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1 Introduction

We propose an extensive-form game that generalizes Rubinstein (1982) and provides strategic foundations

to both the generalized Nash (1950) solution and the proportional solution of Kalai (1977) for environments

with pairwise meetings and liquidity constraints commonly used in search-theoretic models. For instance,

our game can describe a negotiation between a worker and a firm over the terms of an employment contract,

hours of work and compensation, subject to the cash constraint of the firm. Another example is when

two traders in an over-the-counter (OTC) market negotiate the size of a security trade financed with a

collateralized loan.1

Two axiomatic solutions have been routinely used to tackle these bargaining problems: the generalized

Nash solution and the Kalai (proportional) solution.2 The Nash solution has the considerable advantage

of having well-established strategic foundations (see, e.g., Osborne and Rubinstein, 1990). It has several

disadvantages: the buyer’s surplus from trade is non-monotone in his payment capacity, which makes the

assumption that the buyer cannot under-report his asset holdings critical; it does not guarantee the concavity

of the players’ surpluses, which reduces its tractability in general equilibrium settings. In contrast, the

proportional solution is highly tractable and it has the natural prediction that traders’surpluses increase as

gains from trade expand (e.g., Aruoba et al., 2007). However, the proportional solution is not scale invariant

and it does not have solid strategic foundations, such as an extensive-form game with alternating offers. This

lack of strategic foundations is problematic for a literature that thrives on rigorous micro-foundations.

In this paper, we propose an extensive-form game indexed by a single parameter and show that it can

rationalize both the Nash and the Kalai solutions for two particular values of that parameter. Such unified

strategic foundations allow us to identify the underlying agenda of the negotiation as the fundamental

difference between the two solutions. Formally, we describe a bargaining game between a buyer with a

payment capacity (e.g., liquid wealth, borrowing limit) z ∈ R+ and a producer. The consumption good, y, is

perfectly divisible and the gains from trade are maximized for some y = y∗. The game is composed of N ∈ N

rounds. In each round, the amount of goods up for negotiation is y∗/N , and the players bargain according to

a Rubinstein (1982) alternating-offer game with exogenous risk of termination (or, equivalently, a stochastic

horizon). We show that for all N this game admits a (essentially) unique subgame-perfect equilibrium (SPE)

1Examples of these different applications include: Lehmann (2012) or Gu et al. (2019) for a labor search model where wages
are negotiated subject to the cash constraint of the firm; Lagos and Zhang (2019) for a model of an OTC market where traders’
purchases are constrained by their cash holdings; Dugast et al. (2019) where OTC traders are constrained by a market trading
capacity; Rocheteau et al. (2018) for a corporate finance model where loan contracts are negotiated bilaterally between a bank
and an entrepreneur; and all the New Monetarist literature surveyed in Rocheteau and Nosal (2017) and Lagos et al. (2017).

2The Kalai solution should not be confused with the Kalai-Smorodinsky (1975) solution that is scale invariant but not
strongly monotone.
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and the terminal allocation can be solved in closed form. When the risk of termination goes to zero in each

round, the game implements the generalized Nash solution when N = 1, all the output is sold at once, and

the Kalai solution when N = +∞, the output is sold one infinitesimal bundle at a time. The limiting case

N = +∞ also implements the axiomatic ordinal solution O’Neill et al. (2004) for bargaining problems with

an agenda. If we allow one of the two players to set the agenda of the negotiation, N , then the buyer chooses

N = 1 (Nash) whereas the producer chooses N = +∞ (Kalai). The producer prefers to sell his output

gradually to delay the time at which the liquidity constraint of the buyer binds, thereby avoiding distorting

surplus sharing in a way that is favorable to the buyer.

We generalize our bargaining game by allowing output limits to vary across N rounds, in which case

the agenda is an arbitrary sequence of output levels, {∆ȳn}Nn=1, that are negotiated sequentially. We show

that the insights from the game with constant limits are robust to this extension. In particular, the final

allocation is obtained from a recursion that involves solving a generalized Nash bargaining problem in each

iteration. We give a full characterization of the set of agendas that implement the Kalai solution for a given

payment capacity. The only agendas that generate the Kalai outcome uniformly for all payment capacities

are obtained at the limit when N becomes large and the quantities negotiated in each round, ∆ȳn, become

arbitrarily small.

We endogenize the buyer’s payment capacity by assuming the buyer can borrow z at some interest rate

before the negotiation starts. Even if the interest rate is zero, and hence liquidity is costless, the buyer’s

choice of z is such that the liquidity constraint binds for all N < +∞ and output is less than its first-best

level, y∗, which generalizes a key result of Lagos and Wright (2005) obtained for N = 1. Moreover, the choice

of z is not monotone in N . It is only at the limit, when N = +∞, that a zero interest rate implements y∗.

Finally, we endogenize both the agenda of the negotiation and the buyer’s payment capacity. If bundle

sizes are constant across rounds, and if the agent setting the agenda is chosen at random before the negotiation

starts, then the optimal payment capacity of the buyer decreases with the probability that she sets the

agenda. If the agenda is set unilaterally by the seller who can specify different bundle sizes across rounds,

any subgame perfect equilibrium implements the proportional solution. Moreover, if the buyer’s payment

capacity is not observed at the time the seller chooses the agenda, then the only agenda that is part of an

equilibrium is gradual.

Related literature

Extensive-form bargaining games with alternating offers a la Rubinstein (1982) have been applied to the

description of decentralized markets by Rubinstein and Wolinsky (1985). A risk of breakdown between
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consecutive offers was introduced by Binmore et al. (1986). A survey of this literature can be found in

Osborne and Rubinstein (1990). The first application to models with liquidity constraints came from Shi

(1995) and Trejos and Wright (1995) in economies where the buyer’s payment capacity is indivisible. Versions

with divisible payments have been developed by Shi (1997) and Lagos and Wright (2005) and are surveyed

in Lagos et al. (2017).

There are strategic foundations for the proportional solution, e.g., Bossert and Tan (1995) and Dutta

(2012), but they are based on the Nash demand game and they assume interpersonal utility comparisons

through penalties for incompatible demands or revoking costs.3 In contrast to those approaches, we propose

an extensive-form game with alternating offers, in the spirit of Rubinstein (1982), that generates a unique SPE

allocation invariant to rescaling of players’utilities. Our approach allows us to provide unified foundations

for both the Nash and the Kalai solutions where the scaling factor of the proportional solution is determined

endogenously.

Fershtman (1990) describes a two-round game where agents negotiate sequentially the split of two pies

of different sizes. The negotiation in each round is conducted according to the Rubinstein game, like in our

setting. The agenda consists in the order according to which the two pies are negotiated. In our model,

the agenda is identified with the number of rounds or, equivalently, the bundle size to be negotiated in each

round, and the total gains from trade are endogenous due to a liquidity constraint. Similar to Fershtman

(1990), we also find that players can disagree on the agenda with implications for effi ciency.4

Our game is also related to the Stole and Zwiebel (1996) game in the literature on intra-firm wage

bargaining where a firm bargains sequentially with N workers. See Brugemann et al. (2018) for a recent

re-examination of this game. In our model the buyer negotiates repeatedly with the same seller who supplies

a divisible commodity. Hence, contracts are two-dimensional and specify a price and a quantity. If the agents

fail to reach an agreement in one round, they move to the next round, but the agreements of earlier rounds

are preserved. In the Stole-Zwiebel game, all previous agreements are erased. In Smith (1999), the firm

treats each worker as the marginal worker. It is also the case in our model that in each round agents are

effectively negotiating over the marginal surplus but the disagreements points of both players are endogenous

and determined recursively.

3Bossert and Tan (1995) adopts a multi-stage arbitration game where incompatible demands are penalized for the player
who asks a higher surplus. Dutta (2012) introduces another stage after the Nash demand game where players face revoking
costs, and obtained the proportional solution when such cost approaches infinity.

4Fershtman (1990) shows that the players disagree on the agenda (the ordering of the pies) if they value the pies differently,
i.e., each player would like to negotiate first the pie that she values the least and her opponent values the most.
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2 Basic setting

We describe a bargaining game whereby two players negotiate the sale of a divisible commodity in exchange

for a payment subject to a liquidity constraint. This game is consistent with a wide class of search-theoretic

models where buyers and sellers are matched pairwise at random and negotiate the terms of a mutually

beneficial trade subject to some payment constraints.5

2.1 Allocations and preferences

The two players are called buyer and seller. The quantity of the divisible commodity produced by the seller

for the buyer is denoted y ∈ R+. The payment made by the buyer is denoted p ∈ R+. It is subject to a

liquidity constraint, p ≤ z, where z is the payment capacity. Preferences over outcomes of the negotiation,

(y, p) ∈ R+ × [0, z], are represented by the following quasi-linear utility functions:

ub = u(y)− p, (1)

us = −υ(y) + p, (2)

where the superscripts b and s stand for buyer and seller. As is standard in search-theoretic models, payoffs

are linear in the payment.6 The function u(y) is the buyer’s utility from his consumption y. The quantity

υ(y) is the seller’s disutility from producing y. We assume u′(y) > 0, u′′(y) < 0, u′(0) = +∞, u(0) = υ(0) =

υ′(0) = 0, υ′(y) > 0, υ′′(y) > 0, and u′(y∗) = υ′(y∗) for some y∗ > 0. The no-trade allocation, (y, p) = (0, 0),

yields ub = us = 0.

2.2 Two axiomatic solutions

The generalized Nash solution A common approach to the above bargaining problem is to impose

the generalized Nash solution, i.e., (y, p) ∈ arg max(ub)θ(us)1−θ, where θ ∈ [0, 1] is the buyer’s bargaining

power, subject to the feasibility constraint, p ≤ z. The solution (y, p) is determined by p = pGNθ (y) =

min
{
z, pGNθ (y∗)

}
, where

pGNθ (y) ≡ [1−Θ(y)]u(y) + Θ(y)v(y), (3)

and where the share of the surplus accruing to the buyer is

Θ(y) =
θu′(y)

θu′(y) + (1− θ)v′(y)
. (4)

5The commodity can be a consumption good (e.g., Lagos and Wright, 2005), hours of work (e.g., Pissarides, 2000), or
an over-the-counter security (e.g., Duffi e et al., 2005), and the payment can be interpreted as money, collateralized loan, or
unsecured debt.

6 In a general equilibrium setting, the payoffs of the buyer and seller would be given by u(y) +W b(ωb − p) and −υ(y) +
W s(ωs + p) where W b and W s are continuation value functions and ωb and ωs represent wealth levels. Under quasi-linear
preferences, the value functions are linear in wealth, hence the payoffs in (1)-(2).
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Note that Θ(y) is decreasing in y with Θ(y∗) = θ. Agents trade y∗ if it is feasible, z ≥ pGNθ (y∗), or the buyer

exhausts his payment capacity to consume as much as possible, pGNθ (y) = z.

The Kalai solution The proportional solution of Kalai (1977) selects the allocation (y, p) that maximizes

ub = u(y)−p, subject to ub = θus/(1− θ) and p ≤ z for some θ ∈ [0, 1] interpreted as the buyer’s bargaining

share. The solution (y, p) is determined by p = pKθ (y) = min
{
z, pKθ (y∗)

}
, where

pKθ (y) ≡ (1− θ)u(y) + θυ(y), (5)

The Kalai solution coincides with Nash when the liquidity constraint does not bind, but it differs from it when

it binds. The Kalai solution is strongly monotone, i.e., ub = u(y)− pKθ (y) = θ [u(y)− υ(y)] increases with y

(for y ≤ y∗) and hence with z. This result does not hold under Nash bargaining where ub = Θ(y) [u(y)− υ(y)]

decreases with y when y is close to y∗ (e.g., Aruoba et al., 2007). A second advantage of the Kalai solution

is its tractability: it preserves the concavity of the surpluses with respect to z and it generates simple

closed-form expressions.7 Relative to Nash, however, the Kalai solution is not scale invariant and lacks solid

strategic foundations.

2.3 The Rubinstein game with sliced bundles

We propose an extensive-form game that implements the Nash and Kalai solutions as two polar cases.

The game is composed of N ≥ 1 rounds. In each round, n ∈ {1, ..., N}, there are (potentially) infinitely

many stages during which the two players bargain over the sale of at most ∆yn units of consumption good

following an alternating-offer protocol as in Rubinstein (1982).8 With no loss of generality, we assume that∑N
n=1 ∆ȳn = y∗, and hence over the N rounds allocations with y = y∗ are feasible. The quantity limits at

each round, {∆yn : n = 1, .., N}, can be interpreted as resulting from various technological constraints: sellers

produce bundles of goods sequentially, and each bundle is negotiated immediately after being produced.

Alternatively, production is continuous over time but the consumer and the seller meet infrequently but

periodically to negotiate the terms of trade. Another view is that the rules of the extensive-form game that

determine the allocations in pairwise meetings are not manipulable by the players and are a primitive of the

economy (which is the standard assumption in the literature on decentralized markets).

7One example that showcases the tractability provided by the proportional solution is Lester et al. (2012) on costly infor-
mation acquisition. Another example is Geromichalos et al. (2016) on term structure in OTC markets.

8The infinite number of stages in each round can be interpreted as an approximation for a large but finite number of stages.
Indeed, it is well known that the equilibrium of the finite horizon version of the Rubinstein game converges to the equilibrium
of the infinite horizon game as the horizon of the negotiation becomes large. For a similar formalization, Aumann and Hart
(2003) has an extensive-form game which contains infinitely many stages before another phase of action to occur in the context
of a cheap talk game.
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The round-game is illustrated in Figure 1. In the initial stage of round-n, the buyer makes an offer

(∆yn,∆pn) where ∆yn ≤ ∆ȳn is the amount of goods he is willing to purchase in exchange of some payment

∆pn ≤ z − pn−1 where pn−1 =
∑n−1
j=1 ∆pj is the sum of payments that have been agreed upon over the first

n−1 rounds and hence z−pn−1 is the remaining payment capacity of the buyer in round n. The seller either

accepts the offer or rejects it. If the offer is accepted, (∆yn,∆pn) is implemented (∆yn is produced and

given to the buyer in exchange for ∆pn) and the negotiation moves to round n + 1. If the offer is rejected,

then there are two possibilities. With probability 1 − ξs, round n is terminated and the players move to

round n+ 1 without having reached an agreement in round n, i.e., (∆yn,∆pn) = (0, 0). With probability ξs,

the round-n negotiation continues and the seller becomes the proposer in the following stage. If the seller’s

offer is rejected, the negotiation moves to the next stage with probability ξb, in which case the buyer is the

proposer. While the game in Figure 1 assumes that the buyer makes the first offer in all rounds, we also

consider the version of the game where the seller is the first proposer in all rounds.

...

Yes

Yes

No

No

Buyer

Buyer

Buyer

Round #1 ......Round #2 Round #n Round #N

Move to
next round

Move to
next round

Trade and move
 to next round

Trade and move
 to next round

Seller

Seller
][ sξ

][ bξ

]1[ sξ−

]1[ bξ−

Round game

Figure 1: Game tree

The utility levels associated with the interim allocation, (yn, pn) =
(∑n

j=1 ∆yj ,
∑n
j=1 ∆pj

)
, are denoted

ubn = u (yn) − pn and usn = −υ (yn) + pn. Interim allocations are subject to two feasibility conditions:

yn ≤
∑n
j=1 ∆ȳj and pn ≤ z.

We define a family of Pareto frontiers, H(ub, us, y; z) = 0, indexed by y and z. Each frontier is the
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solution to ub = maxy≤y,p≤z {u (y)− p} subject to −v (y) + p ≥ us. Hence,

H(ub, us, y; z) =

{
u(y)− υ(y)− ub − us if us ≤ z − υ(y),

z − υ[u−1
(
ub + z

)
]− us otherwise.

(6)

We illustrate the Pareto frontiers for a given z but different values for ȳ in Figure 2. As long as y is

suffi ciently small relative to z, the Pareto frontier is linear. If u(ȳ) > z, then the payment constraint binds

for us suffi ciently large, in which case the Pareto frontier is strictly concave over some range.

su

bu

0
*)

,
,

(

=
y

u
u

H

s
b

0
)

,
,

(

1 =
y

u
u

H

s
b

0
)

,
,

(

2 =
y

u
u

H

s
b

Figure 2: Pareto frontiers for ȳ ∈ {y1, y2, y
∗} and for given z

3 The game with equal-sized bundles

In this section, we impose that all bundles have the same size, i.e., ∆yn = y∗/N for all n. We will consider

the general case where ∆yn varies across rounds in Section 5. In order to build some intuition, we first

solve the two-round game, N = 2. We then turn to the general N -round game for arbitrary probabilities

of termination within each round and we specialize our analysis later to the case where these probabilities

vanish, which eliminates the first-mover advantage.

3.1 The two-round game

In each of the two rounds, the players negotiate over ∆ȳ = y∗/2 units of consumption goods and the buyer

is the first proposer. We solve the game by backward induction. The subgame starting in the last round is a

game with N = 1 and quantity limit ∆ȳ. Suppose that the initial allocation is (0, 0), which would happen if

no agreement was reached in the first round. Equilibrium offers are denoted by (yb1, p
b
1, y

s
1, p

s
1), where (yχ1 , p

χ
1 )

is the offer made by player χ ∈ {b, s} and the subscript refers to the number of rounds left.
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If the liquidity constraint, p ≤ z, does not bind on and off the equilibrium path, then the equilibrium

outcome specifies yb1 = ys1 = ∆ȳ since otherwise there would be unexploited gains from trade, and p = pb1

where (pb1, p
s
1) solves

−υ(∆ȳ) + pb1 = ξs [−υ(∆ȳ) + ps1] (7)

u(∆ȳ)− ps1 = ξb
[
u(∆ȳ)− pb1

]
. (8)

From (7) the buyer offers (∆ȳ, pb1) that makes the seller indifferent between accepting and rejecting. From

(8), if she rejects and if the negotiation is not terminated, the seller offers (∆ȳ, ps1) in the next stage, so as

to make the buyer indifferent between accepting or rejecting. The solution to (7)-(8) is pb1 = pb(∆ȳ) and

ps1 = ps(∆ȳ), where

pb(y) ≡
ξs
(

1− ξb
)
u(y) + (1− ξs) υ(y)

1− ξbξs
(9)

ps(y) ≡

(
1− ξb

)
u(y) + ξb (1− ξs) υ(y)

1− ξbξs
. (10)

From (9) the buyer’s payment when it is his turn to make an offer coincides with pKθ (∆ȳ) for θ = (1 −

ξs)/(1 − ξbξs). If the seller makes the offer, the buyer’s share is reduced to ξb (1− ξs) /(1 − ξbξs). The

liquidity constraint does not bind if ps(∆ȳ) ≤ z.

The same logic goes through if the buyer’s liquidity constraint binds when either the buyer or the seller

makes an offer: the equilibrium offers maximize the offering party’s utility subject to the constraint that the

responding party is willing to accept the offer. Formally, the buyer’s and seller’s offers solve:

(yb1, p
b
1) ∈ arg max

y,p
{u(y)− p} (11)

s.t. − υ(y) + p ≥ ξs [−v(ys1) + ps1] (12)

p ∈ [0, z] , y ≤ ∆̄y, (13)

and

(ys1, p
s
1) ∈ arg max

y,p
{−υ(y) + p} (14)

s.t. u(y)− p ≥ ξb
[
u(yb1)− pb1

]
(15)

p ∈ [0, z] , y ≤ ∆ȳ. (16)

Following the logic in Rubinstein (1982), these two problems can be solved jointly to deliver a unique

(yb1, p
b
1, y

s
1, p

s
1). The outcome is illustrated in the left panel of Figure 3, where oχ is the offer made by

player χ ∈ {b, s} in the utility space. As the figure indicates, both offers are located on the Pareto frontier,

9



H(ub, us,∆ȳ; z) = 0, and are determined as follows. The buyer’s offer generates a utility level to the

seller that is equal to a fraction ξs of what the seller’s offer generates, i.e., us(ob) = ξsus(os). Similarly,

ub(os) = ξbub(ob).

susu

bubu

sξ
sξ

sξ

bξ
bξ

bξ

bo

so

b
1o

s
1o

s
2o

b
2o

1=N 2=N

)( ss ou

)( bs ou

)( sb ou )( bb ou

Figure 3: Left: one-round negotiation; Right: two-round negotiation.

We now move backward in the game tree to the beginning of round 1. If the players fail to reach

an agreement in round 1, then they move to round 2 and the equilibrium offers solve (11)-(16), with the

final allocation given by the first offer made by the buyer, (yb1, p
b
1). Graphically, the disagreement offer is

represented by ob1 in the right panel of Figure 3. It is located on the lower Pareto frontier corresponding to the

output limit ∆ȳ. Since the players’beliefs regarding round 2 are consistent with equilibrium play, in round-1

they are effectively negotiating over all feasible allocations achievable from the two rounds combined, i.e.,

(y2, p2) ∈ [0, 2∆ȳ] × [0, z], with the understanding that a failed negotiation leads to the allocation (yb1, p
b
1).

Applying the same logic as before to this grand negotiation, the first-round offers generate final allocations

that solve:

(yb2, p
b
2) ∈ arg max

y,p
{u(y)− p} (17)

s.t. − υ(y) + p ≥ (1− ξs)[−v(yb1) + pb1] + ξs [−v(ys2) + ps2] (18)

p ∈ [0, z] , y ∈ [0, y∗] , (19)

and

(ys2, p
s
2) ∈ arg max

y,p
{−υ(y) + p} (20)

s.t. u(y)− p ≥ (1− ξb)[u(yb1)− pb1] + ξb
[
u(yb2)− pb2

]
(21)

p ∈ [0, z] , y ∈ [0, y∗] . (22)
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The problems (17)-(22) are analogous to (11)-(16), except that (18) and (21) include the payoffs from the

allocation, (yb1, p
b
1), in case the negotiation breaks down.

Graphically, the final allocation is represented by ob2 in the right panel of Figure 3. The associated utility

levels are located on the upper frontier corresponding to the cumulative output limit, 2∆ȳ = y∗. The seller

is indifferent between accepting ob2 or receiving a lottery that assigns the disagreement allocation, o
b
1, with

probability 1− ξs and the seller’s offer, os2, with probability ξs, that is, us(ob2)− us(ob1) = ξs[us(os2)− us(ob1)]

and ub(os2)− ub(ob1) = ξb[ub(ob2)− ub(ob1)].

Finally, while (17)-(22) computes the final allocation, (yb2, p
b
2), we need to specify the equilibrium in-

termediate allocation at the end of round-1, denoted by (ŷ1, p̂1), and to check its existence and feasibility.

Subgame perfection requires that, in the subgame at the beginning of round-2 with initial allocation (ŷ1, p̂1),

the equilibrium outcome coincides with the final allocation, (yb2, p
b
2). The equilibrium offers in that subgame

solve (17)-(22) with (yb1, p
b
1) = (ŷ1, p̂1) and feasibility conditions

p ∈ [p̂1, z] , y − ŷ1 ∈
[
0, ∆̄y

]
. (23)

If (yb2, p
b
2, y

s
2, p

s
2) satisfies these feasibility constraints, then it immediately follows that (ŷ1, p̂1) = (yb1, p

b
1),

that is, starting with (yb1, p
b
1) as the intermediate equilibrium allocation at the end of round 1, (yb2, p

b
2) would

be the equilibrium round-2 allocation. To see that these feasibility conditions hold, consider two cases. First,

suppose that pb1 < z. Then, yb1 = ∆̄y and hence (yb1, p
b
1) is not located on the upper Pareto frontier, i.e.,

there are unexploited gains from trade. Since
(
yb2, p

b
2

)
and (ys2, p

s
2) belong to the upper Pareto frontier, it

follows that pχ2 > pb1 and y
χ
2 > yb1, i.e., the feasibility constraints hold. Second, suppose that p

b
1 = z, and

hence yb1 ≤ ∆̄y and (yb1, p
b
1) is on the upper Pareto frontier. In that case,

(
yb2, p

b
2

)
= (ys2, p

s
2) = (yb1, p

b
1) and

the feasibility conditions are also satisfied.

Our analysis shows that there are two interpretations for (yb1, p
b
1). First, (yb1, p

b
1) is the final allocation

from the last round if the players fail to reach agreement in the first round. Second, (yb1, p
b
1) is the equilibrium

intermediate allocation at the end of round 1.

3.2 Equilibrium: the recursive solution

Now we extend the above logic to a general N -round game, and the following proposition characterizes the

final allocation for an arbitrary number of rounds and arbitrary initial allocation for any subgame.

Proposition 1 (SPE of the Rubinstein game with sliced bundles.) Consider a subgame of the

Rubinstein game with sliced bundles where the identity of the first proposer in each round is χ ∈ {b, s}. The

subgame starts in round n ∈ {1, ..., N} with an interim allocation (yn−1, pn−1) ∈ [0, (n − 1)y∗/N ] × [0, z).

11



There is a sequence,
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n

, defined uniquely by (ybn−1, p
b
n−1) = (yn−1, pn−1) = (ysn−1, p

s
n−1),

and the following recursion:

(ybj , p
b
j) ∈ arg max

y,p
{u(y)− p} (24)

s.t. − υ(y) + p ≥ (1− ξs)
[
−v(yχj−1) + pχj−1

]
+ ξs

[
−v(ysj ) + psj

]
(25)

p ∈
[
pχj−1, z

]
, y − yχj−1 ≤

y∗

N
, (26)

and

(ysj , p
s
j) ∈ arg max

y,p
{−υ(y) + p} (27)

s.t. u(y)− p ≥ (1− ξb)
[
u(yχj−1)− pχj−1

]
+ ξb

[
u(ybj)− pbj

]
(28)

p ∈
[
pχj−1, z

]
, y − yχj−1 ≤

y∗

N
. (29)

The final allocation of any SPE is (y, p) = (yχN , p
χ
N ) where χ = b if the buyer is the first proposer in each

round and χ = s if the seller is the first proposer in each round. The whole game corresponds to n = 1 and

(yb0, p
b
0) = (0, 0) = (ys0, p

s
0).

Proposition 1 states that the SPE of the Rubinstein game with sliced bundles is computed as the sequence

of subgame perfect equilibria of one-round Rubinstein games. The termination payoffs in the j-th iteration

correspond to the payoffs in the (j − 1)-th iteration, ubj−1 = u(yχj−1) − pχj−1 and u
s
j−1 = −υ(yχj−1) + pχj−1,

where χ ∈ {b, s} is the identity of the first proposer. As in the two-round game, the two interpretations

of (yb1, p
b
1) also apply to the sequence

{
(ybj , p

b
j , y

s
j , p

s
j)
}N
j=n

, and we express the feasibility conditions, (26)

and (29), in terms of incrementals, similar to (23). To describe the two interpretations more precisely here,

consider the game with the buyer as the first proposer, χ = b.

According to the first interpretation, (ybj , p
b
j) is the equilibrium final allocation in the (sub)game composed

of the last j rounds with initial allocation (yN−j , pN−j) = (0, 0), i.e., no agreement has been reached in the

first N − j rounds. As in the two-round game, (yb1, p
b
1) is the equilibrium allocation of a game composed of

a single round (the N -th round) with initial allocation (0, 0), and (yb2, p
b
2) is the final allocation in a game

composed of two rounds only (the subgame starting in round N−1) with initial allocation (0, 0). By pursuing

the same logic, we can conclude that (ybN , p
b
N ) is the final allocation of the whole game.

Alternatively, the terms of the sequence
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=1

are also intermediate allocations along the

equilibrium path leading to the final allocation. More precisely, as the buyer makes the first offer in each

round, (ybn, p
b
n) is the equilibrium intermediate allocation achieved at the end of the n-th round. Indeed,

if (ybN , p
b
N ) is the final allocation of the entire game, then subgame perfection requires that it is the final

12



allocation in the subgame starting in round (n + 1) with allocation (ybn, p
b
n). To verify this claim, consider

the sequence,
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=1
, obtained from (24)-(29) with (yb0, p

b
0) = (0, 0). Then, (ybN , p

b
N ) is the final

allocation at the end of the entire game. However, if we run the program with initial allocation (ybn, p
b
n),

then we obtain the truncated sequence,
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n+1

, which confirms that (ybN , p
b
N ) is also the final

allocation of the subgame that start at round (n+ 1) with intermediate allocation (ybn, p
b
n).9

In our proof we extend this logic to a general subgame with arbitrary intermediate payoffs, and the key

part is to establish that, in the j-th iteration, ubj−1 = u(yχj−1)− pχj−1 and u
s
j−1 = −υ(yχj−1) + pχj−1, are the

relevant payoffs in case the negotiation terminates. The general result is obtained by backward induction.

To illustrate the logic of our proof, consider the subgame that starts at round N − 1 with some interim

allocation, (yN−2, pN−2), reached along the equilibrium path, and assume that the buyer makes the first

offer in each round. If no agreement is reached in this round, then the game moves to the last round, N .

In that subgame, which begins with interim allocation (yN−2, pN−2), the construction and the uniqueness

of the SPE follows the standard argument of Rubinstein (1982), and the equilibrium offers, denoted by

(ybN−1, p
b
N−1) and (ysN−1, p

s
N−1), are computed according to (24)-(29) with j = N − 1. Hence, the players

understand that, if the negotiation breaks down in round N−1, the final allocation is given by (ybN−1, p
b
N−1).

Finally, consider the original subgame at round N − 1. The players’final payoffs will lie within the Pareto

frontier H(ub, us, yN−2 + 2y∗/N ; z) = 0, and hence the players are effectively negotiating over outcomes

reachable within that Pareto frontier with the termination payoffs corresponding to (ybN−1, p
b
N−1). By the

standard logic of a Rubinstein game, its solution, (ybN , p
b
N , y

s
N , p

s
N ), is computed according to (24)-(29) with

(ybN−1, p
b
N−1) as the disagreement point.

A corollary of Proposition 1 is that if z ≥ ps(y∗), then agents trade y∗ and the payment is identical to

the one of the one-round game, i.e., the solution coincides with the proportional solution with endogenous

bargaining shares determined by termination probabilities. Indeed, in that case, the liquidity constraint

never binds along the sequence
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=1

starting with (y0, p0) = (0, 0). In contrast, if z < ps(y∗)

does not hold, then the liquidity constraint will be binding somewhere along that sequence. If the seller

makes the first offer in all rounds, then there exists N̂ ≤ N such that psn = ps(ȳn) ≤ z and pbn ≤ z are slack

for all n < N̂ . In round N̂ , the game ends with the final allocation (ys
N̂
, z).

3.3 Two remarks

We give two remarks, the first regarding the uniqueness and the second regarding robustness. First, while

Proposition 1 states that the final allocations are uniquely determined, the SPE is not unique if there is a
9This second interpretation requires that bundle sizes are constant across rounds. Otherwise, the intermediate payoffs need

to be computed with a different, but similar, recursion. See Section 5 for details.
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rank J < N in the sequence
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n−1

such that for all j ≥ J , (ybj , p
b
j , y

s
j , p

s
j) = (ybN , p

b
N , y

s
N , p

s
N ).

In that case there is indeterminacy regarding the timing of the interim agreements.

Second, we comment on the assumption that the rules of the game specify that, if the negotiation over a

bundle fails in one round, the players commit not to renegotiate the unsold bundle when the N rounds are

over. We view this assumption as similar to the commitment of the players to obey the rules of the game

in any negotiation. For instance, in a take-it-or-leave-it bargaining game, the players are committed to walk

away if the first and only offer is rejected. In an alternating offer game, the players are committed to take

turns to make offers. In the context of our game, the commitment not to renegotiate is not critical as we

could assume that the number of rounds is larger than the number of bundles that are up for negotiation,

N̄ > N , in which case, if the negotiation fails in one round, agents would have the option to renegotiate an

unsold bundle later. This case is discussed at the end of our proof of Proposition 1. Indeed, the argument

for the first interpretation of the sequence,
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n

, is not affected by the change from N to N̄

before y∗ is reached, and if it is reached, it remains constant. Hence, the final outcome is not affected either.

3.4 The chained Nash solution

The player making the first offer in each round has an advantage that allows him to capture a larger share

of the surplus. In order to eliminate this advantage, we now assume that
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
and we

let ε go to 0. So, the probabilities of termination of the current round following rejected offers, 1 − ξb and

1− ξs, vanish while their ratio converges to (1− θ)/θ.

Proposition 2 (The chained Nash solution.) Suppose
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
for some θ ∈ [0, 1]

and consider the limit as ε → 0. The final allocation of the Rubinstein game with sliced bundles is the last

term of the sequence {(yn, pn)}Nn=1 where (y0, p0) = (0, 0) and

(yn, pn) ∈ arg max
y,p

[u(y)− u(yn−1)− (p− pn−1)]
θ

[−υ(y) + υ(yn−1) + (p− pn−1)]
1−θ (30)

s.t. y − yn−1 ≤
y∗

N
and p ≤ z.

The solution to (30) is such that: pn = z = g(yn, ȳn−1)
pn = z and yn = ȳn
pn = pKθ (ȳn) and yn = ȳn

if
z ≤ g(ȳn, ȳn−1)
g(ȳn, ȳn−1) < z < pKθ (ȳn)
z ≥ pKθ (ȳn),

(31)

where

g(y, ȳ) ≡ [1−Θ(y)]u(y) + Θ(y)v(y) + [Θ(y)− θ] [u(ȳ)− υ(ȳ)] . (32)
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As is well known (see, e.g., Osborne and Rubinstein (1990), Proposition 310.3), if N = 1, then the limit

of the Rubinstein game as the risk of breakdown vanishes coincides with the generalized Nash solution with

buyer’s bargaining power equal to θ. We extend this result to the case where there are multiple rounds of

the Rubinstein game, N > 1. In each round, the interim allocation, (yn, pn), is given by the generalized

Nash solution where the disagreement point corresponds to the interim payoffs from the previous round,

u(yn−1) − pn−1 and −υ(yn−1) + pn−1. We illustrate this solution in Figure 4 where the bargaining set in

each round is represented by a purple area and the solution is given by the tangency point between the

red curve representing the generalized Nash product and the bargaining set. In rounds where the liquidity

constraint, pn ≤ z, does not bind, y = ȳn and p = pKθ (ȳn), i.e., the solution coincides with the proportional

solution. In later rounds when pn ≤ z binds, the Nash solution differs from the proportional solution and

assigns a larger share of the surplus to the buyer than θ.

su

bu

Figure 4: Chained Nash solution

The function g(yn, ȳn−1) in (32) specifies the total payment for yn units of output given ȳn−1 has been

secured in previous rounds and provided that the feasibility constraint, yn ≤ ȳn, is slack. It is increasing in

both yn (for all yn < y∗) and ȳn−1. It is related to pGN and pK as follows. The function g(y, 0) ≡ pGNθ (y) is

the payment in the first round, which coincides with the payment function of the generalized Nash solution

in (3) while g(ȳ, ȳ) = pKθ (ȳ) is the payment function of the proportional solution, (5). Note also that

g(y∗, ȳ) = pKθ (y∗) = pGNθ (y∗) for any ȳ ≤ y∗.

From (31), there are three cases to distinguish regarding the determination of the interim allocations in

round n. If z < g(ȳn, ȳn−1) then the liquidity constraint binds, pn = z, and the quantity traded is less than

the size of the bundle that is up for negotiation, yn − ȳn−1 < y∗/N . If z ∈
(
g(ȳn, ȳn−1), pKθ (ȳn)

)
, then the

buyer’s payment capacity is suffi ciently large to finance the purchase of the whole bundle but it is not large
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enough to give the seller a share (1− θ) of the surplus. In that case, both p ≤ z and yn ≤ ȳn bind. In that

regime, as z increases, output is constant at ȳn but the payment increases one-for-one with z.10 Finally, if

z ≥ pKθ (ȳn) then the liquidity constraint is slack, yn = ȳn, and the payment coincides with the proportional

solution.

Figure 5: Buyer’s and seller’s surpluses. u(y) = 2
√
y, υ(y) = y, θ = 0.5

From (31) the buyer’s surplus as a function of his payment capacity is:

ubN (z) =

N∑
n=1

[
I{pKθ (ȳn−1)≤z≤g(ȳn,ȳn−1)} {u [yn(z)]− z}+ I{g(ȳn,ȳn−1)<z<pKθ (ȳn)}[u (ȳn)− z]

]
(33)

+I{z≥pKθ (y∗)}θ [u(y∗)− v(y∗)] .

The first term corresponds to the first case in (31) and is equal to u(yn) − g(yn, ȳn−1), where yn(z) is

the solution to z = g(yn, ȳn−1). The second term is the surplus when all feasibility constraints bind,

corresponding to the second case in (31). Note that the second term does not exist when n = N . The last

term is the surplus when the liquidity constraint is slack.

In Figure 5, we represent the buyer’s and seller’s surpluses for different values of N . The top panel

shows that the buyer’s surplus is non-monotone in z. This non-monotonicity has two origins. First, in the

absence of output limits, the Nash solution generates non-monotone payoffs as the bargaining set expands

– a well-known property of models with liquidity constraints (e.g., Aruoba et al., 2007). This result is
10The allocations generated by our game for all N ≥ 2 do not satisfy the axiom of monotonicity of Gu and Wright (2016),

which underscores the importance of providing strategic foundations to the trading mechanisms in monetary economies.
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illustrated by the purple curve for the case N = 1. Intuitively, the buyer’s surplus is the product of the

buyer’s share, Θ(y), and the total surplus of the match, u(y)− υ(y). As z increases, and hence y increases

toward y∗, Θ(y) decreases while u(y)− υ(y) increases. Close to y∗, the first effect dominates.

The second origin of the non-monotonicity of the buyer’s surplus comes from the output limits, yn ≤ ȳn.

In all rounds before the last, the output limit starts to bind when z reaches the threshold g(ȳn, ȳn−1), in

which case the buyer’s surplus exhibits a kink at a local maximum. As z increases above g(ȳn, ȳn−1), the

output remains unchanged at yn = ȳn while the payment by the buyer keeps increasing until it reaches

pKθ (ȳn) at which point the buyer’s share in the total surplus is exactly θ. Hence, the buyer spends more to

consume the same amount and his surplus decreases. If z increases above pKθ (ȳn), then the buyer has extra

payment capacity, z − pKθ (ȳn), to spend in round n+ 1 and hence his surplus increases with z. Both origins

for the non-monotonicity are based on the fact that the buyer can capture a share of the match surplus that

is greater than his natural share represented by θ when his liquidity constraint is binding.

4 Foundations for Kalai and Nash bargaining

We now turn to the main contribution of the paper and provide unified strategic foundations for the Nash

and Kalai solutions. We begin with the Kalai solution and show that as N goes to infinity, i.e., the size of

the bundle negotiated in each round becomes infinitesimal, the final payoffs and allocations converge to the

ones induced by the proportional solution. This result holds irrespective of the identity of the player making

the first offer in each round and whether or not the risk of termination within each round is significantly

different from zero or not. In contrast, the Nash solution is obtained when N = 1 and the risk of termination

vanishes.

4.1 Main result

Proposition 3 (Strategic foundations for Kalai bargaining: Infinitesimal slicing.) Consider

the limit of the Rubinstein game with sliced bundles as N tends to infinity. Suppose that
(
ξb, ξs

)
=(

e−(1−θ)ε, e−θε
)
for some θ ∈ [0, 1].

1. For any ε > 0 and initial proposer χ ∈ {b, s}, the final allocation, (yχN , p
χ
N ), converges to (y, p) that

solves

p = pχ(y) = min{z, pχ(y∗)}. (34)

2. At the limit ε→ 0, the final allocation, (yχN , p
χ
N ), converges to (y, p) that solves

p = pKθ (y) = min{z, pKθ (y∗)} (35)
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regardless of the identity of initial proposer χ ∈ {b, s}. The sequence of buyer’s surplus functions given

by (33),
{
ubN : R+ → R

}+∞
N=1

, converges uniformly to the surplus under Kalai bargaining defined as:

ub∞(z) = θ {u [y(z)]− v [y(z)]} with y(z) =
(
pKθ
)−1

(z) for z ≤ pKθ (y∗) and y(z) = y∗ otherwise.

According to the first part of Proposition 3, the limit of the SPE of the game as N approaches infinity

coincides with the proportional solution with buyer’s share equal to (1− ξs) /(1 − ξbξs) when the buyer is

the first proposer in all rounds, while that limit coincides with the proportional solution with buyer’s share

reduced to ξb (1− ξs) /(1− ξbξs) when the seller is the first proposer. Thus, the first proposer still has the

first-mover advantage even as N approaches infinity.

The second part of Proposition 3 describes the limit as N → ∞ when the round game has no first-

mover advantage and it shows that the SPE allocation converges to the proportional solution with buyer’s

bargaining share equal to θ and a scaling of the utility functions such that both players assign the same value

to the payment good. Interestingly, the bargaining power of the Nash solution and the bargaining share of

the proportional solution have the same microfoundations based on the relative probabilities that a round of

negotiation ends after an offer has been rejected. Moreover, from the second part of Proposition 3, we have

the following Corollary:

Corollary 1 (Unified foundations for Kalai and Nash.) At the limit ε→ 0, the SPE of the Rubinstein

game with sliced bundles coincides with:

1. the generalized Nash solution with buyer’s bargaining power θ if N = 1;

2. the Kalai’s proportional solution with buyer’s share θ if N = +∞.

Corollary 1 states that the Rubinstein game with sliced bundles provides unified strategic foundations to

two of the most commonly used bargaining solutions in the search-theoretic literature by changing a single

parameter, N . Thus, the key difference between the generalized Nash solution and the proportional solution

is the agenda of the negotiation in terms of the sliced output into bundles to be negotiated sequentially.

If the output is sold in a single round, then the outcome corresponds to the generalized Nash solution. If

output is sliced into infinitesimal bundles, then the outcome is the proportional solution.

4.2 Relation to bargaining games with an agenda

Proposition 3 showed that the convergence to a proportional solution as N goes to infinity is robust to some

details of the game, e.g., who is making the first offer and whether or not the risk of termination vanishes.11

11 In Rocheteau et al. (2019) we provide yet another game with alternating ultimatum offers that also generates the propor-
tional solution as N goes to infinity. The round-game corresponds to a two-stage take-it-or-leave-it-offer game: in the first stage
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We can establish the robustness of this result more generally by turning to an axiomatic approach. O’Neill

et al. (2004) formalize bargaining games with an agenda where the agenda in our context is the collection

of Pareto frontiers,
〈
H(ub, us, y; z) = 0, y ∈ [0, y∗]

〉
. The ordinal solution of O’Neill et al. (2004) imposes

five axioms (Pareto optimality, scale invariance, symmetry, directional continuity, and time-consistency) and

it is shown that the solution is given by the following differential equations (See Rocheteau et al. 2019 for

details):

uχ′(y) = −1

2

∂H(ub, us, y; z)/∂y

∂H(ub, us, y; z)/∂uχ
, χ ∈ {b, s}, (36)

where [ub(y), us(y)] is the path of the solution for y ∈ [0, y∗]. An increase in y by one unit expands the

bargaining set by ∂H/∂y. The maximum utility gain that the buyer could enjoy from this expansion is

− (∂H/∂y) /
(
∂H/∂ub

)
. According to (36), the buyer enjoys half of this gain. From (6), as long as the

liquidity constraint does not bind (if it binds, the game ends), ∂H(ub, us, y; z)/∂y = u′(y) − υ′(y) and

∂H(ub, us, y; z)/∂ub = −1. Hence, ub′(y) = [u′(y)− υ′(y)] /2. Integrating from y = 0, ub = [u(y)− υ(y)] /2,

which corresponds to the egalitarian solution.12 While scale invariance was imposed as an axiom, the

solution exhibits ordinality endogenously: the solution is covariant with respect to any order-preserving

transformation.

4.3 Setting the agenda

Our model can be extended to endogenize the choice of the bargaining solution in an internally consistent

way. To do so, we add an initial stage before the negotiation takes place where one of the players is chosen

at random to unilaterally set the number of rounds of the negotiation, N .

Proposition 4 (Endogenous bargaining solution.) Suppose
(
ξb, ξs

)
=
(
e−(1−θ)ε, e−θε

)
for some θ ∈

[0, 1] and consider the limit as ε→ 0.

1. If the buyer sets the agenda, then N = 1 and the output, ybθ, solves p
GN
θ (ybθ) = min{z, pGNθ (y∗)}.

2. If the seller sets the agenda, then N = +∞ and the output, ysθ, solves p
K
θ (ysθ) = min{z, pKθ (y∗)}.

Moreover, if z < pKθ (y∗), then ysθ < ybθ.

If the buyer sets the agenda of the negotiation, then he chooses to negotiate all the output at once in

a single round and the outcome coincides with the generalized Nash solution. If the seller sets the agenda,

then he sells one infinitesimal bundle at a time. One can build some intuition for this result by comparing (3)

and (5). If the negotiation takes place in a single round, the buyer’s share in the match surplus is Θ(y) > θ

an offer is made; in the second stage the offer is accepted or rejected. The identity of the proposer alternates across rounds.
12One can relax the symmetry axiom in which case the solution of O’Neill et al. (2004) to the bargaining problem with

agenda
〈
H(ub, us, y; z) = 0, y ∈ [0, y∗]

〉
corresponds to the proportional solution for some arbitrary bargaining share.
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for all y < y∗. The buyer extracts a larger share of the surplus because the players recognize that when

the liquidity constraint binds any transfer of output generates a gain for the buyer that is larger than the

seller’s cost, u′(y) > v′(y). In contrast, by negotiating small bundles of output, the seller can avoid binding

liquidity constraints in almost all rounds, which allows the surplus to be shared according to θ.

5 Bargaining with time-varying quantity limits

We now extend our analysis to allow for heterogeneous quantity limits across rounds, and derive conditions

under which the proportional solution is implemented. We consider the version of the game where the risk

of breakdown between offers and counter-offers converges to zero. Hence, the game is equivalent to multiple

rounds of generalized Nash bargaining with endogenous disagreement points.

5.1 Two-round game

Consider the following two-round game with the buyer payment capacity equal to z. In the first round, the

quantity limit is ∆ȳ1 and in the second it is ∆ȳ2, with ∆ȳ1 + ∆ȳ2 = y∗. The game is solved by backward

induction.

We start at the beginning of the second round with the agreement from the first round being (y1, p1) ∈

[0,∆ȳ1]× [0, z]. Since the risk of breakdown is almost zero, the outcome, (y2, p2), is given by the generalized

Nash solution with disagreement payoffs equal to ub1 = u(y1)− p1 and us1 = p1 − υ(y1). Formally,

(y2, p2) ∈ arg max
y,p

[
u(y)− p− ub1

]θ
[−υ(y) + p− us1]

1−θ s.t. y − y1 ≤ ∆ȳ2 and p ≤ z. (37)

We move backward to round 1. First we compute the disagreement allocation for round-1, denoted by

(ŷ1, p̂1). This allocation is the outcome from round-2 negotiation in case round-1 reaches no trade. Thus,

(ŷ1, p̂1) solves (37) with (y1, p1) = (0, 0), i.e.,

(ŷ1, p̂1) ∈ arg max
y,p

[u(y)− p]θ [−υ(y) + p]
1−θ s.t. y ≤ ∆ȳ2 and p ≤ z. (38)

The corresponding payoffs are denoted by (ûb1, û
s
1) ∈ P(∆ȳ2), where P(y) ≡ {(ub, us) : H(ub, us, y; z) = 0}

is the Pareto frontier when the output limit is y. The first-order conditions are:

ûs1
ûb1

≥ 1−Θ(ŷ1)

Θ(ŷ1)
, " = " if ŷ1 < ∆ȳ2

ûs1
ûb1

≤ 1− θ
θ
, " = " if p̂1 < z.

If the constraint, p̂1 ≤ z, does not bind, then ŷ1 = ∆ȳ2 and ûs1/û
b
1 = (1− θ)/θ. If p̂1 ≤ z binds, then either

ŷ1 = ∆ȳ2, in which case the solution is at the kink of the frontier P(∆ȳ2), or ŷ1 < ∆ȳ2.
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Since agents in the first round can perfectly foresee the final outcome following any round-1 allocation,

(y1, p1), they effecitvely negotiate the final allocation, (y2, p2), that is determined as follows:

(y2, p2) ∈ arg max
(y,p)∈O

[u(y)− p− û1]
θ

[−υ(y) + p− ûs1]
1−θ s.t. y ≤ y∗ and p ≤ z, (39)

where O is the set of final allocations that are part of an equilibrium. We solve the game taking O =

[0, y∗]×[0, z]. Later on we will verify that this is without loss of generality by constructing round-1 allocations

that are feasible and lead to the final allocation, (y2, p2).

The solution to (39) can take two forms. First, if p̂1 ≤ z binds, then (ub2, u
s
2) = (ûb1, û

s
1) and a round-1

equilibrium allocation is (y1, p1) = (0, 0), which suggests that the first round of the negotiation is irrelevant.

This case is represented in the top panel of Figure 6. The second possibility is that p̂1 ≤ z does not bind, in

which case ŷ1 = ∆ȳ2 and (ûb1, û
s
1) ∈ P(∆ȳ2) is determined by

ûs1
ûb1

=
1− θ
θ

. (40)

In the bottom panels of Figure 6, (ûb1, û
s
1) is located at the intersection of the yellow frontier, P(∆ȳ2), and

the orange dashed line with slope (1 − θ)/θ. The solution (ub2, u
s
2) to (39) has two subcases. In the first

subcase, p2 ≤ z does not bind, and hence

us2 − ûs1
ub2 − ûb1

=
1− θ
θ

. (41)

This solution is depicted in the bottom left panel in Figure 6 at the intersection of the orange dashed line

with slope (1−θ)/θ and the upper Pareto frontier, P(∆ȳ1 +∆ȳ2) = P(y∗). The final outcome then coincides

with the proportional solution that implements y∗. Otherwise, the liquidity constraint binds, and

us2 − ûs1
ub2 − ûb1

=
1−Θ(y2)

Θ(y2)
, (42)

with Θ(y) given by (4). This case is depicted in the bottom right panel in Figure 6. Using that Θ(y2) > θ

when y2 < y∗, it follows that (ub2, u
s
2) is located to the right of the red dashed line.

The intermediate payoffs in round 1, (ub1, u
s
1), are determined such that the solution to (37) coincides

with (ub2, u
s
2). In the case where p2 ≤ z does not bind, (ub1, u

s
1) ∈ P(∆ȳ1) and us1/u

b
1 = (1 − θ)/θ. See top

panel of Figure 7. If p2 ≤ z binds, we distinguish two possibilities. First, suppose that y2 ≤ ∆ȳ1, that is,

the final allocation is feasible given the round-1 quantity limit. In this case, we can take (ub1, u
s
1) = (ub2, u

s
2).

Otherwise, y2 > ∆ȳ1 and we take y1 = ∆ȳ1. Since p2 ≤ z binds, this implies that

us2 − us1
ub2 − u1

b

=
1−Θ(y2)

Θ(y2)
=
us2 − ûs1
ub2 − ûb1

,
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Figure 6: Two-round game with heterogeneous output limits. Top panel: p̂1 ≤ z binds. Bottom left panel:
p̂1 ≤ z and p2 ≤ z are slack. Bottom right panel: p̂1 ≤ z is slack but p2 ≤ z binds.

which uniquely pins down (ub1, u
s
1) ∈ P(∆ȳ1). The solution can be seen geometrically in Figure 7 where

(ub1, u
s
1) is located at the intersection of the green frontier, P(∆ȳ1), and the red dashed line with slope

[1 − Θ(y2)]/Θ(y2). In the bottom left panel, we assume ∆ȳ1 < ∆ȳ2 and hence the green frontier, P(∆ȳ1),

is below the yellow frontier, P(∆ȳ2); in the bottom right panel, ∆ȳ1 > ∆ȳ2 and hence P(∆ȳ1) is above

P(∆ȳ2). We can now check that p1 ∈ (0, z). It is clear from Figure 7 that us1 < us2, y1 < y2, but p2 = z.

Hence, p1 < z. When y1 = ∆ȳ1 > ∆ȳ2, the right panel shows that us1 > ûs1 ≥ 0 and hence p1 > 0; when

y1 = ∆ȳ1 < ∆ȳ2, the left panel shows that us1 > 0 and hence p1 > 0 as well.

We give two remarks before we move to the general N -round game. First, when ∆ȳ1 = ∆ȳ2, the green

and yellow frontiers, P(∆ȳ1) and P(∆ȳ2), coincide in Figure 7, and hence, (ub1, u
s
1) = (ûb1, û

s
1). Thus, the

disagreement payoffs in round-1 are also the intermediate payoffs at the end of round-1. Second, when

∆ȳ1 6= ∆ȳ2, the disagreement payoffs, (ûb1, û
s
1), are computed using ∆ȳ2. As a result, ∆ȳ2 can affect the

final payoffs even if round-2 is not active in equilibrium. For example, when ∆ȳ1 > y2 > ∆ȳ2, we have

(ub1, u
s
1) = (ub2, u

s
2), that is, the final allocation is achieved in round-1, but (ub2, u

s
2) is determined by ∆ȳ2

alone according to (42).

5.2 N-round game

We consider now a N -round game with time-varying quantity limits, {∆ȳn}Nn=1, where
∑N
n=1 ∆ȳn = y∗.

The following proposition characterizes the SPE final payoffs, which generalizes Proposition 2 for the case
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Figure 7: Two-round game with heterogenous output limits: determination of first-round payoffs.

of time-varying quantities.

Proposition 5 (The chained Nash solution with time-varying quantity limits.) Consider the N -

round game with quantity limit at round-n equal to ∆ȳn, n = 1, 2, ..., N . The final allocation of any SPE is

the last term of the sequence {(ŷn, p̂n)}Nn=1 where (ŷ0, p̂0) = (0, 0) and

(ŷn, p̂n) ∈ arg max
y,p

[u(y)− u(ŷn−1)− (p− p̂n−1)]
θ

[−υ(y) + υ(ŷn−1) + (p− p̂n−1)]
1−θ (43)

s.t. y − ŷn−1 ≤ ∆ȳN−n+1 and p ≤ z.

The proof is by induction (see Appendix). As in Proposition 1, we interpret (ŷn, p̂n) as the final allocation

in the subgame composed of the last n rounds with output limits {∆ȳN−n+j}nj=1 assuming the initial

allocation is (0, 0), i.e., no agreement has been reached in the first N − n rounds. To understand this

interpretation, note that if (ŷn−1, p̂n−1) is the final allocation from the last (n−1) rounds, then (ŷn−1, p̂n−1)

is also the disagreement allocation of the last n-round game that begins at round-(N−n+1). Hence, (ŷn, p̂n)

defined by (43) is the final allocation of a game with the last n rounds. Finally, when n = 1 the disagreement

point is no trade and hence (ŷ0, p̂0) = (0, 0).

So, as in the case with constant output limits studied earlier, the final outcome can be determined

by applying the generalized Nash solution with endogenous disagreement points N consecutive times. In
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contrast to the case with constant limits, the terms of the sequence {(ŷn, p̂n)}N−1
n=1 are not the allocations in

the intermediate rounds. Also in contrast with the constant-limit case, (43) makes the backward-induction

logic of the construction more transparent since (ŷ1, p̂1) is obtained from the quantity limit ∆ȳN , (ŷ2, p̂2) is

obtained from ∆ȳN + ∆ȳN−1, and so on.

Assuming that the constraint p ≤ z does not bind before the last round,

ûsn − ûsn−1

ûbn − ûbn−1

=
1− θ
θ

for all n < N,

usN − ûsN−1

ubN − ûbN−1

=
1−Θ(yN )

Θ(yN )
.

For all n < N , (ûbn, û
s
n) lies at the intersection of P

(∑n
j=1 ∆ȳN−n+j

)
and the line going through the origin

with slope (1 − θ)/θ. The final outcome is at the intersection of the Pareto frontier, P(y∗), and the line

going through (ûbN−1, û
s
N−1) with slope [1−Θ(yN )] /Θ(yN ). So the outcome is identical to the one of the

N = 2 game where the output limit in the first round is ∆ȳ1 and the output limit in the second round is∑N
j=2 ∆ȳj . In particular, if the constraint p ≤ z does not bind in the last round of iteration in (43), then

the final allocation coincides with the proportional solution implementing y∗. This happens if and only if

z ≥ pKθ (y∗), regardless of the output limits. Finally, if the constraint p ≤ z binds before the last iteration in

(43), the final allocation can be computed using the function g analogous to (31).

5.3 Implementation of the proportional solution

We now ask under which conditions the game with time-varying output limits implements the proportional

solution. As mentioned, when z ≥ pKθ (y∗), any N -round game with output limits {∆ȳn}Nn=1 satisfying∑N
n=1 ∆ȳn = y∗ can implement the proportional solution with output level y∗. In this case, the solution

coincides with the generalized Nash solution as the liquidity constraint is slack. So we focus on the case

where z < pKθ (y∗), and denote yKθ (z) < y∗ the ouput level under the proportional solution, i.e., the solution

to z = pKθ (yKθ ).

Proposition 6 (Implementation of the proportional solution with time-varying output limits.)

Suppose that z < pKθ (y∗). A game characterized by
〈
z, {∆ȳn}Nn=1

〉
implements the proportional solution if

and only if there exists a round NK
θ (z) ≤ N such that

NKθ∑
n=1

∆ȳN−(n−1) = yKθ (z). (44)

If N = 2, the proportional solution is implemented if and only if ∆ȳ2 = yKθ .
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Proposition 6 characterizes the set of all finite sequences of output limits, {∆ȳn}Nn=1, that implement the

proportional solution. For {∆ȳn}Nn=1 to implement y
K
θ , there must be an intermediate round, denoted N

K
θ ,

such that the sum of the output limits in the last NK
θ rounds is exactly equal to yKθ . In particular, y

K
θ can

be obtained from a sequence with N = 2 terms, ∆ȳ1 = y∗ − yKθ , and ∆ȳ2 = yKθ .
13

The ‘if’part of Proposition 6 provides a condition to implement the proportional solution that is only

valid for a given z as yKθ =
(
pKθ
)−1

(z). The ‘only if’part implies that a given {∆ȳn}Nn=1 implements y
K
θ

only if z = pKθ

(∑n
j=1 ∆ȳN−j+1

)
for n = 1, ..., N . As a result, for a given agenda, there are only finitely

many payment capacities under which the proportional solution is implementable. So one cannot use a game

with a finite agenda to rationalize the use of the proportional solution in models where z is endogenous. In

order to implement the proportional solution for all z, we need to look beyond finite agendas and consider

limits of finite sequence of output limits as N becomes large.

In order to define those limits, we introduce an alternative representation of {∆ȳn}Nn=1 as a non-decreasing

step function, y : [0, 1]→ [0, y∗], such that y(0) = 0, and

y(t) =

N∑
n=1

∆ȳnI{t>(n−1)/N}. (45)

In this alternative representation, t is the virtual time of the negotiation and y(t) is the cumulative output

considered for negotiation up to t. We expand this set to include any function, ȳ, that can be expressed

as the limit of finite agendas of the form given by (45) according to the sup-norm, and we use A to denote

the expanded set of all agendas. We define the outcome from negotiation under a limiting agenda, ȳ ∈ A,

as the limit of a sequence of equilibrium outcomes obtained from a sequence of finite agendas that converge

to ȳ.14 We say that a limiting agenda, ȳ, is continuous if it is a continuous function from [0, 1] to [0, y∗].

The following proposition characterizes the range of allocations achievable from agendas in A, and the set of

agendas that implement the proportional solution for all payment capacities. For any z < pGNθ (y∗) = pKθ (y∗),

we use yGNθ (z) be denote the solution to z = pGNθ (y).

Proposition 7 (Uniform implementation of the proportional solution.) If z ≥ pKθ (y∗), then any

y ∈ A implements the proportional solution, p = pKθ (y∗) and y = y∗. If z < pKθ (y∗), then for all y ∈ A,

p = z and y ∈
[
yKθ (z), yGNθ (z)

]
. Moreover, y ∈ A implements yKθ (z) for all z ≥ 0 if and only if it is

continuous.

Proposition 7 shows that the proportional solution is uniformly implementable across z by any continuous

agenda in A. Any such agenda can be discretized into finite agendas of N rounds and is the limit of those
13We thank an anonymous referee for pointing out this result.
14See the Appendix for a precise definition of these limits and the proof of their existence and uniqueness.
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finite agendas as N goes to infinity, where the output limits converge to zero uniformly.15 This result extends

part 2 of Proposition 3 to the case of heterogeneous output limits. Conversely, Proposition 7 also shows

that, for any discontinuous agenda, the final allocation differs from the proportional solution for a positive

measure of z’s. This result suggests that, in order to provide a strategic foundations to the proportional

solution based on extensive-form games with alternating offers, gradualism is necessary.

6 Bargaining with endogenous liquidity constraints

In general equilibrium, the payment capacity of buyers (e.g., their holdings of money or liquid assets, their

borrowing capacity...) is endogenous and depends critically on the trading mechanism. In this section, we

explore the implications of agenda setting in the Rubinstein game with sliced bundles for the choice of z,

allocations, and social effi ciency. To do so, we endogenize the buyer’s payment capacity by assuming that

the buyer chooses z at some cost ιz before being matched. We think of ι ≥ 0 as the opportunity cost of

holding assets in a liquid form or an interest rate on a loan. For instance, in a model where z represents real

money balances (e.g., Lagos and Wright, 2005), ι is the nominal interest rate on illiquid bonds adjusted by

the probability of entering a pairwise meeting. Throughout the section we assume that the risk of breakdown

in each round of the negotiation converges to zero.

6.1 Endogenous liquidity constraints under an exogenous agenda

For now we consider the game with homogeneous output limits, y∗/N , and we vary N from one to infinity

to trace out the role of the agenda for the choice of z. An optimal payment capacity is:

z∗N ∈ Z∗N ≡ arg max
z≥0

{
−ιz + ubN (z)

}
, (46)

where Z∗N is the set of all maximizers and the objective between brackets is the buyer’s surplus from an

N -round negotiation, ubN (z), net of the cost of obtaining z units of payment, ιz. For all N ≥ 1 and all ι ≥ 0,

(46) admits a solution in
[
0, pKθ (y∗)

]
.

Suppose first that buyers have "deep pockets" in that they can borrow at no cost, ι = 0. The next

proposition generalizes a key and paradoxical result from Lagos and Wright (2005) for N = 1 (generalized

Nash bargaining) according to which the buyer does not find it optimal to carry enough liquidity to purchase

y∗, i.e., z∗1 < pKθ (y∗) for all θ < 1.

Proposition 8 (Bargaining-induced liquidity constraint.) Suppose ι = 0. For all N ≥ 1 and all

θ ∈ (0, 1), z∗N < pKθ (y∗) for all z∗N ∈ Z∗N . As N →∞, any selection from Z∗N converges to pKθ (y∗).

15 In the proof we show that any continuous and increasing function y : [0, 1] → [0, y∗] with y(0) = 0 and y(1) = y∗ belong
to the set A.
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Proposition 8 shows that it is optimal for the buyer to invest in a payment capacity lower than what is

necessary to maximize the match surplus, pKθ (y∗), because by tightening his liquidity constraint the buyer

raises his share of the surplus in the last round of the negotiation, Θ(y).16 It is only at the limit, when

slicing is infinitesimal, that the buyer invests in a payment capacity that is large enough to finance y∗, i.e.,

the strategic effect of a binding liquidity constraint vanishes.

Figure 8: Optimal payment capacity and output when ι = 0

We illustrate this result in the top panels of Figure 8 where we plot the solution to (46) as a function of

N .17 The relation between z∗N and N is non-monotone as illustrated by the top left panel of Figure 8. In

order to explain this non-monotonicity, we plot ubN (z) in Figure 9 for N ∈ {1, 2, 3, 4}. The maximum surplus

of the buyer when N ∈ {2, 3} is obtained at z = g(ȳ1, 0), when the buyer brings just enough liquidity to

purchase one bundle. As the bundle size, ȳ1 = y∗/N , decreases with N , so does z∗N . As N increases above

4, ubN (z) evaluated at g(ȳ1, 0) no longer reaches a maximum. In that case it is optimal for the buyer to hold

enough liquidity to purchase multiple bundles and z∗N jumps upward closer to pK0.5(y∗).

The bottom panels plot the equilibrium final y, denoted by y(z∗N ), for different values of N . Under

generalized Nash bargaining (N = 1), y(z∗1) is slightly less than 60 percent of the first best. In the language

of monetary theory, the Friedman rule (ι = 0) fails to implement the first best when prices are determined

according to the generalized Nash solution (Lagos and Wright, 2005). Under proportional bargaining (N =

+∞), y(z∗∞) = 1, which corresponds to the first best. In-between these two polar cases, output varies in a

non-monotone fashion with N . The lowest value for y is obtained when N = 3, in which case output is about

16For a related result in the context of an over-the-counter market where agents on both sides of the market choose how much
asset to bring in a match and bargain according to the generalized Nash solution, see Lebeau (2019).
17The examples are obtained for the following functional forms and parameter value: u(y) = 2

√
y, υ(y) = y, and θ = 1/2.

The payment capacity necessary to purchase y∗ = 1 is pK0.5(y
∗) = 1.5.
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one third of the first best. Hence, the parameter N , which distinguishes Nash from Kalai bargaining, plays

a critical role to assess the size of the ineffi ciencies in economies with bargaining under liquidity constraints.

Figure 9: Buyer’s surplus for N ∈ {1, 2, 3, 4}

We now illustrate the effect of increasing the cost of the payment capacity, ι. In the left panel of Figure

10, we plot z∗N as a function of N when ι = 0.1. Compared against Figure 8, it shows that when N is large,

z∗N falls from about 1.5 to about 1.2. The fall in z∗ is much more dramatic for lower values of N . Suppose,

for instance, that N = 9, as illustrated in the right panel of Figure 10. If ι = 0, z∗N is close to 1.5 but as

ι rises to 10% z∗N drops to about 0.25. This result shows that N is of paramount importance to quantify

the effects of binding liquidity constraints, e.g., due to inflation (see Lagos and Wright, 2005, for such an

exercise), and the Nash solution (N = 1) does not provide a lower bound for the size of this effect.

Figure 10: Left: Optimal payment capacity when ι = 0.1; Right: Buyer’s net surplus for ι ∈ {0, 0.1}

6.2 Liquidity constraint with an endogenous agenda

If the agenda of the negotiation is endogenous, it might depend on the cost of liquidity, ι, thereby providing

an additional channel through which ι affects allocations and welfare. For now, we assume that agendas have
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constant output limits across rounds so that the choice of the agenda is reduced to a choice of N . Later, we

consider the case of a general agenda composed of time-varying output limits.

The timing of the game is as follows. First, before being matched with a seller, the buyer chooses his

payment capacity, z∗. Second, once the match is formed, the buyer sets N with probability λ; otherwise,

the seller is the one to choose the agenda. Third, agents bargain according to the agenda. From Proposition

4, the optimal payment capacity of the buyer then solves

z∗ ∈ arg max
z≥0

{
λub1(z) + (1− λ)ub∞(z)

}
. (47)

From (47) the buyer chooses his payment capacity to maximize his expected surplus where, from Proposition

4, with probability λ the buyer chooses N = 1, and, with complement probability 1 − λ, the seller sets

N = +∞. Note that this result remains the same regardless of whether the seller observes the choice of z

or not when it is his turn to choose N . For the next proposition, we assume that preferences are such that

ub1(z) is strictly concave over
(
0, pK(y∗)

)
. (For such conditions, see, e.g., Lagos and Wright, 2005.)

Proposition 9 (Endogenous liquidity constraint and agenda setting.) Suppose ι = 0, λ ∈ (0, 1),

and θ ∈ (0, 1). The optimal payment capacity of the buyer, z∗, decreases with the buyer’s probability to set

the agenda, λ.

If λ = 0, then z∗ = pK(y∗) and ex ante welfare, E [u(y)− v(y)], is maximum. As λ increases above 0, the

payment capacity falls below pK(y∗) and ex ante welfare is reduced.

Now we turn to endogenous agendas with time-varying output limits, and we focus on the case where

the seller is the one who sets the agenda (λ = 0). The seller can choose any agenda of the form, {∆ȳn}Nn=1,

including limits of sequences of finite agendas as described in Section 6.3. We consider two versions of the

game regarding the observability of the buyer’s payment capacity at the time when the seller sets the agenda.

Proposition 10 (Endogenous liquidity constraint with time-varying output limits.) Consider

two versions of the game: in the first, the seller observes the buyer’s choice of z before choosing an

agenda y ∈ A; in the second, the seller chooses an agenda y ∈ A without observing z, but z is re-

vealed when they start negotiating. In either version, a SPE exists, and in any SPE, the buyer chooses

z ∈ arg max
{
−ιz + u

[
yKθ (z)

]
− pKθ (z)

}
. Moreover, any continuous y ∈ A is an equilibrium agenda in

either version.

1. In the first version, any finite agenda {∆ȳn}Nn=1 that satisfies (44) is an equilibrium agenda.

2. In the second version, no finite agenda is an equilibrium agenda.
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When output limits are parts of the design of the agenda, an agenda with N = 2 rounds exists that

implements the proportional solution, as shown in Proposition 6. However, Proposition 10 shows that such

equilibria are not robust when observability of z is dropped. The intuition for this result goes as follows. The

best response of the seller to a payment capacity z is an agenda that implements the proportional solution.

Suppose that the agenda is finite. There exists a profitable deviation by the buyer that consists in lowering

her payment capacity by a small amount so that her liquidity constraints binds in the last round, thereby

raising her surplus. In contrast, continuous agendas implement the proportional solution and achieve the

highest surplus for the seller for all z ≥ 0, and hence are weakly dominant strategies. This result holds true

even if there is unobservable heterogeneity in buyer’s preference or cost of liquidity, ι.

7 Conclusion

We constructed a game according to which a buyer who is subject to a liquidity constraint and a seller

bargain over bundles of potentially different sizes sequentially according to a Rubinstein alternating-offer

game. The game formalizes the problem of the determination of the terms of trade, both quantities and

prices, in bilateral matches commonly found in the search-theoretic literature. We characterized the SPE

analytically and show the same game admits the generalized Nash solution as the outcome when N = 1,

i.e, when the output is negotiated all at once, and the proportional solution when N = +∞ and when the

output is negotiated one infinitesimal bundle at a time. If the agenda of the negotiation, i.e., the number of

rounds and the output limit at each round, is chosen prior to the bargaining, the buyer sets N = 1, which

implements the generalized Nash solution, while the seller adopts N = +∞ and infinitesimal bundles in

all rounds, which implements the proportional solution, thereby endogenizing the choice of the bargaining

solution internally. We also endogenized the buyer’s payment capacity and showed the liquidity constraint

binds for all N < +∞ even when liquidity is costless. These results show the importance of going deeper

into the strategic foundations of bargaining games under liquidity constraints commonly used in the search

literature, and open new ways to reconsider bargaining problems with divisible goods and assets.
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Appendix: Proofs of Propositions

Proof of Proposition 1

Throughout the proof we assume that the buyer is making the first offer in each round, χ = b. The case

where the seller is the first proposer is analogous.

Part 1. We first show the existence of a unique joint solution to (24)-(26) and (27)-(29) for given (ybj−1, p
b
j−1).

Suppose that pbj−1 < z. Let ubj ≡ u(ybj) − pbj and usj ≡ −v(ysj ) + psj denote the values to the maximization

problems. We also show that the solution satisfies ybj > ybj−1, y
s
j > ybj−1, p

b
j > pbj−1 and p

s
j > pbj−1.

We first characterize the solution to (24)-(26) when usj is taken as given. If u
s
j = usj−1 ≡ −v(ybj−1) + pbj−1

then the set {(y, p) satisfies (25)-(26)} is nonempty and convex. See green area in figure below. From the

strict concavity of the objective, a solution exists and is unique and it is such that ubj = ūbj , the solution to

H(ūbj , u
s
j−1, y

b
j−1 + y∗/N, z) = 0, where H defined by (6) describes the Pareto frontier. With the change of

variable x ≡ p− pbj−1 and ω(y) ≡ υ(y)− v(ybj−1), the problem reduces to

ūbj = max
y

{
u(y)− ω(y)− pbj−1

}
s.t. y ≤ min

{
ω−1

(
z − pbj−1

)
, ybj−1 +

y∗

N

}
.

Using that u′(ybj−1) > ω′(ybj−1) since ybj−1 < y∗ and the fact that the upper bound on y is strictly higher than

ybj−1 (because p
b
j−1 < z), the optimal y > ybj−1 and hence ū

b
j > u(ybj−1)− pbj−1. Graphically, (ybj−1, p

b
j−1) is

located to the left of the buyer’s indifference curve in the figure below.

b
jp 1−

b
jy 1−

N
yyb

j
*

1 +−

Seller’s
acceptance rule Buyer’s

indifference curve

Set
of feasible

offers

Buyer’s optimal offer if usj = usj−1.

If usj = ūsj solves H(ubj−1, ū
s
j , y

b
j−1 + y∗/N, z) = 0, then ubj > ubj−1 as long as ξ

s < 1, where ubj solves the

buyer’s problem with usj = ūsj . To see this, note that the allocation (ȳsj , p̄
s
j) corresponding to ū

s
j ≡ −v(ȳsj )+p̄sj
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is such that u(ȳsj )− p̄sj = u(ybj−1)− pbj−1. This implies that the seller’s payoff is

−v(ȳsj ) + p̄sj = u(ȳsj )− v(ȳsj )−
[
u(ybj−1)− pbj−1

]
.

From (25) at equality, the buyer’s surplus is

ubj − ubj−1 = (1− ξs)
{
u(ȳsj )− v(ȳsj )−

[
u(ybj−1)− v(ybj−1)

]}
> 0,

where we have used that any allocation on the Pareto frontier corresponding to ybj−1 + y∗/N is such that

y > ybj−1. Graphically, ū
s
j corresponds to the upper, dashed acceptance rule of the seller in the figure below.

It is such that the dashed buyer’s indifference curve goes through (ybj−1, p
b
j−1). The actual acceptance rule

of the seller when it is the buyer’s turn to make an offer is between this upper curve and the lower dotted

curve going through (ybj−1, p
b
j−1). The buyer’s optimal offer is located to the right of (ybj−1, p

b
j−1), which

illustrates the fact that ubj > ubj−1.

b
jp 1−

b
jy 1−

N
yyb

j
*

1 +−

Seller’s
acceptance rule

Buyer’s
indifference curveSet

of feasible
offers

Buyer’s optimal offer if usj = ūsj .

For the clarity of notations, we use ubj(u
s) to denote the solution to (24)-(26) with usj = us. As mentioned,

ubj(u
s) is well defined since the solution is unique, and, by the Theorem of Maximum, the optimal buyer

offer, (yb, pb), is continuous in us. Moreover, by monotonicity, the relevant range of ubj(u
s) is

[
ubj−1, ū

b
j

]
.

Finally, the set of us for which pb = z is compact, and note that ubj(u
s) is differentiable when pb < z. The

derivitives are given by ∂ubj/∂u
s = −ξs if p ≤ z does not bind and ∂ubj/∂us = −

[
u′(yb)/v′(yb)

]
ξs whenever

differetiable. Note that although there are potentially kinks when pb = z, it will not affect our argument.

Using the same reasoning for the seller’s problem, (27)-(29), if ubj = ubj−1 then u
s
j = ūsj > usj−1 and if
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ubj = ūbj then u
s
j > usj−1. Moreover, with the same arguments as before, ∂u

s
j/∂u

b = −ξb if p ≤ z does not

bind and ∂usj/∂u
b = − [v′(ys)/u′(ys)] ξb otherwise.

Now we claim that the slope of the solution to the seller’s problem, usj(u
b) (represented in blue in the

figure below), is steeper in absolute value than the slope of the solution to the buyer’s problem, ubj(u
s)

(represented in red) within the space (us, ub) ∈
[
usj−1, ū

s
j

]
×
[
ubj−1, ū

b
j

]
. Consider two points, (usj , u

b
j) on the

blue curve (that is, usj solves the seller problem with optimal offer (ys, ps)) and (usj , u
b′
j ) on the red curve

(that is, ubj solves the seller problem with optimal offer (yb, pb)). If the constraint p ≤ z is not binding

at both, then the product of derivitives, ∂usj/∂u
b × ∂ubj/∂us evaluated at the two corresponding points, is

ξbξs < 1. If the constraint p ≤ z are binding for both the buyer’s problem and the seller’s, then it is easy to

verify that yb > ys and ∂usj/∂u
b× ∂ubj/∂us = [v′(ys)/u′(ys)]

[
u′(yb)/v′(yb)

]
ξsξb < 1. If the constraint p ≤ z

is binding for the buyer’s problem but not the seller’s, then ∂usj/∂u
b × ∂ubj/∂us =

[
u′(yb)/v′(yb)

]
ξsξb < 1.

Finally, one can verify that it cannot be the case that the constraint is binding at the seller’s problem but

not the buyer’s for such two points.

Hence, there exists a unique solution in
[
usj−1, ū

s
j

]
×
[
ubj−1, ū

b
j

]
. By monotonicity, any solution will also

line within this range and hence it is unique globally. The solution is such that: ybj = ybj−1 + y∗/N if pbj < z

and pbj = z otherwise; ysj = ybj−1 + y∗/N if psj < z and psj = z otherwise. It is also easy to check with a proof

by contradiction that pbj ≤ psj .

b
ju

s
ju

),( 11
b
j

s
j uu −−

b
ju

s
ju

Unique solution to the buyer’s and seller’s problems

Part 2. Having established that the problems (24)-(26) and (27)-(29) admit a unique solution, we now

show that these solutions can be used to construct a SPE of our game and uniqueness of the SPE payoffs.
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Let V bn (o) and V sn (o) denote the values of a buyer and a seller in a subgame starting at the beginning

of the nth round with the interim allocation o = (yn−1, pn−1) ∈ [0, (n− 1)y∗/N ] × [0, z). Let On(o) ⊆

[yn−1, yn−1 + (N − n+ 1)y∗/N ]× [pn−1, z] the set of all terminal allocations that can be achieved in a SPE

in that subgame. By backward induction, we can effectively assume that offers in round n are elements of

On(o). Then, the players’values in the subgame are V bn (o) = u(yb)− pb and V sn (o) = −υ(yb) + pb where the

buyer’s and seller’s offers,
(
pb, yb

)
and (ps, ys), solve:

(yb, pb) ∈ arg max
(y,p)∈On(o)

{u(y)− p} (48)

s.t. − υ(y) + p ≥ (1− ξs)V sn+1(o) + ξs [−v(ys) + ps] (49)

and

(ys, ps) ∈ arg max
(y,p)∈On(o)

{−υ(y) + p} (50)

s.t. u(y)− p ≥ (1− ξb)V bn+1(o) + ξb
[
u(yb)− pb

]
. (51)

According to (48)-(49) the buyer’s offer maximizes his surplus subject to the constraint that it has to be

accepted by the seller. The reservation payoff to the seller, on the right side of (49), is the weighted average

of the seller’s surplus if it is his turn to make the offer and his surplus if the negotiation in round n breaks

down where the weights are given by the probabilities of the two events. In the event of a breakdown,

the negotiation enters round n + 1 with interim allocation o, hence the seller’s payoff is V sn+1(o). The

determination of the seller’s offer according to (50)-(51) has a similar interpretation. Thus, we only need

to show that the value functions can be computed according to (24)-(26) and (27)-(29), that is, the final

allocation of a subgame starting in round n with initial allocation o = (yn−1, pn−1) is (ybN , p
b
N ) as given by

the last term of the sequence
{

(ybj , p
b
j , y

s
j , p

s
j)
}N
j=n

in the statement of the proposition. Once this is proved,

by the one-stage-deviation principle, it follows that these strategies form a SPE.

The proof is by induction from n = N,N−1, and so on, and the induction base is n = N . In round N , the

subgame has a single round and o = (yN−1, pN−1). In this case, ON (o) = [yN−1, yN−1 + y∗/N ] × [pN−1, z]

and V bN+1(o) = 0 = V bN+1(o). We have shown the existence and uniqueness of a solution to (48)-(51) in Part

1, and it is given by (ybN , p
b
N , y

s
N , p

s
N ) according to the program (24)-(26) and (27)-(29). Moreover, it also

shows that V bN (o) and V sN (o) are uniquely determined, which follows from uniqueness of the one-round game

given in Rubinstein (1982) (see also Osborne and Rubinstein (1994) for how to extend the argument to the

model with risk of breakdown).

Suppose, by induction, that the statement holds for the subgame starting in round n+1. Then, V bn+1(o) =

u(ybN−1)− pbN−1 and V
s
n+1(o) = −υ(ybN−1)− pbN−1. We now move to the beginning of round n, and consider
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two cases. First, if pbN−1 = z, then the buyer can guarantee a payoff of V bn+1(o) while the seller can guarantee

V sn+1(o). Since there is no feasible allocation that can make both parties better off, it is optimal for both to

propose and accept no trade in this round. This shows that it must be the case that V bn (o) = V bn+1(o) and

V sn (o) = V sn+1(o), and this coincides with the solution to the program (24)-(26) and (27)-(29).

Second, suppose that pbN−1 < z. Suppose, for a moment, that the set of terminal allocations starting

from o is the set of all feasible allocations. This implies that the solutions to (48)-(49) and (50)-(51) coincide

with (pbN , y
b
N ) and (psN , y

s
N ). To see this, note that the maximization problems are identical to (24)-(26) and

(27)-(29) when the set of terminal allocations is

On(o) =

{
(y, p) ∈

[
ybN−1, y

b
N−1 +

y∗

N

]
×
[
pbN−1, z

]}
.

We showed in Part 1 that the constraints y ≥ ybN−1 and p ≥ pbN−1 do not bind for both the buyer and the

seller’s problems. Moreover, ybN−1 = yn−1 + (N − n)y∗/N if pbN−1 ≤ z does not bind. So, even if we allow

agents to negotiate over allocations in the largest set of feasible allocations,

O′n(o) =

[
yn−1, yn−1 +

(N − n+ 1)y∗

N

]
× [pn−1, z] .

the outcome is still (ybN , p
b
N ) and (ysN , p

s
N ). Since we know that this solution is an outcome of the SPE by

the induction hypothesis, and since O′n(o) is a superset of all achievable allocations from the SPE, it follows

that the solution is the unique final equilibrium allocation. Again, uniqueness of the SPE within the round

game (when pbN−1 < z) follows the standard argument. This completes the induction argument. Note also

that the solutions to (48)-(49) and (50)-(51) specify equilibrium strategies for all subgames, and the implied

equilibrium strategies are such that there is no trade in round n if V bn (o) = V bn+1(o) and V sn (o) = V sn+1(o).

Finally, we add two remarks. First, although we have shown the uniqueness of the SPE final payoffs,

there can be multiple SPE that achieve the same payoffs. In particular, if pbn = z for some n < N in the

sequence
{

(ybn, p
b
n, y

s
n, p

s
n)
}N
n=1

, then there is always a SPE where agents propose no trade in the first N − N̂

rounds, where N̂ is the smallest n such that pbn = z. However, the players can also agree on some trades in

earlier rounds that lead to the same outcome. Second, the proof is not affected if we assumed the number of

rounds is N > N and hence Ny∗/N > y∗. The only place that requires modification is that, besides the case

pbN−1 = z, we also need to consider ybN−1 ≥ y∗. But this also leads to the same result that V bn (o) = V bn+1(o)

and V sn (o) = V sn+1(o) and all the rest still follows.
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Proof of Proposition 2

Part 1. First, we characterize the solution to (30), which can be solved recursively by considering the following

problem (where (ŷ, p̂) corresponds to the disagreement point):

max
(y,p)
{[u(y)− p]− [u(ŷ)− p̂]}θ{[−v(y) + p]− [−v(ŷ) + p̂]}1−θ,

s.t. p ≤ z, y ≤ ȳ.
(52)

The FOC (after taking log on the objective function) is given by

θu′(y)

[u(y)− p]− [u(ŷ)− p̂] −
(1− θ)v′(y)

[−v(y) + p]− [−v(ŷ) + p̂]
≥ 0, ” = ” if y < ȳ; (53)

−θ
[u(y)− p]− [u(ŷ)− p̂] +

1− θ
[−v(y) + p]− [−v(ŷ) + p̂]

≥ 0, ” = ” if p < z. (54)

The solution depends on two critical values of z. To define the thresholds, first define

p̄ = [(1− θ)u(ȳ) + θv(ȳ)]− [(1− θ)u(ŷ) + θv(ŷ)] + p̂,

and, for all 0 ≤ ŷ ≤ y ≤ y∗, define

h(y, ŷ, p̂) = {[1−Θ(y)]u(y) + Θ(y)v(y)]} − {[1−Θ(y)]u(ŷ) + Θ(y)v(ŷ)}+ p̂. (55)

Note that Θ(y) is given by (4) and h(y, ŷ, p̂) = g(y, ŷ) with p̂ = pKθ (ŷ) = (1 − θ)u(ŷ) + θv(ŷ), where the

function g is given by (32). By concavity of u and convexity of v, h(y, ŷ, p̂) < p̄ as long as y < y∗.

Then, it is straightforward to verify that, to satisfy (53) and (54),

1. if z ≥ p̄, the solution is (y, p) = (ȳ, p̄);

2. if h(ȳ, ŷ, p̂) < z ≤ p̄, the solution is (y, p) = (ȳ, z);

3. if p̂ < z ≤ h(ȳ, ŷ, p̂), the solution is p = z and y satisfying h(y, ŷ, p̂) = z.

Now, we apply these solutions iteratively to solve the sequence (30). To simplify notation we denote

ȳn ≡ ny∗/N . Let N̂ satisfy

pKθ (ȳN̂−1) < z ≤ pKθ (ȳN̂ ). (56)

Then, for all n < N̂ , case 1 applies and the constraint p ≤ z never binds. By induction the payment is given

by pn = pKθ (ȳn). When n = N̂ , the solution is

(yN̂ , pN̂ ) =

{
(ȳN̂ , z) if z > g(ȳN̂ , ȳN̂−1),

(y, z) that solves g(y, ȳN̂−1) = z if z ≤ g(ȳN̂ , ȳN̂−1),
(57)

and the sequence remains constant after N̂ . Note that the solution (yN̂ , pN̂ ) is continuous in z.
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Part 2. Here we show convergence. We assume that the buyer makes the first offers, and the seller case

is analogous. The standard argument (c.f. Osborne and Rubinstein (1994), Proposition 310.3) shows that

as the risk of termination vanishes, the SPE payoff in the round-game converges to the Nash solution. We

need two modifications. First, the disagreement payoff in our round game is endogenously determined by

the outcome from the previous round; second, we allow for asymmetry. To do so, recall that ξb and ξs are

given by

ξb = e−(1−θ)ε and ξs = e−θε. (58)

Consider the sequence computed according to (24)-(29). To emphasize that the solution {(ybn, pbn, ysn, psn)}Nn=1

depends on ε through (ξb, ξs), we denote obn(ε) = (ybn, p
b
n) and osn(ε) = (ysn, p

s
n), and ub(o) = u(y) − p and

us(o) = −v(y) + p for o = (y, p).

Now, for each n, let oNn denote the solution to (30), and let ôn(ε) denote the solution to (30) but with

(yn−1, pn−1) given by obn−1(ε) for n > 1. We show by induction that

lim
ε→0

ôn(ε) = oNn = lim
ε→0

obn(ε) = lim
ε→0

osn(ε) for all n = 1, .., N. (59)

Consider n = 1. By (25) and (28) and (58), we have (note that ub[(0, 0)] = 0 = us[(0, 0)])

{ub[ob1(ε)]}θ{us[ob1(ε)]}1−θ = {ub[os1(ε)]}θ{us[os1(ε)]}1−θ. (60)

As in the standard argument, since (ub[ob1(ε)], us[ob1(ε)]) and (ub[os1(ε)], us[os1(ε)]) both lie on the Pareto

frontier H(ub, us, ȳ1; z) = 0 while oN1 maximizes (ub)θ(us)1−θ over the same frontier (which, as shown in the

main text, is strictly concave), and since ub[os1(ε)] < ub[ob1(ε)], it follows that

ub[os1(ε)] < ub(oN1 ) < ub[ob1(ε)]. (61)

Taking ε to zero, (25) and (28) imply that os1(ε) and ob1(ε) coincide at the limit and (61) implies that the

limit is oN1 .

Now, suppose, by induction, that (59) holds for n. By (25) and (28) for n+ 1, we have

ub[osn+1(ε)]− ub[obn(ε)] = ξb{ub[obn+1(ε)]− ub[obn(ε)]},

us[obn+1(ε)]− us[obn(ε)] = ξs{us[osn+1(ε)]− us[obn(ε)]},

which, together with (58), in turn imply that

{ub[osn+1(ε)]− ub[obn(ε)]}θ{us[osn+1(ε)]− us[obn(ε)]}1−θ

= {ub[obn+1(ε)]− ub[obn(ε)]}θ{us[obn+1(ε)]− us[obn(ε)]}1−θ.
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Following the same argument as n = 1, we have

ub[osn+1(ε)] ≤ ub[ôn+1(ε)] ≤ ub[obn+1(ε)]. (62)

Note that we may have equality as the constraint p ≤ z may be binding in obn(ε). Since the Nash solution is

continuous in the disagreement payoff, it follows that limε→0 ôn+1(ε) = oNn+1, and since o
s
n+1(ε) and obn+1(ε)

coincide at the limit, (62) implies that the limit is oNn+1.

Proof of Proposition 3

Part 1. Here we prove the case χ = b. The other case is similar. First we characterize the binding payment

constraint when the buyer is making the first offers. Again, we denote ȳn ≡ ny∗/N . In this case, when the

constraint p ≤ z is not binding in either the buyer’s or the seller’s problem, the payment at round n is given

by p̄s(ȳn, ȳn−1), where the function p̄s(y, ȳ) is

p̄s(y, ȳ) =

(
1− ξb

)
u(y) + ξb (1− ξs) υ(y)

1− ξbξs
−

(
1− ξb

)
(1− ξs) [u(ȳ)− v(ȳ)]

1− ξbξs
.

Note that p̄s(y, y) = pb(y). Then,

1. if z ≥ p̄s(ȳm, ȳm−1) for all m ≤ n, then (ybn, p
b
n) = [ȳn, p

b(ȳn)] and (ysn, p
s
n) = [ȳn, p̄

s(ȳn, ȳn−1)];

2. otherwise, either pbn = z, or ybn = ȳn.

The payments p̄s(ȳn, ȳn−1) may not be increasing with n. However, for N suffi ciently large, p̄s(ȳn, ȳn−1)

strictly increases with n. Given these results, we show convergence. We consider two cases: first, z < pb(y∗);

second, z ≥ pb(y∗).

First consider the case where z < pb(y∗). For N large, there is a unique N̂(N) satisfying

p̄s(ȳN̂ , ȳN̂−1) ≤ z < p̄s(ȳN̂+1, ȳN̂ ). (63)

Define ŷN ≡ ȳN̂(N) for such N’s. It then follows that (ybn, p
b
n) = [ȳn, p

b(ȳn)] for all n ≤ N̂ . We can then

rewrite (63) as

p̄s(ŷN , ŷN − y∗/N) ≤ z < p̄s(ŷN + y∗/N, ŷN ).

Taking N to infinity, it follows that ŷN converges to the unique y that solves pb(y) = z. Note that p̄s(y, y) =

pb(y). This also implies that

lim
N→∞

p̄s(ŷN , ŷN − y∗/N) = z = lim
N→∞

pb(ŷN ).
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The result then follows from the observation that, the final y in the whole game with N rounds, yN , satisfies

ŷN ≤ yN ≤ ŷN + v−1[z − pb(ŷN )].

Hence, both yN and ŷN converge to the unique y < y∗ that solves pb(y) = z.

Now, consider the case where z > pb(y∗). Following the same reasoning as above, for N large, N̂(N) = N

and ŷN = y∗. The knife-edge case where z = pb(y∗) follows from continuity in z.

Part 2. From Proposition 2, for given N , the final allocation is the last term of the sequence {(yn, pn)}Nn=1

obtained from (30) and (y0, p0) = (0, 0). If pKθ (y∗) > z, then there exists N̂(N) ≤ N such that pn = pKθ (ȳn)

for all n < N̂ and the final allocation is (yN̂ , z). By the same logic as in Part 1 and 2, as N → +∞,

(yN̂ , pN̂ )→ (y, p) solution to p = pKθ (y) = z.

We now show the uniform convergence of the buyer’s payoff to his payoff under proportional bargaining.

Note that for z ≥ pKθ (y∗), ubN (z) = θ[u(y∗) − v(y∗)] for all N and hence we only need to show uniform

convergence over z ∈ [0, pKθ (y∗)]. For all z ∈ [pKθ (ȳn−1), pKθ (ȳn)], the buyer’s surplus defined in (33), ubN (z),

is bounded from above by

Θ(ȳn−1) {[u(ȳn)− v(ȳn)]− [u(ȳn−1)− υ(ȳn−1)]}+ θ [u(ȳn−1)− υ(ȳn−1)] .

Indeed, for z ∈ [pKθ (ȳn−1), g(ȳn, ȳn−1)], this bound is obtained since yn(z) is bounded by ȳn while Θ[yn(z)]

is bounded by Θ(ȳn−1); for z ∈ [g(ȳn, ȳn−1), pKθ (ȳn)], ubN (z) is maximized at z = g(ȳn, ȳn−1) and hence the

same bound applies. We now establish that ubN (z) converges uniformly to ub∞(z) = θ [u(y)− υ(y)], where

y(z) is defined by pKθ (y) = z, as N → +∞. First, note that ubN (z) ≥ ub∞(z) for all z. Second, for all

z ∈ [pKθ (ȳn−1), pKθ (ȳn)], ub∞(z) is bounded below by θ [u(ȳn−1)− υ(ȳn−1)]. It follows that

∣∣ubN (z)− ub∞(z)
∣∣ ≤ N∑

n=1

I{pKθ (ȳn−1)≤z≤pKθ (ȳn−1)}Θ(ȳn−1) {[u(ȳn)− v(ȳn)]− [u(ȳn−1)− υ(ȳn−1)]}

for all z ∈
[
0, pKθ (y∗)

]
. Using that Θ(y) is decreasing and u(y)− υ(y) is concave,

∣∣ubN (z)− ub∞(z)
∣∣ ≤ u(ȳ1)− v(ȳ1) = u

(
y∗

N

)
− v

(
y∗

N

)
for all z ∈

[
0, pKθ (y∗)

]
.

As N tends to ∞, the right side converges to 0. Hence, ubN converges to ub∞ uniformly.

Proof of Corollary 1

The case where N = 1 follows from Proposition 2. Note that g(y, 0) = pGNθ (y). The case where N = +∞

follows from Proposition 3 (2).
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Proof of Proposition 4

Part 1: Buyer’s optimal choice. From (31) the payment made by the buyer to purchase y ∈ [ȳn−1, ȳn] is

bounded below by g(y, ȳn−1). By the definition of the function g in (32), g(y, ȳ) > g(y, 0) for all y < y∗

and for all ȳ > 0. It follows immediately that it is weakly optimal for the buyer to choose N = 1, which

corresponds to the payment function g(y, 0).

Part 2: Seller’s optimal choice. From (32)

g(y, ȳ) = pKθ (y)− [Θ(y)− θ] {[u(y)− υ(y)]− [u(ȳ)− υ(ȳ)]} < pKθ (y) for all y ∈ (ȳ, y∗).

Hence, from (31) the payment for given y is bounded above by pKθ (y). For any y the payment corresponds

to some p ∈
[
pKθ (y − y∗

N ), pKθ (y + y∗

N )
]
. Hence, as N tends to infinity, the payment converges to its upper

bound, pKθ (y). Therefore, it is optimal for the seller to choose N = +∞.

Proof of Proposition 5

We prove the proposition, assuming only that
∑N
n=1 ∆ȳn ≤ y∗. To compute the final allocation, we show

by induction that in a subgame consisting of the last n rounds with output limits {∆ȳN−n+j}nj=1 and with

intermediate allocation (ŷ0, p̂0) = (0, 0), the equilibrium final allocation is given by the term (ŷn, p̂n) obtained

from (43). The induction base is n = 1, which corresponds to the subgame in the last round. In this case,

the disagreement point is no trade, and hence (ŷ1, p̂1) is the generalized Nash solution to the bargaining

problem with disagreement payoff (0, 0) and quantity limit ∆ȳN .

Now, suppose that the claim holds for n, and consider the subgame consisiting of the last (n+ 1) rounds

with intermediate allocation (0, 0). This subgame starts in round-(N−n), and the disagreement point follows

from the induction hypothesis: if the agents move to the next round with intermediate allocation (0, 0), the

final allocation would be (ŷn, p̂n). The agents negotiate on outcomes in the set(y, p) : y ∈

0,

n+1∑
j=1

∆ȳN−(n+1)+j

 , p ∈ [0, z]

 .

With disagreement allocation (ŷn, p̂n), the generalized Nash solution is then the term (ŷn+1, p̂n+1) obtained

from (43), and this completes the induction argument. For this argument to hold, however, we need to

ensure that the solution is sustainable as a SPE outcome, which requires existence of intermediate offers

that lead to the final allocation, an issue we deal with next.

Intermediate payoffs

Following the same logic as above, the final allocation for a subgame that starts in round-(n + 1) with

some arbitrary intermediate allocation (yn, pn) (and with output limits {∆ȳn+j}N−nj=1 ) is the last term of the
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following sequence with j = 1, 2, ..., N − n, and with (ỹn, p̃n) = (yn, pn),

(ỹn+j , p̃n+j) ∈ arg max
y,p

[u(y)− u(ỹn+j−1)− (p− p̃n+j−1)]
θ

[−υ(y) + υ(ỹn+j−1) + (p− p̃n+j−1)]
1−θ

s.t. y − ỹn+j−1 ≤ ∆ȳN+1−j and p ≤ z. (64)

In terms of final payoffs, if the liquidity constraint p̃N ≤ z does not bind, the final payoffs, denoted by

(ubN , u
s
N ), satisfy

(ubN , u
s
N ) ∈ P

yn +

N−n∑
j=1

∆ȳn+j

 and
usN − usn
ubN − ubn

=
1− θ
θ

.

Otherwise, the constraint binds somewhere in the sequence, say at j = J ≤ N − n. The final payoffs satisfy

(ubN , u
s
N ) ∈ P

yn +

J∑
j=1

∆ȳN−j+1

 , (65)

and

ũsn+J−1 − usn
ũbn+J−1 − ubn

=
1− θ
θ

, (66)

usN − ũsn+J−1

ubN − ũbn+J−1

<
1− θ
θ

, (67)

usN − ũsn+J−1

ubN − ũbn+J−1

≥ 1−Θ(yN )

Θ(yN )
, “ = ” if yN < yn +

J∑
j=1

∆ȳN−j+1. (68)

Note that (65) and (66)-(68) uniquely pin down (ubN , u
s
N ).

We are now in the position to construct the intermediate payoffs. First, consider the case where the

liquidity constraint p̂N ≤ z does not bind in (43). In this case, the final payoffs are given by

(ubN , u
s
N ) ∈ P

 N∑
j=1

∆ȳj

 and
usN
ubN

=
1− θ
θ

. (69)

The following intermediate payoffs at the end of round-n will lead to the final allocation given by (69):

(ũbn, ũ
s
n) ∈ P

 n∑
j=1

∆ȳj

 and
ũsn
ũbn

=
1− θ
θ

. (70)

Now we turn to the case where the liquidity constraint p̂n ≤ z binds for some n in (43). With no loss of

generality, we assume that it binds only at the very end, i.e., at (yN , pN ) = (ŷN , p̂N ) when we compute the

sequence according to (43). If it binds earlier, say at (ŷn, p̂n), then we can use the same argument but assume

no trade from rounds 1 to N − n. This assumption is with no loss of generality because
∑N
n=1 ∆ȳn ≤ y∗.
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In this case, the sequence {(ûbn, ûsn)}Nn=1 satisfies

ûsn
ûbn

=
1− θ
θ

and (ûbn, û
s
n) ∈ P

 n∑
j=1

∆ȳN−n+j

 for n < N,

usN − ûsN−1

ubN − ûbN−1

<
1− θ
θ

, (71)

usN − ûsN−1

ubN − ûbN−1

≥ 1−Θ(yN )

Θ(yN )
, “ = ” if yN <

N∑
j=1

∆ȳj . (72)

Now, take θ′ ∈ (0, 1) satisying
1− θ′

θ′
=
usN − ûsN−1

ubN − ûbN−1

, (73)

the buyer’s share of surplus from the last round. Then, yN and pN = z satisfy

z = (1− θ′)

u(yN )− u

 N∑
j=2

∆ȳj

+ θ′

v(yN )− v

 N∑
j=2

∆ȳj

 (74)

+(1− θ)u

 N∑
j=2

∆ȳj

+ θv

 N∑
j=2

∆ȳj

 .

By (71) and (72), θ < θ′ ≤ Θ(yN ).

Now we claim that for each n = 1, ..., N − 1, there exist intermediate payoffs (ubn, u
s
n) with associated

allocation, (yn, pn), such that the final allocation of the subgame starting at round-(n+1) with intermediate

allocation (yn, pn) will be (yN , pN ) according to (64). We consider two cases.

(a) Suppose that
∑n
j=1 ∆ȳj ≥ yN . Then, take (yn, pn) = (yN , pN ).

(b) Suppose that
∑n
j=1 ∆ȳj < yN . Then, take yn =

∑n
j=1 ∆ȳj , and hence the payoffs (ubn, u

s
n) will lie on the

Pareto frontier P
(∑n

j=1 ∆ȳj

)
. For the final payoffs to be (ubN , u

s
N ) from (ubn, u

s
n), we need them to satisfy

(65)-(68). We do this in two steps: first we construct J and (ũbn+J−1, ũ
s
n+J−1), and from there we compute

(ubn, u
s
n).

(b.1) We use (65) to uniquely determine J and hence J satisfies

n∑
j=1

∆ȳj +

J−1∑
j=1

∆ȳN+1−j < yN ≤
n∑
j=1

∆ȳj +

J∑
j=1

∆ȳN+1−j .

To determine (ũbn+J−1, ũ
s
n+J−1), take θ′ from (73) and let (ũbn+J−1, ũ

s
n+J−1) solve

usN − ũsn+J−1

ubN − ũbn+J−1

=
1− θ′

θ′
, (ũbn+J−1, ũ

s
n+J−1) ∈ P

 n∑
j=1

∆ȳj +

J−1∑
j=1

∆ȳN+1−j

 . (75)

This implies that ỹn+J−1 =
∑n
j=1 ∆ȳj +

∑J−1
j=1 ∆ȳN+1−j . Since θ

′ ∈ (θ,Θ(yN )], it can be verified that

(ũbn+J−1, ũ
s
n+J−1) satisfy the FOCs (67)-(68).
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(b.2) From (ũbn+J−1, ũ
s
n+J−1) we can compute (ubn, u

s
n) according to (66):

ũsn+J−1 − usn
ũbn+J−1 − ubn

=
1− θ
θ

, (ubn, u
s
n) ∈ P

 n∑
j=1

∆ȳ

 . (76)

Finally, we show that pn ∈ (0, z). From (75) and (76) we can compute pn as follow:

pn = z − (1− θ′)[u(yN )− u(ỹn+J−1)]− θ′[v(yN )− v(ỹn+J−1)] (77)

− (1− θ)

u(ỹn+J−1)− u

 n∑
j=1

∆ȳj

− θ
v(ỹn+J−1)− v

 n∑
j=1

∆ȳj

 .
This implies that pn < z, because yN > ỹn+J−1 >

∑n
j=1 ∆ȳj . Moreover, by (74), after some algebra it can

be verified that pn > 0 if and only if

(1− θ)u

 n∑
j=1

∆ȳj

+ θv

 n∑
j=1

∆ȳj

 > (θ′ − θ)

S(ỹn+J−1)− S

 N∑
j=2

∆ȳj

 , (78)

where S(y) ≡ u(y)− v(y). If ỹn+J−1 ≤
∑N
j=2 ∆ȳj , S(ỹn+J−1)−S

(∑N
j=2 ∆ȳj

)
≤ 0, (78) holds immediately.

Now consider the case where ỹn+J̃−1 >
∑N
j=2 ∆ȳj , which implies that

n∑
i=1

∆ȳi > ∆ȳ1 − (∆ȳn+1 + · · ·+ ∆ȳN−J+1) = ỹn+J−1 −
N∑
j=2

∆ȳj . (79)

Now,

(1− θ)u

 n∑
j=1

∆ȳj

+ θv

 n∑
j=1

∆ȳj

 > (θ′ − θ)S

 n∑
j=1

∆ȳj


> (θ′ − θ)S

ỹn+J−1 −
N∑
j=2

∆ȳj

 > (θ′ − θ)

S(ỹn+J−1)− S

 N∑
j=2

∆ȳj

 ,
where the first inequality follows from θ′ > θ, the second from (79), and the third from the concavity of S.

This proves (78).

Proof of Proposition 6

Let z < pKθ (y∗) be given. Suppose first that there exists a round NK
θ ≤ N such that

∑NKθ
n=1 ∆ȳN−(n−1) =

yKθ (z). Then, it is straightforward to verify that the liquidity constraint in (43) never binds from term 1 to

term NK
θ , and

ûs
NKθ

ûb
NKθ

=
1− θ
θ

and (ûbNKθ
, ûsNKθ

) ∈ P[yKθ (z)],

which is the definition of the proportional solution. Conversely, suppose that no such NK
θ exists. Define

N̂ = min{n ≤ N : p̂n = z}, the first round of the sequence {(ŷn, p̂n)}Nn=1 where p̂n ≤ z binds. It follows
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that ûs
N̂−1

/ûb
N̂−1

= (1 − θ)/θ, ŷN̂−1 =
∑N̂−1
n=1 ∆ȳN−(n−1), and

∑N̂
n=1 ∆ȳN−(n−1) 6= yKθ (z). Suppose, by

contradiction, that the game still implements the proportional solution. Then, it must be the case that ŷN̂ =

yKθ (z) <
∑N̂
n=1 ∆ȳN−(n−1) ≤ y∗. This then implies that the output limit is not binding, but the liquidity

constraint is, and hence the solution (ûb
N̂
, ûs
N̂

) satisfies (ûs
N̂
− ûs

N̂−1
)/(ûb

N̂
− ûb

N̂−1
) = [1−Θ(ŷN̂ )]/Θ(ŷN̂ ) but

with Θ(ŷN̂ ) > θ since ŷN̂ < y∗, a contradiction.

Outcomes of limiting agendas

Here we define agendas in A and their outcomes more precisely. First, a function ȳ : [0, 1]→ [0, y∗] is in A

if and only if there is a sequence of finite agendas, {yk}∞k=1, such that

lim
k→∞

sup
t∈[0,1]

|yk(t)− ȳ(t)| = 0. (80)

Any finite agenda y is in A by taking the constant sequence. It also includes any continuous and increasing

y : [0, 1]→ [0, y∗] such that y(0) = 0, y(1) = y∗, which is the limit of the sequence,
{
yN
}∞
N=1

, given by

yN (t) = y
( n
N

)
for t ∈

(
n− 1

N
,
n

N

]
, n = 1, .., N.

Each yN is a finite agenda that discretizes y by N rounds of output limits {∆ȳn}Nn=1 such that ∆ȳn =

y
(
n
N

)
− y

(
n−1
N

)
. Since y is uniformly continuous, yN converges to y under the sup-norm. One instance

is ȳ(t) = ty∗, which is the limit of the sequence {yN}∞N=1 such that each y
N represents {∆ȳn}Nn=1 with

∆ȳn = y∗/N . For any agenda y ∈ A, which is the limit of a sequence of finite agendas, {yk}∞k=1, we define

the outcome for agenda y as the limit of the outcomes from those finite agendas. Denote the equilibrium

allocation from the finite agenda yk and payment capacity z by [y(yk; z), p(yk; z)]. We define

[y(y; z), p(y; z)] = lim
k→∞

[y(yk; z), p(yk; z)] (81)

to be the allocation from (y, z). The following lemma shows that the limit (81) always exists and is inde-

pendent of the sequence that converges to the limiting agenda.

Lemma 1 For any y ∈ A, y is left-continuous and the limit (81) exists and is the same for any sequence

{yk}∞k=1 that converges to y under the sup-norm:

(1) If z ≥ pKθ (y∗), then [y(y; z), p(y; z)] = [y∗, pKθ (y∗)].

(2) Otherwise, p(yk; z) = z. We have two cases.

(2a) If y is continuous, then y(y; z) = yKθ (z).

(2b) If y is discontinuous, then there exists t such that

pKθ [y∗ − y(t)] ≥ z > pKθ [y∗ − lim
t′↓t

y(t′)], (82)

47



and

y(y; z) solves z = g[y, y∗ − lim
t′↓t

y(t′)] if z ≤ g[y∗ − y(t), y∗ − lim
t′↓t

y(t′)], (83)

y(y; z) = y∗ − y(t) otherwise.

Proof. Let y ∈ A and let {yk}∞k=1 converge to y under the sup-norm.

(1) Note that if z ≥ pKθ (y∗), then [y(yk; z), p(yk; z)] = [y∗, pKθ (y∗)] for all k, and hence the limit exists

and is equal to [y∗, pKθ (y∗)].

(2) Since z < pKθ (y∗), for any k we have p(yk; z) = z and hence the limit. To find the output level so

that the liquidity constraint exactly binds, the relevant output level is y∗ − y(t) from Proposition 5. If Nk,

the number of rounds in the finite agenda yk, is bounded by someM < +∞, then y must be a finite agenda.

Indeed, this implies that each yk is fully determined by the vector [yk(1/M ′),yk(2/M ′), ...,yk(M ′/M ′)],

where M ′ = 1 × 2 × ... ×M , and yk → y implies that [yk(1/M ′),yk(2/M ′), ...,yk(M ′/M ′)] converges to

[y(1/M ′),y(2/M ′), ...,y(M ′/M ′)], with y constant in between any two adjacent points. Thus, y is a finite

agenda.

(2a) y is continuous for all t ∈ [0, 1]. We prove y(y; z) = yKθ (z) by two steps. First, we claim that for

any output limits, {∆ȳn}Nn=1, and any ε > 0,

sup
n
|∆ȳn| < ε =⇒ |y

(
{∆ȳn}Nn=1; z

)
− yKθ (z)| < ε for all z < pKθ (y∗), (84)

where y
(
{∆ȳn}Nn=1; z

)
is the equilibrium output under output limits, {∆ȳn}Nn=1, and payment capacity, z. To

see this, suppose that supn |∆ȳn| < ε. For each n, let ȳn =
∑n
j=1 ∆ȳN−(j−1), and let z ∈ (pKθ (ȳn−1), pKθ (ȳn)].

Thus, yKθ (z) ∈ (ȳn−1, ȳn] and y({∆ȳn}Nn=1, z) ∈ (ȳn−1, ȳn]. This then impies that

|yKθ (z)− y({∆ȳn}Nn=1; z)| ≤ ∆ȳN−n+1 < ε.

Since this is true for all z < pKθ (y∗), (84) follows.

Second, we claim that for any ε > 0, for k large, supn ∆ȳkn < ε, where {∆ȳkn}Nkn=1 is the output limits

corresponding to yk. Given this claim, the result follows immediately from (84). To prove the claim, first

note that continuity of y implies that it cannot be a finite agenda, and hence, by the earlier argument,

Nk → ∞. Moreover, since [0, 1] is a compact set, y is uniformly continuous. Thus, for any ε > 0, for

suffi ciently small δ, |y(t)−y(t′)| < ε/3 whenever |t− t′| < δ. Since yk → y in sup-norm and since Nk →∞,

for k suffi ciently large, 1/Nk < δ and supt∈[0,1] |yk(t)− y(t)| <ε/3 and hence, for all n,

∆ȳkn = yk
(
n

Nk

)
− yk

(
n− 1

Nk

)
<

∣∣∣∣yk ( n

Nk

)
− y

(
n

Nk

)∣∣∣∣+

∣∣∣∣y( n

Nk

)
− y

(
n− 1

Nk

)∣∣∣∣+

∣∣∣∣yk (n− 1

Nk

)
− y

(
n− 1

Nk

)∣∣∣∣ < ε.
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This proves that y(y; z) exists and is equal to yKθ (z).

(2b) Suppose that y is not continuous. Since yk → y under the sup-norm for a sequence of finite agendas,

and since each yk is left-continuous, y is also left-continuous. The existence of t satisfying (82) then follows

from strict monotonicity of pKθ (y) up to y∗.

Now, if {Nk} is bounded by M , by the earlier argument, each yk can be regarded as output limits

consisting of M ′ = M ! rounds (including potentially limits of zeros in some rounds, which does not affect

the equilibrium outcome). Since the equilibrium outcome is continuous in {∆ȳn}M
′

n=1 for the fixed M
′, the

limit of the outcome sequence must coincide with the outcome of y.

So assume form now on that {Nk} is unbounded. By applying subseqeucne if necessary, we consider only

the case where Nk →∞. We consider two cases for z.

(2b.1) Suppose that z = pKθ [y∗ − y(t)] does not hold for any t, and hence

pKθ [y∗ − y(t)] > z > pKθ [y∗ − lim
t′↓t

y(t′)] for some t. (85)

Denote y+(t) ≡ limt′↓t y(t′) > y(t) by (85). For any finite k, let nk be the unique n such that

t ∈ [nk/Nk, (nk + 1)/Nk). (86)

Since both inequalities in (85) are strict, let ε > 0 be such that the middle term is at least ε away from the left

and the right. Convergence under sup-norm implies that for k large, yk[(nk + 1)/Nk] > y[(nk + 1)/Nk]− ε >

y+(t)− ε, and yk(nk/Nk) < y(nk/Nk)− ε < y(t)− ε. This then implies that

pKθ

[
y∗ − yk

(
nk + 1

Nk

)]
< z < pKθ

[
y∗ − yk

(
nk
Nk

)]
.

As a result,

y(yk; z) solves z = g

[
y, y∗ − yk

(
nk + 1

Nk

)]
if z ≤ g

[
y∗ − yk

(
nk
Nk

)
, y∗ − yk

(
nk + 1

Nk

)]
,

y(yN ; z) = y∗ − yk
(
nk
Nk

)
otherwise. (87)

Compare (87) to (83), we only need to show that

lim
k→∞

yk
(
nk + 1

Nk

)
= y+(t) and lim

k→∞
yk
(
nk
Nk

)
= y(t).

This follows form (86), which implies that nk+1
Nk

converges to t from the right and nk
Nk

converges to t from

the left, and from the uniform convergence of yk to y.

(2b.2) Suppose that z = pKθ [y∗ − y(t)] for some t. We claim that

y(y; z) = yKθ (z) = y∗ − y(t). (88)
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Let T be the set of t’s such that z = pKθ [y∗ − y(t)]. Then T = [t1, t2] or T = (t1, t2] for some t1 ≤ t2 since

y is left-continuous and increasing. Moreover, y(t) > y(t2) for all t > t2 and y(t) < y(t1) for all t < t1, and

y(t1) < y(t2) if T = (t1, t2]. For each k, let nk be the unique n such that

pKθ

[
y∗ − yk

(
nk
Nk

)]
≥ z > pKθ

[
y∗ − yk

(
nk + 1

Nk

)]
. (89)

This implies that

yk
(
nk
Nk

)
≤ y(t2) < yk

(
nk + 1

Nk

)
. (90)

We consider two cases.

First, suppose that y is continuous for all t ∈ [t1, t2]. We claim that

lim
k→∞

yk
(
nk
Nk

)
= lim
k→∞

yk
(
nk + 1

Nk

)
= y(t2). (91)

This implies that limk→∞ y(yk; z) = y∗−y(t2) because, by (89), y∗−yk
(
nk+1
Nk

)
≤ y(yk; z) ≤ y∗−yk

(
nk
Nk

)
.

Since
{
nk
Nk

}
lies in the compact set [0, 1], we may assume it converges by applying subsequences if necessary.

By uniform convergence and monotonicity, (90) implies that its limit t must be within [t1, t2]. (91) then

follows from continuity of y at t and uniform convergence of yk to y.

Second, suppose that y is discontinuous at both t1 and t2, and hence y(t1) < y+(t1) = y(t2) < y+(t2).

These inequalities, together with uniform convergence, monotonicity, and (90), imply that
{
nk
Nk

}
is bounded

above by t2 except for finitely many elements, and
{
nk+1
Nk

}
is bounded below by t1 except for finitely

many elements. Thus, by applying subsequence if necessary, we may assume that limk→∞

{
nk
Nk

}
= t =

limk→∞

{
nk+1
Nk

}
with t ∈ [t1, t 2]. We consider three subcases. First, t ∈ (t1, t 2). Using the same argument

as in the first case, we can show (91) holds. Seond, t = t1. If
{
nk
Nk

}
is bounded below by t1, then the

argument is the same and (91) holds. Otherwise, we may assume that
{
nk
Nk

}
converges to t1 from the left

and
{
nk+1
Nk

}
converges to t1 from the right. Uniform convergene of yk implies that

lim
k→∞

yk
(
nk
Nk

)
= y(t1) < y+(t1) = y(t2) = lim

k→∞
yk
(
nk + 1

Nk

)
. (92)

For each k, by (89), we can then compute y(yk; z) in the same way as in (87). Since z = pKθ [y∗− y(t2)] =

g [y∗ − y(t2), y∗ − y(t2)], it follows that for k large, y(yk; z) solves z = g
[
y, y∗ − yk

(
nk+1
Nk

)]
. Thus, by

continuity of g and (92), limk→∞ y(yk; z) = y∗− y(t2). The third subcase where t = t2 follows an analogous

argument. This proves (88). Finally, the case with y discontinuous at t1 but not t2, or the other way around,

follows analogous arguments.
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Proof of Proposition 7

The result that for any y ∈ A and any z < pKθ (y∗), p(y; z) = z and y(y; z) ≥ yKθ (z) follows from Lemma 1

(1). Lemma 1 (2) implies that only continuous agendas implement the proportional solution for all z. Indeed,

let y be discontinuous at some t ∈ [0, 1] such that y+(t) > y(t). Then, (83) implies that y(y; z) > yKθ (z) for

all z ∈ (pKθ [y∗ − y+(t)], pKθ [y∗ − y(t)]). Finally, the result that y(y; z) ≤ yGNθ (z) follows from the fact that

g(y, 0) = pGNθ (y) and g is strictly increasing in its second argument.

Proof of Proposition 8

We denote z∗N ∈ Z∗N a maximizer of ubN (z) where

Z∗N ≡ arg max
z∈[0,pKθ (y∗)]

ubN (z).

The set Z∗N is nonempty by the Extreme Value Theorem, because ubN (z) is continuous and
[
0, pKθ (y∗)

]
is

compact. We first establish that for all N ≥ 1, z∗N < pKθ (y∗). From (32),

g

(
y∗,

(N − 1)y∗

N

)
≡ (1− θ)u(y∗) + θv(y∗) = pKθ (y∗).

Hence,
[
g(y∗, (N − 1)y∗/N), pKθ (y∗)

]
=
{
pKθ (y∗)

}
. It follows from (33) that in the last round of the negoti-

ation, if z ∈
[
pKθ (ȳN−1), pKθ (y∗)

]
, then the buyer’s surplus is

ub(z) = u [y(z)]− g [y(z), ȳN−1] ,

where y(z) is implicitly defined by z = g (y, ȳN−1). From (32),

u(y)− g(y, ȳ) ≡ Θ(y) {[u(y)− v(y)]− [u(ȳ)− υ(ȳ)]}+ θ [u(ȳ)− υ(ȳ)]

It can be checked that u′(y) − ∂g(y, ȳ)/∂y < 0 when evaluated at y = y∗ for all θ < 1. Indeed, Θ′(y∗) < 0

while u′(y∗) − v′(y∗) = 0. So, the optimal z over the interval
[
pKθ (ȳN−1), pKθ (y∗)

]
is z < pKθ (y∗). For all

z ≥ pKθ (y∗), the buyer’s surplus is constant and equal to θ [u(y∗)− v(y∗)]. Hence, z∗N < pKθ (y∗).

Next we establish that any sequence, {z∗N}+∞N=1, with z
∗
N ∈ Z∗N for all N , converges to pKθ (y∗). By the

Bolzano-Weierstrass Theorem, since the sequence {z∗N}+∞N=1 is bounded, it admits a convergent subsequence.

Consider any such convergent subsequence, {z∗
Ñ
}, where z∗

Ñ
→ z∗∞ denotes the limit. We show that z∗∞ =

pKθ (y∗). To this end, we show that for any ε > 0,

ub∞(z) ≤ ub∞(z∗∞) + ε for all z ∈
[
0, pKθ (y∗)

]
, (93)

which then implies that ub∞ obtains maximum at z
∗
∞. Since Z

∗
∞ = {pKθ (y∗)}, i.e., there is a unique maximizer

under Kalai bargaining and it is pKθ (y∗). This then implies that z∗∞ = pKθ (y∗). It then follows that all

convergent subsequences of {z∗N}+∞N=1 converge to same limit p
K
θ (y∗), hence {z∗N}+∞N=1 converges to p

K
θ (y∗).
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Now we prove (93). Let ε > 0 be given. By the definition of a maximizer,

ub
Ñ

(z∗
Ñ

) ≥ ub
Ñ

(z) for all z ∈
[
0, pKθ (y∗)

]
.

By Proposition 3, as Ñ goes to infinity, ub
Ñ
converges uniformly to ub∞. Thus, there exists N̂ such that for

all Ñ ≥ N̂ , ub
Ñ

(z∗
Ñ

) ≤ ub∞(z∗
Ñ

) + ε/2. Hence,

ub∞(z) ≤ ub
Ñ

(z) ≤ ub
Ñ

(z∗
Ñ

) ≤ ub∞(z∗
Ñ

) + ε/2 for all z ∈
[
0, pKθ (y∗)

]
,

where we used that ub∞(z) ≤ ubN (z) for all N < +∞. As z∗
Ñ
converges to z∗∞ as Ñ goes to infinity, and

by the continuity of ub∞(z), there exists N̆ such that for all Ñ ≥ N̆ ,
∣∣∣ub∞(z∗

Ñ
)− ub∞(z∗∞)

∣∣∣ ≤ ε/2. This then

implies that, for all z ∈
[
0, pKθ (y∗)

]
,

ub∞(z) ≤ ub∞(z∗
Ñ

) + ε/2 ≤ ub∞(z∗∞) + ε.

This then proves (93).

Proof Proposition 9

Both ub1(z) ≡ u
[
yGNθ (z)

]
−z, where yGNθ (z) is defined implicitly by pGNθ (y) = z, and ub∞(z) ≡ u

[
yKθ (z)

]
−z,

where yKθ (z) is defined by pKθ (y) = z, are differentiable over [0, pKθ (y∗)). For all z ≥ pKθ (y∗), λub1(z) + (1 −

λ)ub∞(z) = θ [u(y∗)− v(y∗)]. The derivative of the buyer’s expected surplus, λub1(z) + (1 − λ)ub∞(z), when

evaluated at z = pKθ (y∗)− is negative for all λ > 0 and θ < 1. Hence, z∗ < pKθ (y∗). Since we assume that

ub1(z) is strictly concave (and since ub∞(z) is strictly concave by the strict concavity of u and convexity of

v), from (47) the optimal z∗ is the unique solution to the first-order condition

λub′1 (z∗) + (1− λ)ub′∞(z∗) = 0.

Using that ub′∞(z) > 0 for all z < pKθ (y∗), the optimal solution must satisfy ub′1 (z∗) < 0. By the implicit

function theorem,
∂z∗

∂λ
=

ub′∞(z∗)− ub′1 (z∗)

λub′′1 (z∗) + (1− λ)ub′′∞(z∗)
< 0.

Proof of Proposition 10

We first show that a SPE exists, where the buyer chooses z that satisfies

z ∈ arg max
{
−ιz + u

[
yKθ (z)

]
− pKθ (z)

}
. (94)

and the seller chooses a continuous y. Since by Proposition 7, for any z the seller’s payoffs are bounded

above by the proportional solution which can be achieved by a continuous y, in either version such agenda
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is optimal, regardless of the buyer’s choice. Given that the seller chooses a continuous y, z is optimal if it

solves (94). This proves the existence. Note that this also pins down the equilibrium payoffs for both agents.

Now we consider the version where z is observed by the seller before setting the agenda. Since for given

z any agenda that satisfies (44) also implements the proportional solution for z, it is also a best response for

the seller and hence an equilibrium agenda.

Finally, suppose that the seller does not observe z when setting the agenda. We claim that any finite

agenda, {∆ȳn}Nn=1, cannot be an equilibrium agenda. The proof is by contradiction and suppose that

{∆ȳn}Nn=1 is an equilibrium agenda. Moreover, suppose that z is the equilibrium payment capacity chosen

by the buyer. We claim that (i) z < pKθ (y∗) and (ii)
∑J
j=1 ∆ȳN+1−j = yKθ (z) for some J < N . To prove

(i), suppose that, by contradiction, z ≥ pKθ (y∗). Then the outcome is [y∗, pKθ (y∗)]. But then the buyer can

deviate to z′ = pKθ (y∗) − ε for some small ε > 0 and do better, which follows from the fact the buyer’s

surplus is decreasing when y is close to y∗. This proves (i). Now consider (ii). Since the seller can expect the

equilibrium z, his optimal response is to obtain the surplus according to the proportional solution, and this

requires
∑J
j=1 ∆ȳN+1−j = yKθ (z) for some J . Since equilibrium z < pKθ (y∗) by (i), this implies that J < N .

Now, if the buyer brings z − ε′ for ε′ > 0 but small, then

g

 J∑
j=1

∆ȳN+1−j ,

J−1∑
j=1

∆ȳN+1−j

 < z − ε′ < pKθ

 J∑
j=1

∆ȳN+1−j


and hence the final output would still be y =

∑J
j=1 ∆ȳN+1−j , and this is a profitable deviation for the buyer.
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