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ABSTRACT

This study presents the first demonstration of the transferability of a convolutional
neural network (CNN) trained to detect microseismic events in one fiber-optic Dis-
tributed Acoustic Sensing (DAS) dataset to other datasets. DAS is being increasingly
used for microseismic monitoring in industrial settings and the dense spatial and tem-
poral sampling provided by these systems produces large data volumes (approximately
650 GB/day for a 2 km-long cable sampling at 2000 Hz with a spatial sampling of 1 m),
requiring new processing techniques for near real-time microseismic analysis. Here we
train the CNN known as YOLOv3, an object detection algorithm, to detect microseis-
mic events using synthetically-generated waveforms with real noise superimposed. The
performance of the CNN network is compared to the number of events detected using
filtering and amplitude threshold (STA/LTA) detection techniques. In the dataset from
which the real noise is taken the network is able to detect >80% of the events identified
by manual inspection and 14% more than detected by standard frequency-wavenumber
filtering techniques. The false detection rate is approximately 2% or 1 event every 20 s.
In other datasets, with monitoring geometries and conditions previously unseen by the
network, >50% of events identified by manual inspection are detected by the CNN.

INTRODUCTION

Distributed acoustic sensing

In recent years, seismic monitoring has seen the development of a novel sensing technology:
Distributed Acoustic Sensing (DAS). This technology makes use of Rayleigh scattering of
laser light in fiber-optic cables to measure strain-rate on a fiber (see Hartog (2017) for an
introduction). A fiber interrogator emits a laser pulse down the fiber and records the back-
scattered light (Figure 1). The phase-difference between the back-scattered light from two
points in the fiber is analysed for each channel (equivalent to a receiver). The distance
between the two points is termed the gauge length. Changes in strain along the fiber
caused by, for example, the passing of a seismic wave, result in changes in the recorded
signal (Ning and Sava, 2018; Hartog, 2017). One significant advantage of DAS is that
fibers can be kilometers long and channels are closely spaced, on the order of metres,
and therefore thousands of measurements are obtained, providing dense sampling of the
wavefield. For example, assuming a seismic velocity of 2500 m/s and a signal frequency of
100 Hz, a 2000 Hz sampling frequency and a 1 m channel spacing produce 25 samples per



Stork et al. 2 DAS microseismic event detection

Laser pulse sent 
down optical fibre.

Interrogator processes 
backscattered light. 

Gauge length Channel spacing

Light is backscattered 
and measured at 

intervals of predefined 
gauge length.

Phase difference 
across a gauge 

length is assigned 
to channels.

Figure 1: Schematic showing the measurement principle of DAS. A laser pulse is transmitted
down the fiber. The phase difference in back-scattered light is measured over a gauge length
at points separated by the channel spacing.

wavelength and 80 samples per period. Compared to traditional geophone or seismometer
sensors, where tens (or maybe hundreds in a dense experiment) of measurements are made,
fiber provides a more complete picture of a seismic wavefield, thereby providing significantly
more information on, for example, geological structure (e.g., Dou et al., 2017; Jousset et al.,
2018), and, for microseismic applications, potentially providing significant improvements
in event detection capability and location accuracy. Here we examine the use of DAS in
microseismic monitoring, focussing on event detection.

DAS for microseismic monitoring

The detailed information to be gained from DAS data is particularly useful for microseis-
mic monitoring, where small seismic events (usually with magnitudes <0) are recorded in
industrial settings. For example, the technology has been deployed to monitor induced
seismicity at hydraulic fracturing sites. The results from these surveys highlight the poten-
tial for enhanced monitoring by integrating temperature, strain and microseismic measure-
ments all made on fiber-optic cables (Karrenbach et al., 2019). DAS data provides only a
single-component recording (the fiber is sensitive to changes in strain along the fiber, but
insensitive to changes broadside to the cable) whereas standard geophones and seismometers
can provide three-component recordings. Nevertheless, processing techniques are advancing
to determine microseismic event locations (Webster et al., 2016; Verdon et al., 2020) and
source mechanisms (Cole et al., 2018; Baird et al., 2020) from DAS data. The technology
is also being explored for microseismic monitoring in other industrial settings, for example
at geothermal sites (Mondanos and Coleman, 2019), geological CO2 storage sites and for
volcano monitoring.

With thousands of sensors and a high sampling rate (>1000 Hz), large volumes of DAS
data are recorded (e.g., approximately 650 GB/day for a 2 km-long cable sampling at 2000 Hz
with a spatial sampling of 1 m). In industrial settings where injection of fluids is taking
place, data analysis is often required in near real-time so operational decisions can be
made based on monitoring data (Clarke et al., 2019). This is a significant challenge for
DAS microseismic data and therefore new methods are required to analyse data within
an acceptable time period. Some comparisons of traditional microseismic event detection
methods, such as short-term average/long-term average (STA/LTA) algorithms, have been
published for DAS data (e.g., Binder and Chakraborty, 2019). However, these methods
which rely on well-known signal processing techniques are often computationally slow with
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the large data volumes produced by DAS systems.

Machine learning techniques have progressed significantly in recent years, in both speed
and accuracy, and initial studies show potential for rapid analysis of DAS data (Binder
and Chakraborty, 2019). The objective of the present study is to assess the accuracy of
using a current CNN in microseismic event detection. We detail the successful retraining
of a CNN known as YOLOv3 (Redmon and Farhadi, 2018) and apply the network to event
detection in mulitple datasets. We compare the microseismic event detection capabilities of
the retrained CNN to manual detection and the number of events detected using a classical
signal processing filtering and amplitude threshold (STA/LTA) technique.

Machine learning

Here we apply image recognition machine learning techniques to DAS data to identify
microseismic events. Deep CNNs are now the most popular method applied to object
detection and classification (Rawat and Wang, 2017). Such methods are able to process
video files in real-time and this potentially enables the real-time processing of DAS data
to highlight features of interest. Benefits of using machine learning techniques could be to
reduce data storage space requirements and a reduction in data processing time for detailed
analysis.

The use of machine learning in geophysics, and seismology in particular, has seen a recent
increase. Earthquake detection and/or phase-picking methods have concentrated mainly
on regional and global earthquake catalogs with seismic events detected on conventional
networks (e.g., Ross et al., 2018; Zhu and Beroza, 2019; Zhou et al., 2019; Woollam et al.,
2019) or on data from industrial settings recorded on geophones (Zhang et al., 2018). This
study builds on work to detect microseismic events using Haar Cascades demonstrated by
Horne et al. (2019) and, much like the study by Binder and Chakraborty (2019), this work
presents the successful detection of microseismic events in DAS data using a CNN. The
present study differs in the fact that we re-train an existing fast object detection algorithm
suitable for use on video. Additionally, we show that the trained network is generally
applicable and can be used to detect microseismic events in other datasets where a cable is
installed in a horizontal well. This is an important step in proving the feasibility of using
DAS technology in microseismic monitoring and the applicability of machine learning to
event detection in DAS data.

Two methods for event detection are tested in this study. The first is to train a CNN
to detect microseismic events and the second is to use filtering and amplitude threshold
detection following stacking of the STA/LTA characteristic function. Each method and the
results obtained using both methods are outlined below.

DATA

The data used in this study include synthetic data and also field data (Dataset 1) collected
during a single hydraulic fracturing stage. The field data are recorded using a DAS system
(Silixa iDASTM) and are comprised of four hours of continuous data. The data are collected
from a single monitoring well, parallel to the stimulation well in the horizontal section, and
are recorded using a standard fiber with 3765 channels (receivers) with a 1 m spacing. The
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Figure 2: Schematic of the stimulation and monitoring well configuration for Dataset 1 and
the synthetic data. A single fiber-optic cable is deployed in the monitoring well. Dataset
1 is recorded over one hydraulic fracturing stage. The location of the perforation shot for
this stage is indicated by the blue dot.

well configuration is illustrated in Figure 2. The data are recorded at 2000 Hz with a 10 m
gauge length.

The synthetic microseismic event data for the study are created using the monitoring
set-up in Figure 2. A homogeneous vertical transverse isotropic (VTI) medium is assumed
with velocities derived from cross-dipole sonic logs from the horizontal monitoring well and
a nearby vertical well. The seismic velocities can be characterized by the vertical P and S
velocities VP0 = 2800 m/s and VS0 = 1750 m/s; and the Thomsen (1986) parameters ε =
0.42, γ = 0.36, and δ = 0.21.

To produce the synthetic waveforms a VTI ray tracer was used to compute travel times
from a moment tensor point source to each channel for direct P, SV and SH arrivals. As a
homogeneous model is assumed, no other arrivals were modeled. Displacement amplitudes
and polarizations were computed using dynamic ray theory Green’s functions derived by
Chapman (2004). These Green’s functions are then convolved with the time-derivative of a
third-order Brune pulse source wavelet (Beresnev and Atkinson, 1997) to generate velocity
synthetics. We then convert particle velocity along the cable direction to DAS strain-rate
by differencing over the gauge length and dividing by gauge length (Miller et al., 2016). For
further details on the synthetic data modeling see Baird et al. (2020).

The source parameters for 2000 synthetic events are chosen from a random distribution
of locations within a 500 m radius of the centre of the microseismic cluster determined from
a surface array, with moment magnitudes between -1.5 and 0.1, drawn from a Gutenberg-
Richter distribution, with source frequency dependent on magnitude. Source mechanisms
were assumed to be planar shear faulting with a randomized orientation and slip direction.
The corresponding moment tensors were calculated using the equations of Vavryčuk (2005),



Stork et al. 5 DAS microseismic event detection

and are largely double couple, but with some non-double couple components due to the
anisotropy.

EVENT DETECTION WITH MACHINE LEARNING

Method: YOLOv3

The aim of this study is to investigate the accuracy of using a CNN to detect microseismic
events in DAS data and evaluate whether a trained network could be generally applicable
to event detection in microseismic monitoring data. The most efficient way to do this is
to take a network trained to detect other objects and retrain it to recognize microseismic
events. We use a CNN known as YOLOv3 to test the possible application because it
is one of the faster object detection algorithms available and it has been reported as an
accurate real-time object detector for video files (Redmon and Farhadi, 2018). Region-
based object detectors (e.g., R-CNN (Ren et al., 2015)) have been reported as having a
small accuracy advantage over YOLOv3 but YOLOv3 is able to process a greater number
of frames per second (Hui, 2018). For DAS data, microseismic event detection in (near)
real-time processing is the biggest challenge, due to the large data volumes. Therefore,
YOLOv3 is chosen over region-based methods. YOLOv3 is chosen over YOLOv2 because
it is better able to detect smaller objects and microseismic events may only be recorded
on a small portion of the fiber. Another advantage of YOLOv3 is that it is able to detect
overlapping objects in an image, as often occurs in microseismic event detection.

YOLOv3 uses a single CNN. The network has been trained on the ImageNet dataset to
classify and locate objects in an image or video (Redmon and Farhadi, 2018). ImageNet is
an online image database with 100,000s images classified by noun (the object in the image)
and it is often used to test object detection algorithms (image-net.org, last accessed March
2020). For detection, a network architecture with 106 layers (75 convolutional and 31 other
layers) is used (Appendix A). Batches of images are input to the network with the number
of input images defined by the batch parameter. One batch of images is processed by the
network in each iteration before the weights for the network filters are updated. Batch
normalization is applied and batches can be divided into mini-batches so GPU processes
work on this number of images at once. The size of the network (width and height) are
set and input images are automatically resized to these dimensions. It is desirable that the
size of the input images (and network) are large enough to retain detail. For microseismic
events this detail includes identification of first arrival times and observations of P and S
waves and coda.

An input image is divided into a grid and a given number of bounding boxes are pre-
dicted for each grid cell (Figure 3). A confidence score is attributed to each bounding box
which reflects how likely it is that the box contains the object and how accurately the box
describes the object. Using sigmoid activation, YOLOv3 predicts the probability of each
class of object in each grid square. Here, we are only trying to predict one object class
(a microseismic event) so each grid cell has one probability associated with it. After each
iteration through the network the loss value is given, thereby providing a measure of how
well the model is predicting the existence of an object in an image. The smaller the loss, the
better the model predictions are. The loss function is the function used to evaluate a can-
didate solution. The YOLOv3 loss function is a combination of the errors in the bounding
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Figure 3: An example of bounding box testing by YOLOv3. The image shows a synthetic
microseismic event recording with noise added. The image is divided into the grid shown
and a number of bounding boxes. In this example, two boxes are tested for the existence
of a microseismic event for each grid cell, here for the grid cell indicated by the blue dot.

box position (a squared error loss) and errors in the prediction of an object class (a binary
cross-entropy loss) (Redmon and Farhadi, 2018; AlexeyAB, 2018). The confidence scores
reflect the degree of overlap between the predicted and ground truth object bounding box.
As output, the model simultaneously predicts bounding boxes for classes of object and the
confidence that an object is in the boxes.

Data preparation

To train YOLOv3 on DAS data, a training dataset of example images of microseismic events
and background noise are prepared. The synthetic data are prepared as described above
in the Data section and in Baird et al. (2020) and 2000 microseismic event examples with
a single event in each file are created. Two thousand examples were used to gain a good
distribution of event magnitudes, locations and source mechanisms while restricting the
number to minimize training times. Only data from the horizontal section of the cable is
used since very little microseismic energy was actually recorded on the vertical section in the
field data, due to the distance of the hydraulic fracturing from the build section of the well
(>1 km). To reduce the size of the input images for the machine learning, data from every
fourth channel is used. Downsampling rather than decimation using low-pass filtering was
used for simplicity following initial tests that showed it did not affect detection capabilities.
The downsampling maintains sufficient detail in the waveforms while allowing data from the
horizontal section of the cable to be included. Grayscale images (512 x 512 pixels in size)
are created (i.e., including data from a 2 km fiber section over 512 time samples, 0.256 s).
512 x 512 was chosen because it is the minimum size that allows input images to be used
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without incurring any time decimation. Initial tests also showed convergence of the training
with this size of image. The longer processing times associated with larger images work
against the aim to provide (near) real-time data processing.

To make the synthetic examples more realistic, examples of noise from the first minutes
of the field data, in a random channel order, are added to the data with signal-to-noise ratios
(SNR) between 3 and 7. Gaussian noise is then added at a random level between 0% and
25%. Thus, 2000 synthetic microseismic event images are created. The images are grayscale
and hence have amplitudes normalized between 0 and 255. Ground truth bounding boxes
for the events are automatically calculated since the location of the event, and hence the
closest channel, is known. The box is chosen to include the first P and S wave arrivals on
the closest channels. Some variation in size is introduced to replicate human variations in
choosing a box and also because the extent of a microseismic event is somewhat subjective
(how many channels should be included?). These automatically-determined bounding boxes
are the “ground truth” boxes and predictions made by YOLOv3 are compared to these.

Two thousand example images of noise are also created in a similar way. In addition,
lines of random length and orientation are added to half of the negative images. This is
done with the aim of teaching the network that lines on images do not necessarily represent
microseismic events. Such lines might represent, for example: noise spikes, faulty channels,
or tube waves traveling along the array.

The data (events and noise) were not augmented in some ways that are often used in
machine learning because, for example, rotation of an image of a microseismic event will
not represent actual data recordings. However, the saturation and brightness of the image
were changed at random and the size and aspect ratio of the images were allowed to vary
between 0.4 and 1.6 times the original. The network size was also allowed to vary.

The 4000 synthetic images are randomly split into training and validation datasets, with
3600 images chosen for training and the remaining 400 images (10% of the images) used
for validation. No preprocessing was performed on the training data and raw images were
used in training.

Network training

YOLOv3 has been pre-trained on ImageNet images. The network was therefore not trained
from scratch but was re-trained on 3600 synthetic example images of microseismic events
and noise recordings, using the weights from the pre-trained model to initialize the training.
This reduces the training time required. The aim is to find the parameters that give the best
event detection results while minimising the number of missed events and false detections.
The learning rate determines how quickly the model can adapt in training. In YOLOv3
the learning can be modified by several parameters and a learning rate scheduler is used,
determined by the burn-in rate. For the initial burn-in (BI) iterations the learning rate for
that iteration (I) is given by

LR(I) = LR× (I/BI)4 (1)

where LR is the learning rate defined by the user which is used after BI iterations. Later
in the training the weights should not vary significantly between iterations so a smaller
learning rate can be used and LR is multiplied by 0.1 at given steps iterations. LR values
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Table 1: YOLOv3 input parameters used in training the network to detect microseismic
events.

Run Learning rate Burn-in Steps Batch size

1 0.01 500 1600, 1800 64
2 0.01 1000 1600, 1800 64
3 0.001 500 1600, 1800 64
4 0.001 1000 1600, 1800 64
5 0.0001 1000 1600, 1800 64
6 0.001 1000 1600, 1800 16
7 0.0001 500 1600, 1800 64
8 0.001 500 1000, 1500 64
9 0.001 1000 1200, 1600 64

between 0.01 and 0.0001 are tested and 0.001 ≤ LR ≤ 0.01 produce lower losses. A selection
of learning rate scheduler parameters and batch sizes tested are given in Table 1.

Initially, network size is set to the pixel size of the training images (512 x 512) to preserve
details in the waveforms. Time decimation affects the accuracy of first arrival identification
and through initial testing it was determined that lower losses were achieved if the network
size allowed input without any downsampling in time. The width and height of the network
are set to the same size and allowed to vary in the training every 10 iterations. Batch
sizes, or number of images passed through the network in one iteration, between 16 and
128 were tested. If the number is too large the training becomes slow. However, if a very
small number is used the network may not experience a good sample of the range of object
attributes and the results could vary wildly between each iteration. The maximum batch
size allowing the network training to run in a few hours was 64 and this is the value used
for most of the results presented here (Table 1).

Network losses from the selection of training tests in Table 1 are shown in Figure 4.
These results include the training runs with the smallest losses and the weights from the
three training attempts with the lowest loss are tested on the validation set (Runs 1, 2 and
3 in Table 1 and Figure 4). It is observed that after 2000 iterations the loss stabilizes and
therefore the weights from the 2000th iteration are used in validation, to avoid overtraining
the network.

Validation

Batch image detection (Gong, 2019) is conducted using the weights from the trained net-
works from Runs 1, 2 and 3 (Table 1). The validation images to which this is applied
comprise 194 images containing microseismic events (one event per image) and 206 noise
images. The outputs from this detection are bounding boxes containing microseismic events
with a given confidence. A minimum confidence of 25% is used to declare the detection
of an event. Detections are classified as either true positives (the network is detecting a
microseismic event) or false positives (an event is declared where there is no seismic event).
Images where no event is detected with >25% confidence may be true negatives (it is an
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Figure 4: Model loss during training of YOLOv3 on 3600 synthetic data images. The
parameters used in each training run are given in Table 1

.

Table 2: Microseismic event classification results for YOLOv3 model validation using
weights from Runs 1, 2 and 3.

Run 1 Run 2 Run3

True positives 191 190 187
True negatives 204 206 206
False positives 4 1 2
False negatives 3 4 7

image containing noise only) or false negatives (the image contains an undetected seismic
event).

The classification results using the weights from Runs 1, 2 and 3 are shown in Table 2.
All models correctly identify >95% of the events in the dataset and >99% of the noise
images are classified as such. It is also important not to falsely report events and in each
of the three cases ≤2% of detections are false positives. Figure 5 shows examples of true
positive, false positive and false negative event detection. In total, 8 events were missed
in one or more of the validation tests. The dominant causes of missed detections are the
event mechanism and location effects on the features observed in the waveforms. Four out
of eight of the events had one-sided radiation patterns, i.e., arrivals were only obvious on
one-side of the apex (e.g., Figure 5c) and for six out of eight events only S waves, and not
P waves, are visible (e.g., Figure 5c). Two of the missed events have first arrivals in the
latter 15% of the image so the full event is not visible and two have high amplitude noise
on 3 or more channels covering the event signal. Training with more images with these
characteristics could improve detection accuracy. The threshold for event detection is set
low (at 25%). However, in all three cases >70% of events are detected with a confidence
>80% with Runs 1 and 2 providing the highest confidence detections (Figure 6).
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a) True positive b) False positive c) False negative

a) True positive b) False positive c) False negative

Figure 5: Example event detections from the YOLOv3 model validation. One example of
a) a true positive event detection; b) a false positive event detection (the right hand box);
and c) an image falsely classified as noise, are given.

Figure 6: Histograms of microseismic event detection certainty in Dataset 1 for a) Run 1;
b) Run 2; and c) Run 3. The YOLOv3 input parameters are given in Table 1.
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Table 3: YOLOv3 microseismic event detection on field data using the weights from Run
2. The results of event detection on raw data from three different datasets are shown.
Dataset 1 consists of 800 images. Dataset 2 is 1 minute of data and Dataset 3 is 6 s of
data. In addition, detection results are shown for filtered Dataset 1 data and Dataset 1
data downsampled by a factor of 2 in space and time.

Dataset 1 2 3 1 1
Pre-processing None f-k filter Downsampled

True events 457 126 13 517 242
False detections 10 2 2 27 13
Missed events 70 47 11 50 267

Testing with field data

We test the capabilities of the trained CNN to detect events in field data because, obviously,
to be useful, the method must be applicable to real data. Eight hundred images are created
from the Dataset 1 DAS data. These images were manually inspected without any filtering
applied and 527 events were observed.

In validation the weights from Run 2 (with parameters in Table 1) produce slightly
better results, with more detected events and fewer missed events than the other validation
tests. Therefore we use the trained YOLOv3 network with these weights to test detection
in Dataset 1 and >450 events are detected in the 800 test images (Dataset 1 in Table 3).

The machine learning approach is able to detect about 80% of the number found by
manual inspection. Encouragingly, the network is sometimes able to distinguish some over-
lapping events (e.g., Figure 7a) even though the synthetic training images contained only
one event per image. This multi-event detection is vital in an industrial environment where
microseismic events often occur in quick succession or simultaneously at different locations.
Only 10 false detections are declared, 2% of events or one false detection every 20 s. This
indicates that the network is well-trained to distinguish noise from events.

Most of the events missed in the detection with the CNN have visible P and S arrivals
on both sides on the apex without obvious channel noise or first arrivals at the edge of
the image. Therefore the characteristics of the missed events are different to the events
missed in the validation set of images. The dominant characteristic is the SNR compared
to the detected events. The maximum value of individual channel STA/LTA characteristic
functions of the detected and undetected events are shown in Figure 8. 90% of the missed
events have maximum values <7.5 whereas for the detected events the proportion is 50%.
Lower characteristic function values make it less likely an event is detected although the
SNR is likely not the only feature important in detection. The magnitude, mechanisms
and locations of the events are not reliably known and therefore cannot be investigated
thoroughly.

It is essential that it is possible to generalise the application of machine learning ap-
proaches and so we also test the network’s detection capabilities on other datasets, namely
Datasets 2 and 3. These are datasets with velocity models and well configurations pre-
viously unseen by the model. Additionally, Dataset 2 is recorded on the Silixa Carina R©
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Figure 7: YOLOv3 microseismic event detection in field data. a) Two overlapping events
(indicated by the pink boxes) are distinguished by the network in Dataset 1. b) An example
event detection in Dataset 2.



Stork et al. 13 DAS microseismic event detection

Figure 8: Histograms of STA/LTA characteristic function maximum values for detected and
undetected (missed) events in the Dataset 1 test images. Lower maximum values indicate
lower SNR recordings.

system rather than the iDAS v2 system used to record Datasets 1 and 3. Dataset 2 is one
minute of data recorded on an “L-shaped” (vertical and horizontal) well and Dataset 3 con-
sists of only 6.0 s of data recorded in a horizontal well. In Dataset 2, 126 events are detected
with the machine learning algorithm, >70% of events identified by manual inspection, and
an example is shown in Figure 7b. In Dataset 3, >50% of manually identified events are
detected (Table 3). The fact that the trained CNN is able to detect events in data from
a previously unseen setting is vital for the general application of a machine learning ap-
proach to microseismic event detection. The results confirm the ability of the trained CNN
to detect events in DAS data recorded on different cable configurations and by different
recording systems in varying geological settings.

EVENT DETECTION WITH 2D FILTERING AND DATA STACKING

In addition to a machine learning approach we also test classical signal processing and
detection methods for event detection in DAS data. This is done for comparison with
machine learning approach. For this processing stream we concentrate efforts to improve
the SNR of recordings using techniques applied in image processing by considering the
data as a 2D array. This is because the large number of recording channels and a high-
sampling rate used to acquire DAS data produce large data volumes. If each trace is treated
individually, as is commonly the case for geophone arrays, processing the data from DAS
arrays results in significantly longer times.

It is possible to treat DAS data as a 2D array (or image) because the wavefield is well-
sampled in both space and time. This presents a range of filtering options to enhance object
features, depending on the types of features of interest. In a data processing context they
are available in packages such as scikit-image (van der Walt et al., 2014).

A 2D median filter is initially identified as a suitable method to improve SNR in the
DAS data. 2D median filtering is a noise reduction technique and a non-linear low-pass
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Figure 9: The summed f-k spectrum of 100 test events. The white dashed lines outline the
f-k filter chosen to conduct microseismic event detection.

filter (e.g., Huang et al., 1979). A pixel value is replaced by the median value of a square of
pixels surrounding it. It is useful where an image contains low to medium levels of Gaussian
noise, as is often assumed in seismic data processing. A median filter better preserves the
edges of features than a Gaussian filter. The onset (edge) of a seismic wave is an important
parameter in event detection and therefore a 2D median filter is applied to the data rather
than a Gaussian filter. More sophisticated adaptive median filters are available (e.g., Hwang
and Haddad, 1995) but these, inevitably, further increase the processing time.

Several other candidate filtering methods were tested, including Wiener and bilateral
filtering. Bilateral and Wiener filters are routinely applied in image processing. A Wiener
filter is a type of deblurring filter and a bilateral filter is an edge-preserving filter which,
rather than calculating the median value of the surrounding pixels, computes a weighted
average of surrounding pixel intensities. The weights are based on distance and intensity
similarity. For details on bilateral filtering see Paris et al. (2008).

Frequency-wavenumber (f-k) filtering is often performed in seismic processing to improve
SNR and so this method is tested on the DAS data. To perform the f-k filtering, the
time/space domain signal is transformed to the frequency/wavenumber domain using a 2D
fast Fourier transform. Noise with different frequencies and wavenumbers than the signal of
interest can be masked before transforming the signal back to the time/space domain. The
f-k filter applied in this study is developed specifically for application to this DAS dataset
based on the recording parameters and the frequency content of 100 example events. To
determine the frequency content of the signal and the range of apparent velocities of the
waves detected, the f-k spectra of the example events are summed (Figure 9). A tapered
mask with a Gaussian filter is applied to the data before an inverse Fourier transform is
applied. Masks with higher maximum frequencies, >300 Hz, were tested but fewer events
were detected. Generally, if example data is unavailable, a filter can be developed with the
expected maximum frequency and apparent seismic velocities estimated from the expected
event locations relative to the monitoring array, and the velocity model.

The different filtering methods are compared by calculating the average SNR improve-
ments for 100 microseismic events from Dataset 1. The SNR is defined as the average root
mean square (RMS) amplitude of the 100 samples on all channels after the detection time
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Figure 10: The relative time required to process 100 microseismic event files with a) the
median amplitude removed (labeled None); and using b) a 2D median filter with a local
window size of 5; c) a Wiener filter with a filter window size of 11; f) a 2D median filter
(window size = 3) and a bilateral filter with a window size of 5; f) a 2D median filter
(window size = 3) and an f-k filter with 0.1 Hz < f < 300 Hz, 0.0025 m−1 < k <0.1 m−1 and
a maximum slowness of 0.0007 s/m. The results are shown as a function of the mean SNR
calculated for the 100 events.

divided by the RMS amplitude of 100 time samples before the detection. Due to the dis-
tance of the events from the cable the window includes P- and S-wave arrivals on the closest
channels. Bilateral, Wiener and f-k filters are found to result in good increases in overall
SNR (Figure 10). To enable detection in near real-time the bilateral filter is discounted.
The filter window lengths required to achieve good SNR with the Wiener filter also result
in blurring of the data and this reduces the onset sharpness and SNR of the first arrival
(Figure 11). To encourage event detection on P- rather than S-waves, the f-k filter combined
with a 2D median filter is chosen as the preferred filter for event detection. This filter also
better preserves characteristics of refracted and reflected waves and the location of polarity
flips which may be useful in imaging or focal mechanism studies.

To test event detection with classical methods the filtering is two stage: first a 2D
median filter is applied, followed by 2D Fourier filtering. The only preprocessing of the
data is removal of the mean amplitude to give zero-mean data.

We make use of the large data volumes by summing (or stacking) the filtered data
recorded over a range of channels. Data stacking is a technique often used in microseismic
event detection, particularly for use with surface arrays (e.g., Chambers et al., 2010). Here,
initially a characteristic function is calculated for each channel using a recursive STA/LTA
algorithm (Allen, 1978). Then the average amplitude sum of the characteristic functions is
computed over each of the N channels for each time sample:

A(t) =
1

N

N∑
i=0

|ai(t)|. (2)

Linear stacking is chosen as it is the simplest method to sum data to improve SNR.
Other methods (nth root, semblance weighted and instantaneous phase-weighted stacking)
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Figure 11: Example microseismic event recording a) with no filtering; b) 2D median filtered
with a local window size of 5; c) Wiener filtered with a filter window size of 11; d) 2D
median filtered (window size = 3) and a bilateral filter applied with a window size of 5; e)
2D median filtered (window size = 3) and an f-k filter applied.

Table 4: Number of microseismic events detected in Dataset 1 using different data stacking
methods. The characteristic function of the STA/LTA of each channel is the input data to
the stack. The % of detections being true seismic events is shown.

Method Total number of events % true detections

Linear 1960 72
4th root 1635 69
Semblance-weighted 852 46

are tested for comparison (e.g., Figure 12). The phase-weighted stack does not produce
distinguishable peaks where events occur. Following stacking an event is declared if this
sum exceeds a given threshold. Here, we use 15% above the median background value
(Figure 13).

The number of events detected in Dataset 1 (four hours of field data) using all stacking
methods is given in Table 4 and the largest number of events is detected with the linear
stack. This method also has the best success rate (72% of detections are true events). The
success and simplicity (and therefore speed) of the linear stacking make this the favoured
method for event detection. Using a 2D median and f-k filter followed by linear stacking of
STA/LTA characteristic functions >1900 events are detected in total in Dataset 1.

Comparing, the detection capabilities of the trained CNN and the chosen f-k filtering
method on the 800 test images from Dataset 1, 400 events are detected using the f-k filtering



Stork et al. 17 DAS microseismic event detection

Figure 12: An example of data stacking results for a) a sample of data containing sev-
eral microseismic events for b) linear; c) 4th root; d) instantaneous phase-weighted; and
e) semblance-weighted stacks of the STA/LTA characteristic functions. The dashed lines
indicate the detection threshold used (15% above the median value).
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Figure 13: a) An example microseismic event recorded on the DAS cable in the monitoring
well. First arrival P-waves and subsequent S-waves are observed. b) The absolute amplitude
sum for each channel over time. The dashed line indicates the threshold value for declaring
the onset of an event.
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and stacking method compared to the 457 events detected using the trained CNN, and 527
detected in the unfiltered images by manual inspection (Table 3). Approximately 14% more
events are found using the CNN than using the filtering and stacking method.

DISCUSSION

A current disadvantage of the use of DAS for seismic monitoring is that large volumes of
data are produced. Accurate and near real-time processing methods are required. This
paper presents a proof-of-concept that a CNN can be trained to accurately detect seismic
events in DAS data and that this network can be applied to detect events recorded on
any cable deployed in a horizontal well. Further development is required to optimize the
process for near real-time data processing. Here we present the benefits and limitations of
the current model and outline the developments required to make this method applicable
to any DAS microseismic monitoring situation.

In the present study, YOLOv3 network is re-trained using synthetic data. Synthetic
data was chosen rather than real data for the training because it provides a dataset where
the answer is known and the performance of the network can therefore be reliably validated.
Initially Gaussian noise was added to the synthetic waveforms but in testing the network was
unable to detect a significant number of events in real data. Further tests can be conducted
on using different types of noise and real noise recorded in a variety of settings to improve
detection performance. The results also highlight that the YOLOv3 model can be trained
on a small number of examples (4000) compared to the 10,000s or 100,000s used in other
published seismic event detection CNN training examples (e.g., Binder and Chakraborty,
2019; Zhu and Beroza, 2019). This reduces the required training time.

An advantage of CNN machine learning techniques is that the network can be retrained
as more data becomes available. As microseismic events are detected these can be added
to the training dataset to improve the reliability of future detection. However, this can
also be mimicked by adding further synthetic examples using different well configurations
and geological settings and structures. For example, synthetic datasets for vertical and “L-
shaped” wells with different velocity models could be added to train the network to be better
able recognize events recorded on any cable configuration. It was found that the trained
CNN is more likely to miss events recorded with low SNR and therefore further examples
with SNR<3 should be added to the training data. Synthetic training datasets can provide
waveforms for events of any magnitude, mechanism or location and any number of noise
examples or any SNR recordings can be created. Therefore future detection should not be
restricted to the types of events previously observed in a particular setting, as demonstrated
by the initial success of event detection in Datasets 2 and 3 in this study.

Images of the raw data are produced here for event recognition testing. The elimination
of the need to conduct any preprocessing, due to the network having learnt the best per-
forming filters, speeds up event recognition. To verify the effectiveness of the filters used
by YOLOv3, the network is also tested on images produced from data filtered using the
f-k filter described in Section 3. This increases the number of events detected by ∼10% to
517 events (Table 3), indicating that the internal filters of the trained network are not yet
optimized. If the network were trained on images with lower SNR (here a minimum SNR
of 3 was used to ensure events could be manually identified) it should detect lower SNR
signals and therefore the improvement observed with the f-k filtering could be eliminated.
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Despite the endless possible architectures for CNN models, the YOLOv3 architecture
stands out as solving the problem of real-time object detection in video data with compet-
itive accuracy (∼70%) and was therefore chosen for this study of continuous DAS data. A
detection accuracy of >80% is achieved in Dataset 1, indicating the network is perform-
ing well. Significant factors in the speed of CNN training and object detection are not
only the computer and the type of processor (CPU or GPU) used but also the number
and size of the input images/video. Several tutorials are available online on how to im-
plement YOLOv3 effectively and the GitHub repositories github.com/pjreddie/darknet and
github.com/AlexeyAB/darknet (last accessed March 2020) both provide useful information.
Using the trained network we investigate whether the size of test images can be reduced
while maintaining event detection capabilities. Any downsampling in time results in poorer
detection performance while spatial sampling can be reduced by a factor of 2 without af-
fecting the performance. Downsampling in time and space so every other channel and time
sample are used reduces the number of events detected by nearly half in Dataset 1 (Table 3).
If the network were trained on time downsampled data it is possible that this result could
be improved.

CONCLUSIONS

There has been a recent rise in the deployment of DAS fiber-optic monitoring for microseis-
mic applications. This type of monitoring produces large data volumes and therefore new
processing techniques are required to enable data processing in near real-time. This study
presents the first successful application of a trained CNN to seismic event detection in mul-
tiple DAS datasets. We train YOLOv3 for object detection using a synthetic microseismic
dataset with real noise added, and subsequently apply it to three field datasets. This is
compared to more traditional event detection techniques. The data are processed with an
f-k filtering combined with a 2D median filter. Subsequently, a simple threshold detection
algorithm is applied to a linear amplitude sum of the recursive STA/LTA characteristic
functions of all channels.

In field data with same the well set-up and geological setting used to create the synthet-
ics, the CNN is able to detect >80% of events of the 527 events found by manual inspection
of unfiltered images. 400 of the events are detected with the filtering and threshold detec-
tion method. Importantly, the false detection rate of the CNN is low, 2% of detections.
Lower SNR events are more likely to be missed in the detection. This effect could be
reduced by training with lower SNR examples. In other datasets, where the geological set-
ting, operational parameters and the treatment-to-monitoring well distances are different
and unknown, the CNN correctly identifies > 50% of events. The application of CNNs
to seismic event detection in DAS data is attractive due to the automatic nature, lack of
pre-processing required and potential speed of the technique. Detection accuracy could be
improved in future with the addition of further noise and event examples to the training
process. The wider the variety of recording settings and SNRs used for training, the more
accurate the detection should become.
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YOLOV3 NETWORK ARCHITECTURE
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Layer       Filters      Size                Input                  Output 
    0   conv  32  3 x 3 / 1     512 x 512 x   3   ->  512 x 512 x  32  
    1   conv       64  3 x 3 / 2     512 x 512 x  32    ->    256 x 256 x  64  
    2   conv       32  1 x 1 / 1     256 x 256 x  64    ->    256 x 256 x  32  
    3   conv       64  3 x 3 / 1     256 x 256 x  32    ->    256 x 256 x  64  
    4   res          1                   256 x 256 x  64    ->    256 x 256 x  64 
    5   conv      128  3 x 3 / 2    256 x 256 x  64   ->   128 x 128 x 128  
    6   conv       64  1 x 1 / 1     128 x 128 x 128    ->    128 x 128 x  64   
    7   conv      128  3 x 3 / 1   128 x 128 x  64   ->    128 x 128 x 128  
    8   res      5                   128 x 128 x 128   ->    128 x 128 x 128 
    9   conv       64  1 x 1 / 1     128 x 128 x 128    ->    128 x 128 x  64   
   10   conv      128  3 x 3 / 1    128 x 128 x  64    ->    128 x 128 x 128  
   11   res      8                   128 x 128 x 128    ->   128 x 128 x 128 
   12   conv      256  3 x 3 / 2    128 x 128 x 128    ->     64 x  64 x 256   
   13   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
   14   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   15   res     12                    64 x  64 x 256    ->     64 x  64 x 256 
   16   conv      128  1 x 1 / 1    64 x  64 x 256    ->     64 x  64 x 128   
   17   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   18   res     15                    64 x  64 x 256    ->     64 x  64 x 256 
   19   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
   20   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   21   res     18                   64 x  64 x 256    ->     64 x  64 x 256 
   22   conv      128  1 x 1 / 1      64 x  64 x 256   ->     64 x  64 x 128   
   23   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   24   res     21                    64 x  64 x 256    ->     64 x  64 x 256 
   25   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
   26   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   27   res     24                    64 x  64 x 256    ->     64 x  64 x 256 
   28   conv      128  1 x 1 / 1    64 x  64 x 256    ->     64 x  64 x 128   
   29   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   30   res     27                    64 x  64 x 256    ->     64 x  64 x 256 
   31   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
   32   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   33   res     30                    64 x  64 x 256    ->     64 x  64 x 256 
   34   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
   35   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
   36   res     33                    64 x  64 x 256    ->     64 x  64 x 256 
   37   conv      512  3 x 3 / 2     64 x  64 x 256   ->     32 x  32 x 512   
   38   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   39   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   40   res     37                    32 x  32 x 512    ->     32 x  32 x 512 
   41   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   42   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   43   res     40                    32 x  32 x 512    ->     32 x  32 x 512 
   44   conv      256  1 x 1 / 1     32 x  32 x 512   ->     32 x  32 x 256   
   45   conv      512  3 x 3 / 1     32 x  32 x 256   ->     32 x  32 x 512   
   46   res    43                    32 x  32 x 512   ->     32 x  32 x 512 
   47   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   48   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   49   res     46                    32 x  32 x 512    ->     32 x  32 x 512 
   50   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   51   conv      512  3 x 3 / 1     32 x  32 x 256   ->     32 x  32 x 512  
   52   res     49                    32 x  32 x 512    ->     32 x  32 x 512 
   53   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   54   conv     512  3 x 3 / 1     32 x  32 x 256   ->     32 x  32 x 512   
   55   res     52                    32 x  32 x 512   ->     32 x  32 x 512 
   56   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   57   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   58   res     55                    32 x  32 x 512    ->     32 x  32 x 512 
   59   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   60   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   61   res     58                    32 x  32 x 512    ->     32 x  32 x 512 
   62   conv     1024  3 x 3 / 2     32 x  32 x 512    ->     16 x  16 x1024   
   63  conv      512  1 x 1 / 1     16 x  16 x1024   ->     16 x  16 x 512   
   64   conv     1024  3 x 3 / 1     16 x  16 x 512    ->     16 x  16 x1024   
   65   res     62                    16 x  16 x1024    ->     16 x  16 x1024 
   66   conv      512  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x 512   
   67   conv     1024  3 x 3 / 1    16 x  16 x 512  ->     16 x  16 x1024   
   68   res     65                   16 x  16 x1024    ->     16 x  16 x1024 
   69   conv      512  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x 512   
   70   conv     1024  3 x 3 / 1     16 x  16 x 512    ->     16 x  16 x1024   
   71   res     68                    16 x  16 x1024    ->     16 x  16 x1024 
   72   conv      512  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x 512   
   73   conv     1024  3 x 3 / 1    16 x  16 x 512    ->     16 x  16 x1024   
   74   res     71                    16 x  16 x1024    ->     16 x  16 x1024 
   75   conv      12  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x 512   
   76   conv     1024  3 x 3 / 1     16 x  16 x 512    ->     16 x  16 x1024   
   77   conv      512  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x 512   
   78   conv     1024  3 x 3 / 1     16 x  16 x 512    ->     16 x  16 x1024   
   79   conv      512  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x 512   
   80   conv     1024  3 x 3 / 1     16 x  16 x 512    ->     16 x  16 x1024   
   81   conv     18  1 x 1 / 1     16 x  16 x1024    ->     16 x  16 x  18   
   82   yolo 
   83   route    79 
   84   conv      256  1 x 1 / 1   16 x  16 x 512    ->     16 x  16 x 256   
   85   upsample             2x      16 x  16 x 256    ->     32 x  32 x 256 
   86   route    85 61 
   87   conv      256  1 x 1 / 1     32 x  32 x 768    ->     32 x  32 x 256   
   88   conv     512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   89   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   90   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   91   conv      256  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x 256   
   92   conv      512  3 x 3 / 1     32 x  32 x 256    ->     32 x  32 x 512   
   93   conv       18  1 x 1 / 1     32 x  32 x 512    ->     32 x  32 x  18   
   94   yolo 
   95   route    91 
   96   conv      128  1 x 1 / 1     32 x  32 x 256    ->     32 x  32 x 128   
   97   upsample             2x      32 x  32 x 128    ->     64 x  64 x 128 
   98   route    97 36 
   99   conv      128  1 x 1 / 1     64 x  64 x 384    ->     64 x  64 x 128   
  100   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
  101   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
  102   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
  103   conv      128  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x 128   
  104   conv      256  3 x 3 / 1     64 x  64 x 128    ->     64 x  64 x 256   
  105   conv       18  1 x 1 / 1     64 x  64 x 256    ->     64 x  64 x  18   
  106   yolo 

Figure A-1: YOLOv3 network architecture.
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