(Hg[go/no-go]	=	0.154,	95%	CI	=	0.005	to	0.304;	R2 = 0.021,	Table	S8).	6	

Cue	types	used	during	judgement	bias	tests	7	

Across	the	five	categories	of	cues	used	during	judgement	bias	tests,	only	tests	using	auditory	and	8	

tactile	cues	consistently	revealed	differences	between	control	and	affect-manipulated	groups	of	9	

animals	(Hg[auditory	cues]	=	0.393,	95%	CI	=	0.136	to	0.651;	Hg[tactile	cues]	=	0.658,	95%	CI	=	0.136	to	10	

1.118;	Figure	6c).	These	two	categories	of	cues	were	only	significantly	different	from	the	results	11	

from	studies	using	visual	cues,	which	on	averaged	had	the	weakest	effect	(Hg[visual	cues]	=	0.067,	12	

95%	CI	=	-0.133	to	0.268;	R2 = 0.044,	Table	S9).	13	

Reinforcement	scheme	during	judgement	bias	tests	14	

Studies	using	Reward-Punishment	and	Reward-Reward	training	cue	reinforcement	schemes	15	

usually	generated	small-medium	statistically	significant	effect	sizes	in	the	predicted	direction	16	

(Hg[Reward-Punishment]	=	0.216,	95%	CI	=	0.036	to	0.396;	Hg[Reward-Reward]	=	0.488,	95%	CI	=	0.137	to	17	

0.839),	but	not	the	Reward-Null	reinforcement	scheme	(Figure	6d).	Reward-Reward	studies	18	

generally	showed	significantly	larger	judgement	bias	than	those	that	used	a	Reward-Null	19	

reinforcement	scheme	(Hg[Reward-Reward	vs.	Reward-Null]	=	0.436,	95%	CI	=	0.045	to	0.827;	R2	=	0.030,	20	

Table	S10).	Studies	using	non-reinforced	ambiguous	cues	(which	was	the	vast	majority	of	21	

included	studies)	generated	effect	sizes	in	the	predicted	direction	(Hg[ambig.	cue	not	reinforced]	=	0.204,	22	

95%	CI	=	0.026	to	0.382),	although	not	statistically	different	from	studies	in	which	ambiguous	23	
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cues	were	reinforced	(Hg[ambig.	cue	not	reinforced	vs.	reinforced]	=	0.080,	95%	CI	=	-0.527	to	0.686;	R2	=	1	

0.001),	whose	effect	sizes	were	close	to	zero	(Table	S11).	2	

Cue	ambiguity	level	3	

Ambiguous	cues	that	were	halfway	between	the	positive	and	negative	cues,	as	well	as	cues	that	4	

were	closer	to	the	negative	cues,	were	most	likely	to	reveal	judgement	bias	in	tested	animals	5	

(Hg[mid-point	cue]	=	0.250,	95%	CI	=	0.042	to	0.458;	Hg[near-negative	cue]	=	0.303,	95%	CI	=	0.075	to	0.530;	6	

R2	=	0.014,	Figure	6e).	Ambiguous	near-negative	cues	were	also	significantly	different	from	the	7	

effects	of	positive	training	cues,	with	the	latter	on	average	being	least	likely	to	show	judgement	8	

bias	effect	(Hg[positive	cues]	=	0.063,	95%	CI	=	-0.153	to	0.278,	Table	S12).	9	

Other	moderators	in	univariate	models	10	

Variation	in	the	other	considered	moderators	did	not	appear	to	significantly	influence	the	11	

magnitude	of	judgement	bias	effects.	These	moderators	were:	source	of	animals	(captive	12	

vs.	wild-caught),	animal	age,	type	of	affect	manipulation	(stress	vs.	enrichment),	timing	of	affect	13	

manipulation	(short	vs.	long-term),	whether	manipulation	was	compared	to	benign	or	worse	14	

reference	condition,	type	of	study	design	(within-individual	vs.	between-individuals),	food	15	

deprivation	during	judgement	bias	tests,	measurement	type	of	behavioural	response	(latency	vs.	16	

proportion),	automation	and	blinding	of	measurements	of	animal	responses	(Figure	S3;	Tables	17	

S13	–	S22;	R2	=	0	to	0.010).	18	

Multivariate	(full)	meta-regression	models	and	model	selection	19	

The	full	meta-regression	model	included	four	moderators	that	were	significant	or	close	to	20	

statistical	significance	in	univariate	models	(after	confirming	they	were	not	co-linear	with	each	21	

other):	sex	of	test	animals,	task	type	(go/no-go	vs.	active	choice	go/go),	type	of	cue	used	in	the	22	

test,	and	type	of	reinforcement	for	positive	and	negative	training	cues.	In	the	multivariate	meta-23	

regression,	none	of	the	considered	moderators	was	significant	(Table	S23).	These	moderators	24	
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can	jointly	explain	only	about	7%	of	variation	in	the	data	(R2	=	0.072).	Model	selection	analysis	1	

indicated	that	type	of	the	task	and	type	of	reinforcement	used	could	be	the	most	influential	2	

moderators,	followed	by	the	sex	of	animals	(Table	S24).	3	

Publication	bias	4	

We	conducted	3	kinds	of	publication	bias	analyses:	1)	contour-enhanced	funnel	plots	of	5	

residuals,	2)	a	variant	of	Egger’s	regression,	and	3)	a	regression-based	time-lag	bias	test.	Visual	6	

inspection	of	enhanced-contour	funnel	plots	of	residuals	did	not	reveal	skewness	indicative	of	7	

publication	bias	(Figure	S4).	Further,	the	intercept	of	Egger’s	multivariate	regression,	controlling	8	

for	potentially	important	moderators	from	univariate	models,	was	not	significantly	different	9	

from	zero	(t	=	0.017,	df	=	457,	p	=	0.986),	confirming	lack	of	publication	bias	in	the	full	data	set.	10	

Finally,	we	found	no	evidence	for	time-lag	bias,	as	the	slope	of	linear	regression	between	11	

publication	year	and	effect	size	was	not	significantly	different	from	zero	(Slope	[Year]	=	-0.002,	12	

95%	CI	=	-0.121	to	0.118,	p	=	0.980,	Table	S25).	13	

Sensitivity	analyses	(robustness	of	results)		14	

The	estimates	from	Bayesian	models	run	on	full	data	set	gave	qualitatively	identical	results	to	15	

the	REML	models	used	in	the	main	data	analyses.	Namely,	the	overall	effect	was	small	and	16	

statistically	significant	(Hg[overall	mean]	=	0.206,	95%	CI	=	0.041	to	0.383;	I2total	=	76.8%;	Table	S26).	17	

In	the	Bayesian	multivariate	meta-regression,	none	of	the	moderators	significantly	influenced	18	

judgement	bias	test	outcomes,	as	in	the	equivalent	log-likelihood	model.	19	

Finally,	we	ran	meta-analytic	models	on	four	data	subsets,	representing	different	ways	of	20	

looking	at	the	results	from	response	curves	with	multiple	cues:	i)	including	only	data	from	21	

ambiguous	cues	(81	NP,	108	MID,	and	80	NN	effect	sizes	for	cue	locations	included	in	this	data	22	

subset),	ii)	including	only	data	from	mid-point	ambiguous	cues	(108	MID	effect	sizes	included),	23	

iii)	including	only	data	for	maximum	response,	in	absolute	terms	(26	P,	13	NP,	31	MID,	22	NN,	24	
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and	16	N	effect	sizes	included),	iv)	including	only	data	for	maximum	response	in	the	overall	1	

direction	of	response	(19	P,	12	NP,	34	MID,	28	NN,	and	15	N	effect	sizes	included).	All	these	data	2	

subsets	tended	to	have	larger	overall	effect	size	estimates,	than	in	the	full	data	set	meta-analyses	3	

(Figure	4,	Tables	S4	and	S5).	Univariate	and	multivariate	meta-regression	models	usually	4	

showed	similar	patterns	to	these	observed	in	the	analyses	on	the	full	dataset	(Tables	S6-S23).	5	

 	6	



25	

	

	 25	

Discussion 1	

Our	meta-analysis	revealed	that	non-pharmacological	affect	manipulations	generally	influenced	2	

judgement	bias	in	the	predicted	direction	(i.e.	manipulations	assumed	to	generate	a	relatively	3	

positive	state	were	likely	to	generate	an	‘optimistic’	response	to	cues).	However,	effects	were	4	

usually	small	to	large	(average	Hedges’	g	of	0.2	–	0.6),	and	they	were	highly	variable,	with	total	5	

observed	heterogeneity	(I2)	over	75%.	The	moderators	that	potentially	influenced	magnitude	of	6	

effects	included	cue	type,	type	of	task	used	in	judgement	bias	trials,	reinforcement	combination	7	

used	for	training	positive	and	negative	cues,	cue	ambiguity	level,	and	sex	of	tested	animals.	8	

However,	small	R2	values	(1.4	to	4.4%)	indicated	that	these	moderators	explained	only	a	small	9	

proportion	of	variance.		We	discuss	these	findings	in	detail	below.	10	

Validity	and	efficacy	of	judgement	bias	tests	11	

Our	main	finding	generally	supports	judgement	bias	tests	as	a	valid	approach	to	measure	affect	12	

in	non-human	animals.	This	is	in	line	with	conclusions	of	a	narrative	cross-species	review	13	

(Bethell,	2015)	and	a	recent	systematic	review	of	20	rodent	studies	on	judgement	bias	(Nguyen,	14	

et	al.	2020).	However,	the	latter	considered	both	pharmacological	and	non-pharmacological	15	

manipulations	and	only	conducted	a	qualitative	synthesis	of	their	rodent	data	set.	Effects	of	16	

pharmacological	manipulations	across	species	were	recently	quantitatively	synthesised	by	our	17	

team	(Neville,	et	al.	2020)	and	our	current	work	provides	the	first	quantification	of	non-18	

pharmacological	manipulations	across	different	taxa.	19	

Our	quantitative	results	show	that	the	observed	behavioural	effect	of	the	affect	manipulations	20	

investigated	is,	on	average,	small	(Hedges’	g	of	0.2)	and	highly	heterogeneous.	However,	we	base	21	

this	conclusion	on	the	analyses	of	the	full	dataset,	which	included	mean	latency	and/or	22	

proportion	data	from	all	cues	used	in	the	judgement	bias	tests.	Thus,	we	likely	underestimated	23	

the	overall	effect	size,	due	to	the	inclusion	of	positive	and	negative	training	(unambiguous)	cues,	24	
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in	the	analysis.	Weak	discrimination	performance	for	the	training	cues	could	decrease	the	1	

likelihood	of	detecting	a	judgement	bias	(Roelofs	et	al.	2016),	warranting	further	investigations	2	

of	how	selected	learning	criteria,	or	actual	discrimination	levels,	affect	the	sensitivity	of	3	

judgement	bias	tests.		It	is	also	possible	that	the	affect	manipulations	used	in	many	of	the	4	

included	studies	were	rather	”mild”	–	not	many	authors	used	severe	stressors	or	pain	stimuli,	5	

either	for	welfare	reasons	and/or	because	pain	stimuli	might	exert	a	general	suppressive	effect	6	

on	responses	to	cues.	It	is	thus	possible	that	some	manipulations	failed	to	influence	animal	7	

affect.	8	

As	noted	earlier,	there	are	theoretical	and	empirical	reasons	for	why	judgement	biases	may	not	9	

occur	at	training	cues,	and	also	for	why	they	may	not	occur	at	all	ambiguous	cues.	When	we	10	

restricted	analysis	to	the	cue	with	the	largest	absolute	effect	size	in	the	direction	of	the	overall	11	

mean	effect	size	from	each	response	curve	–	the	estimated	overall	effect	sizes	were	between	12	

moderate	to	large	(Hedges’	g	of	0.6).	The	overall	effect	sizes	were	moderate	when	we	used	the	13	

other	three	data	subsets:	(i)	ambiguous	cues	only;	(ii)	middle	cue	only;	(iii)	cue	with	the	largest	14	

absolute	effect	size.	Yet,	analyses	of	the	full	dataset	are	most	powerful,	given	that	they	include	15	

data	points	representing	the	whole	response	curve	(Gygax,	2014).	16	

The	high	data	heterogeneity	is	congruent	with	the	levels	observed	in	most	ecological	and	17	

evolutionary	meta-analyses	(70	–	95%;	Senior	et	al.,	2016).	High	heterogeneity	(>	75%)	of	the	18	

effect	sizes	in	our	data	set	indicates	variability	in	the	influences	of	non-pharmacological	19	

manipulations	of	affective	state	on	judgement	bias	in	animals,	but	is	perhaps	not	surprising	20	

given	how	diverse	the	studies	were	in	terms	of,	for	example,	species	used	(22	diverse	species;	21	

Figure	5),	task	variants,	affect	manipulations,	and	other	methodological	specifics.	Accordingly,	22	

the	lack	of	phylogenetic	effects	in	our	data	set	is	consistent	with	the	observation	that	meta-23	

analyses	on	phylogenetically	diverse	sets	of	species	are	unlikely	to	show	a	strong	phylogenetic	24	

signal	(Chamberlain	et	al.,	2012).		25	
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Key	moderators	of	judgement	bias	tests	1	

We	also	revealed	five	important	moderators	of	responses	in	the	judgement	bias	task.	Four	are	2	

related	to	methodology	and	one	is	a	biological	factor.	First,	active	choice	go/go	tasks	tended	to	3	

yield	larger	effects	than	go/no-go	tasks.	It	is	possible	that	the	former	are	more	cognitively	4	

challenging	given	that	the	response	needs	to	be	deployed	to	different	stimuli.	Such	a	potential	5	

cognitive	load	might	render	go/go	tasks	less	susceptible	to	habitual	responding	and	thereby	6	

more	sensitive	to	affect	manipulations.	Furthermore,	go/no-go	tasks	are	likely	to	be	vulnerable	7	

to	the	influence	of	Pavlovian	action	predispositions	(e.g.	go-for-reward;	no-go	to	avoid	8	

punishment;	Guitart-Masip	et	al.,	2014;	Jones	et	al.,	2017),	that	could	inadvertently	bias	9	

responding	(Mendl	&	Paul,	2020)	and	obscure	affect	manipulation	effects.	Additionally,	subjects	10	

may	sometimes	perform	no-go	responses	for	reasons	unrelated	to	affect	manipulations	(e.g.	11	

failing	to	detect	or	attend	to	a	cue;	Bethell,	2015;	Jones	et	al.,	2018),	making	these	tests	less	12	

dependable.	Still,	we	observed	that	go/no-go	tasks	are	more	commonly	used	in	judgement	bias	13	

studies	(in	57	vs.	14	studies;	Figure	3),	probably	because	they	are	easier	and	quicker	to	train.	14	

Second,	Reward-Reward	tasks	usually	generated	larger	effect	sizes	than	Reward-Null	tasks.	Part	15	

of	the	reason	for	this	may	be	that	Reward-Reward	tasks	usually	involve	a	go/go	active	choice	16	

response	and	this	itself	predisposes	stronger	effects,	as	just	discussed.	The	most	frequently	used	17	

Reward-Punishment	tasks	had	the	largest	observed	average	effect	size.	It	is	possible	that	the	18	

Reward-Punishment	design,	providing	a	more	affectively-laden	task	(i.e.	decision	outcomes	can	19	

range	from	a	desired	reward	to	an	aversive	punisher),	is	more	sensitive	to	manipulations	of	20	

affective	state	(see	Mendl	et	al.	2009).	21	

Third,	the	use	of	auditory	and	tactile	cues	tended	to	reveal	the	largest	effects	compared	to	when	22	

spatial,	visual	and	olfactory	cues	were	employed.	There	may	be	a	number	of	reasons	for	this,	23	

some	of	which	may	be	linked	to	differences	in	species	biology	(Bethell,	2015).	For	example,	24	

whilst	people	are	strongly	visually	focused	when	information	gathering,	many	other	animal	25	



28	

	

	 28	

species	are	not,	and	may	not	readily	exhibit	human-like	processing	of	visual	cues.	Conversely,	1	

olfactory	sensitivity	in	humans	is	poor,	relative	to	many	other	species,	and	this	may	impair	the	2	

ability	of	researchers	to	design	or	use	meaningful	cues	in	this	sensory	dimension.	It	is	also	3	

possible	that	cue	modality	and	presentation	method	can	influence	the	uncertainty	of	4	

information	provided	by	‘ambiguous’	cues.	For	example,	there	may	be	greater	uncertainty	about	5	

the	information	provided	by	a	single	tone	intermediate	between	two	training	tones,	than	by	a	6	

spatial	location	situated	between	two	training	locations.	Such	differences	in	uncertainty	may	7	

have	knock-on	effects	on	animal’s	decisions.	8	

Fourth,	cue	ambiguity	level	(P,	NP,	MID,	NN,	N)	was	important.	We	found	predicted	judgement	9	

bias	only	at	ambiguous	cues	in	the	full	dataset	analysis,	and	not	at	positive	or	negative	training	10	

cues,	on	average.	Still,	some	individual	studies	in	the	dataset	yielded	large	effects	at	positive	or	11	

negative	training	cues	(e.g.	Deakin,	2018;	Horváth	et	al.,	2016;	Zidar	et	al.,	2018).	In	line	with	12	

this,	Neville	et	al.	(2020)	noted	that	pharmacological	manipulations	of	affect	altered	judgement	13	

bias	principally	at	ambiguous	cues,	but	also	at	the	negative	training	cue.	Large	effects	at	non-14	

ambiguous	cues	could	occur	in	at	least	two	ways.	First,	if	affect	manipulations	altered	valuation	15	

of	decision	outcomes	(e.g.	by	decreasing	food	valuation	and	hence	generating	a	weaker	response	16	

to	the	positive	cue),	the	manipulations	could	change	propensities	to	perform	specific	responses	17	

(e.g.	go	vs.	no-go)	and	interfere	with	memory	of	training	cue-outcome	associations.	Second,	large	18	

effects	at	non-ambiguous	cues	might	occur	if	training	was	brief	or	ineffective	such	that	there	was	19	

considerable	ambiguity	about	the	training	cue-outcome	association	during	testing	(see	Mendl	et	20	

al.,	2009;	Bateson	et	al.	2011;	Bethell,	2015;	Mendl	and	Paul,	2020).	As	mentioned	earlier,	21	

further	research	of	the	effects	of	variation	in	discrimination	training	criteria	on	test	performance	22	

would	shed	light	on	this	issue.	23	

Finally,	in	all	analyses,	larger	predicted	effect	sizes	tended	to	be	reported	for	male	subjects	than	24	

for	females	or	mixed	sex	groups.	This	pattern	could	be	due	to	existence	of	sex	differences	in	25	
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neurobiology	of	learning	and	memory	(Jonasson	et	al.,	2005)	or	sex	differences	in	stress	effects	1	

on	memory,	with	different	patterns	for	acute	and	prolonged	stress	(Andreano	and	Cahill,	2009).	2	

Effects	of	enrichment	may	also	be	sex-specific	(Lin	et	al.,	2011;	ter	Horst	et	al.,	2012).	3	

Potential	limitations	and	recommendations	4	

The	results	of	our	meta-analysis	come	with	six	caveats,	which	we	list	here	alongside	5	

recommendations	for	future	studies	of	judgement	bias.	First,	captive	and	domesticated	6	

mammals	dominate	the	dataset	making	our	conclusions	particularly	relevant	to	research	on	7	

welfare	of	such	animals.	Conversely,	the	analyses	are	less	informative	for	wild	animals,	8	

vertebrates	other	than	mammals,	and	invertebrates.	Indeed,	Bethell’s	narrative	review	(2015)	9	

highlighted	biased	taxonomic	representation	in	empirical	evidence.	Thus,	future	work	in	this	10	

area	could	aim	to	increase	the	representation	of	non-domesticated	species,	such	as	those	kept	in	11	

zoos	and	for	research	(where	animal	welfare	is	of	concern;	Baumans,	2005;	Bethell,	2015;	12	

Wolfensohn	et	al.,	2018)	and	invertebrates	(where	welfare	is	an	emerging	issue;	Drinkwater	et	13	

al.,	2019).	14	

Second,	we	had	limited	statistical	power	to	detect	clear	differences	between	the	levels	of	a	15	

number	of	the	tested	moderators.	Also,	the	small	sample	sizes	at	some	levels	of	the	considered	16	

moderators	might	have	introduced	some	spurious	findings.	For	example,	relatively	few	studies	17	

used	tactile	or	olfactory	cues	(e.g.	Barker	et	al.,	2017;	Novak	et	al.,	2016),	and	very	few	used	18	

reinforced	ambiguous	cues	during	tests	(e.g.	Bailoo	et	al.,	2018;	Keen	et	al.,	2014).	To	address	19	

this	limitation,	future	studies	of	commonly	used	laboratory	and	domesticated	species	should	20	

systematically	investigate	the	role	of	different	cue	types.	Researchers	should	also	attempt	to	21	

make	cue	types	relevant	for	a	given	species,	and	vary	the	perceptual	closeness	of	training	cues	22	

and	hence	the	difficulty	of	the	task	and	uncertainty	of	ambiguous	cues.	23	
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Third,	for	some	moderators,	especially	those	related	to	study	quality,	poor	reporting	might	have	1	

obscured	statistical	relationships.	Very	few	of	the	included	studies	explicitly	stated	that	they	2	

used	automation	or	blinding,	and	we	had	to	assume	that	the	remaining	studies	did	not	use	these.	3	

Thus,	automation	of	measurements	could	be	used	more	often,	and/or	their	use	should	be	clearly	4	

reported.	Notably,	Nguyen	et	al.	(2020)	in	their	systematic	review	of	20	rodent	studies	5	

highlighted	limited	information	on	the	details	of	experimental	procedures	and	analyses	in	65%	6	

of	assessed	studies,	undermining	confidence	in	the	findings.	Nevertheless,	we	found	no	7	

statistical	evidence	for	publication	bias	in	our	meta-analytic	data	set.	The	lack	of	publication	bias	8	

is	potentially	due	to	our	full	data	set	containing	data	points	across	the	whole	response	curve,	9	

which	are	usually	a	mixture	of	small	and	large	positive	effects	(in	the	expected	direction)	and	10	

even	some	negative	ones	(not	in	the	expected	direction).	Also	related	to	reporting,	mixed-sex	11	

groups	of	animals	comprised	almost	one-third	of	the	data	in	our	meta-analysis,	potentially	12	

obscuring	sex-specific	effects.	Providing	sex-disaggregated	data	in	research	is	absolutely	13	

essential	for	improving	our	understanding	of	animal	behaviour	and	cognition	(Shansky	and	14	

Woolley,	2016;	Palanza	and	Parmigiani,	2017).	15	

Fourth,	we	were	also	not	able	to	include	strength	of	manipulation	in	our	analyses	(there	is	no	16	

common	scale	for	the	diverse	types	of	manipulations	included	in	our	data	set).	To	overcome	this	17	

problem,	in	future	studies	it	would	be	valuable	to	test	and	synthesize	relationships	between	18	

measures	of	cognitive	bias	and	different	biomarkers	of	stress,	such	as	cortisol,	adrenaline,	alpha-19	

amylase,	testosterone,	leucocyte	profiles	(Keay	et	al.,	2006;	Davis	et	al.,	2008).	20	

Fifth,	we	also	noted	some	outliers	in	the	dataset,	which	usually	came	from	studies	with	severe	21	

manipulations	and/or	small	sample	sizes.	We,	however,	conducted	extensive	sensitivity	analyses	22	

to	test	robustness	of	our	conclusions,	with	the	results	generally	conforming	to	our	predictions	23	

and	being	robust	across	different	statistical	approaches.	Further,	in	individual	empirical	studies	24	

comparing	two	means,	to	achieve	power	of	0.8	at	alpha	of	0.05,	it	is	necessary	to	have	sample	25	
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sizes	of	at	least	50	animals	per	group	for	detecting	moderate	effect	sizes	(Hedges’	g	=	0.4).	Best-1	

case	scenario,	when	effect	is	large	(Hedges’	g	=	0.8),	would	require	only	13	animals	per	group	to	2	

achieve	the	same	power.	Conducting	power	analyses	to	determine	suitable	sample	sizes	for	3	

planned	experiments	can	help	reducing	animal	use	and	also	prevent	wasting	animals	on	4	

underpowered	studies.	5	

Finally,	the	largest	responses	often	do	not	appear	at	the	most	intermediate/ambiguous	cue.	6	

Because	of	this,	we	suggest	that	multiple	ambiguous	(probe)	cues	(at	least	3)	are	needed	for	7	

robust	and	comprehensive	judgement	bias	tests	although	25%	of	response	curves	in	our	data	set	8	

included	only	one	ambiguous	cue.		9	

Taken	together,	while	it	is	unlikely	that	a	single	“perfect”	version	of	a	judgement	bias	test	exists,	10	

our	analyses	suggest	that	the	most	sensitive	setup	would	comprise	a	go/go	active	choice	task	11	

employing	a	reward-punishment	or	reward-reward	reinforcement	contingency,	and	using	at	12	

least	three	ambiguous	cues	of	a	sensory	modality	appropriate	to	the	species	of	interest.	Such	13	

tasks	may	require	more	lengthy	training	than	conventional	go/no-go	tasks,	but	promising	new	14	

go/no-go	variants	that	achieve	many	of	the	benefits	of	go/go	tasks	by	incorporating	active	trial	15	

initiation	are	being	developed	and	can	be	trained	relatively	rapidly	(Hintze	et	al.	2018;	Jones	et	16	

al.	2018).	For	more	detailed	guidance	on	how	tests	should	be	designed	and	conducted,	and	what	17	

types	of	adjustments	may	be	needed	for	different	organisms,	we	refer	readers	to	the	works	of	18	

Bethell	(2015)	and	Roelofs	et	al.	(2016).	19	

Conclusions 20	

In	summary,	judgement	bias	tests	are	a	valid	method	of	measuring	animal	affective	state.	21	

However,	high	heterogeneity	among	studies,	which	can	be	only	partially	explained	by	simple	22	

influences	of	considered	moderators,	warrants	care	in	designing	and	interpreting	judgement	23	
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bias	manipulations	and	tests.	We	call	for	better	reporting	of	experimental	designs,	especially	1	

blinding	and	automation,	disaggregation	of	data	by	sex	of	subjects,	and	other	experimental	2	

details	that	might	influence	study	results.	Also,	there	is	a	need	for	more	empirical	studies	that	3	

compare	different	experimental	designs	and	setups,	including	using	different	types	of	tasks,	4	

cues,	and	cue	ambiguity	levels.	5	
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Figure captions 1	

Figure 1 2	

Conceptual	diagram	presenting	the	main	elements	of	a	typical	judgement	bias	study.	a)	The	3	

basic	task	is	trained	using	either	a	go/no-go,	or	active	choice	(go/go)	design.	b)	Manipulations	of	4	

affective	state	usually,	but	not	always,	occur	after	training	of	the	task	and	may	be	acute	or	5	

longer-term.	c)	Tests	involve	the	standard	training	protocol	plus	the	addition	of	occasionally	6	

presented	ambiguous	cues	whose	properties	are	usually	intermediate	between	the	trained	7	

positive	and	negative	cues	(NP	=	near	positive	cue,	MID	=	intermediate	between	positive	and	8	

negative	cue,	NN	=	near	negative	cue).	d)	‘Optimistic’	and	‘pessimistic’	responding	to	the	cues	is	9	

inferred	from	the	proportion	of	positive	responses	and/or	the	latency	to	make	positive	10	

responses,	which	are	inversely	related.	11	

Figure 2 12	

PRISMA	flow	diagram.	Articles	identified	and	number	of	articles	included	and	excluded	during	13	

each	screening	stage.	14	

Figure 3 15	

Main	characteristics	of	the	included	studies.	Blue	bars	represent	numbers	of	studies	represented	16	

in	each	level	of	categorical	variables.	Between	one	and	30	effect	sizes	were	extracted	per	study	17	

and	the	distribution	of	effect	sizes	generally	follows	the	pattern	of	the	presented	data	18	

aggregated	to	the	study	level	(e.g.	some	studies	reported	data	for	only	one	sex,	others	reported	19	

data	for	both	sexes	together,	and	3	studies	that	included	both	sexes	reported	data	for	females	20	

and	males	separately,	shown	here	as	‘female	and	male	sep.’).	Numbers	do	not	add	up	to	71	for	21	

some	of	the	variables	due	to	multiple	experiments	being	present	within	some	studies,	or	22	

complex	experimental	designs	being	used.	23	

Figure 4 24	

Forest-like	(orchard)	plots	showing	effect	size	(Hedges’	g)	estimates	from	meta-analyses	on:		a)	25	

whole	data	set	(all	cues	reported	for	judgement	bias	tests),	and	b-e)	four	subsets	of	this	data	set,	26	

representing	different	ways	of	interpreting	the	judgement	bias	test	results.	Positive	effect	sizes	27	
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indicate	a	positive	effect	of	affect	manipulation	treatments	on	judgement	bias	in	a	relatively	1	

better	condition	compared	to	a	relatively	worse	condition,	i.e.	affect	manipulations	working	in	2	

the	expected	direction.	The	effects	are	statistically	significant	when	the	thick	horizontal	error	3	

bars	(95%	confidence	intervals)	do	not	cross	zero.	Thin	horizontal	whiskers	indicate	prediction	4	

intervals.	k	is	number	of	effect	sizes.	Dots	represent	individual	effect	sizes	scaled	proportionally	5	

to	their	precision.	6	

Figure 5 7	

Forest	plot	showing	mean	effect	size	(Hedges’	g)	estimates	from	meta-regression	analysis	using	8	

species	identity	as	a	moderator.	Positive	effect	sizes	indicate	a	positive	effect	of	affect	9	

manipulation	treatments	on	judgment	bias	in	a	relatively	better	condition	compared	to	a	10	

relatively	worse	condition,	i.e.	affect	manipulations	working	in	the	expected	direction.	The	11	

effects	are	statistically	significant	when	the	horizontal	error	bars	(95%	confidence	intervals)	do	12	

not	cross	zero.	k	is	number	of	effect	sizes,	K	is	number	of	studies.	13	

Figure 6 14	

Forest	plots	showing	effect	size	(Hedges’	g)	estimates	from	the	univariate	meta-regression	15	

analyses	(one	moderator	at	a	time)	with	potentially	influential	moderators.	Effect	sizes	with	16	

positive	values	indicate	a	positive	effect	of	affect	manipulations	on	judgement	bias	in	a	relatively	17	

better	condition	compared	to	a	relatively	worse	condition,	i.e.	affect	manipulation	treatment	18	

working	in	the	expected	direction.	The	mean	effects	(black	unfilled	circles)	for	each	group	of	19	

individual	effect	sizes	(grey	filled	circles)	are	statistically	different	from	zero	when	their	20	

horizontal	error	bars	(95%	confidence	intervals)	do	not	cross	zero.	Thin	horizontal	whiskers	21	

indicate	prediction	intervals.	k	is	number	of	effect	sizes.	Dots	represent	individual	effect	sizes	22	

scaled	proportionally	to	their	precision.	23	


