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Association of the functional ovarian reserve
with serum metabolomic profiling by
nuclear magnetic resonance spectroscopy: a
cross-sectional study of ~ 400 women
Karema Al Rashid1†, Amy Taylor2,3,4†, Mary Ann Lumsden1, Neil Goulding2,3,4, Deborah A. Lawlor2,3,4† and
Scott M. Nelson1,4*†

Abstract

Background: Women with diminished ovarian reserve are known to have increased cardiovascular risk, whether
there is a continuous association between the ovarian reserve biomarkers; anti-Müllerian hormone (AMH), antral
follicle count (AFC) and cardio-metabolic risk factors are unknown.

Methods: A cross-sectional study of 398 women intending to undergo IVF with pre-treatment early follicular AMH
and AFC measurements. Serum lipids, lipoprotein subclasses and low-molecular-weight metabolites were quantified
by NMR spectroscopy (155 metabolic measures). Associations were analysed using multivariable regression.

Results: Participants were mean 35.5 (SD 4.43) years old and had a median AMH of 16 pmol/l (IQR 8.8, 28.0 pmol/l)
and a median AFC of 12 (IQR 7.16). AMH showed positive associations with HDL, omega-6 and polyunsaturated
fatty acids and the amino acids isoleucine, leucine and tyrosine, with effects ranging from 0.11 (95%CI 0.004 to 0.21)
for total lipids in small HDL to 0.16 (0.06 to 0.26) for isoleucine, for a mean difference of one SD of metabolite per
one SD increment in AMH, and negatively with acetate: − 0.31(− 0.22, − 0.004) SD per 1 SD AMH. AFC was positively
associated with alanine, glutamine and glycine. Results were consistent, though less precisely estimated, when
restricted to those women who were preparing for treatment because of their partner’s infertility.

Conclusions: In women intending to have IVF, AMH and AFC were not associated with traditional lipid measured
but were associated with a number of novel cardiovascular risk factors. Prospective studies will be required for
replication, determination of causality and confirmation that ovarian reserve is impacting on metabolism rather
than variation in metabolism is influencing ovarian reserve.
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Background
Female reproductive ageing is the result of a gradual de-
crease in both the quantity and quality of oocytes [1].
Genetic, environmental and lifestyle factors are all known
to contribute to the timing and depletion of the ovarian
reserve. Markers of diminished ovarian reserve, such as
low anti-Müllerian hormone (AMH) and low antral fol-
licle count (AFC), have been shown to associate with earl-
ier menopause [2, 3]. Several observational studies have
investigated the association between these markers of di-
minished ovarian reserve and cardiovascular risk factors,
with several [4–8] but not all studies [9–11], suggesting
that a diminished ovarian reserve may be associated with
an unfavourable circulating cardiometabolic risk profile
and cardiovascular events. However, these studies have
been limited to a restricted number of established cardio-
vascular risk factors, including evaluation of total and LDL
cholesterol [6], homeostatic model assessment as a surro-
gate for insulin resistance (HOMA-IR) [12] or have con-
sidered these established risk factors together as a
composite outcome of cardiometabolic risk [4, 5].
Detailed metabolic profiling or metabolomics has been

applied successfully to identify novel biomarkers for the
development of cardiovascular disease [13, 14] and all-
cause mortality [15], with improved prediction as com-
pared to models containing conventional risk factors
[15]. Serum nuclear magnetic resonance (NMR) metabo-
lomics which enables reproducible quantification of cir-
culating lipids and abundant metabolites [16] has
facilitated its use in the assessment of the changes in
metabolites with adiposity [17], glycaemia [18], preg-
nancy [19] and menopausal status [20].
The aim of the current study was to assess the associ-

ation of ovarian reserve (as measured by AMH and
AFC) with 155 circulating metabolic measures. These
measures were profiled by a high-throughput NMR
metabolomics platform, covering a wide range of meta-
bolic pathways including lipoprotein lipids, fatty acids,
amino acids, ketone bodies and glycaemic traits, which
are highly relevant to cardiometabolic risk and overall
health.

Methods
Study design and participants
This is a cross-sectional study of women aged 18 to 45
who presented at Glasgow Royal Infirmary, UK, for assess-
ment prior to assisted conception between 1 April 2017
and 31 March 2019. Exclusion criteria were a documented
positive pregnancy test at the time of presentation, body
mass index (BMI) ≥ 35 kg/m2 and/or requiring oocyte or
embryo donation. A total of 400 women were recruited,
and of these, 398 (99%) had complete data on AMH, AFC
and at least one NMR metabolite and were included in
the analyses presented in this paper.

The study was conducted according to the ICH Guide-
line for good clinical practice, the Declaration of
Helsinki and the Convention of the Council of Europe.
All women provided written informed consent. The
study protocol was approved prior to study initiation by
the relevant institutional review boards (see Supplemen-
tary Material).

Study procedures
Demographic, lifestyle, fertility and medical history was
obtained by self-reported questionnaire and clinical data
by linkage to electronic medical records.
AFC was determined by two- or three-dimensional

transvaginal ultrasound (AFC was defined as the total
number of antral follicles with a size of 2–10mm in
both ovaries) on menstrual cycle days 2–4. Follicle
counts greater than 20 follicles per ovary were classed as
≥ 20, consistent with the diagnostic threshold for PCOS,
and that ovary was not counted further [21]. Due to the
potential for inter-sonographer variability, sonographers
were provided with training and were asked to follow
published practical recommendations for accurate trans-
vaginal ultrasound [22]; each sonographer used standard
equipment (Acuson Sequoia, Siemens Germany).
Non-fasted blood samples were collected during the

same visit that transvaginal ultrasound was performed.
AMH was measured using the Beckman Coulter AMH
automated method on a clinically validated immuno-
assay platform (Access 2, Beckman Coulter, USA). The
assay was calibrated and quality controlled using the
manufacturer’s reagents and is known to have a measur-
ing range of 0.08–24 ng/ml (0.57–171 pmol/l). The limit
of quantitation (LoQ) was 0.02 ng/ml (0.014pmo/l), with
the 20% CV LoQ 0.08 ng/ml (0.57 pmol/l). The coeffi-
cient of variation between runs for two levels of control
ran at < 4.4%.
Additional blood samples were taken for NMR ana-

lyses and immediately spun and frozen at − 80 °C, and
all NMR assays completed for this study were under-
taken within 1 year of storage and with no previous
freeze/thaw cycles.

NMR protocol
Profiling of 155 lipid and metabolite measures was per-
formed by a high-throughput targeted NMR platform
[Nightingale Health© (Helsinki, Finland)] at the University
of Bristol. The platform applies a single experimental setup,
which allows for the simultaneous quantification of routine
lipids, 14 lipoprotein subclasses and individual lipids trans-
ported by these particles, multiple fatty acids, glucose, the
glycolysis precursors lactate and pyruvate, ketone bodies
and amino acids in absolute concentration units (mostly
mmol/l). The NMR-based metabolite quantification is
achieved through measurements of three molecular
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windows from each sample. Two of the spectra (LIPO and
LMWM windows) are acquired from native serum and one
spectrum from serum lipid extracts (LIPID window). The
NMR spectra were measured using Bruker AVANCE III
spectrometer operating at 600MHz. Measurements of na-
tive serum samples and serum lipid extracts are conducted
at 37 °C and 22 °C, respectively. Details of this platform
have been published previously [16, 23], and it has been
widely applied in genetic and observational epidemiological
studies [13–15, 17, 19, 20, 24–26]. Further details of the
platform are provided in Additional file 1 (Supplemental
text, Table S1 and Fig. S1 [16]).

Metabolite quantification and quality control
The NMR spectra were analysed for absolute metabolite
quantification (molar concentration) in an automated
fashion. For each metabolite, a ridge regression model
was applied for quantification in order to overcome the
problems of heavily overlapping spectral data. In the
case of the lipoprotein lipid data, quantification models
were calibrated using high-performance liquid chroma-
tography methods and individually cross-validated
against NMR-independent lipid data. Low-molecular-
weight metabolites, as well as lipid extract measures,
were quantified as millimoles per litre based on regres-
sion modelling calibrated against a set of manually fitted
metabolite measures. The calibration data are quantified
based on iterative line-shape fitting analysis using the
PERCH NMR software (PERCH Solutions Ltd., Kuopio,
Finland). Absolute quantification cannot be directly
established for the lipid extract measures due to experi-
mental variation in the lipid extraction protocol. There-
fore, serum extract metabolites are scaled via the total
cholesterol as quantified from the native serum LIPO
spectrum.

Assessment of potential confounders
In relation to our analyses and control for confounders,
we used currently recommended practice of defining
confounders a priori (before undertaking analyses) using
directed acyclic graphs (DAGs) [27, 28]. This approach
defines confounders as any characteristic that is known
to cause variation in the exposure (here ovarian bio-
markers AMH and AFC) and outcome (NMR metabo-
lites) or is plausibly a cause of exposure and outcome.
Using a priori knowledge and relevant literature, our se-
lected confounders were age, BMI, educational attain-
ment, ethnicity, family history of cardiovascular disease
(defined as first-degree relative affected) physical activity,
alcohol intake, smoking status, duration and cause of in-
fertility and whether infertility was primary or secondary
(with secondary defined as a woman unable to establish
a clinical pregnancy but who has previously been diag-
nosed with a clinical pregnancy) [29]. These are known

to or plausibly influence both ovarian reserve and the
NMR metabolites [30]. Figure 1a shows the DAG for
this, our main, confounder-adjusted analyses. Following
reviewer comments, we also considered the extent to
which PCOS might be part of a confounding path and
whether we should also adjust for it. There is evidence
ovarian reserve and PCOS may share underlying com-
mon causes, including genetic variation and intrauterine
exposures. If these, specific genetic variants and expo-
sures are also related to cardiometabolic health, then
PCOS may be on a confounding path between ovarian
reserve and cardiometabolic health. Three possibilities
are considered in Fig. 1b–d. Whether or not to adjust
for PCOS is in part related to the fact that we do not
have genetic or intrauterine data on the women included
in this study, and so, these would be potential unmeas-
ured confounders. In 1B, we assume that there is no
causal relationship between PCOS and cardiometabolic
health. Whilst observational studies have shown associa-
tions of PCOS with type 2 diabetes, and some also show
associations with CHD, a recent Mendelian randomisa-
tion study has suggested no causal effect of PCOS on
type 2 diabetes, coronary heart disease or stroke [32],
making this scenario plausible. In this scenario, PCOS is
not on a confounding path, and adjusting for it should
not alter the results. Figure 1c and d suggest PCOS does
causally influence cardiometabolic health. In 1C, PCOS
is on a confounding path, and we would want to adjust
for it. In 1D, it is on a mediating path, and we would not
want to adjust for it. Given we cannot be certain which
of these scenarios is correct in additional analyses we,
repeat all of our main analyses with those with known
PCOS removed. We chose to remove them rather than
add to a multivariable model because there were only 24
cases. Weight and height [used to calculate the body
mass index (BMI)] were measured in light clothing and
unshod. Weight was measured to the nearest 0.1 kg
using Tanita scales; height was measured to the nearest
0.1 cm using a Harpenden stadiometer. Smoking status
was categorised as ever versus never (to be considered
for state-funded assisted conception, women had to have
not smoked for at least 3 months, and this was con-
firmed by a negative cotinine breath test). All other con-
founders, including an existing diagnosis of PCOS, were
obtained by a questionnaire or from medical notes when
the women were originally recruited. Full details of the
assessment of these confounders are provided in the
supplementary material.

Statistical analysis
All analyses were conducted using R version 3.4.2 (R
Foundation for Statistical Computing, Vienna, Austria).
An analysis plan was written in June 2019. Characteris-
tics were summarised as n, total range, mean, standard

Rashid et al. BMC Medicine          (2020) 18:247 Page 3 of 14



Fig. 1 (See legend on next page.)
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deviation, median and 25th and 75th quantiles (IQR) as
appropriate. Multivariable linear regression was used to
examine the associations of functional ovarian reserve
markers (treated as exposures) with serum metabolic
profiles (treated as outcomes). Robust standard errors
were estimated for all associations, as some metabolite
concentrations had skewed distributions. The metabolic
measures were scaled to standard deviation (SD) units
(by subtracting the mean and dividing by the standard
deviation of all women included in the analyses). This
scaling allows easy comparison of multiple metabolic
measures with different units or with large differences in
their concentration distributions. AMH and AFC were
also scaled to SD units in the same way as the metabo-
lites. This was done for ease of comparison of results be-
tween the two biomarkers. Associations were adjusted
for all a priori selected confounders (age, ethnicity, edu-
cation, family history of cardiovascular disease, BMI,
physical activity, alcohol, smoking, duration of infertility
and whether the woman had primary or secondary
infertility).

Additional analyses
In addition to presenting our main results as the differ-
ence in mean metabolite in SD units per SD of AMH or
AFC, we also present the full results (confounder ad-
justed) in the metabolite, AMH and AFC original units
in the supplementary material. One woman was taking
lipid-lowering medication, and removal of her from the
analyses did not alter any of the findings from the main
results (results available from the corresponding author
on request). We repeated our main analyses only on
those women with a known partner cause of infertility
(N = 87 (22% of the cohort). We knew a priori that this
sample size would lack statistical power for reliable

results but wanted to compare the point estimates in
this group to the results of the whole cohort to provide
some indication as to whether our results might be
driven by the cause of infertility in the women or poten-
tially generalisable to women of reproductive age with-
out infertility. We compared the magnitudes of the
results in women who were going to undergo assisted
conception because of partner infertility with those of
the whole cohort using a scatterplot. As 99% of the
women recruited had full data on ovarian reserve and at
least one metabolite, with < 1% of these having missing
covariable data (see Table 1), we did not need to under-
take any additional analyses to explore potential biases
due to missing data. To explore the departure from lin-
earity where there was evidence of an association, AMH
and AFC were split into quarters of their distribution
and regression models were run with these quarters as a
continuous score and as a 4 level categorical variable
(with 3 indicators). A likelihood ratio test was used to
compare these two models. Statistical support that the
second (3 indicators) model was a better fit of the data
would suggest a possible non-linear association.

Accounting for multiple testing
Due to the correlated nature of the metabolic bio-
markers, over 95% of the variation in the 155 metabolic
biomarkers was explained by 14 principal components.
Therefore, multiple testing correction, accounting for 14
independent tests using the Bonferroni method, resulted
in p < 0.0036 (0.05/14) being denoted as statistically
significant.

Results
Three hundred and ninety-eight women (99% of the 400
recruited) with available AMH and AFC levels and data

(See figure on previous page.)
Fig. 1 Directed acyclic graphs (DAGs) of the association of ovarian reserve with cardiometabolic health. a Our main analyses, in which we a priori
considered factors that were known to, or highly plausibly influenced ovarian reserve and cardiometabolic health, as confounders to be
controlled for. b–d Further consider whether we should or should not control for PCOS. In all of these, we assume that there are underlying
unmeasured factors that generate an association between ovarian reserve and PCOS (U1). For example, it has been suggested that common
genetic and/or intrauterine factors affect both of these. b We assume that PCOS is not causally related to cardiometabolic health (no arrow from
PCOS to cardiometabolic health). c PCOS does causally influence cardiometabolic health and that it is on a confounding path between ovarian
reserve and cardiometabolic health via U1. d Assume that PCOS causally influences cardiometabolic health but that it is a mediator between
ovarian reserve and cardiometabolic health. Deciding whether we need to adjust for PCOS therefore depends on evidence for a causal link
between PCOS and cardiometabolic health and if there is a link evidence as to whether PCOS is likely to be a confounder or a mediator. In
relation to point 1, whilst there have been several observational studies showing an association of PCOS with cardiometabolic health, recent
Mendelian randomisation studies suggest that PCOS does not causally influence type 2 diabetes, coronary heart disease or stroke (making b a
plausible scenario) [31]. If the scenario depicted in b is correct, then controlling for PCOS is not necessary, but if done, it should have no impact
on the results. It is not uncommon in observational epidemiology to have a risk factor for an outcome and be unsure which is more
plausible—that it is a confounder or a mediator. If PCOS is on the confounding path between unmeasured factors (U1) as shown in c, we would
definitely want to adjust for it as this would be the only way to block this confounding (given U1 variables are unmeasured). However, if PCOS is
a mediator (d), then we would not want to adjust for it. Primarily, this is because we want to know the ‘total’ potential effect of ovarian reserve
on cardiometabolic health and not remove any of that going via mediation. It is also possible that adjusting for a mediator can introduce what is
known as collider bias [32]. If there are unmeasured confounders of the mediator (PCOS) and cardiometabolic health (shown by U2), then
adjusting for PCOS could generate spurious associations between ovarian reserve and cardiometabolic health
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on at least one metabolite were included in the study.
The characteristics of the participants are shown in
Table 1. Mean (SD) age of the women was 35.5 (4.4)
years, and the majority (92%) were White European,
with over 50% having a university degree, 26% being ever
smokers, 68% exercising more than 3–4 times per week,
52% having a family history of cardiovascular disease
and median alcohol consumption being 4 units per week.
Mean (SD) BMI was 25 (3) kg/m2, and 95% were due to
start their first treatment cycle, with 49% having an un-
known cause of infertility and 24% a cause related to

their partner. The median AMH was 16.1 pmol/l (IQR
8.8, 28.0 pmol/l) and median AFC of 12 (IQR 7, 16).
AMH and AFC were positively correlated (Spearman’s
correlation coefficient = 0.55, p < 0.001).
The unadjusted associations of AMH and AFC with

selected confounders are shown in Additional file 1
Tables S2 and S3, respectively. Age was negatively
associated with AMH (difference in mean − 0.09 SD
per 1-year older age, 95% CI − 0.11, − 0.07) and AFC
(− 0.06 SD per 1-year older age, 95% CI − 0.08, − 0.04).
An ovulatory cause of infertility compared with an

Table 1 Baseline characteristics of the study population (N = 398)

Age (years), mean, SD, range 35.5 (4.43) 22–45

Ethnicity, N (%)

White European 365 (92%)

Asian 28 (7%)

Others 5 (1%)

Highest education, N (%)

School leaving exams 185 (46%)

Undergraduate degree 139 (35%)

Postgraduate degree 74 (19%)

BMI, mean, SD, range 24.7 (3.2) 18.2–32.5

Ever smoked, N (%) 104 (26%)

Alcohol (units per week), median, IQR, range 4 (1, 8) 0–27

Physical activity (times per week), N (%)

Never 12 (3%)

Once 29 (7%)

Twice 86 (22%)

3–4 times 239 (60%)

5–7 times 25 (6%)

7+ times 7 (2%)

Family history of cardiometabolic disease, N (%) 208 (52%)

Gravidity, median, IQR, range 0 (0, 1) 0–12

Parity, median, IQR, range 0 (0, 0) 0–4

Duration infertility (years), median, IQR, range 3 (2, 4) 1–13

Primary infertility, N (%) 271 (68%)

Cause of infertility

Unexplained 203 (51%)

Tubal disorder 44 (11%)

Endometriosis 32 (8%)

Ovulatory disorder 24 (6%)

Male factor/no male partner 87 (22%)

Others 8 (2%)

First IVF cycle (missing data, N = 3) 376 (95%)

AMH, median, IQR, range 16.1 (8.9, 28.0) 1–170.8

Total AFC, median, IQR, range 12 (7, 16) 0–40

In cases where endometriosis and tubal disorders were both given as the cause of infertility (N < 5), half were randomly assigned to tubal disorders and half
to endometriosis
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unexplained cause was associated with a higher AMH
(difference in mean 0.93 SD, 95% CI 0.48, 1.37) and
AFC (0.65, 95% CI 0.20, 1.11). Secondary infertility
was strongly negatively associated with AFC (− 0.34SD
(95% CI − 0.55, − 0.13), with a weaker negative associ-
ation with AMH (− 0.11 (95%CI − 0.32, 0.11)). Family
history of cardiometabolic diseases was negatively as-
sociated, and non-White European ethnicity positively
associated with AMH and AFC. There was no strong
statistical evidence of an association between BMI or
other potential confounders and either measure of
ovarian reserve.
The adjusted (for all potential confounders) associa-

tions between AMH and AFC and the respective meta-
bolomics measures are SD units per SD of AMH/AFC
and are presented in Figs. 2, 3 and 4. With the un-
adjusted associations presented Additional file 1 Figures
S2 - S4. Confounder-adjusted results in the original units
of AMH/AFC and the metabolites are shown in Add-
itional file 2 Tables S4 and S5.
In confounder-adjusted analyses, AMH levels were

positively correlated with measures of components of
medium HDL and small HDL and with concentrations
of omega-6 fatty acids and polyunsaturated fatty acids
(PUFA). AMH was also positively associated with the
amino acids isoleucine, leucine and tyrosine, and it was
negatively associated with acetate concentrations. Al-
though there were positive associations with lipoprotein
subclasses, other cholesterol subtypes, glycerides and
apolipoproteins, several of which had point estimates of
~ 0.1 SD or larger differences; these had wide confidence
intervals that included the null and did not reach our
multiple testing threshold for statistical significance.
Overall, the associations for AFC with the metabolic

measures were in the same direction as those observed
for AMH; however, they were weaker in magnitude and
for many of them close to unity (Figs. 2, 3 and 4). The
notable exceptions were the positive associations with
the amino acids alanine, glutamine and glycine.
There was no strong evidence of departure from lin-

earity for any of the observed associations (all likelihood
ratio p values comparing a model with four categories as
3 indicator variables to the simpler model as a 4 level
score ≥ 0.05). When analyses were repeated only in those
undergoing assisted conception due to partner infertility
(n = 87), most of the 155 associations of AMH were
stronger than those in the main analyses including all
women (Fig. 5a). This included the strengthening of the
previously noted associations of AMH with the metabo-
lomic markers. Positive associations were also observed
for the various lipid concentrations within the medium
and small very-low-density lipoproteins, intermediate-
density lipoprotein and low-density lipoproteins, choles-
terol, the mono-unsaturated fatty acids and alanine, with

a negative association with glucose emerging; the nega-
tive association with acetate attenuated (Additional file 1
Figures S5-S7). In this subgroup, some associations of
AFC also strengthened (Fig. 5b), with positive associa-
tions with various lipid concentrations across the size
range of the very-low-density lipoproteins, triglycerides,
apolipoprotein-B, mono-unsaturated fatty acids and the
amino acids alanine and glutamine (Additional file 1 Fig-
ures S8-S10). When analyses were compared between
the whole cohort and after exclusion of women with
PCOS (n = 24), the associations were similar for AMH
and AFC with correlations of 0.97 and 0.98, respectively
(Additional file 1 Figure S11).

Discussion
In this cross-sectional study of women attending a fertil-
ity clinic for evaluation, we identify several novel associ-
ations between the biomarkers of ovarian reserve, as
measured by AMH and AFC, and circulating metabo-
lites. Specifically, AMH showed positive associations
with the amino acids isoleucine, leucine and tyrosine;
medium HDL and small HDL; omega-6 fatty acids; and
polyunsaturated fatty acids and a negative association
with acetate. AFC had directionally consistent associa-
tions to those seen for AMH, but the magnitudes of as-
sociation (measured on the same scale as SD difference
in metabolite for a 1 SD increase in AMH or AFC) were
weaker overall. Statistical evidence for positive associa-
tions with alanine, glutamine and glycine were observed.
In our main analyses, including all women, we did not
find strong statistical support for either biomarker being
associated with an extensive lipid profile. This was still
the case after the exclusion of women with PCOS. When
we restricted analyses to the subgroup (22%) of women
with male partner infertility, observed associations
strengthened and we observed positive associations of
AMH and AFC with a range of lipids, suggesting that
the women infertility phenotypes may mask associations
with lipid profiles.
Previous studies have suggested an association of

lower ovarian reserve with vascular health [7, 33, 34].
Whether alteration in serum lipids contributes to this
association is unclear. One small study (n = 50) reported
a positive correlation between AMH and total choles-
terol and LDL-C, and inverse correlation with HDL-C
[35], whilst a larger study (N = 252) of women with
PCOS found a weak positive correlation with HDL-C,
which was attenuated when adjusted for BMI [36]. In
contrast, larger studies of Chinese women did not
observe an association between AMH and any of total
cholesterol, LDL-C, HDL-C or triglycerides in either
women with PCOS (N = 304), infertile women (N =
1896) [37] or in a general cohort of women (N = 6763)
[38]. This is consistent with our own findings, with
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limited statistical evidence of an association between
AMH and lipoprotein subclasses, lipoprotein particle
size, cholesterol, LDL or HDL subtypes or triglycerides,
phosphoglycerides, or apolipoproteins when the whole
population was considered. Collectively, the evidence to
date (including from our study) would support recent
observational studies suggesting that the association of
AMH with atherosclerosis may be independent of lipid
levels [7, 33, 34]. As an alternative mechanism, it has
been proposed that AMH has direct effects on

cardiovascular tissue [39], making it more prone to in-
jury and atherosclerosis [7]. Though specific evidence
for this is lacking. We did not demonstrate associations
between AFC and lipids, which have to our knowledge
not been previously explored, further supporting sugges-
tions that alternative mechanisms to dyslipidaemia may
underlie the relationships between ovarian reserve and
cardiovascular disease. Though as acknowledged below,
the greater variability in AFC compared with AMH may
have attenuated some of these results towards the null.

Fig. 2 Associations of lipoprotein classes with AMH and AFC in women awaiting IVF. Effect sizes per 1 SD in metabolite concentrations and
respective 95% confidence intervals are shown for AMH (red) and AFC (black). Adjusted for age, education, family history of CVD, BMI, physical
activity, alcohol (units per week), ever smoking, ethnicity, duration of infertility, cause of infertility and primary/secondary infertility
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We report a positive association between AMH and
higher circulating levels of PUFA and omega-6 fatty
acids. However, a systematic review and meta-analysis
found no evidence of either observational associations
between dietary intake or measured circulating concen-
trations of omega-6 on cardiovascular diseases or any ef-
fect of dietary supplementation with omega-6 in
randomised controlled trials [40], suggesting that even if

the association of AMH with omega-6 is causal, this is
unlikely to be a mechanism for preventing cardiovascu-
lar diseases.
Branch chain amino acids (BCAA), such as isoleucine,

leucine and valine, have been found to be positively as-
sociated with a number of cardiometabolic risk factors,
including adiposity, fasting glucose, insulin resistance,
blood pressure, dyslipidaemia and indicators of coronary

Fig. 3 Associations of lipoprotein classes and fatty acids with AMH and AFC in women awaiting IVF. Effect sizes per 1 SD in metabolite
concentrations and respective 95% confidence intervals are shown for AMH (red) and AFC (black). Adjusted for age, education, family history of
CVD, BMI, physical activity, alcohol (units per week), ever smoking, ethnicity, duration of infertility, cause of infertility and
primary/secondary infertility
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artery disease, in cross-sectional studies [41]. There are
also positive associations of BCAA and aromatic amino
acids with incident cardiovascular events in several large
prospective studies [14, 42–44]. However, whether these
are causally related is at present unknown. Our observed
AMH-BCAA association is of interest, but the replica-
tion of our findings and confirmation of biological
plausibility of causality would be required to assess
whether the association of AMH with CVD may be me-
diated to some extent by BCAA.

The same NMR platform has previously been used to
identify 14 metabolites associated with all-cause mortal-
ity in a meta-analysis of 12 cohorts and 44,168 partici-
pants [15], with subgroup analyses of 7603 participants
identifying seven metabolites (XXL-VLDL-L, PUFA, lac-
tate, histidine, leucine, phenylalanine and albumin) in-
versely associated with cardiovascular mortality and
three (glucose, lactate and glycoprotein acetyls) posi-
tively associated with cardiovascular mortality [15].
Overall, our observed direction of associations was

Fig. 4 Associations of metabolic traits with AMH and AFC in women awaiting IVF. Effect sizes per 1 SD in metabolite concentrations and
respective 95% confidence intervals are shown for AMH (red) and AFC (black). Adjusted for age, education, family history of CVD, BMI, physical
activity, alcohol (units per week), ever smoking, ethnicity, duration of infertility, cause of infertility and primary/secondary infertility
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consistent with markers of low ovarian reserve relating
to these metabolites that have previously been shown to
robustly associate with cardiovascular disease mortality.
Associations of AMH with PUFA and leucine met our
adjusted statistical threshold. These findings, if repli-
cated in larger cohorts, would support the overall

concept that a diminished ovarian reserve may be associ-
ated with an unfavourable circulating cardiometabolic
risk profile [5].
Our study has several strengths. To our knowledge, we

are not aware of any study with a similar or larger sam-
ple size with detailed phenotypic and metabolite

Fig. 5 Scatterplot of the associations between AMH and AFC and metabolites in the full sample (N = 398) and subsample restricted to females
with a reported male partner cause of infertility (N = 87). Figure 4a shows the associations with AMH; Fig. 4b shows associations with AFC
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measurements. All women attended during the early fol-
licular phase for the measurement of AMH and AFC.
We included all women across the range of ovarian re-
serve including some women with extremely low and
high AMH and AFC. We wrote, and have used, a pre-
specified analysis plan which incorporated adjustment
for a wide range of a priori specified potential con-
founders. Subgroup analyses in those women who were
awaiting assisted conception because of male partner in-
fertility were also assessed, as these women may reflect a
general population of women of reproductive age.
We do however acknowledge several limitations. Our

analyses are cross-sectional and therefore could be ex-
plained by variation in metabolism (e.g. of amino acids)
influencing ovarian reserve rather than the other way
around, as we have assumed. Furthermore, we cannot as-
sume that the small number of associations identified is
causal. Residual confounding may have resulted from
crude questionnaire measurements of physical activity, al-
cohol intake and family history of cardiovascular disease
and the lack of any data on dietary intake. However, we
adjusted for the measures we had of alcohol, physical ac-
tivity and family history of cardiovascular disease, as well
as education and BMI, which influence diet and physical
activity, or are influenced by it, and thus may have cap-
tured key confounding paths. Of note, our adjustment for
confounders is more extensive than previous studies of
the association of AMH with lipids and other cardiovascu-
lar risk factors. Whilst this is one of the larger studies to
explore these associations, our results were imprecisely es-
timated, with wide confidence intervals, and we are not
aware of any independent study that has measures of
ovarian reserve and multiple metabolites (or even the
amino acids and fatty acids that we observed associations
with) in which to attempt to replicate our findings.
Women were awaiting IVF and related to that were

confirmed (through cotinine breath test) non-smokers
and were of a relatively restricted BMI range. The
women were also largely White European and educated
to degree level. This homogeneous relatively healthy
population may have resulted in some selection bias and
may mean that our results do not generalise to a general
population of women of reproductive age or other infer-
tile populations. AFC was measured by several operators,
and the known intra- and inter-observer variability of
AFC [45] and application of a threshold for counting per
ovary, with the highest value for AFC of 40 (range 0–
40), as compared to AMH of 171 (range 1–171 pmol/l),
may explain why we did not see the same strength of as-
sociations of AFC with the various metabolites com-
pared to what we observed with AMH. AMH was
measured in a single laboratory on an automated ana-
lyser with a wide analytical range and low coefficient of
variation.

Analyses were undertaken on non-fasting samples.
This was necessary to align with clinical processes for a
population who are undergoing assisted conception,
where caloric restraint may be detrimental. In collabora-
tions of several studies using this same NMR analysis
platform results have not differed notably between stud-
ies in which the analyses were undertaken in participants
who had been advised to fast and those who had not, in-
cluding in analyses exploring the associations of these
metabolites with cardiovascular diseases [14].
The NMR platform used in these analyses covers con-

siderably more of the lipidome than conventional clinical
chemistry measures (total cholesterol, LDL-C, HDL-C
and triglycerides) that have previously been explored in
relation to ovarian reserve, and in addition includes fatty
acids, amino acids, glycolysis metabolites, ketone bodies
and an inflammatory marker. We acknowledge it misses
a high proportion of the currently quantifiable metabo-
lites in human serum/plasma, including markers of
energy balance, microbiota metabolism, vitamins, co-
factors and xenobiotics, that may be influenced by ovar-
ian reserve. High-throughput analyses of a wider range
of metabolites measured by mass spectrometry are pos-
sible in epidemiological studies but considerably more
expensive than the NMR platform used here, resulting
in their use being frequently restricted to subsamples of
cohorts [46].

Conclusion
This study provides novel insight into the association of
the ovarian biomarkers, AMH and AFC, with metabolic
profiles. Taken together with other recent studies, our
results suggest that dyslipidaemia may have a limited
role to play in the relationship between ovarian reserve
and cardiovascular diseases. The novel associations we
find with some fatty acids and amino acids may have a
role in mediating any effect of ovarian reserve on cardio-
metabolic diseases, but these require replication in large
prospective studies and we cannot assume that the small
number of associations identified are causal.
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