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Abstract
Several recent studies detected fine-scale genetic structure in human populations. Hence, groups conventionally treated as
single populations harbour significant variation in terms of allele frequencies and patterns of haplotype sharing. It has been
shown that these findings should be considered when performing studies of genetic associations and natural selection,
especially when dealing with polygenic phenotypes. However, there is little understanding of the practical effects of such
genetic structure on demography reconstructions and selection scans when focusing on recent population history. Here we
tested the impact of population structure on such inferences using high-coverage (~30×) genome sequences of 2305
Estonians. We show that different regions of Estonia differ in both effective population size dynamics and signatures of
natural selection. By analyzing identity-by-descent segments we also reveal that some Estonian regions exhibit evidence of a
bottleneck 10–15 generations ago reflecting sequential episodes of wars, plague and famine, although this signal is virtually
undetected when treating Estonia as a single population. Besides that, we provide a framework for relating effective
population size estimated from genetic data to actual census size and validate it on the Estonian population. This approach
may be widely used both to cross-check estimates based on historical sources as well as to get insight into times and/or
regions with no other information available. Our results suggest that the history of human populations within the last few
millennia can be highly region specific and cannot be properly studied without taking local genetic structure into account.

Introduction

With more and more datasets including genetic data from
hundreds and thousands individuals now available it
becomes apparent that most if not all human populations
exhibit at least some degree of geography-driven genetic
structure even at small scales (for some examples see
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[1–5]). Such structure is worthy of attention first of all
because it may have confounding effects on genetic infer-
ence: a number of studies have highlighted the fact that not
accounting for genetic structure even in datasets represent-
ing one nation or ethnic group may give false-positive
results when studying genetic associations and natural
selection signals, especially in the case of polygenic phe-
notypes [6–9]. However, our understanding of the effects of
structure on population genetic analysis is still incomplete.
One of the questions requiring further investigations is
whether local groups within a country may actually differ in
their evolutionary histories, especially in recent times, and
thus if analyzing such groups separately may provide
additional insights into the population’s past.

In addressing this question we make use of high-
coverage whole genome sequences from more than 2300
Estonian Biobank donors generated as a part of a study by
Kals et al. [10]. Previous studies [2, 11, 12] have shown
using a smaller sample that the Estonian population is
genetically structured despite the small area it occupies and
the absence of significant physical barriers. Here by
exploiting a bigger dataset we study the fine-scale genetic
structure in Estonia and assess the local differences in recent
demographic history and action of natural selection between
genetically defined Estonian subgroups.

IBD segments-based clustering is
informative about fine genetic structure in
Estonia

To get a first glance at the Estonian population structure we
performed principal component analysis (PCA) both using
only the Estonian samples (Fig. 1a) and by projecting
Estonian samples onto PC space defined by samples
representing various European populations (Fig. 1b). The
PCA shows the presence of a genetic gradient within
Estonia with the main differentiation observed between
South-East and North-East of the country in agreement with
previous studies [2, 11, 12]. This differentiation reflects a
broader-scale South-North gradient in Eastern Europe
(Fig. 1b) with Estonians from the North-East being closer to
Finns while South-East Estonians projected closer to Lat-
vians and Lithuanians.

Next, to zoom-in into the fine-scale structure in Estonia
we used a subset of 468 individuals sampled in rural areas at
the age of 50 or more, as this cohort is expected to be the
least affected by recent migrations. We refer to this subset
as “R50+” throughout the text (Methods). We used total
genetic length of shared IBD segments detected with IBD-
seq [13] as input for the fineSTRUCTURE (FS) [14] clus-
tering algorithm (Methods) to group the samples into
genetic clusters (Fig. 2, Supplementary text 2.3). Such an

approach as opposed to the classical FS based on CHRO-
MOPAINTER (CP) chunk count matrix was motivated by
the following two ideas. First, IBD segments are expected
to be on average longer and younger and thus have a more
localized geographic distribution. This, combined with
using total length instead of count and so giving more
weight to the longer segments (see a similar approach being
applied by Bycroft et al. [3]) allows to focus on a rather
recent genetic signal when performing the clustering. See
Supplementary text 2. Second, as one of the main goals of
the clustering was to test for the differences in recent
effective population size dynamics as inferred using IBDNe
[15] clustering based on IBD-sharing patterns is a natural
choice.

IBD-based analysis (Fig. 2) reinforces previous obser-
vations [2, 11, 12] and our PCA results, namely the strong
differentiation between South-East and the rest of Estonia,
and provides a deeper insight into Estonian genetic struc-
ture, showing that most of the revealed clusters are highly
geographically localized. The sharing matrix provides
additional details. First, off-diagonal sharing also reflects
geography with clusters from the same area tending to have
higher inter-cluster sharing. Second, intra-cluster sharing
substantially varies among clusters, implying differences in
effective population size (Ne), which is also supported by
the results of homozygosity-by-descent analysis (Fig. S2.7).

Genetic differences between different
Estonian regions are driven by isolation
within the country and admixture with
neighbouring groups

In order to understand how gene flow barriers and/or dif-
ferences in local population density shaped the IBD-sharing
pattern in the R50+ dataset, we inferred migration surfaces
using MAPS [16]. We used two windows of IBD segments
length (in centimorgans (cM)), 2–6 cM and more than 6 cM,
which under a simplistic model of infinite population size
have mean segment ages of 50 and 12.5 generations,
respectively [16]. The results for the two length bins gen-
erally agree with each other, suggesting higher levels of
gene flow in the North along with a barrier separating
South-East Estonia (Supplementary text 2.4). A second
barrier, separating the islands, especially Hiiumaa, from the
mainland is also evident. This observation suggests that the
population ancestral to modern South-East Estonians was
partially isolated from the rest of the country at least since
50 generations ago. Interestingly, this genetic differentiation
is consistent with linguistic data suggesting that the deepest
split within the Finnic languages separates Southern Esto-
nian from the other branches of the phylum that includes
Northern Estonian [17].

V. Pankratov et al.



As local differences in admixture with external
populations may have played a role in creating the
observed genetic structure within Estonia we looked at
patterns of haplotype sharing between R50+ Estonians

and different non-Estonian populations (Table S3.1).
Here we used a conventional CP/FS/GLOBETROTTER
(GT) approach [18] (Methods). Figure 3 shows the
results of non-negative least squares (NNLS) [1],

Fig. 2 Genetic clustering of R50+ samples based on pairwise
sharing of IBD segments. a Hierarchical relationships (tree) and the
average total length of IBD segments shared between cluster members
(heatmap) as inferred by fineSTRUCTURE. The length of the tree
branches does not reflect any relationship between the clusters. Clus-
ters are named to reflect their geographic distribution (E East; NW
North-West; NE North-East; SW South-West; SE South-East). Num-
bers in grey next to cluster names refer to the sample size of each

cluster. b Geographic distribution of inferred genetic clusters. Each
symbol on the Estonian map corresponds to one individual from the
R50+ subset. See Section 2.3 of the Supplementary text for details.
This map was created in R (https://www.R-project.org/) [38] using an
shp object of the administrative and settlement units provided by the
Estonian Land Board, 2018.11.01 (https://geoportaal.maaamet.ee/eng/
Spatial-Data/Administrative-and-Settlement-Division-p312.html). See
“Methods” for more details.

Fig. 1 Principal components analysis of 2305 Estonian samples.
a Principle component analysis of the Estonian dataset. The first two PCs
are shown. Individual dots are coloured according to the donor’s place of
birth. Estonian counties were divided into four groups (SE South-East;
SW South-West; NW North-West; NE North-East) as shown in the
map. This map was created in R (https://www.R-project.org/) [16] using
an shp object of the administrative and settlement units provided by
the Estonian Land Board, 2018.11.01 (https://geoportaal.maaamet.
ee/eng/Spatial-Data/Administrative-and-Settlement-Division-p312.html).
See “Methods” for more details. The individuals with no information
available regarding their place of birth are shown in grey. b Projecting

Estonian samples onto PC space defined by European samples (“Meth-
ods”, Supplementary text section 1). Red crosses correspond to medians
of European populations while empty circles represent individual sam-
ples. Populations are labelled as follows: Ita Italians; Spa Spaniards; Fre
French; Ger Germans; Hun Hungarians; Eng British; Swe Swedes; Ukr
Ukrainians; Bel Belarusians; RuCS Russians from Central and Southern
Russia; Pol Poles; Lit Lithuanians; Lat Latvians; Mor Mordvins; RuN
Russians from Northern Russia, Estonian samples are shown in colour
reflecting their position along PC1 in (a). In both panels percentages in
the axis labels show the proportion of the total variance explained by the
corresponding PC.
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modelling each individual from the R50+ dataset as a
result of admixture between non-Estonian groups
revealed by CP/FS (Fig. 3, Supplementary text 3.1 and
Table S3.4).

Admixture signals in Fig. 3 show clear geographic pat-
terns that match known historical evidence of external
migration to Estonia, including Swedish settlements on the
western coast and islands in fourteenth to fifteenth centuries
and Finnish immigration to North-East Estonia in the
seventeenth century [19]. In the latter case the genetic
gradient in Estonia is consistent with the broader European
trend (Fig. 1b) and thus higher affinity of North-East
Estonians to Finns is likely to have a more complex origin.
Comparing NNLS results between clusters from Fig. 2 we
found that some of them, such as NE_1 and NE_2, stand out
in terms of sharing with external groups but most of the
clusters have overlapping distributions of NNLS scores
(Supplementary text 3.1). A similar pattern is observed in
IBD-sharing (Supplementary text 3.2). These results sug-
gest that admixture with non-Estonian groups can only
partially explain the fine genetic structure observed in
Fig. 2.

Taking fine-scale genetic structure into
account sheds light on regional differences
in recent effective population size dynamics
in Estonia

We show that, despite the small territory it occupies, the
Estonian population is structured (Figs. 1 and 2, Tables S2.3
and S2.4). Next, we sought to explore whether there are any
region-specific differences in effective population size
dynamics and action of natural selection. We hence applied
IBDNe, which estimates effective population size (Ne) in
past generations [15], and singleton density score (SDS), a
tool for detecting signatures of natural selection [20], as
both methods give insight into very recent time periods,
when regional differences in population history may be
anticipated. For both analyses, we used the entire dataset of
2305 samples, for which clusters were inferred using the
same approach as for the R50+ subset. This resulted in 89
and 90 clusters in 2 independent FS runs which were then
grouped into higher-order clusters based on the tree topol-
ogy to increase sample size per cluster with the clustering
resembling that from Fig. 2 (Fig. 4a, b).

Fig. 3 Relative proportions of “Baltic”, “Slavic”, Finnish and
Swedish ancestry in the R50+ subset. Modelled relative ancestral
proportions of «Balts» (Latvians and Lithuanians), «Slavs» (Belar-
usians, Poles, Russians, Ukrainians), Finns, and Swedes attributed by
applying non-negative least-squares approach (NNLS) to CHROMO-
PAINTER/fineSTRUCTURE (CP/FS) results are shown. See Sup-
plementary text section 3.1 for details. The colour of each parish
reflects mean values of samples coming from this parish. Parishes with

no samples in the R50+ dataset are filled with grey. Names in rec-
tangles show directions to neighbouring countries. These maps were
created in R (https://www.R-project.org/) [38] using an shp object of
the administrative and settlement units provided by the Estonian Land
Board, 2018.11.01 (https://geoportaal.maaamet.ee/eng/Spatial-Data/
Administrative-and-Settlement-Division-p312.html). See “Methods”
for more details.
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We ran IBDNe [15] on the four most distinct clusters from
Fig. 4a, representing four regions of Estonia: North-West,
North-East, South-West and South-East and observed rather
distinct Ne trajectories (Fig. 4c, Supplementary text 4.2). In
particular, all clusters (except for eSE_5) show evidence of an
effective population size decline between 10 and 20 genera-
tions ago, which is not detected when the entire dataset is
analyzed (Fig. 4c). Overall, these results suggest that popu-
lation dynamics are region specific and hence population-
wide results may depend on the sampling scheme.

Based on MAPS results, we propose that most of the
differences in Ne dynamics between Estonian

subpopulations may be attributed to different patterns of
gene flow and external admixture. South-West and North-
West Estonia are characterized by an overall high level of
gene flow (Supplementary text 2.4), leading to similar Ne
trajectories that deviate only during the last 20 generations
(Fig. 4c, Supplementary text 4.2). This also brings about the
idea that the strong bottleneck in South-West could con-
tribute to the observed population structure, in particular
leading to differentiation of South-West and its subgroups.
On the other hand, South-East Estonia has the most distinct
Ne trajectory according to Fig. 4c, having a substantially
lower long-term Ne compared to other regions. Together

Fig. 4 Genetic clusters of the entire Estonian dataset (2305 sam-
ples) and their recent Ne dynamics. a Clustering of the entire dataset
obtained the same way as in Fig. 2. The heatmap shows the average
total length of IBD segments shared between clusters. The length of
the tree branches does not reflect any relationship between the clusters.
Numbers in grey next to cluster names show the number of samples in
each cluster. b Geography of inferred clusters. Each dot within the
contour of Estonia corresponds to 1 individual, while waffle plots
show samples for 15 major Estonian towns with each dot corre-
sponding to 5 individuals. This map was created in R (https://www.R-
project.org/) [38] using an shp object of the administrative and set-
tlement units provided by the Estonian Land Board, 2018.11.01
(https://geoportaal.maaamet.ee/eng/Spatial-Data/Administrative-and-
Settlement-Division-p312.html). See “Methods” for more details.
c Effective population size estimates obtained by applying IBDNe [15]
to the entire dataset and to four clusters from (a) eNW_1, eNE, eSW_2

and eSE_5. d Comparison of historical and genetic estimates of
Estonian population size. Historical estimates combine census data and
reconstructions based on written or archaeological sources (Fig. S4.6).
Genetic estimates are derived from IBDNe results, for which
Est1527 subset was used (Fig. S4.9) and refer to the broader popula-
tion that contributed over time to the genomes of contemporary
Estonians. When converting time points of the IBDNe curve into actual
years we used the same logic as in the original publication [15] and set
generation 0 to correspond to the year when individuals in our sample
had a mean age of 25 (1988). Generation time of 29 years was
assumed. For year 1200 the minimum and maximum estimates are
provided. In (c) shaded areas show 95% confidence intervals. In (d)
shaded area corresponds to the range between the minimum and
maximum genetic estimates of Nc (Methods), while the light blue line
shows the geometric mean between the two. In both panels on the y
axis, “k” stands for “thousands” and “M” for “millions”.
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with MAPS results (Supplementary text 2.4) this might
suggest a recent expansion of a previously small-size
eSE_5-like population. This, in turn, results in a rather
recent increase in relative proportion of individuals with
eSE_5-like ancestry in the entire Estonian population
affecting the Ne reconstructions for the entire dataset
(Supplementary text 4.2).

Effective population size estimates in
humans can be related to past census
population size

Given our understanding of confounders of the observed
regional Ne patterns, we exploited the fine-grained temporal
resolution enabled by IBDNe to infer changes in actual
census sizes (Nc) of the ancestors of contemporary Esto-
nians, adapting previous theoretical work [21] to empirical
case of human populations (“Methods”, Supplementary
text 4.4). We applied Eq. (3) (Methods) to the Estonian-
wide Ne trajectory inferred using the Est1527 subset, which
excludes clusters that can be considered as outliers in terms
of external admixture and/or Ne trajectory (Supplementary
text 4.4). We then compared the inferred Nc with available
historical estimates (Fig. 4d) showing a remarkable match
between the two with the exception of the last three gen-
erations, for which IBDNe estimates are extrapolated from
preceding time points [15]. However, note that the pro-
nounced fluctuations in Nc reported by historians between
1500 and 1700 are only very roughly approximated by the
Ne-derived curve which, as expected [22], provides only
relatively long-term harmonic average of Ne. Nevertheless,
we suggest that when keeping in mind all the assumptions
implied by the biological notion of Ne, our approach could
be used to convert Ne to human Nc at any time interval for
which historical records are missing, including the ones
provided by pairwise sequential Marcovian coalescence
analysis [23], which are beyond the scope of the
current paper.

Signals of recent action of natural selection
in Estonia show regional differences

All the analyses performed so far speak for South-East
Estonia showing relatively strong genetic differentiation
from the rest of the country and having a partially inde-
pendent demographic history. So we went on to look into
signals of recent action of natural selection with a specific
focus on whether treating South-East Estonia independently
can reveal any additional insights. In order to do so we
applied SDS [20] to the entire dataset of 2305 samples as
well as to two genetically defined subsets, South-East

Estonia (SE, consisting of 1029 samples belonging to
clusters eSE_1–eSE_5 in Fig. 4a) and the remaining
1276 samples from the rest of the country (nonSE)
(“Methods”, Supplementary text 5.1).

First, we inspected the genome-wide distribution of SDS
p values in the three datasets (Fig. 5) for any evidence of
recent selection acting at individual loci. Unlike other stu-
dies that used SDS [20, 24] we do not observe any hits with
p values below 5 × 10–8. We attribute this lack of genome-
wide hits to a shorter time window within which we can
detect selection in our dataset as indicated by lower average
number of singletons, lower recent Ne and higher correlation
between our SDS results and the difference in derived allele
frequency (DAF) between Estonian and the UK dataset
compared to the study by Field et al. (see Supplementary
text 5.3). This property of our dataset reduces our power to
detect selection but it also allows us to get a sense of
remarkably recent selective processes. Despite not detecting
any genome-wide significant hits we observe 33 SNPs in 10
genomic loci with a p values below 1 × 10−5 (Table S5.1).
Out of these loci the ones on chromosomes 4 and 9 are the
most promising targets of recent population-specific selec-
tion as besides low SDS p values they are characterized by
DAF out of the range between the Finnish and the British
datasets (Table S5.1) and evidence of being associated with
expression levels of nearby genes (Table S5.2).

When we compare results for SE and nonSE we see
weak correlation between standardized SDS (sSDS) values
in the two subsets (Fig. S5.3e) with most of the SNPs
having sSDS scores close to 0 which is the neutral expec-
tation. However, there are 61 SNPs in 34 genomic regions
with p values below 1 × 10−5 in 1 of the 2 subsets but not in
the other (Table S5.1). Though many of those SNPs may be
false positives there are five genomic regions that might
represent genuine hits specific to one of the Estonian
regions as the corresponding SNPs are characterized not
only by low p values but also by FST between SE and
nonSE above 0.011 which is the 99.9 percentile of the
genome-wide FST distribution (Table S5.1). One of these
regions lies within an intron of in the GRM1 gene and
includes SNPs rs75386033 and rs79907158 which have a p
value below 1 × 10−8 in SE (see Supplementary text 5.4).
While those SNPs are not eQTLs themselves they lie in a
region which is enriched in SNPs associated with expres-
sion levels of the EPM2A gene (Fig. S5.4, Supplementary
text 5.4). This gene is associated with Lafora disease which
is a form of progressive myoclonus epilepsy [25–27].
Another SNP from this list, rs7114857, lies within the
GRM5 gene which has been shown previously to be a
potential target of natural selection for the pigmentation
phenotype [28]. See Supplementary text 5.4 for details.

Next, we looked for possible signals of polygenic
selection both in the entire dataset as well as in SE and
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nonSE by (1) focusing on SNPs and testing if any GWAS
category was enriched in SNPs with high absolute sSDS
scores and if there was any correlation between the absolute
sSDS and absolute GWAS betas (see Supplementary
text 5.2 for details); (2) focusing on genes we used EnrichR
[29, 30] to see if any functional annotation category was
enriched in genes that harbour SNPs with absolute sSDS
scores [31] above 2.5 and Combined Annotation-Dependent
Depletion (CADD) [31] PHRED scores above 10. Using the
first approach and correcting for linkage between SNPs

resulted in a number of categories being enriched in high
absolute sSDS scores and/or showing correlation between
sSDS values and betas (Supplementary text 5.3 and 5.4).
Such categories largely overlap between the entire dataset
and the nonSE subset and are related to lung or autoimmune
diseases. However, all those results lost statistical sig-
nificance at FDR equal to 0.05 when removing SNPs falling
into the HLA locus (Tables S5.4, S5.5 and S5.6). While the
results in the nonSE subset mostly replicate those obtained
on the entire dataset the SE subset does not show most of

Fig. 5 Singleton density score
selection scan results. Genome-
wide plots of p values
corresponding to standardized
SDS scores for the entire dataset
(a) as well as SE (b) and nonSE
(c) subsets. Conditional
suggestive (blue) and genome-
wide (red) significance lines are
drawn. Gene names are
highlighted for intragenic
variants with –log10 (p) > 5.
Datasets are described in the text
and Supplementary
information SI1:5.1.
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the signals detected in the entire dataset but shows a cor-
relation between sSDS and betas for the “Bone mineral
density category” category which has an FDR corrected p
value of 0.0505 even after removing linked SNPs and those
in the HLA locus thus indicating a suggestive instance of
polygenic selection specific to South-East Estonia. On the
other hand, gene enrichment results show broadly the same
results in all the datasets.

To conclude, here we show evidence of potential very
recent and geographically localized selection providing an
important case for our understanding of ongoing natural
selection in humans.

Conclusions

Here we describe a dataset of more than 2300 high-
coverage Estonian genomes making it one of the smallest
populations to date with such high-resolution data avail-
able. We show that the Estonian population, despite
occupying a small area with no strong geographic barriers,
is genetically structured and exhibits rather pronounced
interregional differences with respect to recent admixture
with neighbouring groups, population dynamics and
potential action of natural selection. These observations
together with results of other studies suggest that popula-
tion stratification may be ubiquitous in human populations,
and should be taken into account in any large-scale genetic
study including reconstructions of recent population his-
tory. We also show that we are able to accurately link
effective population size to actual census size based on
some simple assumptions about human population age
structure and reproduction patterns.

Ultimately, the results of our study bring us to a funda-
mental question about the limits of the concept of discrete
populations when studying human genetic diversity as
datasets that uniformly cover broad geographic areas
become common. Specifically, given the current opportu-
nity to study very recent history including ongoing natural
selection new theoretical and methodological advances
might be needed to deal with spatial genetic structure
directly rather than approximating it by clustering.

Methods

Data reporting

No statistical methods were used to predetermine sample
size. The experiments were not randomized and the inves-
tigators were not blinded to allocation during experiments
and outcome assessment.

Whole genome sequencing data

We used whole genome sequences of 2535 Estonian Bio-
bank participants reported in Kals et al. [10]. Detailed
information about the dataset and the way the samples were
sequenced and filtered can be found in the corresponding
publication while a brief description is provided in the
Supplementary text 1.1. In addition to sample filtering
applied by Kals et al. [10], we removed seven samples with
missing call over 3% as well as relatives up to third degree.
This resulted in a dataset consisting of 2305 individuals that
was used for all downstream analyses. For all manipulations
with vcf files bcftools-1.8 [32] was used unless specified
otherwise while PLINK-1.9 [33] and KING-2.1.6 [34] was
used to estimate relatedness.

For analyses that require phased and/or imputed data
(CP, SDS) phasing and imputation was done using Eagle
v2.3 [35] on the dataset consisting of 2420 samples to
benefit from the presence of related individuals and subse-
quently relevant samples were extracted.

All Estonian Biobank participants have signed a broad
informed consent which allows research in the fields of
genetic epidemiology, disease risk factors and population
history. All work at Estonian Biobank is conducted
according to the Estonian Human Gene Research Act. The
original study generating the WGS data [10] was approved
by the Research Ethics Committee of the University of
Tartu (application number 234/T-12).

The “Rural above 50 years old” (R50+) panel

As information on parents’ and grandparents’ birthplace is
mostly unavailable for the samples used here, we subset the
2305 dataset for individuals born in rural areas and sampled
at the age of 50 or older as we expect this cohort to be the
least affected by recent migration. This resulted in a dataset
of 474 individuals which we further pruned for PCA out-
liers (see below) and samples with more than 10,000 sin-
gletons (Supplementary text 1.1–1.3). We ended up with a
panel of 468 individuals, which we call “R50+”.

Non-Estonian samples

To place the Estonian population genetic variation in Eur-
asian context we compiled two datasets, one for PCA and
one for CP/FS/GT, containing the R50+ Estonian samples
each and samples from various populations predominantly
representing West Eurasia. The datasets are described in
Tables S1.2 and S3.1. These datasets include both
sequenced and genotyped samples so only overlapping
positions (around 450K SNPs in both cases) are used in
corresponding analyses.
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Principal component analysis

We ran PCA for the entire Estonian dataset in two settings:
with only the 2305 Estonians and combining the 2305
Estonians with 521 non-Estonian samples from 18 Eur-
opean populations (Table S1.2). In both cases smartPCA
from EIGENSOFT-7.2.0 [36] was used. See Supplementary
text 1.2 for details.

CHROMOPAINTER/fineSTRUCTURE/GLOBETROTTER

To study genetic similarities between Estonians and other
European populations we used the CP/FS pipeline [18].
Initial chromosome painting parameters were estimated
using 30% of the phased dataset of 1068 Estonian and non-
Estonian samples (Table S3.1). FS was run for 15 million
MCMC iterations in two parallel runs to assess con-
vergence. The tree-building step was performed using the
approach from Leslie et al. [1] and the run with the highest
observed posterior likelihood was used to cluster the sam-
ples into genetic groups. Inferred FS groups were further
manually inspected and clustered into the higher-order FS
populations (Supplementary text 3.1). These FS groups
were used as surrogate populations to infer admixture with
GT and estimate ancestry profile with NNLS.

Next, GT [18] was used to detect signals and dates of
admixture for the Estonian groups defined using the
approach described above. GT inference was performed
using a “regional” approach [18, 37].

Finally, we used NNLS [1] to assign relative ancestral
proportions to each individual in the R50+ panel using the
non-Estonian surrogate groups identified by FS as sources.
NNLS values for CP/FS Estonian groups were extracted
from GT output while for individual samples these were
calculated with an in-house R script. Obtained results were
then summarized across Estonian parishes as well as across
IBD/FS clusters.

Detecting segments identical-by-descent (IBD
segments)

To detect IBD segments in the Estonian dataset we applied
IBDseq version r1206 [13] with default settings to the non-
phased non-imputed dataset consisting of 2305 Estonians.
As IBDseq software reports only physical coordinates of a
segment’s start and end we interpolated segments’ genetic
length in cM using GRCh37 recombination map using R
[38]. When working with the R50+ panel corresponding
IBD segments were retrieved from the general output
obtained on the 2305 dataset. Homozygosity-by-descent
segments were also inferred with IBDseq.

IBD segments between Estonians and non-Estonian
individuals were detected by applying refined IBD version
12Jul18.a0b [39] with default parameters except for length
= 1.0 to the same dataset that was used for CP/FS/GT, as in
this case the dataset is highly structured. This was followed
by applying the merge-ibd utility version 12Jul18.a0b to
merge together segments separated by at most 1 cM long
gaps and no more than two positions with genotypes dis-
cordant with IBD.

Both for IBDseq and refined IBD/ibd-merge results
segments shorter than 2 cM were discarded, as longer seg-
ments are detected with higher reliability.

MAPS

In order to evaluate the extent of gene flow across the whole
country together with local population densities, we esti-
mated migration surfaces using MAPS [16], which har-
nesses a matrix summarizing the total number of IBD
segments shared in a given population. In doing so, we used
the IBD segments shared among pairs of individuals
inferred with IBDseq as described in the previous section.
Subsequently we have classified the shared genetic frag-
ments as “short” (between 2 and 6 cM) and “long” (more
than 6 cM), and performed two independent MAPS runs for
each length class to assess convergence. Estonian territory
was modelled as having a total of 200 demes. Each run had
5 million iterations thinned every 10,000 and preceded by a
burn-in of 2 million discarded cycles. The obtained migra-
tion surfaces were subsequently plotted using the plotmaps
R package [16]. We repeated the whole procedure after
removing samples belonging to clusters from Fig. 2 with
mean sharing above 60 cM to assess their effect on MAPS
results.

IBD-based fineSTRUCTURE (IBD/FS)

We used total genetic length of IBD segments longer than 2
cM as a measure of genetic similarity between pairs of
individuals as described in Supplementary text 1.2 and 2.2.
When running FS for both R50+ and the entire dataset the
first 2,000,000 MCMC iterations were removed as burn-in
and subsequently MCMC was run for additional 2,000,000
MCMC iterations sampling every 10,000th run. When
building the tree we used the approach described in Leslie
et al. [1].

We applied this approach to the R50+ dataset
(468 samples) and the entire dataset (2305 samples). In both
cases FS was run twice to assess convergence (Supple-
mentary text 2.3, Tables S2.1 and S2.2). Dataset to reduce
the number of clusters revealed by the FS algorithm we
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have hierarchically joined together clusters with short
terminal branches by cutting the tree at such a level so as to
avoid having clusters consisting of less than 5 samples in
the case of the R50+ and 50 in the case of the entire dataset.

Fst calculations

Fst between Estonian clusters was calculated using
smartpca from the EIGENSOFT package v7.2.0 [36] after
LD-pruning (r2 > 0.4, windows of 1000 SNPs) and remov-
ing sites with MAF < 0.05 and missing rate > 0.1. Per-site
Weir and Cockerham [40] Fst estimator between SE and
nonSE subsets was calculated using vcfttools [41] after
filtering sites for LD, MAF and missing rate the same way
as described above.

Geographic data visualization

Geographic coordinates of the corresponding birth town/
parish were assigned to each sample with birthplace infor-
mation available (2168 out of 2305 samples). For MAPS
these coordinates were used directly. When plotting IBD/FS
and NNLS results for the R50+ panel, coordinates of the
samples were changed manually to avoid overplotting.
When plotting samples from the entire dataset jittering were
used for the same purpose. Shp objects used to plot maps of
Estonia with parish and county borders were retrieved from
the Estonian Land Board website (administrative and set-
tlement units, 2018.11.01, https://geoportaal.maaamet.ee/
eng/Spatial-Data/Administrative-and-Settlement-Division-
p312.html). Geographic data were visualized in R [38] with
the aid of the following packages: sp [42, 43], sf [44], rgdal
[45], rgeos [46] and ggplot2 [47].

IBDNe

In order to reconstruct recent Ne dynamics we used IBDNe
version 07May18.6a4 [15] with default settings. IBD seg-
ments used as input for IBDNe were detected with IBDseq
[13].

To get independent evidence of regional differences in
Ne dynamics we applied IBDNe to samples from the People
of the British Isles [1] dataset grouped by the region of
origin of individuals’ grandparents. The following regions
were used: Scotland, Wales and North-East, North-West,
South-East and South-West England. For the list of counties
comprising these regions see Table S4.1.

Genetic simulations

To simulate genetic data under various demographic sce-
narios to test the behaviour of IBDNe we used mspms
which is an ms-compatible version of msprime [48].

Commands used for simulation are provided in the Sup-
plementary text section 4.1.

Estimating actual census size based on Ne

Several lines of evidence, based both on theoretical rea-
soning [49] and empirical comparisons [15] suggest that in
industrial human societies census size (Nc) is roughly
threefold the Ne assuming a panmictic and isolated popu-
lation. To obtain a more universal conversion method we
adapted the approach from [22] which incorporates
inbreeding coefficient (Fis), relative fraction of males (m)
and excess in variance of reproductive success compared to
the Poisson distribution (DV):

NbðtÞ ¼ ð1þ FisÞ
4

� ð 1
ð1� mÞ � m

þ DVÞ � NeðtÞ: ð1Þ

In order to apply this formula to human populations we
explored the possible range of the corresponding parameters
to obtain the minimal and maximal values of the conversion
coefficient: 0.75 (with m= 0.5 and DV=−1) and 3.53
(with m= 0.1 or 0.9 and DV= 3), respectively (see Sup-
plementary text section 4.4). To provide a single point
estimate of Nc we rewrite formula (1) as:

NbðtÞ ¼ 1:63� NeðtÞ; ð2Þ

using a geometric mean between 0.75 and 3.5 and thus
making our estimate slightly more than twofold away from
the provided range boundaries. Note, that although there are
indications that in some human populations DV can be
higher than 3 [50], such cases can be considered to be at the
very extreme of human reproductive behaviour spectrum as
even hypothetical “super-male” populations would have a
sex-average DV of 1.8 given m equals to 0.5 [51].

The value estimated using (2) corresponds to the number
of individuals in reproductive age. It can be converted into
total census size (Nc) of a human population at a given time
point by dividing it by the estimated fraction of breeding
individuals, which we here assume to be roughly 0.33
(Supplementary text section 4.4). Incorporating this idea
into (2) results in equation (3):

NcðtÞ ¼ 4:89� NeðtÞ; ð3Þ

which we used to obtain the curve in Fig. 4D. Sources of
historical estimates of Estonian population size used in that
figure are provided in Fig. S4.10.

Singleton density score (SDS) selection scan

SDS [20] analysis was applied to three datasets separately,
namely, the entire dataset and it was two subsets, Estonia SE and
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Estonia nonSE. The latter two were defined based on the IBD/FS
results (Fig. 4a): SE (individuals with South-East Estonian
ancestry belonging to clusters eSE_1–eSE_5) and nonSE (indi-
viduals coming from the other parts of the country and belonging
to other clusters). Data processing as well as the way SDS was
run follow the guidelines of the authors of the original study [20]
and are described in Supplementary text section 5.1.

Predicted functional effect of the test SNPs was assessed
using CADD tool [31]. In addition, two alternative enrich-
ment tests were performed to see whether candidate SNPs
are enriched in a certain category of genes [29, 30] or in
certain GWAS catalogue categories (http://www.ebi.ac.uk/
gwas/home; [52]). Candidate SNPs were also checked for
known e-QTL effects using the eQTLGen Consortium [53]
(http://www.eqtlgen.org/) database. Details of SNP anno-
tation and enrichment analyses are specified in Supple-
mentary text section 5.2.

Data availability

The sequencing data are available on demand. The proce-
dure of applying for the access to the data can be found
under the following link: https://www.geenivaramu.ee/en/
biobank.ee/data-access.
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