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Modalities, Cohesion, and Information Flow

G. A. KAVVOS,Wesleyan University, United States of America

It is informally understood that the purpose of modal type constructors in programming calculi is to control

the flow of information between types. In order to lend rigorous support to this idea, we study the category of

classified sets, a variant of a denotational semantics for information flow proposed by Abadi et al. We use

classified sets to prove multiple noninterference theorems for modalities of a monadic and comonadic flavour.

The common machinery behind our theorems stems from the the fact that classified sets are a (weak) model

of Lawvere’s theory of axiomatic cohesion. In the process, we show how cohesion can be used for reasoning

about multi-modal settings. This leads to the conclusion that cohesion is a particularly useful setting for the

study of both information flow, but also modalities in type theory and programming languages at large.
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1 INTRODUCTION

Taming the flow of information within a computer system has been a problem of significant
interest since the early days of Computer Science; see, for example, the models of Bell and LaPadula
[LaPadula and Bell 1996; Rushby 1986], and the influential work of Denning [1976], which was the
first to introduce the use of lattices for modelling secure information flow. The objective of these
models is usually to express the property that data cannot flow in or out of certain regions of a
computer system, thus achieving a certain form of confidentiality or integrity.

A modern way of achieving the above objective is to make it language-based. That is: to enrich a
programming language with features that specify or control the flow of data, so that the programs
we write are correctÐor rather, secureÐby design. One way of doing so is through the use of type
systems which annotate variables or program expressions with security levels. It then suffices to
prove that the type system ensures some form of noninterference property, which invariably states
that, in a well-typed program, data cannot flow contrary to our wishes, e.g. from a type labelled as
being of high security to one of low security. Several type systems of this form have been proposed,
but all seem to be in some sense ‘equivalent;’ see e.g. the recent work of Rajani and Garg [2018].
Many of theses type systems feature some form of modality, which is broadly construed as

a unary type constructor of some sort: see e.g. [Abadi et al. 1999; Miyamoto and Igarashi 2004;
Shikuma and Igarashi 2008]. The rules that govern the behaviour of a modality almost always
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20:2 G. A. Kavvos

silently endow it with certain information flow properties. This is intuitively well-known both by
modal type theorists, as well as practitioners who use modal type systems in programming calculi.
Nevertheless, the implicit properties of these systems have not been subjected to a detailed

treatment. Given the recent resurgence of interest in modal type theoryÐas exemplified by cohesive
homotopy type theory [Shulman 2018], and guarded type theory [Clouston et al. 2016] on the
theoretical side, but also calculi for functional reactive programming [Krishnaswami 2013], effects
[Curien et al. 2016] or coeffects [Petricek et al. 2014] on the more application-driven endÐwe
believe that there is a need for a more universal approach to modal type theory. There have been
major recent advances on the syntactical side, particularly through the fibrational framework of
Licata et al. [2017]. However, we are still lacking a ‘Swiss-army-knife model’ that can help us
understand and prove properties about the information flow of these modalities. This is the subject
of the present paper.
For this purpose we introduce a refinement of the dependency category of Abadi et al. [1999],

which we call the category of classified sets. These are sets equipped with indexed logical relations
that encode indistinguishability, and thus a form of data hiding. Abadi et al. [1999] used a variant
of this model to prove noninterference theorems for various information flow calculi that they
translated to their dependency core calculus,
We will present a different, significantly more ‘high tech’ approach. First, we notice that the

relations of indistinguishability that classified sets carry must be respected: that is, if x R y then
f (x) R f (y) for any morphism f : X → Y of our model. Thus, if x R y, the ‘points’ x and y of X
can be considered to be ‘arbitrarily close’ to each other in a ‘space.’ So close, in fact, as to not be
distinguishable. This analogy is rife with topological intuition. We will see that these relations
describe a sort of cohesion between points. It so happens that an axiomatic approach to this idea
has been developed by Lawvere [2007], and that classified sets form a weak model of this theory.

Once this fact is established, we can show that many of the information flow properties that we
wish to establish follow directly from this abstract framework of cohesion. From that point, we
want to (a) identify appropriate structure in the category of classified sets for modelling a host of
modal type theories that are used in information flow control, and (b) use this structure to prove
noninterference theorems for these type theories.
This paper proceeds as follows. In ğ2 we introduce the category of classified sets, and show

that it is a finitely complete and cocomplete, bicartesian closed category, and hence a model of
the simply typed λ-calculus. Then, in ğ3 we will present the rudiments of axiomatic cohesion, and
show that classified sets are pre-cohesive relative to ordinary sets. This will introduce some modal
operations, and lead us to prove some basic noninterference theorems in ğ4.
Then, in ğ5, we present a levelled view of cohesion. Classified sets are defined parametrically

in a set of security levels L. If we add a new set π of security levels, then the new category of
setsÐwhich is classified over L ∪ πÐis pre-cohesive over the category of sets classified over L.
This generates some more modal operators, which are now ‘level-sensitive.’ These are used in ğ6 to
prove another set of noninterference theorems. We make some concluding remarks in ğ7.
Category theory is used extensively throughout the paper. The main tool is that of adjunctions,

and their close relationship to (co)monads, both of which are beautifully covered in [Awodey
2010, ğ9-10]. We only use one advanced concept, namely that of (co)reflective subcategories, which
correspond to idempotent monads and comonads; this is covered in [Mac Lane 1978, ğIV.3], [Borceux
1994, Vol. II, ğ4.2.4], or the nLab wiki.1

1https://ncatlab.org/nlab/show/reflective+subcategory
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Modalities, Cohesion, and Information Flow 20:3

2 CLASSIFIED SETS

Reynolds integrated these two strands of thought and formulated a general

principle of relational parametricity that is applicable to a wide range of

contexts for capturing the notion of łinformation hidingž or łabstraction.ž

Unfortunately, we believe that the magnitude of this achievement has not

been sufficiently recognized.

C. Hermida, U. S. Reddy, and E. P. Robinson [Hermida et al. 2014]

Let L be a set of labels, which we call security levels. We assume precisely nothing about L, so
our theory is curiously independent of its structure (finite, infinite, partial order, lattice, etc.).

Definition 1. A classified set S over L (or: a set S classified over L) consists of

(1) an ordinary carrier set |S |, and

(2) a family of reflexive relations (Rℓ)ℓ∈L on |S |, one for each level ℓ ∈ L.

We willÐmore often than notÐwrite x ∈ S to mean x ∈ |S |. The underlying intuition pertaining to a
classified set is that each level ℓ ∈ L is to be understood as a security clearance, and the relation Rℓ

models indistinguishability for users at that clearance. That is: if x Rℓ y, then a user with clearance
ℓ must not be able to distinguish between x and y. Reflexivity models the simple fact that x should
be indistinguishable to itself. In logical relations, reflexivity is a theorem; but since not everything
is defined inductively here, it must become an explicit requirement.2

The kind of functions admissible in our mathematical universe shall be precisely those that map
indistinguishable inputs to indistinguishable outputs.

Definition 2. Let S and S ′ be sets classified over L. A morphism of classified sets f : S → S ′ is a

function f : |S | → |S ′ | such that x Rℓ y implies f (x) Rℓ f (y) for all ℓ ∈ L.

Classified sets over L and their morphisms constitute a category, which we denote as CSetL .

2.1 Limits and Colimits

We move on to the examination of what kind of limits and colimits exist in classified sets, which
tells us which kinds of data type we are able to construct.
We let 1 be the classified set with a singleton carrier set {∗}, and ∗ Rℓ ∗ for all ℓ ∈ L.

Proposition 1. 1 is a terminal object in CSetL .

That is: there is a unique function from a classified set X to 1; it maps everything to ∗, hence
collapsing all related pairs to one element, which cannot be distinguished from itself.
Similarly, we let the classified set 0 be the set whose carrier is the empty set, and all of whose

relations are empty. Since there are no relations to preserve, it is evident that the unique empty
function from 0 to any |A| is a morphism, so

Proposition 2. 0 is an initial object in CSetL .

For classified sets A and B, we let |A × B |
def
= |A| × |B |. Given any ℓ ∈ L, we define

(a1,b1) Rℓ (a2,b2) ⇐⇒ a1 Rℓ a2 ∧ b1 Rℓ b2

Hence, two pairs are indistinguishable exactly when they are so componentwise. If, for example,
the second components are distinguishable, then so are the pairs; but this does not entail that we
can distinguish the first components! In this way, we can ‘classify’ pairs without resorting to more
complicated sets of labels, e.g. L × L.

2Abadi et al. [1999] did not require their relations to be reflexive, which is a key property in showing pre-cohesion in ğ3.
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20:4 G. A. Kavvos

The standard set-theoretic projections preserve Rℓ , as does the standard set-theoretic product
morphism ⟨f ,д⟩ : |C | → |A| × |B | for any f : C → A and д : C → B. Hence,

Proposition 3. The classified set A × B is the categorical product of A and B in CSetL .

A similar story applies to coproducts: given A and B, we define

|A + B |
def
= |A| + |B | = { (0,a) | a ∈ |A| } ∪ { (1,b) | b ∈ |B | }

and, naturally, we define Rℓ to be

(0,a) Rℓ (0,a
′) ⇔ a Rℓ a

′
, (1,b) Rℓ (1,b

′) ⇔ b Rℓ b
′

and ¬ ((i,x) Rℓ (j,y)) for i , j. The injections |A| → |A| + |B | and |B | → |A| + |B | clearly preserve
Rℓ , as does the set-theoretic coproduct morphism, so

Proposition 4. The classified set A + B is the categorical coproduct of A and B in CSetL .

In a similar fashion, if we are given two parallel arrows A B
f

д
, we can see that the set

E
def
= { a ∈ A | f (a) = д(a) } equipped with Rℓ↾E , the relations Rℓ restricted to E, is a classified set,

that the inclusion E ֒→ A is trivially a morphism, and that

Proposition 5. E is the equaliser of f : A → B and д : A → B.

Constructing coequalisers is slightly more complicated. Recall that given two ordinary functions

A B
f

д
, their coequaliser is the set B quotiented by the equivalence relation ∼f ,д , which is the

least equivalence relation such that (f (a),д(a)) ∈ ∼f ,д . The elements of B/∼f ,д are then equivalence
classes [b] of elements we wish to ‘lump together.’ Suppose now that A and B are classified; how
should we classify B/∼f ,д? We may consider two of its equivalence classes indistinguishable
whenever it happens that two elements, one from each equivalence class, are ‘lumped together’ by
Rℓ . So we define

[b] Rℓ [b
′] ⇐⇒ ∃x ∈ [b]. ∃y ∈ [b ′]. x Rℓ y

and thus turn B/∼f ,д into a classified set. The quotient map B → B/∼f ,д is then automatically a
morphism of classified sets, and it is not hard to show that

Proposition 6. B/∼f ,д is the coequaliser of A B
f

д
CSetL .

In short, we have the following theorem:

Theorem 1. CSetL is finitely complete and finitely cocomplete.

2.2 Exponentials

In a manner identical to that of logical relations, we are able endow the set of morphisms from
a classified set to another with an indistinguishability relation. The idea is that two morphisms
are indistinguishable if they map indistinguishable inputs to indistinguishable outputs. Note that
this furnishes our theory with an extensional view of functions, where they are understood to be
indistinguishable precisely when their input-output behaviour is.
Given classified sets A and B over L, we define the classified set BA by

�

�BA
�

�

def
= HomCSetL (A,B)

f Rℓ д ⇐⇒ ∀a Rℓ a
′
. f (a) Rℓ д(a

′)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.
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This is the usual definition of logical relations at function types. We can then define a function
ev : BA ×A → B by (f ,a) 7→ f (a), and the definition of BA makes it a morphism. From that point,
it is trivial to show that

Proposition 7. BA is the exponential of A and B.

Hence,

Theorem 2. CSetL is a bicartesian closed category.

Thus the category CSetL is rich enough to model the simply typed λ-calculus with coproducts.
In the following sections we will also show that there is enough structure to model a multitude of
modal operators on types.

3 COHESION

Themodal structure on classified sets is closely related toÐor, more precisely, induced byÐLawvere’s
axiomatic cohesion. But what is axiomatic cohesion? It is a theory developed by Lawvere [2007]
as an attempt to capture the very broad idea of mathematical spaces that are endowed with some
kind of cohesion, i.e. the idea that some points are ‘very close to each other’ or ‘stuck together.’ The
prototypical example is that of topological spaces, which are sets of points equipped with a topology,
i.e. a set of subsets of these points. These are called the open sets, and the choice of which subsets
are open endows the underlying set with notions of continuity, connectedness, convergence etc.
If we write Top for the category of topological spaces, there is an obvious forgetful functor

U : Top −→ Set which ‘forgets’ the cohesive structure of a topological space, and returns the
underlying set of points. Conversely, given any set there are two canonical ways to construct a
topological space. The first is to specify that no points are stuck together. This is achieved by the
discrete topology, where every subset is an open set. It forms a functor,

∆ : Set −→ Top

that is the identity on functions: every function on sets is trivially a continuous function between
the same sets seen as discrete spaces, so ∆ is full and faithful.

The other way is to specify that all points are stuck together, and is achieved by endowing the set
with the codiscrete topology, where the only open sets are the empty set and the entire space. It
forms another functor,

∇ : Set −→ Top

that is the identity on functions: every function on sets is trivially a continuous function between
the same sets seen as codiscrete spaces.
The relationship between these functors is simple: they form a string of adjoints:

∆ ⊣ U ⊣ ∇

This categorifies the following two simple observations: every function X → ∇Y from a topological
space into a codiscrete space is continuous (as everything is collapsed into a single block of points);
and every function ∆X → Y from a discrete space into a topological space Y is continuous (as
there is no cohesion to preserve in a discrete space).

But this is not the whole story. Consider a continuous function X → ∆Y into the discrete space
with points Y . Since it is continuous, it must preserve cohesion. Namely, it must map points of
X that are ‘stuck together’ to points that are ‘stuck together’ in ∆Y . But points are only ‘stuck’
to themselves in the discrete space ∆Y , so in fact it must map all points ‘stuck’ to each other in
X to a single point of Y . Thus, if we could somehow reduce X down to a set C(X ) where points
‘stuck’ together are collapsed to a single point, the continuous function X → ∆Y would define an

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.



20:6 G. A. Kavvos

ordinary function C(X ) → Y . Such a functor C does exist, and maps the topological space X to its
set C(X ) of connected components. It is evidently left adjoint to ∆.

We are very close to showing that topological spaces are cohesive relative to sets. We will, however,
not use this full notion in this paper, as the weaker notion of pre-cohesion, due to Lawvere and
Menni [2015], is more than sufficient for our purposes:

Definition 3. In a situation of the form

E

S

C U∆ ∇⊣ ⊣ ⊣

where E and S are extensive categories, we call E pre-cohesive relative to S if

(1) ∆,∇ : S −→ E are full and faithful;

(2) C : E −→ S preserves finite products; and

(3) the Nullstellensatz holds: the counit IdE ⇒ ∆C is an epimorphism; or, equivalently, the unit

∆U ⇒ IdE is a monomorphism.

The second requirement essentially expresses that a connected component of a product space
is exactly a connected component in each of the two components. The third requirement, the
nullstellensatz, has many equivalent forms, and essentially requires that the ‘quotient’ map that
maps a point to its connected component is a epimorphic, i.e. a kind of abstract surjection (in other
words: no connected component is empty).

The reason that a setting of pre-cohesion is of direct interest to modal type theory is that it
automatically induces three modalities on the category E by composing each pair of adjoints. The
first one,

□
def
= ∆U : E −→ E

is a comonad. Intuitively, □ takes a cohesive space, strips its points of their cohesive structure, and
gives them the discrete structure: it ‘unsticks’ all points. The second one,

♦
def
= ∇U : E −→ E

is a monad, which does the opposite: it ‘sticks’ all the points of a cohesive space together. Finally,
∫

def
= ∆C : E −→ E

is a monad. Intuitively,
∫

collapses each connected component into a single point, and then presents
that set of connected components as a discrete space.
Summarising, the above setting endows these functors with the following properties:

Corollary 1 (Fundamental Corollary of Pre-Cohesion).

(1) U : E −→ S preserves limits and colimits.

(2) ∆ : S −→ E preserves limits and colimits.

(3) ∇ : S −→ E preserves limits.

(4) C : E −→ S preserves products and colimits.

(5) U∆ � IdS : S −→ S

(6) U∇ � IdS : S −→ S

(7) □
def
= ∆U : E −→ E is an idempotent comonad. It is exact, i.e. preserves finite limits and colimits.

(8) ♦
def
= ∇U : E −→ E is an idempotent monad. It is left exact, i.e. preserves finite limits.

(9)
∫ def
= ∆C : E −→ E is an idempotent monad. It preserves products and colimits.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.



Modalities, Cohesion, and Information Flow 20:7

(10)
∫

⊣ □ ⊣ ♦

Proof. (1)-(4) follow by the fact each of these functors is a left or right adjoint, or by some
assumption. (5) and (6) follow by the Yoneda lemma and the fact ∆/∇ are f.f.; e.g. for any D ∈ S

HomS(D,U∆A) � HomE(∆D,∆A) � HomS(D,A)

(7)-(9) follow from (1)-(4) and the fact ∆/∇ are full and faithful and thus generate idempotent
(co)monads (see e.g. [Borceux 1994, ğ4.3.2]). (10) follows from C ⊣ ∆ ⊣ U ⊣ ∇. □

The rest of the section is devoted to showing that

Theorem 3. CSetL is pre-cohesive relative to Set.

A variant of this fact (namely that reversible reflexive graphs are cohesive relative to sets) is
already present in [Lawvere 2007]. There is an evident forgetful functor from classified sets to sets:

U : CSetL −→ Set

X 7−→ |X |

which forget all the relations Rℓ . We can then return to classified sets using the functor

∆ : Set −→ CSetL

which adds to the set X the diagonal relation x Rℓ x at each level ℓ ∈ L. This is the finest equality
that can be supported by this setting, in that each element is only indistinguishable to itself. In that
sense, ∆X is a classified set with carrier X that is completely transparent, in a manner reminiscent
of the discrete topology on a set. Any function f : X → Y is trivially a function f : ∆X → ∆Y , as
the diagonal relation is trivially preserved; thus ∆ is indeed a functor. Moreover, it is easy to see
that it is full and faithful, and that

Proposition 8. ∆ : Set −→ CSetL is left adjoint to the forgetful functor.

Proof. Any morphism f : ∆X → Y is a function f : X → |Y | = UY . Conversely, any function
f : X → UY can be seen as a morphism f : ∆X → Y of classified sets, as it trivially preserves the
diagonal relation. Naturality is trivial. □

We then define
∇ : Set −→ CSetL

to map a set X to itself, but equipped with the complete relation Rℓ
def
= |X | × |X | at each ℓ ∈ L. That

is: no element of ∇X is distinguishable from any other. Thus ∇X is the classified set with carrier X
that is maximally opaque. This reminds us of the codiscrete topology on X . Again, rather trivially,
any function f : X → Y can be seen as a morphism f : ∇X → ∇Y , as it evidently preserves the
complete relation on X . It is not hard to see that ∇ is a full and faithful functor, and that

Proposition 9. ∇ : Set −→ CSetL is right adjoint to the forgetful functor.

Proof. Any function f : |X | → Y can be seen as a morphism f : X → ∇Y : it trivially preserves
all the related pairs in XÐno matter what they areÐfor ∇Y relates all elements of Y . Conversely,
any morphism f : X → ∇Y is simply a function f : |X | → |∇Y | = Y . Naturality is again trivial. □

We now move on to connected components. Suppose we have a morphism f : X → ∆Y . Then,
as each Rℓ in ∆Y is simply reflexivity, we have that for any ℓ ∈ L,

x Rℓ x
′ (in X ) =⇒ f (x) Rℓ f (x ′) (in ∆Y ) =⇒ f (x) = f (x ′)

That is: f collapses related elements of X that are related at someÐany!Ðlevel to a single element
in Y . We cannot phrase this in terms of quotients yet, for Rℓ need not be an equivalence relation.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.



20:8 G. A. Kavvos

So, let us define the relation R⋆ ⊆ |X | × |X | to be the reflexive, symmetric, transitive closure of
⋃

ℓ∈L Rℓ , i.e. the least equivalence relation containing all the Rℓ ’s. We can now define |X | /R⋆.
This extends to a functor

C : CSetL −→ Set

by letting C(X )
def
= |X | /R⋆, and defining C f

def
= f ⋆ : |X | /R⋆ → |Y | /R⋆, where

f ⋆([x])
def
= [f (x)]

f ⋆ is well-defined: if x R⋆ x ′, then there is a (possibly empty) sequence x0, . . . ,xn of elements of
X and a sequence of levels ℓ0, . . . , ℓn+1 such that

x Rℓ0 x0 R
−1
ℓ1

x1 · · · R
−1
ℓn−1

xn−1 Rℓn xn Rℓn+1 x
′

But f preserves all of these, mapping inverses to inverses, so

f (x) Rℓ0 f (x0) R
−1
ℓ1

f (x1) · · · R
−1
ℓn−1

f (xn−1) R
−1
ℓn

f (xn) Rℓn+1 f (x ′)

and hence [f (x)] = [f (x ′)], so the choice of equivalence class representative is immaterial. We
hence obtain a functor that gives us for each classified set X its set of connected components,
i.e. the set of equivalence classes |X | /R⋆. Any two elements in the same equivalence class are
indistinguishable at some level ℓ ∈ L.

Let us return to the function f : X → ∆Y . Define the relation

x ∼f x ′ def
= f (x) = f (x ′)

This is clearly an equivalence relation, and we know that
⋃

ℓ∈L Rℓ ⊆ ∼f . But R
⋆ is the least

equivalence relation such that the above is true, so R⋆ ⊆ ∼f . Hence, U f : |X | → Y , which respects
⋃

ℓ Rℓ , can be uniquely factored as

|X | |X | /R⋆

Y

ηX

U f
f̂

where ηX is the quotient map, and f̂ ([x])
def
= f (x). So we can uniquely take f : X → ∆Y to

f̂ : CX → Y , and

Proposition 10. C : CSetL → Set is left adjoint to ∆ : Set → CSetL .

It is easy to see that the canonical map C(X × Y ) → CX ×CY is [(x ,y)] 7→ ([x], [y]), and that,
due to the behaviour of the relations on the product, it has an inverse. Moreover, in the case of
classified sets, the nullstellensatz is trivial: applying the hom-set isomorphism of ∆ ⊣ U to the
identity idUX : UX → UX , which is really the identity function id |X | : |X | → |X |, yields the unit
∆UX → X , which is again the identity function on ∆UX = ∆ |X |, which is injective and hence
monic.
Thus, Theorem 3 holds.

4 NONINTERFERENCE I: MONADS AND COMONADS

The cohesive structure of classified sets that we have developed so far is enough to show some
basic information flow properties for monadic and comonadic calculi. In this section, we will
state and prove noninterference properties for (a) Moggi’s monadic metalanguage, and (b) the
Davies-Pfenning calculus. Both of these properties follow from an axiom of cohesion, which we
call codiscrete contractibility, and which we discuss first.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.



Modalities, Cohesion, and Information Flow 20:9

Central to our noninterference proofs will be two canonically constructed objects; they will be
classified sets over the carrier

B
def
= {tt, ff}

of booleans. The first one is the ‘discrete’ booleans ∆B, in which if b Rℓ b
′ it follows that b = b ′:

these are the booleans that are visible to everyone.3 The second one will be the ‘codiscrete’ booleans
∇B, in which b Rℓ b

′ for all pairs of booleans (b,b ′), which are invisible at all levels. Note that

B � 1 + 1

∆B � ∆1 + ∆1 � 1 + 1

∇B � ∇U∆B � ♦(1 + 1)

These all follow from the fundamental corollary (Corollary 1). The first isomorphism is by definition.
The second holds because ∆ preserves isomorphisms, colimits (+) and limits (1). The final one is

obtained by usingU∆ � Id, then the second one, and then the definition ♦
def
= ∇U .

4.1 Contractible Codiscreteness and Information Flow

We are now ready to discuss a certain axiom that pre-cohesions may or may not satisfy. This axiom
expresses a very intuitive property: it says that when all points are stuck together they constitute
at most one connected component. Surprisingly, this single axiom is the main point of connection
between cohesion and information flow: we will use it to prove results which are at the core of our
noninterference theorems, both here and in ğ6.
We have carefully described the string of adjoints C ⊣ ∆ ⊣ U ⊣ ∇ that expresses the idea of

pre-cohesion. In particular, ∇X is intuitively understood to be the object with point-set X equipped
with maximal cohesion, i.e. ‘everything stuck together.’ A property that is should follow from this
intuition is that if one were to look at the connected components of ∇X , one would find at most

oneÐor none, if X is the empty set. Unfortunately, this is not something that readily follows from
pre-cohesion, but we can explicitly ask for it.

Definition 4. If E is pre-cohesive relative to S withC ⊣ ∆ ⊣ U ⊣ ∇, then this pre-cohesion satisfies

contractible codiscreteness if codiscrete objects have at most a single connected component. That is: if

for any X ∈ S, C(∇X ) is a subobject of the terminal object 1, i.e. the unique morphism

C(∇X ) → 1

is monic.

Lawvere and Menni [2015] consider this concept in toposes, and call it connected codiscreteness.
The name for our more general setting is due to Shulman [2018].

It is easy to see that

Proposition 11. The pre-cohesion of CSetL relative to Set satisfies contractible codiscreteness.

This is a fancy way of stating the following obvious fact: if we start with a set X , equip it with the
complete relation at each level ℓ ∈ L, and we then take the connected components of that, there
will be at most one. In fact, if X = ∅ there will be none, and otherwise there will be exactly one.

The axiom of contractible codiscreteness is very useful, as it allows one to prove abstract non-
interference properties. We will prove such a property presently, but we first have to discuss its
slightly thorny interaction with non-emptiness in categorical terms.
Suppose the object X is non-empty, i.e. there is a point x : 1 → X . This is a sufficient condition

to show that C(∇X ) is actually ‘contractible,’ i.e. isomorphic to the terminal object.

3They are referred to as the ‘low security booleans’ by Abadi et al. [1999], and denoted boolL.
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Proposition 12 (Contractibility of non-empty codiscrete spaces). Let E be pre-cohesive

over S in a way that satisfies contractible codiscreteness. If X ∈ S is non-empty, then

C(∇X ) � 1

Proof. Let x : 1 → X . By applying C∇ to it, and then using preservation of products (which we
have by Lemma 1), we obtain a point 1 → C∇X , which is to say that C∇X is non-empty too. The
composite 1 → C∇X → 1 is trivially the identity. Moreover, the composite C∇X → 1 → C∇X is
the identity on C∇X : as C∇X → 1 is monic, any two morphisms into C∇X are equal. □

We can now state and prove the following.

Proposition 13. Let E be pre-cohesive over S, in a way that satisfies contractible codiscreteness.

Then

(1) Morphisms ♦A → ∆B for non-empty A ∈ E and B ∈ S correspond to points 1 → B.

(2) Morphisms ∇A → □B for non-empty A ∈ S and B ∈ E correspond to points 1 → UB.

Proof.

(1) The following isomorphisms hold naturally:

E(♦A,∆B) � E(∇UA,∆B) by definition of ♦

� S(C∇UA,B) as C ⊣ ∆

� S(1,B) by Prop. 12

(2) The following isomorphisms hold naturally:

E(∇A,□B) � E(∇A,∆UB) by definition of □

� S(C∇A,UB) as C ⊣ ∆

� S(1,UB) by Prop. 12

□

In the concrete case of CSetL the above lemma says that if A is non-empty then morphisms of
type ♦A → ∆B and ∆A → □B are constant functions. Indeed, the first isomorphism in either proof
is an identity, and the second one collapses all elements of ∇UA or ∇A to a single element.
A special case of (1), ‘manually’ proven for the particular case of CSetL and B = B, forms

the central reasoning involved in the noninterference proofs of Abadi et al. [1999]. Our result
generalises this to any setting of pre-cohesion, and also yields the heretofore unnoticed dual (2).
We will now apply (1) and (2) to construct two noninterference proofs.

4.2 Moggi’s Monadic Metalanguage

Moggi [1991] introduced the monadic metalanguage, a typed λ-calculus which, for each type A
features a type of computations TA. The ‘result’ of a computation M : TA is a ‘value’ of type A.
Indeed, each ‘value’ is a trivial computation, as can be witnessed by the introduction rule:

Γ ⊢ M : A

Γ ⊢ [M] : TA

The idea is that types of the form TA encapsulate various ‘notions of computations,’ nowadays
referred to as effects (recursion, nondeterminism, operations on the store, etc.). Very little is assumed
of the type constructor. To quote Moggi:

łRather than focusing on a specific T , we want to find the general properties common
to all notions of computation.ž
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Moggi then showed in [Moggi 1991, ğ3] that there is a categorical semantics of this language
in which T is interpreted by a strong monad on a CCC C. The category C is then the category of
values, whereas the Kleisli category CT of the monad T : C −→ C is the category of programs.

The key information flow property enjoyed by monads is that once something is ‘inserted’ into
the monad, then it cannot flow out. The monad identifies a region of the language which is impure,
in that evaluating terms within the region causes effects. If the results of those effects were to flow
‘outside’ the monad, the outcome would be the loss of referential transparency. This information
flow property is evident if one looks at the elimination rule for T :

Γ ⊢ M : TA Γ,x : A ⊢ N : TB

Γ ⊢ let x = M in N : TB

If we have a computation M : TA that yields a result of type A, the let construct allows us to
substitute it for a variable of type A, but only as long as this to be used within another computation
N : TB. Thus values of type TA cannot ‘escape’ the scope of T .

It is not hard to show that CSetL is a model of Moggi’s monadic metalanguage (with booleans),
with T being interpreted by ♦, and Bool by ∆B � 1 + 1: the only thing that remains to be shown is
that ♦ is a strong monad, which is true by a more general result that we cover later (Prop. 18). If we
use the standard categorical interpretation, as defined by [Moggi 1991, ğ3], a term x : TA ⊢ M : Bool

is interpreted as a morphism ♦ ⟦A⟧ → ∆B in CSetL . Hence, by Prop. 13 we know it is interpreted
by a constant function in the model.

Nevertheless, this is not a noninterference result yet, for it tells us something about a particular
model, viz. CSetL , but nothing about the equational theory of Moggi’s calculus. To infer something
about it from one of its models, some completeness property of that model must be established.
We will use the simplest one of all, which is known as adequacy. It is the most basic form of
completeness, and is commonly used in the study of calculi with recursion, e.g. PCF [Plotkin 1977;
Streicher 2006]. A model of a calculus is adequate exactly when it is complete at ground types. What
we take to be a ground type is up to us, but the usual choices are simple base types (booleans, flat
naturals, etc.) For this paper, we use the term to refer to types defined by a collection of constants,
along with elimination and computation rules. For example, Bool is a ground type: it may be
presented by the constants

Γ ⊢ tt : Bool Γ ⊢ ff : Bool

along with the the elimination rule

Γ ⊢ M : Bool Γ ⊢ E0 : C Γ ⊢ E1 : C

Γ ⊢ ifM then E1 else E0 : C

and the two computation rules

if tt then E1 else E0 = E1

if ff then E1 else E0 = E0

Suppose that a (non-dependent, possibly modal) type theory satisfies canonicity at all ground

types, i.e. for every such ground type G and every closed term ⊢ M : G there is a unique constant
c : G such that ⊢ M = c : G. For example, canonicity for Bool requires that every closed term
⊢ M : Bool is equal to either tt or ff. In strongly normalising programming calculi, canonicity
is a corollary of progress and preservation theorems [Pierce 2002, ğ8.3, ğ9]: the normalisation of a
well-typed closed term will reach a canonical form. In type theories, canonicity is a corollary of
confluence and strong normalisation: each closed term can be reduced to a unique normal form, and
each closed normal form of type A can only correspond an introduction rules of type A, which for
ground types are simply constants.
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Suppose now that we interpret the type theory in a category in the standard wayÐe.g. as in
[Abramsky and Tzevelekos 2011; Crole 1993]Ðso that (a) closed terms ⊢ M : G are interpreted as
points 1 → ⟦G⟧, (b) the interpretation is sound, in that ⊢ M = N : A implies ⟦M⟧ = ⟦N⟧, and
(c) the interpretation of each ground type G is injective, in that distinct constants have distinct
interpretations. Then, the interpretation is automatically adequate:

Lemma 1 (Adeqacy). Suppose that a type theory satisfies canonicity at ground types, and has a

sound categorical interpretation which is injective at every ground type G, in the sense that

⟦⊢ ci : G⟧ =
�
⊢ cj : G

�
: 1 → ⟦G⟧ =⇒ ci ≡ cj

Then this interpretation is adequate for G, in the sense that

⟦⊢ M : G⟧ = ⟦⊢ ci : G⟧ =⇒ ⊢ M = ci : G

Proof. By canonicity, for any ⊢ M : G we have ⊢ M = c j : G for some constant c j of G . But then

⟦ci⟧ = ⟦M⟧ =
�
cj
�
by soundness, so ci ≡ cj , and hence ⊢ M = ci : G. □

This lemma applies to the standard interpretation of Moggi’s monadic metalanguage into any CCC
with a strong monad. It is known that the straightforward extension of Moggi’s calculus with
coproducts and a unit type (which together subsume Bool) is confluent, strongly normalising, and
has a sound interpretation into any biCCC with a strong monad: this was shown by Benton et al.
[1998]. Thus, it satisfies canonicity at Bool. Hence, the above lemma still applies, and we obtain

Theorem 4 (Noninterference for Moggi). Let A be a non-empty type, which is to say there

exists a closed term of type A. If x : TA ⊢ M : Bool then for any ⊢ E,E ′ : TA we have

⊢ M[E/x] = M[E ′/x] : Bool

Proof. The interpretation of Bool as ∆B � 1 + 1 in CSetL satisfies the assumptions of Lemma
1. Hence, the interpretation is adequate for it. We have that

⟦⊢ M[F/x] : Bool⟧ = ⟦x : TA ⊢ M : Bool⟧ ◦ ⟦⊢ F : TA⟧ : 1 → ∆B

for any ⊢ F : TA. But as A is non-empty, we have that ⟦A⟧ is non-empty, so by Proposition 13(1),
⟦x : TA ⊢ M : Bool⟧ : ♦ ⟦A⟧ → ∆B is a constant function, so

⟦M[E/x]⟧ = ⟦x : TA ⊢ M : Bool⟧ ◦ ⟦E⟧ = ⟦x : TA ⊢ M : Bool⟧ ◦ ⟦E ′⟧ = ⟦M[E ′/x]⟧

for any ⊢ E,E ′ : TA. By adequacy, it follows that ⊢ M[E/x] = M[E ′/x] : Bool. □

4.3 The Davies-Pfenning Calculus

Davies and Pfenning introduced a comonadic modal type theory as a type system for binding-time
analysis in [Davies and Pfenning 1996, 2001]. The idea was that data could not arbitrarily flow
from type A to type □A. This is clearly reflected in the structure of the type system: each typing
judgement comes with two contexts, and has the shape

∆ | Γ ⊢ M : A

where ∆ are the ‘modal’ variables, and Γ are normal variables. A ‘modal’ variable can be used as a
normal variable, as witnessed by the rule ∆,u : A | Γ ⊢ u : A. However, when introducing terms of
type □A, we can only use ‘modal’ variables from ∆:

∆ | · ⊢ M : A

∆ | Γ ⊢ box M : □A

It is not hard to define a non-trivial morphism Bool → □Bool:

b : Bool ⊢ if b then box tt else box ff : □Bool

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.



Modalities, Cohesion, and Information Flow 20:13

However, it is impossible to pass from A → B to □(A → B) in general. This property was used by
Davies and Pfenning to separate things that were available statically, by isolating them under the box,
from things that are available dynamically (and thus cannot always be used for metaprogramming).
For example, one can always use a boolean constant for metaprogramming, as shown above, but
one cannot use ‘live’ piece of code, a function A → B. However, if one has prudently arranged to
have a copy of the source code of a function A → B available, that would be of type □(A → B), and
one can then use it for metaprogramming.
Terms of type □A are used by substituting for a variable in the ‘modal’ context. This yields the

following elimination rule:

∆ | Γ ⊢ M : □A ∆,u : A | Γ ⊢ N : B

∆ | Γ ⊢ let box u = M in N : B

along with the reduction let box u = box M in N → N [M/u].
Even though the information flow properties of the Davies-Pfenning calculus are intuitive, it is

not at all evident how to express them as a noninterference theorem: whilst in Moggi’s calculus
the monad T blocked all information flow out of it, the Davies-Pfenning calculus allows some flow
into the modal types, as witnessed by the non-trivial morphism Bool → □Bool constructed above.

The way out of this impasse is to consider the dual of the statement used to prove noninterference
for the metalanguage, namely Proposition 13(2). In the place of booleans, we will use the codiscrete
booleans Bool∇. These are introduced explicitly by

∆ | Γ ⊢ tt : Bool∇ ∆ | Γ ⊢ ff : Bool∇

and the elimination rule

Γ ⊢ M : Bool∇ Γ ⊢ E0 : C Γ ⊢ E1 : C C is codiscrete

Γ ⊢ ifM then E1 else E0 : C

with the same computation rules as before. The side condition that C is codiscrete is defined by
(I) unit (if we have it) and Bool∇ are codiscrete; (II) if A and B are codiscrete, then so is A × B; (III)
if B is codiscrete, then so is A → B. We will discover the roots of this definition in ğ5.1. For now,
let us say that the intended meaning is that, when interpreted in CSetL , the object ⟦C⟧ will be
isomorphic to ♦ ⟦C⟧.

Now, let us note that the Davies-Pfenning calculus satisfies confluence, and strong normalisation
[Kavvos 2017a,b], and hence canonicity, with canonical forms at type □A of the form box M , with
M is a canonical form at type A. It is straightforward to re-establish canonicity after the addition of
codiscrete booleans. The Davies-Pfenning calculus also has a standard interpretation in any CCC
with a product-preserving comonad on it: see e.g. [Hofmann 1999; Kavvos 2017a]. we may again
show adequacy:

Lemma 2 (Davies-Pfenning Adeqacy). Suppose we have a categorical model for the Davies-

Pfenning calculus, as well as a ground typeG that satisfies canonicity along with an injective interpre-

tation in that model, so that

⟦⊢ ci : G⟧ =
�
⊢ cj : G

�
: 1 → ⟦G⟧ =⇒ ci ≡ cj

Then this interpretation is adequate for □G, in the sense that

⟦ ⊢ M : □G⟧ = ⟦ ⊢ box ci : □G⟧ =⇒ ⊢ M = box ci : □G

Proof. The canonical forms of type □G are precisely those of the form box ci . We therefore
have that ⊢ M = box ci : □G for some ci . But then, if ⟦M⟧ =

�
box cj

�
we haveÐwriting (−)∗ for

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 20. Publication date: January 2019.



20:14 G. A. Kavvos

the co-Kleisli extension and using soundnessÐthat
�
cj
�∗
=

�
box cj

�
= ⟦M⟧ = ⟦box ci⟧ = ⟦ci⟧

∗

Post-composing with the counit (see [Kavvos 2017b, Prop. 4, ğ7.3.2]) we obtain
�
cj
�
= ⟦ci⟧, and

hence ci ≡ cj . □

By Corollary 1, we know that □ : CSetL −→ CSetL is a product-preserving comonad, and thus
a model of the Davies-Pfenning calculus. Moreover, we can interpret Bool∇ by ∇B. This is a little
harder to see: the reason is that the adjunction U ⊣ ∇ is a reflection, as ∇ is full and faithful. Thus,
writing ηA : A → ∇UA for the unit, we have a universal property;4 it is that any f : A → ∇X can
be uniquely factorised through ηA:

A ∇UA

∇X

ηA

f
f̂

Specialising this to A = ∆B � 1 + 1, we have that any f : 1 + 1 → ∇X can be uniquely factorised
through ∇U∆B � ∇B:

1 + 1 ∇B

∇X

ηA

f
f̂

This is exactly the elimination rule for Bool∇: to define a function out of it one must tell what it
does on the two constants (the components of 1 + 1) by giving a term for each in a codiscrete type
C , which is then of the right form ∇X , as ⟦C⟧ � ♦ ⟦C⟧ = ∇(UC).

It is straightforward to show that the above interpretation is sound, and satisfies the assumptions
of Lemma 2. We then have

Theorem 5 (Noninterference for Davies-Pfenning). Let · | x : Bool∇ ⊢ M : □G for any

ground type G. Then, for any ⊢ E,E ′ : Bool∇, we have

⊢ M[E/x] = M[E ′/x] : □G

Proof. As B is non-empty, we have by Proposition 13(2) that

f
def
= ⟦· | x : Bool∇ ⊢ M : □G⟧ : ∇B→ □ ⟦G⟧

is a constant function in CSetL , so

⟦M[E/x]⟧ = f ◦ ⟦E⟧ = f ◦ ⟦E ′⟧ = ⟦M[E ′/x]⟧

for any ⊢ E,E ′ : Bool∇. By adequacy, it follows that ⊢ M[E/x] = M[E ′/x] : □G. □

5 LEVELLED COHESION

Whilst useful for discussing the properties of monadic and comonadic modalities, the results
presented above are not particularly interesting in terms of information flow. For each classified
set X , the set □X is a version of it where everything is visible, whereas ♦X is a version of it where
nothing is. Might we be able to use the same ideas about pre-cohesion to make something similar,
yet far more expressive? The key lies in relating pre-cohesion to the set of labels L, of which we
have not yet made any use.

4This is derived from the fact ηA is a universal arrow and ∇ is full and faithful.
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Given a subset π ⊆ L of labels, there is a ‘partially forgetful’ functor,

Uπ : CSetL −→ CSetL−π

which maps classified sets over L to classified sets over L −π by forgetting Rℓ for ℓ ∈ π . As before,
there are two ways to define a set classified over L when given a set classified over L − π .
The first one is given by the functor

∆π : CSetL−π −→ CSetL

∆πX has the same carrier as X , and the same relations Rℓ for ℓ < π . But if ℓ ∈ π , then Rℓ of
∆πX is the diagonal relation. We let ∆π be the identity on morphisms: all the relations not in π

are preserved by ∆π f , and the rest are diagonal so they are also trivially preserved. So for each
classified set X over L − π , we have a classified set ∆πX over L which is transparent at π . It is
easy to see that ∆π is full and faithful, and that

Proposition 14. ∆π ⊣ Uπ

The second one is given by the functor

∇π : CSetL−π −→ CSetL

which, this time, adds the complete relation as Rℓ for each ℓ ∈ π , and is also the identity on
morphisms. Thus, for each classified set X over L − π , we have a classified set ∇πX over L which
is opaque at π . It is also easy to see that it ∇π is full and faithful, and that

Proposition 15. Uπ ⊣ ∇π

It remains to consider connected components. Suppose we have a morphism f : X → ∆πY . For
each ℓ ∈ π , the relation ∆πY is reflexivity. Hence, for ℓ ∈ π ,

x Rℓ x
′ (in X ) =⇒ f (x) Rℓ f (x ′) (in ∆πY ) =⇒ f (x) = f (x ′)

Thus, if x and x ′ are indistinguishable at level ℓ ∈ π , then f collapses them to a single element. As
before, we would also like to phrase this in terms of quotients. Let R⋆

π to be the reflexive, symmetric,
transitive closure of

⋃

ℓ∈π Rℓ . The construction of the quotient set |X | /R⋆
π extends to a functor

Cπ : CSetL −→ CSetL−π

by letting Cπ (X ) be the classified set with carrier |X | /R⋆
π , and, for ℓ ∈ L − π ,

[b] Rℓ [b
′] in Cπ (X ) ⇐⇒ ∃x ∈ [b]. ∃y ∈ [b ′]. x Rℓ y in X

We let Cπ f
def
= f ⋆π : |X | /R⋆

π → |Y | /R⋆
π , where

f ⋆π ([x])
def
= [f (x)]

f ⋆π is well-defined, asÐby the same argument as in ğ3Ðf preserves R⋆
π . If [b] Rℓ [b ′], there

exist x and y such that x R⋆
π b, y R⋆

π b ′, and x Rℓ y. But f preserves all of these relations, so
[f (b)] Rℓ [f (b

′)]. So f ⋆π is actually a morphism Cπ (X ) → Cπ (Y ). A similar argument to the one in

ğ3 takes f : X → ∆πY to a unique f̂ : CπX → Y , and hence

Proposition 16. Cπ : CSetL → CSetL−π is left adjoint to ∆π : CSetL−π → CSetL .

It is easy to see that this preserves products, and that the nullstellensatz holds as before (the natural
isomorphisms showing ∆π ⊣ Uπ ⊣ ∇π are identities on the hom-sets). In total:

Theorem 6. CSetL is pre-cohesive relative to CSetL−π .

It is worth reiterating some of the things that we automatically learn from this fact:
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Corollary 2. For a given π ⊆ L,

(1) Uπ : CSetL −→ CSetL−π preserves (co)limits.

(2) ∆π : CSetL−π −→ CSetL preserves (co)limits.

(3) ∇π : CSetL−π −→ CSetL preserves limits.

(4) □π
def
= ∆πUπ : CSetL −→ CSetL is an idempotent comonad that preserves finite (co)limits.

(5) ♦π
def
= ∇πUπ : CSetL −→ CSetL is an idempotent monad that preserves finite limits.

(6)
∫

π

def
= ∆πCπ : CSetL −→ CSetL is an idempotent monad. preserves products and colimits.

(7)
∫

π
⊣ □π ⊣ ♦π

As before, we can use this structure to prove abstract noninterference theorems for CSetL , which
will now be more expressive than before. Before we take on that task, however, we want to discuss
two aspects of CSetL . First, we want to identify the reflective and (co)reflective subcategories
identified by □π and ♦π . And, second, we want to prove once and or all that ♦π is a strong monad.

5.1 Reflective and Coreflective Subcategories

In cohesive settings we have a string of adjoints ∆ ⊣ U ⊣ ∇, where ∆ and ∇ are full and faithful.
This is to say that both ∆ and ∇ are a kind of ‘inclusion,’ and thatÐup to equivalenceÐthey exhibit
certain subcategories of E. In particular, ∇ exhibits a reflective subcategory of objects Y such that
♦Y � Y , and∆ exhibits a coreflective subcategory of E, viz. the full subcategory consisting of objects
X such that □X � X . Moreover, such adjunctions generate idempotent (co)monads, in that their
(co)multiplications □⇒ □2 and ♦2 ⇒ ♦ are isomorphisms [Borceux 1994, Prop. 4.3.2].

It is illuminating to look at each of these cases for the pre-cohesion ofCSetL relative toCSetL−π .

Reflection. If X is a classified set such that X � ♦πX , then Rℓ is the complete relation at all ℓ ∈ π .
This leads us to the following definition:

Definition 5 (Protection). Let π ⊆ L be a set of labels. A classified set X is protected at π just

if Rℓ = |X | × |X | for all ℓ ∈ π .

Thus the monad ♦π induces a reflective subcategory CSetL,p,π of classified sets protected at π . In
other words, there is a functor Rπ : CSetL −→ CSetL,p,π that is left adjoint to the inclusion:

CSetL,p,π CSetL

i

Rπ

⊣

Rπ replaces Rℓ with the complete relation for every ℓ ∈ π . In addition, we have that ♦π = i ◦ Rπ .
Finally, it is easy to see that ♦π is a strictly idempotent monad: the multiplication is the identity, as
X = ♦πX whenever X is protected at π .

Interestingly,

Proposition 17. Rπ : CSetL −→ CSetL,p,π preserves finite products.

This is because CSetL,p,π � CSetL−π , and up to that equivalence Rπ is justUπ , and i is just ∇π .
By a theorem of category theoryÐsee e.g. [Johnstone 2003, ğA4.3.1]Ðif a reflector preserves finite
products, as Rπ does, then the reflective subcategory is an exponential ideal. That is,

Corollary 3. If A is a classified set, and B is protected at π , then BA is protected at π .

This is what underlies the definition of codiscrete types we gave in ğ4.3, and which was introduced
as a unmotivated definition in [Abadi et al. 1999].
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Coreflection. Dually, the second subcategory consists of classified sets X over L such that
X � □πX . Each Rℓ in X for ℓ ∈ π is the diagonal relation. The corresponding definition is:

Definition 6 (Visibility). Let π ⊆ L be a set of labels. A classified set X is visible at π just if

Rℓ = { (x ,x) | x ∈ |X | } for every ℓ ∈ π .

This full coreflective subcategory induced □π is notated CSetL,v,π , and its objects are those
classified sets that are visible at π . There is a functor

Dπ : CSetL −→ CSetL,v,π

which returns the classified set DπX with the same carrier, but if ℓ ∈ π then Rℓ is the diagonal
relation. It is also the identity on morphisms. This functor is right adjoint to the inclusion:

CSetL CSetL,v,π

Dπ

i
⊣

and of course □π = i ◦ Dπ . In a manner similar to previous one, □π is also a strictly idempotent

comonad, as X = □πX whenever X is visible at π .

5.2 Redaction Is a Strong Monad

We record here a fact that we have already used and will use again, namely that

Proposition 18. ♦π is a strong monad: that is, there exists a natural transformation

tA,B : A × ♦πB → ♦π (A × B)

such that the following diagrams commute:

1 × ♦πA ♦π (1 ×A)

♦πA

t1,A

π2
♦π π2

(A × B) × ♦πC ♦π ((A × B) ×C)

A × (B × ♦πC) A × ♦π (B ×C) ♦π (A × (B ×C))

tA×B,C

�
�

idA×tB,C tA,B×C

A × B

A × ♦πB ♦π (A × B)

A × ♦2
πB ♦π (A × ♦πB) ♦2

π (A × B)

ηA×B
idA×ηB

tA,B

idA×µB

tA,♦π B ♦π tA,B

µA×B

Proof. The components tA,B are identity functions on |A × ♦πB | = |A| × |B | = |♦π (A × B)|.
These preserve all the relations at ℓ ∈ π , as♦π (A×B) is protected at π . If ℓ < π , then (a,b) Rℓ (a

′,b ′)

in A × ♦πB means that a Rℓ a′ in A and b Rℓ b ′ in B, so (a,b) Rℓ (a′,b ′) in A × B and hence in
♦π (A × B). The diagrams commute as all the arrows excluding projections and associativities (but
including components of t , η and µ and products thereof) are identities on carrier sets. □
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5.3 Stacking Pre-Cohesions and Inter-Level Reasoning

In fact, it is not hard to generalise the results in the above section to the fact that we can ‘stack’ such
pre-cohesions on top of one another. For example, by applying Theorem 6 twice, if π ′ ⊆ π ⊆ L,
we can obtain two pre-cohesions:

CSetL

CSetπ

CSetπ ′

Cπ ⊆L Uπ ⊆L⊣∆π ⊆L⊣ ∇π ⊆L⊣

Cπ ′⊆π Uπ ′⊆π⊣∆π ′⊆π⊣ ∇π ′⊆π⊣

which compose to what we previously denoted CL−π ′ ⊣ ∆L−π ′ ⊣ UL−π ′ ⊣ ∇L−π ′ . For example,

UL−π ′ = Uπ ′⊆π ◦Uπ ′⊆L : CSetL −→ CSetπ ′

∇L−π ′ = ∇π ⊆L ◦ ∇π ′⊆π : CSetπ ′ −→ CSetL

and so forth. This forms a functor

P(L)op −→ Precoh

from the opposite powerset lattice of L to Precoh, whose morphisms are strings of adjoints
(C,∆,U ,∇) : E → S that exhibit E to be pre-cohesive over S. The functor maps the unique arrow
α : π ⊆ π ′ to a pre-cohesion (Cα ,∆α ,Uα ,∇α ) : CSetπ ′ → CSetπ . Thus, each α : π ⊆ π ′ induces
modalities □α ,♦α : CSetπ ′ −→ CSetπ , and we previously wrote □π for □α :L−π ⊆L .
This functorial structure satisfies a number of strange-lookingÐyet very intuitive in terms of

information flowÐproperties. To begin, we recall the isomorphism Uα ∆α � Uα ∇α � Id, which
was a consequence of pre-cohesion (Proposition 1), and holds on-the-nose in classified sets. This
has the following consequences regarding the induced modalities.

Proposition 19. If γ : π ′′ ⊆ π ′ and α : π ′ ⊆ π , then:

(1) ♦α◦γ □α = ♦α◦γ : CSetπ −→ CSetπ

(2) □α◦γ ♦α = □α◦γ : CSetπ −→ CSetπ

Proof.

(1)

♦α◦γ ◦ □α = ∇α◦γ Uα◦γ ∆α Uα by definition

= ∇α◦γ Uγ Uα ∆α Uα by functoriality and contravariance ofU

= ∇α◦γ Uγ Uα by the fundamental corollary

= ∇α◦γ Uα◦γ by functoriality and contravariance ofU

= ♦α◦γ by definition

(2) Similar to (1).

□

Intuitively, the first of these results says that declassifying things at some levels, and then redacting
more than what was declassified is exactly the same as redacting all at once. Note that we used no
particular properties about the model of classified sets, apart from the strictness ofU∆ � U∇ � Id.
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Next, the forgetful functorU and the discretisation functor ∆ sometimes commute. More specifi-
cally, if we have a pullback diagram in P(L)

π

π1 π2

π1 ∩ π2

α β

γ δ

then it is easy to check that the following functor diagram commutes on-the-nose:

CSetπ

CSetπ1 CSetπ2

CSetπ1∩π2

Uα ∆β

Uδ∆γ

That is: if, starting from π2, we equip the extra labels with discrete cohesion, and then forget
everything down to π1, we have not changed any of the labels of π1 ∩ π2. Thus, we might first
forget, and then discretise up to π1. The same holds of codiscretisation, so we obtain

Uα∇β = ∇γUδ

A sufficient condition for the above is that the components of the pasting diagram

CSetπ1 CSetπ1

CSetπ1∩π2 CSetπ

CSetπ2 CSetπ2

Uδ

∆βϵ
∆δ

∆γ

Uα∆α
η �

are identitiesÐand they indeed are in our case: the components of η and ϵ are identity functions, so
this reduces to simply checking ∆γ Uδ = Uα ∆β again.
Secondly, if we discretise and codiscretise in disjoint regions, then these operations can be

swapped. Namely, given a pullback diagram like above, we also have that

CSetπ

CSetπ1 CSetπ2

CSetπ1∩π2

∆α ∇β

∇γ ∆δ
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commutes. Again, it suffices that the following pasting diagram composes to an identity:

CSetπ1∩π2 CSetπ1∩π2

CSetπ2 CSetπ1

CSetπ CSetπ

∆δ

∇γ

ξ

η�
Uδ

∇β

∆α

ϵ

Uα

where ξ is a vertion of the preceding pasting diagram for ∇.
These ‘basic laws’ allow us to prove many more that relate the different cohesive structures.

Proposition 20. Let

π

π1 π2

π1 ∩ π2

α β

γ δ

be a pullback diagram. Then

(1) □γ Uα = Uα □β

(2) ♦γ Uα = Uα ♦β

(3) □α◦γ = □α □β
(4) ♦α◦γ = ♦α ♦β

(5) □α □β = □β □α
(6) ♦α ♦β = ♦β ♦α

Proof.

(1)

□γ Uα = ∆γ Uγ Uα by definition

= ∆γ Uδ Uβ by functoriality ofU

= Uα ∆βUβ by the first basic law above

= Uα □β by definition

(2) Similar to (1), but with ∇.
(3)

□α◦γ = ∆α ∆γ Uγ Uα by definition (U contravariant)

= ∆α □γ Uα by definition

= ∆α Uα □β by (1)

= □α □β by definition

(4) Similar to (3), but with ∇.
(5) By applying (3) twice: □α □β = □α◦γ = □β◦δ = □β □α
(6) Similar to (5).

□

All this structure allows us to show things about the original modalities □π ,♦π : CSetL −→ CSetL .

Proposition 21.

(1) If π ∩ π ′
= ∅, then □π□π ′ = □π∪π ′ .
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(2) If π ∩ π ′
= ∅, then ♦π♦π ′ = ♦π∪π ′ .

(3) □π□π ′ = □π∪π ′

(4) ♦π♦π ′ = ♦π∪π ′

(5) If π ⊆ π ′, then □π ′ ♦π = □π ′ .

(6) If π ⊆ π ′, then ♦π ′ □π = ♦π ′ .

(7) If π ∩ π ′
= ∅, then □π ♦π ′ = ♦π ′ □π .

(8) □π ♦π ′ = ♦π ′−π □π .

(9) ♦π □π ′ = □π ′−π ♦π .

Proof. Notice that π ∩ π ′
= ∅ implies that

L

L − π L − π ′

L − (π ∪ π ′)

α β

γ δ

is a pullback diagram.

We can hence use Prop. 20: for (1), we have

□π∪π ′ = □α◦γ = □α □β = □π □π ′

by definition and Prop. 20(3), and very similarly for (2). (3) follows by writing π = π1 ⊎ (π ∩ π ′)

and π ′
= π2 ⊎ (π ∩ π ′) as disjoint unions, and then using (1) and strict idempotence to compute

□π □π ′ = □π1 □π∩π ′ □π∩π ′ □π2 = □π1 □π∩π ′ □π2 = □π1∪(π∩π ′)∪π2

which is by definition equal to □π∪π ′ . Again, a similar story for (4).
(5) and (6) follow from Prop. 19 (with γ : L − π ′ ⊆ L − π and α : L − π ⊆ L).
For (7), we calculate:

□π ♦π ′ = □α ♦β by definition

= ∆α Uα ∇β Uβ by definition

= ∆α ∇γ Uδ Uβ by the first basic law

= ∇β ∆δ Uδ Uβ by the second basic law

= ∇β □δ Uα by definition

= ∇β Uβ □α by Prop. 20(1)

= ♦β □α by definition

Finally, (8) follows easily by writing π = (π ∩π ′)⊎(π −π ′) and using (4), (7) and (5); and similarly
for (9). □

All of the above equational laws express very intuitive properties. For example, (3) says that
if we declassify everything at security levels π ∪ π ′, we could have done that in two steps, with
either π or π ′ first. (5) can be understood to mean that protecting everything at levels π and then
declassifying everything at a larger set of levels π ′ is exactly the same as declassifying π ′ in one go.
(7) allows us to switch redaction and declassification if they act on disjoint sets of labels. Finally, (8)
and (9) show how to switch them even when there is overlap.
We have therefore developed an armoury of results about information flow. But notice that we

have used no relational reasoning at all! We have only relied on a functor Cop −→ Precoh, and the
three equations

Uα∆β = ∆γ Uδ (1)

Uα∇β = ∇γ Uδ (2)

∆α ∇γ = ∇β ∆δ (3)
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for each pullback diagram

· ·

· ·

γ

δ α

β

in C. It is conceivable that these equations could have a

more general standing, especially if we replace equality with natural isomorphism. All the results
in this section would then hold, but only up to natural isomorphism.

6 NONINTERFERENCE II: MULTI-MODAL INFORMATION FLOW

The theory developed in the previous section enables us to model multi-modal information flow
calculi, which feature modalities that are indexed in some way. The usual way to do so is to index
them over a poset (L,⊑) of security levels, and which is often (but not always) a lattice. We will
focus on two main examples: the dependency core calculus (DCC) of Abadi et al. [1999], and the
sealing calculus of Shikuma and Igarashi [2008].

We have now moved on to levelled cohesion over an arbitrary set L of labels. The first thing we
want to note is that codiscrete contractibility is still satisfied, as long as π , ∅: if X is non-empty,
we redact it at some levels π , and then take the ‘view from π ,’ we end up with almost nothing,
namely a single connected component, i.e.Cπ (∇πX ) � 1 For that reason, a levelled version of Prop.
13 from ğ4 holds:

Proposition 22. If π , ∅ and A is non-empty, then morphisms ♦πA → ∆πB naturally correspond

to points 1 → B, and are hence constant functions in CSetL .

The proof is the same as before.

6.1 Dependency Core Calculus

The dependency core calculus of Abadi et al. [1999] is at its core a version of Moggi’s computational
metalanguage with multiple monadsTℓ indexed over ℓ ∈ L, where (L,⊑) is a lattice, also called an
information flow lattice.5 The introduction rule is exactly that of Moggi:

Γ ⊢ M : A

Γ ⊢ [M]ℓ : TℓA

The elimination rule is modified slightly:

Γ ⊢ M : TℓA Γ,x : A ⊢ N : B B is protected at ℓ

Γ ⊢ let x = M in N : B

Following Abadi et al. [1999], we say that the type B is protected at ℓ whenever: (I) if ℓ′ ⊑ ℓ then
Tℓ(A) is protected at ℓ′; (II) if A is protected at ℓ, then so is Tℓ′(A) for any ℓ

′; and (III) if A,B are
protected at ℓ, then so are A × B and C → A for any type C .
To interpret the DCC6 all we need is strong, strictly idempotent monad Tℓ on a CCC C for each

ℓ ∈ L, such that if B is a protected type, then ⟦B⟧ = Tℓ ⟦B⟧ strictly, i.e. ⟦B⟧ is in the reflective
subcategory induced by Tℓ . The elimination rule then reduces to Moggi’s interpretation, and we
can straightforwardly adapt the soundness proof, as well as the canonicity proof for Bool.

It is now easy to see that the levelled structure on CSetL from ğ5 is a model of the DCC, with

Tℓ
def
= ♦↓ℓ

5It is worth noting that, curiously, the meet and join operations are never used in the study of the DCC.
6More specifically: a version of the DCC without fixpoints, which the original included.
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where ↓ ℓ
def
= { ℓ′ ∈ L | ℓ′ ⊑ ℓ } is the principal lower set of ℓ. It is not hard to show that if B is

protected at ℓ (as a type) then ⟦B⟧ is protected at ↓ ℓ (as a classified set). As shown in ğ5.1ś5.2, ♦π

is a strong, strictly idempotent monad, so that ⟦B⟧ = ♦↓ℓ ⟦B⟧.
There is no explicit noninterference theorem stated for DCC itself in [Abadi et al. 1999]. Instead,

there are six translations from various calculi into DCC, which are used to prove noninterference
for each of these ‘source’ calculi. The technique is always the same: first, show that the translation
(−)† is adequate, in the sense that E has a canonical form in the source calculus if and only if the
semantics of the translation satisfies

�
E†
�
, ⊥. Then, some argument similar to our Prop. 22 is

used to show constancy of the ‘DCC-induced’ semantics
�
E†
�
of a term E : Bool with a single free

variable of an appropriately ‘secure’ type. Then
�
(E[M/x])†

�
=

�
(E[M ′/x])†

�
for allM,M ′, and a

single use of adequacy suffices to complete the argument.
We will attempt to capture the essence common to these proofs by the following proposition.

Proposition 23. If π − π ′ , ∅, A is non-empty, and B is visible at π − π ′, then all morphisms

♦πA → ♦π ′B

are constant functions.

Proof. If B is visible at π − π ′ then B = □π−π ′B, so

♦π ′B = ♦π ′□π−π ′B = □(π−π ′)−π ′♦π ′B = □π−π ′♦π ′B = ∆π−π ′Uπ−π ′♦π ′B

by Prop. 21(9), set theory, and the definition of □π . But also

♦πA = ♦π−π ′♦π∩π ′A

by Prop. 21(4) and set theory. As π − π ′ , ∅ and A is non-empty, Prop. 22 applies. □

We also have the following analogue of Lemma 1.

Lemma 3 (DCC Adeqacy). Suppose we have a sound categorical interpretation for the DCC, as

described before. Suppose that, as per the definition in [Moggi 1991], each monadTℓ satisfies the mono
requirement, i.e. each component A → TℓA of the unit is mono. Let G be a ground type that satisfies

canonicity, with an injective interpretation, so that

⟦⊢ ci : G⟧ =
�
⊢ cj : G

�
=⇒ ci ≡ cj

Then this interpretation is adequate for TℓG, in the sense that

⟦ ⊢ M : TℓG⟧ = ⟦ ⊢ [ci ]ℓ : TℓG⟧ =⇒ ⊢ M = [ci ]ℓ : TℓG

Proof. The canonical forms at TℓG are exactly [ci ]ℓ . LetM normalise to [cj ]ℓ . Then

ηG ◦
�
cj
�
=

�
[cj ]ℓ

�
= ⟦M⟧ = ⟦[ci ]ℓ⟧ = ηG ◦ ⟦ci⟧

As ηG is mono,
�
cj
�
= ⟦ci⟧, and hence cj ≡ ci . □

We can now interpret DCC+booleans into CSetL , with ⟦Bool⟧
def
= ∆B � 1 + 1. This interpretation

satisfies all the requirements of Lemma 3Ðas every component A → ♦πA is a monoÐso it is
adequate.

Theorem 7 (Noninterference for DCC). Let A be a non-empty type, and let x : TℓA ⊢ M :

Tℓ′Bool with ℓ @ ℓ
′. Then, for any ⊢ E,E ′ : Tℓ , we have

⊢ M[E/x] = M[E ′/x] : Tℓ′Bool
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Proof. We have that

⟦x : TℓA ⊢ M : Tℓ′Bool⟧ : ♦↓ℓ ⟦A⟧ → ♦↓ℓ′∆B

But ℓ @ ℓ′ if and only if ↓ ℓ ⊈↓ ℓ′, so ↓ ℓ − ↓ ℓ′ , ∅. As ∆B is visible everywhere, it follows by
Proposition 23 that ⟦M⟧ : ♦↓ℓ ⟦A⟧ → ♦↓ℓ′∆B is a constant function, so

⟦M[E/x]⟧ = ⟦M⟧ ◦ ⟦E⟧ = ⟦M⟧ ◦ ⟦E ′⟧ = ⟦M[E ′/x]⟧

for any ⊢ E,E ′ : TℓA. By adequacy, it follows that ⊢ M[E/x] = M[E ′/x] : Tℓ′Bool. □

6.2 The Sealing Calculus

The sealing calculus was introduced by Shikuma and Igarashi [2008]. Its history is complicated: it is
a simplification of a calculus introduced by Tse and Zdancewic [2004] as a refinement of DCC. The
authors originally hoped to prove noninterference for DCC not through denotational methodsÐ
as in [Abadi et al. 1999]Ðbut by translating it to System F and using parametricity. However,
there was a technical issue in their work. Shikuma and Igarashi [2008] carried out a similar
programme by translating their sealing calculus to simple types, thus proving noninterference
through parametricity for simple types. Subsequently, Bowman and Ahmed [2015] carried out the
original programme to completion, by translating DCC itself to System Fω .
The sealing calculus is also based on a partial order (L,⊑) of security levels. It augments the

context of the simply typed λ-calculus with a finite set π of observer levels. Typing judgements are
of the form

Γ | π ⊢ M : A

The idea is that an observer can only read data the classification of which is below their observer
status. We write ℓ ⊑ π to mean that ℓ is below some level in π .
The introduction rule specifies that a term obtained using observer access ℓ can be sealed, thus

becoming a term that can be handled possibly without (but not necessarily without) access ℓ:

Γ | π ∪ {ℓ} ⊢ M : A

Γ | π ⊢ [M]ℓ : [A]ℓ

[A]ℓ is a type sealed at ℓ. Conversely, if the observer level dominates ℓ, terms can be unsealed:

Γ | π ⊢ M : [A]ℓ ℓ ⊑ π

Γ | π ⊢ Mℓ : A

and, naturally, ([M]ℓ)
ℓ
= M . The rest of the system is just that of simple types.

Our levelled cohesion can be used quite directly to provide semantics for the sealing calculus. To
do so, notice that the only rules that interact with the observer context π are the modal/sealing
rules: if we forget those for a moment, everything else is simply-typed λ-calculus. Thus, we can
interpret the sealing-free/‘constant π ’ part of the calculus in any cartesian closed category. We will
choose to do so in the co-Kleisli category CoKl(□↓π ) of □↓π , which has the same objects as CSetL ,
but whose morphisms A → B are the morphisms □↓πA → B of CSetL . This is standard, see e.g.
[Awodey 2010, Ex. 11, ğ10.6]. Also standard is the following theorem, which is considered ‘folk’ by
Brookes and Geva [1992], and mentioned in passing by Uustalu and Vene [2008]:

Theorem 8. If Q : C −→ C is a product-preserving comonad on a cartesian closed category C,

then its co-Kleisli category CoKl(Q) is also cartesian closed.

Thus, a sequent x1 : A1, . . . ,xn : An | π ⊢ M : A is interpreted as an arrow

□↓π (⟦A1⟧ × · · · × ⟦An⟧) → ⟦A⟧
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The idea is that the observer context π declassifies everything at levels below some level in π .
But recall that □π is product-preserving, and that in the particular example of CSetL it is strictly
product preserving. Thus, morphisms of the above type are of the form

□↓π ⟦A1⟧ × · · · × □↓π ⟦An⟧ → ⟦A⟧

Sealing is uniformly interpreted on types by the redaction functors:

⟦[A]ℓ⟧
def
= ♦↓ℓ ⟦A⟧

On terms, the sealing and unsealing rules will be interpreted by using the adjunction □↓π ⊣ ♦↓π to
move between the different co-Kleisli categories of the comonads □↓π . For simplicity we explain
the case ℓ < π which discards ℓ from the observer levels. Recall that, by Prop. 21, we have

□↓(π∪{ℓ }) = □↓π∪↓ℓ = □↓π □↓ℓ = □↓ℓ □↓π

So the interpretation of a term Γ |π ∪{ℓ} ⊢ M : A, which is a morphism ⟦Γ⟧ → ⟦A⟧ in the co-Kleisli
category of □↓π∪{ℓ } , is, by the above, really a morphism of type

□↓ℓ

(

□↓π ⟦A1⟧ × · · · × □↓π ⟦An⟧
)

→ ⟦A⟧

in CSetL . Moving across the adjunction yields a morphism

□↓π ⟦A1⟧ × · · · × □↓π ⟦An⟧ → ♦↓ℓ ⟦A⟧

which is now a morphism in the co-Kleisli category of □π , and we take that to be the interpretation
of Γ | π ⊢ M : [A]ℓ . Unsealing is obtained by moving in the opposite direction: doing so, we obtain
a morphism

□↓ℓ □↓π ⟦A1⟧ × · · · × □↓ℓ □↓π ⟦An⟧ → ⟦A⟧

But ℓ ⊑ π implies ↓ π = ↓ π ∪ ↓ ℓ, and so □↓ℓ □↓π is just □↓π . Again, it would suffice for these
equalities of modalities to be mere natural isomorphisms. Soundness of the equations of the sealing
calculus then follow from the fact the adjunction induces a natural isomorphism between the
appropriate hom-sets.
Shikuma and Igarashi [2008] prove the following noninterference theorem. Say that terms

· | π ⊢ M1,M2 : A at observer level π are contextually equivalent just if there is no term of ground
type at the same observer level that can distinguish them: that is, if x : A | π ⊢ N : Bool, then
N [M1/x] = N [M2/x]. This defines an equivalence relation ≈π , which extends to substitutions
· | π ⊢ σ : Γ. The main theorem states that if σ ≈π σ ′ : Γ and Γ | π ⊢ E : A, then E[σ ] ≈π E[σ ′]. That
is: substituting terms indistinguishable at π yields results indistinguishable at π .

This is a particularly strong noninterference theorem, which takes many pages of very beautifulÐ
but also painfully elaborate!Ðwork to show. We will content ourselves with using the model to
provide the following direct corollary: 7

Theorem 9 (Noninterference for Sealing Calculus). Let A be a non-empty type. If ℓ @ π ,

then for any · | π ⊢ M,N : [A]ℓ and x : [A]ℓ | π ⊢ E : Bool, we have · | π ⊢ E[M/x] = E[N /x] : Bool.

First, we notice that Shikuma and Igarashi [2008] show confluence and strong normalisation for
the sealing calculus (including unit and coproducts, which subsume Bool). Thus canonicity holds,
and Lemma 1 applies to yield adequacy at Bool. The domain of ⟦x : [A]ℓ | π ⊢ E : Bool⟧ is ♦↓ℓ ⟦A⟧

as an object of CoKl(□↓π ), and hence as an object of CSetL it is

□↓π ♦↓ℓ ⟦A⟧ = ♦↓ℓ−↓π □↓π ⟦A⟧

7It is easy to show that any M, N : [A]ℓ are contextually equivalent at π A ℓ by a logical relations argument: see [Shikuma

and Igarashi 2008, Theorem 2.18]. Then this result is the special case of the noninterference theorem, once we observe that

equality and observational equivalence coincide at the ground type Bool.
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by Prop. 21(8). Its codomain is ∆B, which is visible everywhere. But, as ℓ @ π , we have that
↓ ℓ − ↓ π , ∅, so Prop. 23 applies (with π ′

= ∅) to show that it is a constant function. Then,

⟦E[M/x]⟧ = ⟦E⟧ ◦CoKl ⟦M⟧ = ⟦E⟧ ◦CoKl ⟦N⟧ = ⟦E[N /x]⟧

where ◦CoKl is composition CoKl(□↓π ), and by using adequacy the proof is complete.

7 CONCLUSION

To recapitulate: we have defined the model of classified sets, and shown that it forms a pre-cohesion.

This led us to the generation of modalities
∫

⊣ □ ⊣ ♦, and the proof of noninterference properties
for Moggi’s monadic metalanguage and the Davies-Pfenning comonadic calculus. Next, we took a

levelled view of cohesion, and showed that this generates a multi-modal framework
∫

π
⊣ □π ⊣ ♦π .

These modalities satisfy many algebraic laws, which we then used to prove noninterference for
two multi-modal information flow calculi, the dependency core calculus, and the sealing calculus.

We discuss two aspects of our work that we believe may lead to interesting future developments.

Cohesion as a theory of information flow. Our results demonstrate that the very general and
abstract framework of pre-cohesion in fact has very concrete applications in analysing information
flow. Our noninterference proofs rely on very general lemmas about pre-cohesionÐin the case of
ğ6, with some additional, slightly mysterious equationsÐwhich are then applied to each calculus by
using some usually very simple form of adequacy. We believe these to be a simplification compared
to previous work on noninterference, which required quite a bit of hard work in terms of fully
abstract/fully complete translations, e.g. [Bowman and Ahmed 2015; Shikuma and Igarashi 2008].
However, we believe this to be the tip of the iceberg: cohesion can tell us much more about

information flow. However, this cannot happen unless we replace adequacy, which is a very weak
form of completeness, with something stronger. It would be very interesting to see whether there
are information flow calculi for which classified sets are fully abstract, in the sense that M and
N are contextually equivalent if and only if ⟦M⟧ = ⟦N⟧ in CSetL . That would grant us far more
power to use ideas from and properties of cohesion to prove theorems about information flow.
Conversely, we can seek information flow calculi with likeness to cohesion-based models: we

can look at what structure is available in the multi-modal setting of classified sets, and then try to
formulate a calculus from that. This would most likely lead to a multi-modal version of the spatial
type theory of Shulman [2018]. Such a calculus would also have much to offer in terms of resolving
the debate between, for example, coarse-grained and fine-grained formulations, as discussed by
Rajani and Garg [2018]. In a sense, its formulation would provide a mathematical justification
for canonical, type-theoretic choices of modalities and constructs. (That is, if we of course accept
classified sets as a canonical model of information flow.) Additionally, the calculus would include

the shape at π modality (
∫

π
), which has never appeared before in papers on information flow type

systems, and which might have interesting applications as a ‘security quotient’ or ‘secure view’
type constructor. Finally, there seem to be close connections between this work and graded monads

and comonads, which also have applications in information flow: see [Gaboardi et al. 2016].

Cohesion as a basis for multi-modal type theories. The other side of the coin in the present
development is that information flowÐwhich is a garden-variety application for multi-modal typesÐ
can be quite eloquently spoken about in this language of cohesion. In particular, the formulation
of a functor P(L)op −→ Precoh enabled very short and conceptual proofs of results that would
ordinarily require a lot of uninteresting relational reasoning. It is thus natural to ask whether
there might be other functors Cop −→ Precoh of Precoh-valued presheaves that yield interesting
analyses of multi-modal logical systems. In fact, some of the notation we developed in ğ5 bears a
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striking similarity to the adjoint logic of Licata and Shulman [2016], and the framework of Licata
et al. [2017]. Could there be a closer connection between these developments?
The combination of the parametricity-style reasoning and cohesion has also recently appeared

in the multi-modal type theories of Nuyts et al. [2017] and Nuyts and Devriese [2018]. There is
certainly potential for a very interesting connection to be made there, e.g. by devising a dependent
type theory for information flow, for which the noninterference theorems can be proven internally.

Related work. As mentioned in the introduction, the problem of information flow is almost as
old as Computer Science itself, dating at least as far back as Bell and LaPadula’s report of 1973
[LaPadula and Bell 1996]. The notion of noninterference itself was introduced by Goguen and
Meseguer [1982]. The use of types to guarantee information flow control, and hence some form of
noninterference, appears to have begun in the 1990s, with the first work on higher-order functional
programming being that of Heintze and Riecke [1998] on the SLam calculus; see op. cit. for a useful
list of references to approaches that preceded it. Rajani and Garg [2018] provide a good overview
and a largely complete list of references to the literature thereafter.

Even the first higher-order noninterference results, such as those for SLam [Heintze and Riecke
1998], use some form of logical relations, who directly state that they are łborrowing ideas from
Reynolds.ž In particular, Heintze and Riecke [1998] use logical relations on top of a denotational
model, which then led to the dependency category of Abadi et al. [1999], which we have refined into
classified sets. Other than that, there appears to be very little other work on denotational models of
information flow; even if situated outside the higher-order functional setting, we ought to mention
the work of Sabelfeld and Sands [2001].

Furthermore, we should note that this paper is the first categorical approach to information flow.
Even though we mostly use the motivating example of classified sets, all our theorems are rather
general, and apply to all pre-cohesive settings indexed over subsets of L for which the equations
1, 2 and 3 apply. It is also worth noting that we did not use any particular structure on L, even
though most of the related work cited above asks for some kind of latticeÐeven if they do not use
it either: we merely made use of indexing over P(L).
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