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Appendix A: Comparison of twin-beam absorption estimators

Estimators are mathematical formulas applied to finite data
sets for determining physical parameters of a system. One
such parameter used to characterize e.g. biological samples is
spectral absorption α(λ ). Typically, for a given wavelength
λ , measuring sample absorption involves comparing the in-
tensity of a light source with and without a sample in its path:

αc = 1− n′1
E [n1]

, (S1)

where 0 ≤ αc ≤ 1 is the direct classical absorption estimator,
n1 is the probe beam intensity for each measurement trial, and
the prime denotes beam intensity after a lossy interaction with
the sample. For the remainder of these discussions, α without
a subscript refers to the population estimate (unbiased esti-
mate based on an infinitely-large data set), and with refers to
sample estimates (realistic finite-sized data sets).

The precision of this absorption measurement is limited by
the Poissonian quantum nature of light, the Shot-Noise Limit
(SNL), as

Var [αc] =
(1−α)

E [n1]
. (S2)

A first example of a twin-beam absorption estimator for
quantum parameter estimation was presented in Ref. 1 and
further explored by Ref. 2:

αl = 1− γ
n′1
n′2

, (S3)

where n2 is the reference beam intensity, and γ = E [n2]/E [n1]
accounts for unbalanced channel efficiency. Primes in this
case denote the measurement stage in general, and the sam-
ple is only placed in the path of the probe beam n1.

In the case of balanced channel efficiency (γ = 1) and no
optical or detector noise, one may write

Var [αl ] = Var [αu]+2
(1−α)2

E [n1]
σ
∗, (S4)

where Var [αu] = αVar [αc] is the ultimate quantum limit of
an absorption measurement, associated with binomial mea-
surement statistics, attainable with e.g. Fock states or when
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σ = 02,3, and σ∗ = 1−η is the noiseless, balanced-detection
Noise-Reduction Factor (NRF). To compare this twin-beam
estimator to the classical direct case, we use their relative es-
timator efficiency

Γi =
MSE [αi]

MSE [αc]
(S5a)

=
Var [αi]+ (E [αi]−α)2

Var [αc]
, (S5b)

for some estimator i, where MSE [αi] is the mean squared er-
ror, which equals Var [αi] in the case of unbiased parameter
estimation (as implicitly assumed in Refs. 2 and 4). When
0 ≤ Γi < 1, the estimator efficiency is sub-SNL. This regime
is exclusive to quantum-correlated twin beams, similar to
0≤ σ < 1.

Comparing Eqs. S2 and S4 yields

Γl = α +2(1−α)σ∗. (S6)

One finds Γl > 1 for all σ∗ > 0.5. Thus, even though beams
may display sub-Poissonian intensity correlations, one cannot
always perform sub-SNL absorption measurements with this
estimator. One can gain insight into this counter-intuitive re-
sult by considering how αc is an even less suitable estimator
for the twin-beam case, as Γc = 1 for all values of σ .

Ref. 4 presents another twin-beam absorption estimator:

αm = 1− n′1− kδn′2 +δE
E [n1]

, (S7)

where δn′2 = n′2−E [n′2], k is a weight factor used to maxi-
mize the estimator’s precision, and δE = E [kδn′2] is a correc-
tion factor used to ensure that the estimator is unbiased (i.e.
E [αm] = α). Contrary to Refs. 2 and 4, αm is indeed biased in
the presence of classical intensity fluctuations, as we demon-
strate at the end of this section. We also correct the estimator
to be unbiased.

One may perform a similar analysis as the previous estima-
tor, now with2

Var [αm] = Var [αu]+2
(1−α)2

E
[
n′1
] σ

∗(1− σ∗

2
), (S8)

in the noiseless, balanced-detection case with optimized k4:

kopt
m =

Cov [n′1,n
′
2]

Var
[
n′2
] . (S9)

Comparing this to the classical direct measurement with γ = 1,

Γm = α +2(1−α)σ∗(1− σ∗

2
). (S10)
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FIG. S1. Comparing relative SNL performance metrics (a) Γl and (b) Γm in the case of balanced channel efficiency and no optical or detector
noise. The green plane Γu = α is the ultimate quantum limit, and the blue line is the σ∗ = 0.5 contour.

We now find sub-SNL Γm for all σ∗ < 1, and Γm < Γl for all
σ∗ > 0 and α < 1. The performance of αm and αl is com-
pared graphically in Fig. S1. We see in this figure that αm is
a superior estimator to αl when appropriately calibrated. In
the case discussed here, one achieves sub-SNL measurement
statistics for any values of η{1,2} > 0 using αm, relaxing the
requirement that η{1,2} > 0.5 when using αl , stated in Ref. 1.

Although we do not derive it here, we expect from our dis-
cussions of the NRF in the main text that super-Poissonian
intensity noise with unbalanced channel efficiency and other
uncorrelated noise sources further reduce the efficacy of αl
and αm for achieving sub-SNL measurement statistics.

We will also show that twin-beam estimators are not only
more precise than the direct classical absorption estimator, but
also more accurate in general.

For stationary processes (processes whose mean and vari-
ance do not change with time), αc is indeed unbiased, as
E [n′1] = (1− α)E [n1], and E [αc] = α . For non-stationary
processes, however, the probe and reference beam powers are
changed by an amount ε ≥−1:

E
[
n′1
]
= (1−α)(1+ ε)E [n1] (S11)

E
[
n′2
]
= (1+ ε)E [n2] . (S12)

This may occur experimentally if the probe beam power is
changed between the calibration and measurement phases.
Because αc does not have access to the reference beam, sub-
stitution of Eq. S11 into Eq. S1 yields

E [αc] = 1− (1−α)(1+ ε), (S13)

which is biased without knowledge of ε . Simply, the direct
classical absorption estimator cannot distinguish probe beam
intensity fluctuations from sample absorption.

Considering now the twin-beam estimator αl , we may sub-

stitute Eqs. S11 and S12, yielding

E [αl ] = 1− γE
[

n′1
n′2

]
(S14a)

≈ 1− E [n2]

E [n1]

E [n′1]
E
[
n′2
] (S14b)

= α, (S14c)

where the approximation in line two is valid for large n1,5.
This estimator is therefore unbiased in the large-photon-flux
limit, which is the regime where intensity-correlated measure-
ments are most practical.

Finally, we consider the absorption estimator αm, which we
previously showed to obtain the greatest measurement preci-
sion of the three discussed estimators. The form of this esti-
mator, as originally presented in Ref. 4 and discussed further
in Ref. 2, is biased, obtaining the same functional form for
E [αm] as Eq. S13:

E [αm]≈ 1− E [n′1]−E [kδn′2]+δE
E [n1]

(S15a)

= 1− E [n′1]
E [n1]

(S15b)

= 1− (1−α)(1+ ε). (S15c)

This is because αm is derived from αc, which implicitly re-
quires a stationary twin-beam intensity to be unbiased. We
present here a new, unbiased form of αm, denoted αlm, using
αl as the starting point:

αlm = 1− γ
n′1− kδn′2 +δE

n′2
. (S16)

This estimator is unbiased for optimized k, as E [αlm] =
E [αl ] = α .
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The k which maximizes the precision of αlm is found by
minimizing Var [(n′1− kδn′2)/n′2]. This variance may be ap-
proximated according to Ref. 5, yielding

kopt
lm ≈ kopt

m −
E [n′1]
E
[
n′2
] . (S17)

Appendix B: Noise-reduction factor with uncorrelated noise
on both detection channels

We derived the NRF Eqs. 10a–10d for the case of optical
noise on only one detection channel and balanced detector
noise on both channels, for simplicity. These equations may
be generalized to include uncorrelated optical and detection
noise on each channel following the same procedure outlined
in the main text, with the following result:

σp = 1− 2η1η2

(1+ρ1)η1 +(1+ρ2)η2 +d1 +d2
(S18a)

σsp =
(η1−η2)

2(F−1)
(1+ρ1)η1 +(1+ρ2)η2 +d1 +d2

(S18b)

σρ =
η2

1 ρ1(Fρ1 −1)+η2
2 ρ2(Fρ2 −1)

(1+ρ1)η1 +(1+ρ2)η2 +d1 +d2
(S18c)

σd =
d1(Fd1 −1)+d2(Fd2 −1)

(1+ρ1)η1 +(1+ρ2)η2 +d1 +d2
, (S18d)

where N{1,2}→ N{1,2}+Nρ{1,2}+Nd{1,2} . Setting ρ1 = 0, d1 =

d2, and Fd1 = Fd2 yields the derived Eqs. 10a–10d.

Appendix C: Details of noise-reduction factor simulation for
experimental model

The simulations shown in Fig. 2 were performed according
to the following procedure.

We first define the mean and variance the distributions N,
Nρ , and Nd from which the signal counts and optical and de-

tector noise counts are sampled. These distributions are Gaus-
sian for large mean values, where the degree to which they
are super-Poissonian can be set by the relative values of their
means and variances. We also define the number of trials t
for the data to be averaged over, as well as channel detection
efficiency η1.

For each count source (twin beams, optical noise, and de-
tector noise), an integer list of length t is generated, with each
element sampled from its corresponding distribution. This
represents the number of pre-loss photons or detector dark
counts, for each measurement trial.

A loop is performed over η2 from 0 to 1. Within this loop,
a loop over t is performed, where for each trial and each count
source, a list of pseudo-random numbers between 0 to 1, in-
clusive, is generated whose length is given according to the
the specified element from the previous step. To determine if
the photon is detected as a count, these pseudo-random num-
bers are compared to the correspondingly defined channel ef-
ficiency, and replaced with a one if the pseudo-random num-
ber is less than η{1,2}, zero otherwise (detector noise counts,
independent of detector efficiency, do not undergo this com-
parison). The list is then summed and stored as the number of
detected counts for that trial. In this way, we can simulate the
random loss associated with the photon-count sources.

Finally, the signal and noise counts are summed for each
channel, the NRF is calculated for the specified η2, and η2 is
incremented.
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