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Recurrence Extraction for Functional Programs through
Call-by-Push-Value

G. A. KAVVOS∗, EDWARD MOREHOUSE, DANIEL R. LICATA, and NORMAN DAN-

NER,Wesleyan University, United States of America

The main way of analyzing the complexity of a program is that of extracting and solving a recurrence that

expresses its running time in terms of the size of its input. We develop a method that automatically extracts

such recurrences from the syntax of higher-order recursive functional programs. The resulting recurrences,

which are programs in a call-by-name language with recursion, explicitly compute the running time in terms of

the size of the input. In order to achieve this in a uniform way that covers both call-by-name and call-by-value

evaluation strategies, we use Call-by-Push-Value (CBPV) as an intermediate language. Finally, we use domain

theory to develop a denotational cost semantics for the resulting recurrences.

CCS Concepts: · Theory of computation → Program verification; Program analysis; Denotational

semantics; · Software and its engineering→ Functional languages.

Additional Key Words and Phrases: recurrence extraction, resource analysis, cost semantics, higher order
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1 INTRODUCTION

Functional programmers typically analyze time, space, or other resource usage of their programs
using the extract-and-solve method. First, we extract a recurrence from the program. In this context,
a recurrence is a mathematical objectÐusually an inequalityÐthat expresses an upper bound for
the running time of a program in terms of the size of its input. Depending on the task at hand, this
notion of size may vary. For example, if the input is a tree, we may define its size to be its number
of nodes, its depth, or some more complicated expression. The second step consists of solving this
recurrence: mathematical methods are used to express it (or a suitably looser version of it) in a non-
recursive closed form and big-O bound. While this method is taught in introductory textbooks (e.g.
Bird [2014, ğ7]), there is no formal connection between the program and the extracted recurrence.
In this work we concentrate on the first of those steps: we seek a method to automatically extract a
recurrence from the syntax of a recursive functional program, in such a way that we can prove a
formal bounding theorem relating the extracted recurrence to the program’s operational cost.
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Fig. 1. Recurrence extraction

Danner et al. [2015] present such a method for a call-by-value terminating language with
inductive types and structural recursion. Their method consists of the following steps:

• Given a program M in the source languageÐi.e. the language that we wish to analyseÐa
syntactic recurrence ∥M ∥ is extracted. This recurrence is expressed in an appropriate recurrence
language, which includes primitives for expressing cost. This step is close in spirit to amonadic
translation of the program into the writer monad. This approach is able to accommodate
higher-order functions, assigning to them a higher-order recurrence expressing their cost in
terms of a recurrence for their input.
• A bounding relation between source programs and syntactic recurrences is defined by induc-
tion on the types of the source language, i.e. as a logical relation. Intuitively, a source program
is bounded by a recurrence if the components of the recurrence express upper bounds for the
attributes of the source program, e.g. evaluation cost, size, etc.
• Following that, a bounding theorem is proved. This shows that every source program M is
bounded by the extracted recurrence ∥M ∥.
• Finally, a denotational semantics is provided for the recurrence language. Depending on the
intended application, this semantics abstracts inductive data types to some notion of size.
For example, to consider binary trees up to their height we might interpret them as natural
numbers, with the node constructor interpreted as the maximum. Alternatively, the node
constructor may be interpreted as addition, thus yielding the number of nodes.

This strategy is shown schematically in Figure 1.
In this previous work, the recurrence language was taken to be a call-by-name language, so as to

be as ‘close to mathematics’ as possible. Composing the extraction with the semantic interpretation
then yields what one might call a semantic recurrence, which is intended to match the recurrence we
would informally write when teaching undergraduate studentsÐat least in the context of first-order
programs. Thus the entire process gives a formal account and justification for informal cost analysis
techniques. Factoring this into a syntactic and a semantic step is a useful tool for obtaining a
simplifying account, which is additionally modular in the different notions of size for inductive
data types. Nevertheless, it is still somewhat rigid with respect to changes to the source language:
each source language requires a new and complex logical relations proof.
In this paper, we improve upon the above approach in several ways:

(1) We factor the syntactic phase into a cost-preserving embedding of the source language in an
intermediate language, followed by a recurrence extraction for the intermediate language
in the style of Danner et al. [2015]. The bounding theorem is proved once for the interme-
diate language, so for each source language we need only prove that the cost-preserving
embeddings are correct. This strategy is illustrated Figure 2.

(2) In order to support a wide variety of languages, we choose as an intermediate language
Call-by-Push-Value (CBPV) [Levy 2003], which embeds both call-by-value and call-by-name
evaluation. We define recurrence extraction and prove a bounding theorem for CBPV, and
obtain recurrence extraction and bounding theorems for both call-by-value (CBV) and call-
by-name (CBN) source languages by embedding them in CBPV.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 15. Publication date: January 2020.
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Fig. 2. Recurrence extraction through CBPV

(3) Our intermediate language is a version of CBPV with general recursion. Thus, we obtain a
new recurrence extraction and bounding theorem result for CBV with general recursion, and
a simpler recurrence extraction and bounding theorem for CBN than Kim [2016]. General
recursion is important in our setting for writing divide-and-conquer algorithms in the stan-
dard way: in order to give a formal analogue of the standard informal techniques, we should
not require the programmer to embed a termination metric in the source program.

(4) We generalize the denotational semantics from sets equipped with a size ordering to domains
equipped with a size ordering. This involves some subtle questions regarding the interaction
of the size ordering with the information order of the domains. We develop a semantics that
identifies the bottom element of the domains (non-termination) with the maximum element
of the size ordering (infinity), and more generally reverse-includes the information order in
the size orderÐa more defined recurrence is a more precise bound. The key features of this
semantics are encoded in a syntactic recurrence language PCFc.

In more detail, our technical development proceeds as follows. We first define three variants of
PCF, starting in Section 2 with relatively standard CBV and CBN source languages. To isolate the
issues involved in considering general recursion, we choose source languages with only natural
numbers as data (treated as a flat base type). Next, in Section 3 we define the recurrence language
PCFc , a version of call-by-name PCFwith an additional type of costs. The key axiomatic component
of PCFc is its size order (really, a pre-order relation). The size order codifies the minimum require-
ments necessary to prove the bounding theorem, while subsequent denotational interpretations of
PCFc can refine this to specific notions of cost and size. The primary conceptual difficulty in the
size order is understanding how it interacts with the implicit information order that arises from
models of PCF, which is necessary for verifying the bounding theorem for recurrences extracted
from recursively-defined functions. Our approach takes more defined recurrences to be smaller in
the size order, i.e. to be better bounds. This is encoded in two of the rules that axiomatize the size
order: one that asserts that rational chains are decreasing in the size order, and one that asserts
that if all the approximants to a fixed point are a bound, then so is the fixed point itself.
Next, we describe the łend-userž recurrence extraction functions and corresponding bounding

theorems for CBV and CBN source languages in Section 4. The statements of these theorems for
the two source languages are independent of the intermediate language, but we will prove them by

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 15. Publication date: January 2020.
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factoring them through it, as indicated in Figure 2. These two examples illustrate the flexibility of
our approach: even though they originate from the same general theorem, the the two bounding
relations are very different in spirit.
The rest of the paper is largely devoted to proving that the extraction functions in Section 4

are correct using the approach of Figure 2. We define the version of Levy’s Call-by-Push-Value
(CBPV) [Levy 2003] that we use as an intermediate language in Section 5. CBPV is a polarised
λ-calculus that is structured around a fundamental dichotomy between values and computations.
The primitives ofCBPV provide logical mechanisms that control evaluation. In terms of expressivity,
these mechanisms are strong enough to allow a faithful embedding of both CBN and CBV PCF in
CBPV. The structure of CBPV ensures compatibility with computational effects such as printing,
memory, etc. For the purposes of this paper, we will consider cost to be an effect: the embeddings of
CBN and CBV into CBPV will explicitly mention a command that incurs evaluation cost whenever
some should be incurred according to the source language operational semantics. This makes the
embeddings essentially parametric in the evaluation costs: even if we decide to change the costsÐ
e.g. by charging twice as much for a function callÐwe only need to slightly alter the embedding
into CBPV and the accompanying cost-preservation proof. We thus demonstrate that CBPV is an
extremely flexible and general intermediate language for recurrence extraction.

The extraction function and bounding relation for CBPV is defined in Section 6. It is here that we
reap the benefits of the distinction between values and computations, for it is clear that they require
different notions of bounding. This in turn explicates the differences in the bounding relations for
our original call-by-value and call-by-name versions of PCF. The cost-preserving embeddings of
the two languages that we give in Section 7 are fundamentally different: following Levy [2003],
CBN types are translated to CBPV computation types, whereas CBV types are translated to CBPV

value types.
We define a denotational semantics for the recurrence language PCFc in Section 8 by introducing

sized domains, which combine size and information orders. We observe that the standard model
of PCF extends to a model in sized domains, in which the natural numbers are given their usual
order. In Section 9, we use this model to give an end-to-end example of recurrence extraction for a
non-structural recursion, in order to show that the recurrence we obtain indeed matches the one
we would expect from an informal analysis. Finally, in Section 10 we sketch an extension of our
work to a call-by-value source language with inductive types, following the approach of [Danner
et al. 2015], and use it to extract a recurrence from a program implementing merge sort. Both this
and the exponentiation example validate our claim that our technique formalizes the usual informal
extract-and-solve approach to cost analysis.

2 THE SOURCE LANGUAGES: PCF

Our objective in this paper is to present a completely formal and provably correct way to extract
recurrences from general-recursive functional programs. For the sake of clarity, we target a small
formal calculus that illustrates the core features of this style of programming. Perhaps the most
well-understood calculus of this sort is PCF [Plotkin 1977]. PCF essentially consists of a simply-
typed λ-calculus, a base type of natural numbers, and some mechanism for obtaining fixed points.
Almost every introductory book on programming language semantics includes a wealth of material
on it: see e.g. [Gunter 1992; Mitchell 1996; Streicher 2006]. As discussed in the introduction, we
would like to extract recurrences from both a CBN and a CBV variant of PCF.

The types, terms, and typing judgments of PCF are defined in Figure 3. The version we use
comes with flat natural numbers, product, and function types. We write T PCF

A
for the (open and

closed) terms of PCF of type A, andVPCF
A

for the CBV canonical forms of type A.
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Types A,B ::= nat | A × B | A→ B

Contexts Γ ::= · | Γ, x : A

Numerical operations op ::= + | ∗ | − | ÷ | mod

Canonical forms (CBN) V ::= n | ⟨M,N ⟩ | λx . M

Canonical forms (CBV) V ,W ,Z ::= n | ⟨V ,W ⟩ | λx . M | rec f (x) = M

Γ, x : A, Γ′ ⊢ x : A Γ ⊢ n : nat

Γ ⊢ N : nat Γ ⊢ P,Q : A

Γ ⊢ if N then P else Q : A

Γ ⊢ M : nat Γ ⊢ N : nat

Γ ⊢ M op N : nat

Γ, x : A ⊢ M : A

Γ ⊢ fix x . M : A

Γ ⊢ M : A1 Γ ⊢ N : A2

Γ ⊢ ⟨M,N ⟩ : A1 ×A2

Γ ⊢ P : A1 ×A2

Γ ⊢ πi (P) : Ai

Γ, f : A→ B, x : A ⊢ M : B

Γ ⊢ rec f (x) = M : A→ B

Γ, x : A ⊢ M : B

Γ ⊢ λx . M : A→ B

Γ ⊢ M : A→ B Γ ⊢ N : A

Γ ⊢ M N : B

Fig. 3. PCF

Our natural numbers are introduced by constants 0, 1, . . . and correspond to eager, rather than
lazy, natural numbers. Instead of the usual predecessor and successor functions, we introduce
five arithmetic operations on natural numbers, as well as the zero test if N then P else Q , which
behaves like P if N is 0, and like Q otherwise. This choice of primitives gives them the flavor of
machine words. We sometimes refer to these as łflatž natural numbers, as they admit a domain
interpretation with a flat information order (bottom below all numerals, and no other relations).
The terms of the CBN and the CBV variants differ only on fixed points. In the case of CBN

we may take fixed points at every type: if we have M : A in terms of x : A, we may construct
fix x . M : A. However, in CBV we are only allowed to take fixed points at function types, i.e. to
make recursive function definitions: if we haveM : B in terms of an argument x : A and a recursive
variable f : A→ B, then we can obtain a recursively defined function rec f (x) = M : A→ B. This
formulation of CBV PCF is commonly found in the literature; see e.g. [Levy 2006, ğ7], [Fiore 1996,
ğ1.2.5], or [Plotkin and Power 2001].

The big-step semantics of the two variants of PCF are defined in Figure 4. Judgments of the form
M ↓n V are read as łM evaluates to canonical form V incurring a cost n in the process.ž Except the
presence of the cost superscripts, these rules are standard in the literature on PCF, while the cost
annotations follow Blelloch and Greiner [1995]. Each rule sums the costs incurred in the premises
and adds additional cost for the evaluation step represented by that rule. For simplicity, we choose
to charge one unit of cost for pair projections and (possibly recursive) function applications, and no
cost otherwise. This could easily be adjusted to give any constant cost for each reduction, butÐas
recurrence extraction is syntax-directedÐeach reduction for the same term constructor must incur
the same cost (e.g. we cannot charge 1 for reducing an if to the 0 branch and 2 for reducing it to
the other branch). We have that

Theorem 2.1 (Determinacy). There is at most one pair n, V such thatM ↓n V .

We letM↓
def
≡ ∃n,V .M ↓n V which we pronounce as łM is bounded,ž and writeM↑ to mean ¬ (M↓).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 15. Publication date: January 2020.
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Rules for all variants

n ↓0 n

M ↓a m N ↓b n

M op N ↓a+b m op n λx . M ↓0 λx . M

N ↓a 0 P ↓b V

if N then P else Q ↓a+b V

N ↓a n + 1 Q ↓b V

if N then P else Q ↓a+b V

Call-by-name PCF

⟨M,N ⟩ ↓0 ⟨M,N ⟩

P ↓a ⟨M1,M2⟩ Mi ↓
b Vi

πi (P) ↓
a+b+1 Vi

M ↓m λx . P P[N /x] ↓n V

MN ↓m+n+1 V

M[fix x . M/x] ↓n V

fix x . M ↓n+1 V

Call-by-value PCF

rec f (x) = P ↓0 rec f (x) = P

M ↓a V N ↓b W

⟨M,N ⟩ ↓a+b ⟨V ,W ⟩

P ↓n ⟨V1,V2⟩

πi (P) ↓
n+1 Vi

M ↓m rec f (x) = P N ↓n W P[rec f (x) = P/f ,W /x] ↓k V

MN ↓m+n+k+1 V

M ↓m λx . P N ↓n W P[W /x] ↓k V

MN ↓m+n+k+1 V

Fig. 4. Big-step semantics for PCF

0̂
def
= 0

�n + 1 def
= 1 ⊞ n̂

Types A,B ::= · · · | C

Canonical forms (CBN only) V ::= · · · | n̂

Typing rules: The CBN rules of Figure 3, plus
n̂ ∈ {0, 1}

Γ ⊢ n̂ : C
and

Γ ⊢ M : C Γ ⊢ N : C

Γ ⊢ M ⊞ N : C

Big-step semantics: The CBN rules of Figure 4, plus
n̂ ∈ {0, 1}

n̂ ↓ n̂
and

M ↓ m̂ N ↓ n̂

M ⊞ N ↓ �m + n

Fig. 5. PCF with costs

3 THE RECURRENCE LANGUAGE: PCF WITH COSTS

The recurrences we aim to extract from PCF terms will themselves be expressed in an appropriate
recurrence language, which will also be a version of PCF, and which we call PCF with costs (PCFc).
As mentioned before, we would like the recurrence language to behave in a way that is as close to
mathematics as possible. Hence, we choose PCFc to be a CBN language.

In addition to standard constructs, PCFc also sports an additional type of costs, which we denote
by C. We assume as little as possible about costs: there are constants for no cost and unit cost,
denoted 0 and 1. Furthermore, PCFc comes with an operator that adds arbitrary costs together: if
M : C and N : C we have M ⊞ N : C. We define n̂ to be the right-associated sum 1 ⊞ . . . ⊞ 0 of n
unit costs. We write T PCFc

A
for the (open and closed) terms of PCFc of type A.
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The operational semantics of PCFc consists of a judgment M ↓ V , which is read as łterm M

evaluates to canonical form V .ž Notice that this judgment does not record any evaluation costs, as
we are not interested in the running time of recurrences. The rules forM ↓ V consist of all the CBN
rules of Figure 4Ðwith the cost annotations erasedÐalong with two additional rules that handle
the evaluation of costs: one which allows 0 and 1 to evaluate to themselves, and one which handles
the summation of costs in the expected way. These facts are summarised in Figure 5.
However, the operational semantics of PCFc play a very limited rôle: they are only used to

define the predicateM↓ for PCFc. Instead, the central device used alongside PCFc is the size order.
It consists of judgments of the form Γ ⊢ M ⩽ N : A, which we read as łM is bounded above by N

at type A in context Γ.ž The size order is used to compare the costs denoted by recurrences, as well
as the sizes of values.

The full inductive definition of the size order is introduced in Figure 6. To explain its definition,
we first need to discuss three auxiliary notions.

Syntactic Unfolding. The nth syntactic unfolding of a fixed point term, denoted by fixn x . M , is
in a sense the łnth approximationž to the fixed point fix x . M . Intuitively, fixn x . M is the term that
runs for up to n recursive calls, and in the next call decides to diverge. It is defined by

fix0 x . M
def
= fix x . x

fixn+1 x . M
def
= M[fixn x . M/x]

It is easy to see that

Proposition 3.1. If Γ, x : A ⊢ M : A then Γ ⊢ fixn x . M : A for any n ≥ 0.

Monotone contexts. As is usual, PCF term contexts are defined in a manner similar to PCF terms.
The difference is that PCF contexts have had one of their subterms replaced by a hole, denoted by

[]. For example, the context C
def
= λx .M([] + 3) is obtained by replacing the term N in λx .M(N + 3)

by a hole []. We may recover the original term λx .M(N + 3) by filling the hole with N , which we
write as C[N ] and define in the usual way. Recall also thatÐunlike substitutionÐfilling a hole may
result in variable capture. For example, the variable x is no longer free in C[x] ≡ λx .M(x + 3).

Of the contexts, we choose certain ones to be monotone, which means that they preserve the size
order ⩽. In order to prove the bounding theorem about recurrence extraction into PCFc, we will
need that the monotone contexts include at least the principal positions of elimination forms, as
well as introduction forms for negative types (i.e. the bodies of functions and pairs), as stated in
Figure 6. It is always permissible, and sometimes desirable, to make more contexts monotone (e.g.
all of them). However, this places more requirements on semantic models of PCFc, so in this figure
we only include those that are necessary for proving the bounding theorem. Monotone contexts
are introduced by a typing judgment C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B). The meaning of this judgment
is this: the hole in C is assumed to represent a term Γ ⊢ M : A, i.e. a term of type A in context Γ.
When we fill the hole with a Γ ⊢ M : A, the resultant term C[M] has type B in context ∆. Note that
the context may change, as C might bind some free variables.

Proposition 3.2 (Filling Typing). Γ ⊢ M : A ∧ C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B) =⇒ ∆ ⊢ C[M] : B

Eliminative contexts. Of the monotone contexts, the (negative) eliminative contexts consist of
a series of applications and projections. They are defined by

E ::= [] | πi (E) | EM

Eliminative contexts are strict in effects, and in particular they preserve divergence:

Lemma 3.3 (Preservation of Infinity). For an eliminative context E,M↑ implies E[M]↑.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 15. Publication date: January 2020.
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[] :: (Γ ⊢ A)⇝mon. (Γ ⊢ A)

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ nat) ∆ ⊢ M,N : C

if C thenM else N :: (Γ ⊢ A)⇝mon. (∆ ⊢ C)

∆ ⊢ M : C C :: (Γ ⊢ A)⇝mon. (∆ ⊢ C)

M ⊞ C :: (Γ ⊢ A)⇝mon. (∆ ⊢ C)

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ C) ∆ ⊢ N : C

C ⊞ N :: (Γ ⊢ A)⇝mon. (∆ ⊢ C)

C :: (Γ ⊢ A)⇝mon. (∆, x : B ⊢ C)

λx . C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B → C)

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B → C) ∆ ⊢ N : B

CN :: (Γ ⊢ A)⇝mon. (∆ ⊢ C)

∆ ⊢ M : B1 C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B2)

⟨M, C⟩ :: (Γ ⊢ A)⇝mon. (∆ ⊢ B1 × B2)

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B1) ∆ ⊢ N : B2

⟨C,N ⟩ :: (Γ ⊢ A)⇝mon. (∆ ⊢ B1 × B2)

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ A1 ×A2)

πi (C) :: (Γ ⊢ A)⇝mon. (∆ ⊢ Ai )

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ nat) ∆ ⊢ N : nat

C op N :: (Γ ⊢ A)⇝mon. (∆ ⊢ nat)

C :: (Γ ⊢ A)⇝mon. (∆ ⊢ nat) ∆ ⊢ N : nat op+ ∈ {+, ∗}

M op+ C :: (Γ ⊢ A)⇝mon. (∆ ⊢ nat)

Γ ⊢ M : A
(refl)

Γ ⊢ M ⩽ M : A

Γ ⊢ M ⩽ N : A Γ ⊢ N ⩽ P : A
(trans)

Γ ⊢ M ⩽ P : A

Γ ⊢ M : C
(zero)

Γ ⊢ M ⩽ 0 ⊞M : C

Γ ⊢ M : C Γ ⊢ N : C Γ ⊢ P : C
(assoc)

Γ ⊢ M ⊞ (N ⊞ P) ⩽ (M ⊞ N ) ⊞ P : C

Γ, x : A ⊢ M : B Γ ⊢ N : A
(→β )

Γ ⊢ N [M/x] ⩽ (λx . M)N : B

Γ ⊢ M1 : A1 Γ ⊢ M2 : A2
(×β )

Γ ⊢ Mi ⩽ πi (⟨M1,M2⟩) : Ai

Γ ⊢ P : A Γ ⊢ Q : A
(iftt)

Γ ⊢ P ⩽ if 0 then P else Q : A

Γ ⊢ P : A Γ ⊢ Q : A
(ifff)

Γ ⊢ Q ⩽ if n + 1 then P else Q : A

(numβ )
Γ ⊢ n opm ⩽ n opm : nat

Γ ⊢ N : nat
(mod)

Γ ⊢m mod N ⩽ N − 1 : nat

Γ ⊢ M ⩽ N : A C :: (Γ ⊢ A)⇝mon. (∆ ⊢ B)
(ctx)

∆ ⊢ C[M] ⩽ C[N ] : B

Γ, x : A ⊢ E : A
(rat)

Γ ⊢ fixn+1 x . E ⩽ fixn x . E : A

Γ, x : A ⊢ E : A ∆, z : A ⊢ E[z] : B ∀n ≥ 0. ∆ ⊢ M ⩽ E[fixn x . E] : B
(cpind)

∆ ⊢ M ⩽ E[fix x . E] : B

Fig. 6. Monotone contexts and the size order for PCFc

The rules of the size order. The rules of the size order given in Figure 6 consist of exactly those
that are needed in order to prove the bounding theorem of ğ6. For example, we do not assume
that n ⩽ n + 1 : nat or 0 ⩽ 1 : C, so that we can consider models where ⩽ is actually equality, in
addition to models where these inequalities do hold (such as the one given in Section 8).
The rules for ⩽ can be naturally organised in three groups. The first group is the one that

makes ⩽ a preorderÐi.e. (refl), (trans)Ðand preserved by monotone contexts (ctx). The second
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group contains rules that encode small-step β-reduction: these ensure that N ⩽ M whenever we
would have had M −→β N . This group contains the rules (zero) and (assoc), which ensure that
�n +m ⩽ n̂ + m̂ for all n,m ∈ N, as a simple induction shows.
Finally, the third and most interesting group consists of the two rules that concern fixed points.

Both of these rules deal with sequences of terms that we call rational chains, i.e. sequences of the
form (fixi x . M)i ∈ω , which semantically correspond to chains of the form

(
f i (⊥)

)
i ∈ω . Rational

chains are ubiquitous in syntactic and intensional models of PCF: see e.g. [Abramsky et al. 1996;
Escardó and Ho 2009; Milner 1977; Pitts 1997].
The rule (rat) ensures that rational chains are decreasing in the size order, i.e. that

. . . ⩽ fix2 x . M ⩽ fix1 x . M ⩽ fix0 x . M
def
= ∞

Recall that the (n + 1)th syntactic unfolding may make more recursive calls than the nth, so it is
a more defined term. Hence, this rule intuitively states that a more defined recurrence is a tighter
bound. Note that as fixn+1 x . M is defined to beM[fixn x . M/x], this rule is analogous to β for fix.1

Finally, the rule (cpind) is a form of computational induction for PCFc. It ensures that this process
of iterative tightening of bounds does not ‘overshoot’: if we can prove that fixn x . E is an upper
bound for M for every n ≥ 0, then so is fix x . E. Moreover, this rule ensures that computational
induction can take place under any eliminative context E.
We immediately obtain the following results.

Lemma 3.4 (Infinite Loop is a Top Element (Infinity)). Γ ⊢ M ⩽ fix x . x : A for all Γ ⊢ M : A.

Proof. Use the rule (rat), n = 0 for a fresh variable x < Vars(Γ). □

Lemma 3.5 (Bounded terms are a lower set). M↓ ∧ N ⩽ M : A =⇒ N↓

Proof. By induction on N ⩽ M : A. □

4 RECURRENCE EXTRACTION FOR CALL-BY-NAME AND CALL-BY-VALUE

We now have enough details in place to show how to extract recurrences for both call-by-name
and call-by-value PCF.

4.1 Call-by-Value

The extraction procedure for CBV is very similar to that of [Danner et al. 2015, 2013], and is
displayed in Figure 7. To begin, we map each type A of CBV PCF to a type

∥A∥
def
= C × ⎷A⌄

of PCFc, where ⎷A⌄ is defined by induction on A. We call this the type of complexities for A. A
complexity for A consists of a pair: its first component is the cost of evaluating a term of type A
to a value, and its second component is the potential of the resultant value. If E : ∥A∥ we write

Ec
def
= π1(E) : C and Ep

def
= π2(E) : ⎷A⌄ to refer to these two components respectively.

The notion of potential is crucial in CBV extraction. There are varying interpretations about
the nature of potentials: in one reading, theyÐdirectly or indirectlyÐencode information about
the size of values; in another, they represent the future cost of using that value, to which we often
refer as use-cost. The definition of ⎷A⌄ is also given in Figure 7. Perhaps the most interesting clause

is ⎷A → B⌄
def
= ⎷A⌄ → ∥B∥. We may read this as follows. The cost of using a value of function

1We do not require β for fix itself as a size order axiom in order prove the bounding theorem, essentially because in the case

of the bounding theorem for fixed points, we will apply a fixed point induction principle to instead reason about fixn . The

β axioms are generally used in the proof of the bounding theorem to head expand, showing that a redex is in the relation if

its reduct is, but this particular reduction does not come up.
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∥A∥
def
= C × ⎷A⌄

⎷nat⌄
def
= nat

⎷A1 ×A2⌄
def
= ⎷A1⌄ × ⎷A2⌄

⎷A→ B⌄
def
= ⎷A⌄→ ∥B∥

∥x ∥
def
= ⟨0, x⟩



n


 def
=

〈
0,n

〉

∥M{+, ∗}N ∥
def
=

〈
∥M ∥c ⊞ ∥N ∥c , ∥M ∥p {+, ∗} ∥N ∥p

〉



M{−,÷}n


 def
=

〈
∥M ∥c , ∥M ∥p {−,÷}n

〉

∥M{−,÷}N ∥
def
=

〈
∥M ∥c ⊞ ∥N ∥c , ∥M ∥p

〉
(if N , n)

∥M mod N ∥
def
=

〈
∥M ∥c ⊞ ∥N ∥c , ∥N ∥− 1

〉

∥if N then P else Q ∥
def
= ∥N ∥c +c if ∥N ∥p then ∥P ∥ else ∥Q ∥

∥⟨M,N ⟩∥
def
=

〈
∥M ∥c ⊞ ∥N ∥c ,

〈
∥M ∥p , ∥N ∥p

〉〉

∥πi (M)∥
def
=c

〈
1 ⊞ ∥M ∥c , πi

(
∥M ∥p

)〉

∥λx . M ∥
def
= ⟨0, λx . ∥M ∥⟩

∥M N ∥
def
= 1 ⊞ ∥M ∥c ⊞ ∥N ∥c +c (∥M ∥p ∥N ∥p )

∥rec f (x) = M ∥
def
= ⟨0, fix f . λx . ∥M ∥⟩

If Γ ⊢ E : ∥A∥ and Γ ⊢ C : C we write




Γ ⊢ Ec
def
= π1(E) : C

Γ ⊢ Ep
def
= π2(E) : ⎷A⌄

Γ ⊢ C +c E
def
= ⟨C ⊞ π1(E), π2(E)⟩ : ∥A∥

Fig. 7. Recurrence extraction for CBV PCF

typeÐi.e. a λ-expressionÐis expressed as a function itself. This function that maps the size/use-cost
of a value of type A to a pair of an evaluation cost (the cost of evaluating the application of that
λ-expression to a value with that use-cost) and the use-cost of a value of type B. This is consistent
with the idea that in CBV variables represent values.

Following that, we define a map that extracts a recurrence from each term of CBV PCF, which
we also denote by ∥−∥ (see Danner et al. [2015] for an explanation of most of the cases). Arithmetic
operationsM op N are chosen to have zero cost in addition to the cost of evaluating their inputs
(since for big-O bounds we mainly count recursive calls), but for their potential we distinguish some
cases, guided by two constraints needed by our proof of the bounding theorem: the potential must
be an upper bound on the value of the operation, and must be monotone in the potentials of the
operands wherever mathematically possible Addition/multiplication are monotone in both M and
N , so we use addition/multiplication to combine the potentials ofM and N , which will be an upper
bound on M{+, ∗}N . In general, subtraction and division are monotone in M but antimonotone
in N , so we take the potential to be that ofM , which is an upper bound onM{−,÷}N . However,
for subtraction or division with N a numeric constant there will be no monotonicity obligation
for N (because it does not vary), so we can perform the {−,÷} in the potential. This precision is
useful for analyzing algorithms that subtract/divide by a constant in recursive calls. Finally, mod is
not monotone in either position, so we cannot use mod in the potential; but it is bounded by both
M and N − 1, and we somewhat arbitrarily choose the later. For algorithms (e.g. GCD) that recur
on x{−,÷,mod}y, we would need more sophisticated tracking of monotone and antimonotone
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positions in the recurrence language. The other new case is for recursive functions, and interprets
them using fixed points in PCFc.
Extending ⎷−⌄ to contexts pointwise, we have

Theorem 4.1. If Γ ⊢ M : A then ⎷Γ⌄ ⊢ ∥M ∥ : ∥A∥.

It remains to state a theorem to the effect that each extracted recurrence ∥M ∥ : ∥A∥ encodes an
upper bound for the evaluation ofM . Because of the presence of function types, this is stated as a
logical relation:

Theorem 4.2 (CBV extraction). There exist relations

(M : T PCF,closed
A

) ⊏∼A (E : T PCFc ,closed
∥A∥

) and (V : VPCF,closed
A

) ⊏∼
val
A
(E : T PCFc ,closed

⎷A⌄
)

such that

M ⊏∼A E =⇒ if Ec↓ then ∃n,V .




M ↓n V

n̂ ⩽ Ec

V ⊏∼
val
A

Ep

n ⊏∼
val
nat

E =⇒ n ⩽ E

⟨V1,V2⟩ ⊏∼
val
A1×A2

E =⇒

{
V1 ⊏∼

val
A1

π1(E)

V2 ⊏∼
val
A2

π2(E)

λx .M ⊏∼
val
A→B

E =⇒ ∀(N ⊏∼
val
A

X ). M[N /x] ⊏∼B E X

rec f (x) = P ⊏∼
val
A→B

E =⇒ ∀(N ⊏∼
val
A

X ). P[rec f (x) = P/f ,N /x] ⊏∼B E X

and, moreover,

(1) V ⊏∼
val
A
∥V ∥p for any CBV PCF value · ⊢ V : A,

(2) M ⊏∼A ∥M ∥ for any closed CBV PCF term · ⊢ M : A.

We prove this as a corollary of recurrence extraction for CBPV below. Intuitively, the expression
bounding relationM ⊏∼A E says that the cost and value of a CBV PCF programM are predicted by E
in the following sense: if the cost component of E terminates, then so doesM , and the evaluation
cost ofM is bounded by the cost component of E according to the size order. Moreover, the value is
bounded by the potential component of E, according to the value bounding relation ⊏∼

val
A
. The value

bounding relation is type-directed: at nat, it says that n is bounded by E according to the size order;
for pairs, it says that the components are bounded; and for functions it says that the applications
are bounded.
Relative to the bounding relation in Danner et al. [2015], the key change here for supporting

general recursion involves the quantifiers in expression bounding. In that work, expression bounding
was defined as łifM ↓n V then n̂ ⩽ Ec and V ⊏∼

val
A

Epž (if the source program evaluates, then the
recurrence’s prediction is correct), though because all programs in the language considered there
terminate, this is equivalent to łM ↓n V and n̂ ⩽ Ec and V ⊏∼

val
A

Ep .ž Here, we assert this same
guarantee only if the cost component of the recurrence itself terminates. We view a recurrence
whose cost diverges as predicting an infinite cost for the program, so the expression bounding
relation is vacuously true in this case, expressing that any program meets this bound.

4.2 Call-by-Name

The extraction procedure for CBN PCF is very different to the one for CBV. We will discover
the precise reasons for that through CBPV in ğ7, but for now we will satisfy ourselves with the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 15. Publication date: January 2020.



15:12 G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner

∥nat∥
def
= C × nat

∥A1 ×A2∥
def
= ∥A1∥ × ∥A2∥

∥A→ B∥
def
= ∥A∥ → ∥B∥

∥x ∥
def
= x



n


 def
=

〈
0,n

〉

∥M op N ∥
def
= (same as in CBV)

∥if N then P else Q ∥
def
= ∥N ∥c +A if ∥N ∥p then ∥P ∥ else ∥Q ∥

∥⟨M,N ⟩∥
def
=

〈
1 +A1

∥M ∥ , 1 +A2
∥N ∥

〉

∥πi (M)∥
def
= πi (∥M ∥)

∥λx . M ∥
def
= λx . 1 +B ∥M ∥

∥M N ∥
def
= ∥M ∥ ∥N ∥

∥fix x . M ∥
def
= fix x . 1 +A ∥M ∥

c : C, x : C × nat ⊢ αnat(c, x)
def
= ⟨c ⊞ π1(x), π2(x)⟩ : C × nat

c : C,p : ∥A1∥ × ∥A2∥ ⊢ αA1×A2
(c,p)

def
=

〈
αA1
(c, π1(p)),αA2

(c, π2(p))
〉
: ∥A1∥ × ∥A2∥

c : C, f : ∥A∥ → ∥B∥ ⊢ αA→B (c, f )
def
= λa. αB (c, f (a)) : ∥A∥ → ∥B∥

Fig. 8. Recurrence extraction for CBN PCF

following intuitions. When studying sundry versions of PCF we often speak of certain types as
being observable, in the sense that the successful normalization of terms at those types provides
some manifest information to the user. For example, every term M : nat either diverges or is
observed to converge to a constant n. However, in CBN we are unable to observe a function: the
only action we may perform is that of applying it to an argument. In contrast, in CBV every type is
observable:2 for example, when evaluating a term at function type we either expect divergence or
convergence to a λ-expression.

In the case of CBN we only have one observable type, i.e. that of natural numbers. This is to say
that we expect the end user to only evaluate terms of type nat. It follows that only complexities for
those terms should contain cost components. Complexities at any other type will need to come
with some mechanism for łpushing costs down to nat.ž Thus, a complexity for a CBN type will not
merely be a type of PCFc, but will also come with some kind of algebra structure that enables us to
do that at every type.

Definition 4.3 (Cost algebra). A (PCFc) cost algebra A = (A•,αA) consists of a type A
• and a PCFc

term c : C, x : A• ⊢ αA(c, x) : A
• such that

c : C, x : A• ⊢ αA(c1 ⊞ c2, x) ⩽ αA(c1,αA(c2, x)) : A
•

A PCFc cost algebra3 A = (A•,αA) consists of a type A
•, which we call its carrier, and a structure

map αA(c, x), which is expressed as a term in two free variables. The structure map allows one
to ładd costsž to any term of carrier type. From this point onwards we will abuse notation by not
making a formal distinction between algebras A = (A•,αA) and their carriers A•.

2There is a third paradigm which is close to CBN, but where termination at function type is observable. This is usually

called the lazy paradigm; see [Abramsky 1990], [Riecke 1993], and [Levy 2003, ğ1.7.3].
3The analogous equation x : A• ⊢ x ⩽ αA(0, x ) is true if ⩽ additionally includes certain η-contractions, but this property

is not used here so we omit these η rules for maximum generality.
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The extraction procedure for CBN may be found in Figure 8. We begin by defining an algebra
(∥A∥ ,αA) for each typeA of CBN PCF. In particular, nat is mapped to the łfree algebraž (C×nat,αnat)

on nat. For simplicity we use the notation L +A M
def
= αA(L,M) whenever L : C andM : ∥A∥.

We then inductively define a map ∥−∥ from typed terms of PCF to terms of PCFc. This definition
uses the aforementioned algebras, and so the output depends on the type of each input term.4 This
definition uses the algebras to push the cost of evaluation towards the ground types. Indeed, costs
here are not added at the elimination rules, but at the introduction rules. Consider the lazy product
type nat × nat as an example. A pair ⟨M,N ⟩ of this type is not directly observable, but contains
two observable computationsM and N . A computation that uses this pair costs one unit more than
a computation that uses eitherM or N directly, because it must do the product projection.

This translation is well-typed:

Theorem 4.4. If Γ ⊢ M : A then ∥Γ∥ ⊢ ∥M ∥ : ∥A∥.

Furthermore, it satisfies a bounding theorem given as a logical relation:

Theorem 4.5 (CBN extraction). There exists a relation

(M : T PCF,closed
A

) ⊏∼ (E : T PCFc ,closed
∥A∥

)

such that

M ⊏∼nat E =⇒ if Ec↓ then ∃n,V .




M ↓n V

n̂ ⩽ Ec : C

V ⩽ Ep : nat

M ⊏∼A1×A2
E =⇒

{
π1(M) ⊏∼A1

π1(E)

π2(M) ⊏∼A2
π2(E)

M ⊏∼A→B
E =⇒ ∀(N ⊏∼A X ). M N ⊏∼B E X

and, moreover,M ⊏∼A ∥M ∥ for any PCF term · ⊢ M : A.

Unlike in CBV, we do not distinguish between value and expression relations. The CBN relation
for nat (or other observable types, if we had them) is analogous to the CBV expression relation,
while the clauses for negative types simply say that the elimination forms preserve relatedness.
Again, rather than proving this bounding theorem directly, we will obtain it as a corollary of a
general theorem about CBPV.

5 THE INTERMEDIATE LANGUAGE: LEVY’S CALL-BY-PUSH-VALUE (CBPV)

We aim to prove both theorems of Section 4 at once. In order to do so, we will embed both CBN
and CBV PCF in an intermediate language, and we will do so in a cost-preserving manner. Finally,
we will define a recurrence extraction function for this intermediate language, and prove that it is
correct. The composite of these two processes will prove the results of Section 4.

Our intermediate language of choice of Levy’s Call-by-Push-Value (CBPV) [Levy 2003]. CBPV is
a polarised λ-calculus whose type structure provides ways of controlling evaluation. The typing
judgments of the version of CBPV that we will use in this paperÐwhich includes natural numbers
and recursionÐmay be found in Figure 9.
CBPV is structured around a fundamental dichotomy between values and computations. In

particular, it comes with two sorts of types: value types, usually denoted by A, and computation

4Formally, the function is defined on typing derivations/intrinsically typed syntax ∥Γ ⊢ M : A∥, but we elide the annotations

for brevity.
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Value Types A ::= nat | A1 ×A2 | UB

Computation Types B ::= FA | B1 & B2 | A→ B

Contexts Γ ::= · | Γ, x : A

Numerical operations op ::= + | − | ∗ | ÷ | mod

Terminal Computations T , S := return V | ⟨M,N ⟩ | λx . M

(var)
Γ, x : A, Γ′ ⊢v x : A

(natñ )
Γ ⊢v ñ : nat

Γ ⊢c M : B
(ch)

Γ ⊢c charge.M : B

Γ, x : UB ⊢c M : B
(fix)

Γ ⊢c fix x . M : B

Γ ⊢v M,N : nat Γ, z : nat ⊢c Q : B
(natop)

Γ ⊢c calc z ⇐ M op N in Q : B

Γ ⊢v N : nat Γ ⊢c P : B Γ ⊢c Q : B
(natifz)

Γ ⊢c ifz(N ; P ; Q) : B

Γ ⊢v V1 : A1 Γ ⊢v V2 : A2
(×I)

Γ ⊢v (V1,V2) : A1 ×A2

Γ ⊢v V : A1 ×A2 Γ, x1 : A1, x2 : A2 ⊢c N : B
(×E)

Γ ⊢c split(V ; (x1, x2). N ) : B

Γ ⊢c M : B
(UI)

Γ ⊢v thunkM : UB

Γ ⊢v V : UB
(UE)

Γ ⊢c force V : B

Γ ⊢v V : A
(FI)

Γ ⊢c return V : FA

Γ ⊢c M : FA Γ, x : A ⊢c N : B
(FE)

Γ ⊢c bind x ⇐ M in N : B

Γ ⊢c M : B1 Γ ⊢c N : B2
(&I)

Γ ⊢c ⟨M,N ⟩ : B1 & B2

Γ ⊢c M : B1 & B2
(&E)

Γ ⊢c πi (M) : Bi
Γ, x : A ⊢c M : B

(→ I)
Γ ⊢c λx . M : A→ B

Γ ⊢c M : A→ B Γ ⊢v N : A
(→ E)

Γ ⊢c M N : B

Fig. 9. Call-by-Push-Value (CBPV) with natural numbers and recursion

types, usually denoted by B. Value types often include certain ground types, positive products, and
thunks. Computation types include free computation types, negative product types, and function
types. Like in CBV, variables in CBPV may only denote values, and are thus assigned value types.

The terms at value types are exactly values: the introduction rules encode all the possible ways
of constructing them. For example, if V : A1 andW : A2, we have (V ,W ) : A1 ×A2. However, we
may not project the components of that pair back into value types. But if we have a term N : B
at some computation type with two free variables x1 : A1 and x2 : A2, then the elimination rule
allows us to split a pair of values into N , yielding split((V ,W ); (x1, x2). N ) : B. It is in this way that
the invariant of value types is maintained.
As their name suggests, the terms at computation type may demonstrate some non-trivial

computational behaviour, including effects (e.g. printing, output, etc). In the words of Paul Levy, ła
value is, a computation does.ž The most basic such type is the free (computation) type FA, where
A is a value type. A term M : FA is a returner, which may engage in some effectful behaviour
before returning some value by normalizing to the form return V where V : A. GivenM : FA and
as x : A ⊢ N : B we may form bind x ⇐ M in N : B. This term will first run M , effecting some
changes and returning a value which will then be substituted for x . Computation types also include
negative products, which we write as B1 & B2, and which come with the usual projections. Finally,
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λx . M ⇓0 λx . M return V ⇓0 return V ⟨M,N ⟩ ⇓0 ⟨M,N ⟩

M ⇓m T

force (thunkM) ⇓m T

N [V1/x1,V2/x2] ⇓
m T

split((V1,V2); (x1, x2). N ) ⇓
m T

M[thunk (fix x . M)/x] ⇓n T

fix x . M ⇓n T

P ⇓m T

ifz(̃0; P ; Q) ⇓m T

Q ⇓m T

ifz(�n + 1; P ; Q) ⇓m T

P[�m op n/z] ⇓m T

calc z ⇐ m̃ op ñ in P ⇓m T

M ⇓n T

charge.M ⇓n+1 T

M ⇓m return V N [V /x] ⇓n T

bind x ⇐ M in N ⇓m+n T

P ⇓m ⟨M1,M2⟩ Mi ⇓
n T

πi (P) ⇓
m+n T

M ⇓m λx . P P[V /x] ⇓n T

MV ⇓m+n T

Fig. 10. Big-step semantics for CBPV

they include function types: given a computationM : B in a free value variable x : A, we may form
λx . M : A→ B. Notice that A→ B is a ‘mixed type,’ which mirrors the fact that variables may only
stand for values.

Only one thing remains, and that is to overcome the restriction of variables to value types. This
is achieved by introducing a value typeUB, the so-called type of thunks of B, for every computation
type B. Each computationM : B may be thunked as thunkM : UB, and each N : UB may be forced
into a computation forceM : B. Thunk types are crucial in simulating CBN. They are also necessary
in the CBPV fixed point rule, which assumes that the recursive call is given in the form of a thunk.

Our version of CBPV also comes with ‘flat’ natural numbers as a value type. As in PCF, these are

introduced by an infinite number of constants 0̃, 1̃, . . . . We may use natural numbers in either of
two ways. First, using the term ifz(ñ; P ; Q)wemay query them on whether they are zero, following
the computation P if so, andQ otherwise. Second, using the construct calcv ⇐ m̃opñ in N we may
calculate one of four numerical operations on them, and substitute the result into some variable
v : nat that is free in the ‘continuation’ N .

Finally, we equip our version of CBPV with a single effect, namely the one that incurs a unit
cost: for each computationM : B we may form a computation charge.M : B. In section 7 we will
use this effect in our embedding of CBN and CBV into CBPV to record the places where the +1’s
appear in the operational semantics of PCF.

Figure 10 introduces big-step semantics for CBPV. The judgment M ⇓n T means that the closed
CBPV termM evaluates to the terminal computation T , incurring a cost n in the process. Terminal
computations include return V , pairs, and λ-expressions. Unlike the operational semantics of PCF,
costs are incurred here only when they are explicitly mentioned as effects: with the exception of
the rule for charge.M , all the other rules sum the costs of their premises.

6 RECURRENCE EXTRACTION FOR CBPV & THE BOUNDING THEOREM

Having introduced our intermediate language, we will now show how to extract recurrences from
its terms. Furthermore, we will prove the central result of this paper, the Bounding Theorem, which
ensures that extracted recurrences express upper bounds for the running times of CBPV terms.

Compared with the results of [Danner et al. 2015], our results are a significant technical improve-
ment. First, the distinction between potentials and complexities is now formally motivated: our
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techniques demonstrate that values have potentials, whereas computations have complexities. We
thus get a very clear conceptual basis for higher-order recurrences. Second, the fact that our version
of CBPV comes with an explicit cost effect makes this result reusable and extensible: our theorem
applies not just to a specific source language, but to any source language that can be faithfully
embedded in CBPV. All we need to do is encode its terms in CBPV in a way that explicitly records
where evaluation costs are incurred, and then invoke the bounding theorem.

6.1 CBPV Recurrence Extraction

The extraction procedure for CBPV incorporates elements of the extraction procedures for both
CBV and CBN given in ğ4. It is rather close to the monad/algebra categorical semantics of CBPV
given in [Levy 2006, ğ3] in the special case of the writer monad (C × −).

To begin, we translate CBPV types to PCFc types as follows: a value typeA is translated to a PCF
type ⎷A⌄, its so-called type of potentials, and a computation type B is translated to a cost algebra

B



 def
=

(

B


•,αB

)
. Again, the idea is that values only have potential (future, indirect use-cost),

whereas computations may be evaluated now, hence incurring (immediate, direct) costs. Because
of the interdependence between value and computation types introduced by F (−) andU (−), the
translationÐwhich may be found in Figure 11Ðis defined in a mutually recursive manner. For the
sake of precision we have maintained the formal distinction between algebras



B


 and their carriers

B



•. As before, we abbreviate αB (L, E) by L +B E.
Next, we give a translation of CBPV terms to PCFc terms. In Figure 11 we introduce the judgments

Γ ⊢v V ↘ P : A and Γ ⊢c M ↘ Q : B. The first one is read as łthe CBPV term V of value type A
translates to the PCFc term P in context Γ.ž The interpretation of the second judgment is similar,
but involves terms of computation type. We have that

Theorem 6.1 (CBPV-to-PCFc translation).

(1) If Γ ⊢v V : A then there is a unique PCFc term P such that Γ ⊢v V ↘ P : A, and ⎷Γ⌄ ⊢ P : ⎷A⌄.

(2) If Γ ⊢c M : B then there is a unique PCFc termQ such that Γ ⊢c M ↘ Q : B, and ⎷Γ⌄ ⊢ Q :


B



•.
Hence, whenever Γ ⊢v V ↘ P : A we know that this P is unique. We write ⎷V⌄ for it, so that

⎷Γ⌄ ⊢ ⎷V⌄ : ⎷A⌄. We also write ∥M ∥ for the unique Q such that Γ ⊢c M ↘ Q : B. In that case we

have ⎷Γ⌄ ⊢ ∥M ∥ :


B



•. From this point onwards we again confuse algebras with their carriers.
The main ideas of this recurrence extraction are: implementing the effect charge.M in CBPV

as adding unit cost using the algebra on the computation type B ofM , and undoing some of the
finer operational distinctions that are made in CBPV but not in PCFc. For example, both eager
and lazy products in CBPV are interpreted as products in PCFc, and both split and projections in
CBPV are interpreted as projections in PCFc. Because of the latter, it may be surprising that we
can obtain a bounding theorem that works for the CBV features of CBPV. A precedent for this kind
of translation of CBV into a CBN-like setting is the adequacy theorem of [Plotkin and Power 2001]
for CBV PCF with algebraic effects: the main requirement in that result is a strong monad with a
strict strength, and the writer monad C × − is such a monad.

6.2 The Bounding Theorem

We now wish to argue that the extraction procedure for CBPV is correct via a logical relation that
generalizes the CBV and CBN ones. We define two relations

(V : TCBPV,closed
A

) ≲valA (E : T PCFc ,closed
⎷A⌄

) (M : TCBPV,closed
B

) ≲cB (E : T PCFc ,closed

∥B∥
)

by induction on types; the full definitions are shown in Figure 12. V ≲val
A

E is read as łthe potential
of the valueV : A is bounded above by E,ž andM ≲c

B
E is read as łthe complexity of the computation
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⎷nat⌄
def
= nat

⎷A1 ×A2⌄
def
= ⎷A1⌄ × ⎷A2⌄

⎷UB⌄
def
=



B


•

∥FA∥
def
= (C × ⎷A⌄,αFA)



A→ B


 def
= (⎷A⌄→



B


•,αA→B )



B1 & B2



 def
= (



B1


• ×



B2


•,αB1&B2

)

c : C, x : C × ⎷A⌄ ⊢ αFA(c, x)
def
= ⟨c ⊞ π1(x), π2(x)⟩ : C × ⎷A⌄

c : C, f : ⎷A⌄→


B



• ⊢ αA→B (c, f )
def
= λa. αB (c, f (a)) : ⎷A⌄→



B


•

c : C,p :


B1



• ×


B2



• ⊢ αB1&B2
(c,p)

def
=

〈
αB1
(c, π1(p)),αB2

(c, π2(p))
〉
:


B1



• ×


B2



•

Note: whenever Γ ⊢ E : ∥FA∥, we let

{
Γ ⊢ Ec

def
= π1(E) : C

Γ ⊢ Ep
def
= π2(E) : ⎷A⌄

(var)
Γ, x : A, Γ′ ⊢v x ↘ x : A Γ ⊢v ñ ↘ n : nat

Γ, x : UB ⊢c M ↘ P : B

Γ ⊢c fix x . M ↘ fix x . P : B

Γ ⊢v V1 ↘W1 : A1 Γ ⊢v V2 ↘W2 : A2

Γ ⊢v (V1,V2) ↘ ⟨W1,W2⟩ : A1 ×A2

Γ ⊢v V ↘ P : A1 ×A2 Γ, x1 : A1, x2 : A2 ⊢c N ↘ Q : B

Γ ⊢c split(V ; (x1, x2). N ) ↘ Q[π1(P)/x1, π2(P)/x2] : B

Γ ⊢v V ↘ P : A

Γ ⊢c return V ↘ ⟨0, P⟩ : FA

Γ ⊢c M ↘ Q : FA Γ, x : A ⊢c N ↘ R : B

Γ ⊢c bind x ⇐ M in N ↘ Qc +B R[Qp/x] : B

Γ, x : A ⊢c M ↘ P : B

Γ ⊢c λx . M ↘ λx . P : A→ B

Γ ⊢c M ↘ P : A→ B Γ ⊢v N ↘ Q : A

Γ ⊢c M N ↘ P Q : B

Γ ⊢c M ↘ P : B1 Γ ⊢c N ↘ Q : B2

Γ ⊢c ⟨M,N ⟩ ↘ ⟨P,Q⟩ : B1 & B2

Γ ⊢c M ↘ P : B1 & B2

Γ ⊢c πi (M) ↘ πi (P) : Bi

Γ ⊢c M ↘ P : B

Γ ⊢v thunkM ↘ P : UB

Γ ⊢v V ↘ P : UB

Γ ⊢c force V ↘ P : B

Γ ⊢c M ↘ P : B

Γ ⊢c charge.M ↘ 1 +B P : B

Γ ⊢v V ↘W : nat Γ ⊢c M ↘ P : B Γ ⊢c N ↘ Q : B

Γ ⊢v ifz(V ; M ; N ) ↘ ifW then P else Q : B

Γ ⊢v V ↘ M : nat Γ ⊢v W ↘ N : nat Γ, z : nat ⊢c P ↘ Q : B op+ ∈ {+, ∗}

Γ ⊢c calc z ⇐ V op+W in P ↘ Q[M op+ N /z] : B

Γ ⊢v V ↘ M : nat Γ, z : nat ⊢c P ↘ Q : B op− ∈ {−,÷}

Γ ⊢c calc z ⇐ V op− ñ in P ↘ Q[M op− ñ/z] : B

Γ ⊢v V ↘ M : nat Γ ⊢v W ↘ N : nat Γ, z : nat ⊢c P ↘ Q : B op− ∈ {−,÷} N , ñ

Γ ⊢c calc z ⇐ V op−W in P ↘ Q[M/z] : B

Γ ⊢v V ↘ M : nat Γ ⊢v W ↘ N : nat Γ, z : nat ⊢c P ↘ Q : B

Γ ⊢c calc z ⇐ V modW in P ↘ Q[N − 1/z] : B

Fig. 11. Recurrence extraction for CBPV
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ñ ≲valnat E
def
≡ n ⩽ E

(V1,V2) ≲
val
A1×A2

E
def
≡

{
V1 ≲

val
A1

π1(E)

V2 ≲
val
A2

π2(E)

thunkM ≲valU B E
def
≡ M ≲cB E

M ≲cFA E
def
≡ Ec↓ =⇒ ∃n,V .




M ⇓n return V

n̂ ⩽ Ec

V ≲val
A

Ep

M ≲cA→B E
def
≡ ∀(N ≲valA X ). M N ≲cB E X

M ≲cB1&B2
E

def
≡

{
π1(M) ≲

c
B1

π1(E)

π2(M) ≲
c
B2

π2(E)

Fig. 12. Bounding relations for CBPV

M : B is bounded above by E.ž The value relation is similar to the CBV value bounding relation, with
the clause forU -types corresponding to the switch from value bounding to expression bounding in
function types. The computation relation is similar to the CBN bounding relation, with the clause
for F -types corresponding to the CBV expression relation.
We then establish that this relation holds at the diagonal, i.e. that

Theorem 6.2 (Bounding theorem).

(1) If · ⊢ V : A then V ≲val
A
⎷V⌄.

(2) If · ⊢ M : B thenM ≲c
B
∥M ∥.

While technical, the proof of this theorem is unsurprising, and may be found in an extended
version of this paper. Amongst other things, it requires an auxiliary notion of costless weak
head reduction. It is denoted by M −→0 N , and encodes all weak head reductions, plus a ‘com-
muting conversion’ that makes negative eliminators commute with the unit cost construct, e.g.
πi (charge.M) −→0 charge. πi (M). The main lemmas used are:

Lemma 6.3 (Algebra Monotonicity). E ⩽ E ′ : C =⇒ E +B M ⩽ E ′ +B M

Lemma 6.4 (Bound weakening).

(1) V ≲val
A

E ∧ E ⩽ E ′ : ⎷A⌄ =⇒ V ≲val
A

E ′

(2) M ≲c
B
E ∧ E ⩽ E ′ :



B



=⇒ M ≲c

B
E ′

Lemma 6.5 (Head expansion/reduction).

(1) M ′ ≲c
B
E ∧ M −→0 M

′
=⇒ M ≲c

B
E

(2) M ≲c
B
E ∧ M −→0 M

′
=⇒ M ′ ≲c

B
E

Lemma 6.6 (Unit charge). M ≲c
B
E =⇒ charge.M ≲c

B
1 +B E

Theorem 6.7 (Compactness). E[fix x . M]↓ =⇒ ∃n ≥ 0. E[fixn x . M]↓

Lemma 6.8 (Bounds for Recursion).

(1) (Infinity) E↑ =⇒ M ≲c
B
E.

(2) (Infinity-Algebra) L↑ =⇒ M ≲c
B
L +B E.

(3) (Fixed Point Induction)
(
∀n ≥ 0. M ≲c

B
fixn x . E

)
=⇒ M ≲c

B
fix x . E

Compactness is known to hold for PCF. It can be obtained through a standard denotational
semanticsÐsee e.g. Pitts [1994, ğ10.9]Ðor through syntactic methodsÐsee [Pitts 1997, ğ4].
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A (PCF type, CBN) A† (CBPV+ computation type)

nat F (nat)

A1 ×A2 A† & B†

A→ B U (A†) → B†

x1 : A1, . . . , xn : An ⊢ M : A x1 : U (A
†
1
), . . . , xn : U (A†n ) ⊢c M

† : A†

x force x

n return ñ

M op N bindm ⇐ M† in bind n ⇐ N † in calc v ⇐m op n in return v

if N then P else Q bind n ⇐ N † in ifz(n; P†; Q†)

⟨M,N ⟩
〈
charge.M†, charge.N †

〉

πi (M) πi

(
M†

)

λx . M λx .
(
charge.M†

)

MN M†(thunk N †)

fix x . M fix x . (charge.M†)

Fig. 13. Call-by-name PCF to CBPV translation

7 EMBEDDING PCF INTO CBPV

The only piece of the puzzle that remains is to show how both CBN and CBV PCF can be embedded
in CBPV in a cost-preserving way. At a high level, we follow [Levy 2003, ğ2.7] in defining a term
translation, but insert charge expressions wherever the operational semantics of CBV or CBN PCF
incurs a cost. We then prove that this translation preserves and reflects the operational semantics,
including the cost.

7.1 CBN

In order to embed CBN into CBPV, we must recall that

(1) the only observable type of CBN PCF is nat, and
(2) the variables of CBN terms represent thunks, as we may substitute them with arbitrary terms.

These two facts directly lead us to a translation of any CBN type A to a CBPV computation type
A†. As nat is observable, it is mapped to F (nat) (it returns a value). Products are compositionally
mapped to negative products. Finally, as variables stand for thunks, we must thunk the domain
when translating the function type.

The translation of both types and terms is defined in Figure 13. Notice that computation steps
where explicit evaluation to canonical form is necessaryÐe.g. for testing whether a number is
zeroÐare punctuated by the appearance of the bind x ⇐ (−) in (−) construct. Furthermore, notice
that a variable represents a thunk, so it must be forced. Finally, notice the appearance of charge. (−)
whenever the operational semantics of PCF would impose a unit charge.

Extending (−)† to contexts pointwise, we have that

Proposition 7.1. If Γ ⊢ M : A in call-by-name PCF then Γ
† ⊢c M

† : A†.

To prove that the operational semantics are preserved and reflected under this translation we
follow the technique of [Levy 2006, ğ7]. We inductively define a relation �⇒cbn between terms of
PCF and terms of CBPV. The relation includes one rule for each line of the table of Figure 13, e.g.

M �⇒cbn M
′ N �⇒cbn N ′

M N �⇒cbn M
′(thunk N ′)
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Moreover, the definition also includes the rule

M �⇒cbn M
′

M �⇒cbn force thunkM ′

whichÐfor technical reasonsÐinserts enough occurrences of force thunk (−). Evidently,

Proposition 7.2. M �⇒cbn M
†

We can then show that

Theorem 7.3 (CBN bisimulation).

(1) IfM ↓n V andM �⇒cbn M
′, thenM ′ ⇓n T ′ for some T ′ with V �⇒cbn T

′.
(2) IfM ′ ⇓n T ′ andM �⇒cbn M

′, thenM ↓n V for some V with V �⇒cbn T
′.

Proof. We first show thatM �⇒cbn M
′ and N �⇒cbn N ′ impliesM[N /x] �⇒cbn M

′[thunk N ′/x],
by an easy induction onM �⇒cbn M

′. We then show the main claims. In the first case, we proceed by
induction onM ↓n V , followed by local inductions onM �⇒cbn M

′. In the second case, we proceed
by induction onM ′ ⇓n T ′, followed by local inductions onM �⇒cbn M

′. □

Corollary 7.4 (CBN preservation).

(1) IfM ↓n V thenM† ⇓n T with V �⇒cbn T .
(2) IfM† ⇓n T thenM ⇓n V with V �⇒cbn T .

7.2 CBV

In order to embed CBV into CBPV, we must recall that

(1) in CBV, termination at every type is observable, and returns a value
(2) the variables of CBV terms represent values

In short: all terms of CBV are returners. Thus, we aim to translate each type CBV type A to a CBPV
value type A∗, and each term x : A ⊢ M : B to a term x : A∗ ⊢c M

∗ : F (B∗) of CBPV.
Translating types is then fairly evident: nat is translated to itself, and products are compositionally

mapped to positive products. Finally, A→ B is mapped to A∗ → F (B∗), which is then thunked in
order to become a value type.

On the level of terms there are two translations: one takes CBV PCF terms to CBPV terms of F (−)
type, and the other one takes CBV PCF values to CBPV values. They are both defined in Figure 14.
Notice once again that computation steps where explicit evaluation to canonical form is necessaryÐ
e.g. for function application, or construction of pairsÐnecessitate a use of the bind x ⇐ (−) in (−)
construct, which forces evaluation. Furthermore, notice that a variable represents a value, so it
must be returned. Finally, notice the appearance of charge. (−) whenever the operational semantics
of PCF would impose a unit charge.
Extending (−)∗ to contexts pointwise, we have that

Proposition 7.5.

(1) If Γ ⊢ V : A is a PCF value, then Γ
∗ ⊢v V

val : A∗.
(2) If Γ ⊢ M : A in call-by-value PCF, then Γ

∗ ⊢c M
∗ : F (A∗).

It is even easier than CBN to establish that the operational semantics of CBV are preserved and
reflected under this translation.

Theorem 7.6 (CBV preservation).

(1) IfM ↓n V thenM∗ ⇓n V val.

(2) IfM∗ ⇓n returnW then there exists V such thatM ↓n V andW ≡α V val.
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A (PCF type, CBV) A∗ (CBPV+ value type)

nat nat

A1 ×A2 A∗ × B∗

A1 → A2 U (A∗ → F (B∗))

x1 : A1, . . . , xn : An ⊢ M : A x1 : A
∗
1, . . . , xn : A∗n ⊢c M

∗ : F (A∗)

x return x

n return ñ

M op N bindm ⇐ M∗ in bind n ⇐ N ∗ in calc v ⇐m op n in return v

if N then P else Q bind n ⇐ N ∗ in ifz(n; P∗; Q∗)

⟨M,N ⟩ bind x ⇐ M∗ in bind y ⇐ N ∗ in return (x,y)

πi (M) bind p ⇐ M∗ in charge. split(p; (x1, x2). return xi )

λx . M return thunk λx . M∗

MN bind f ⇐ M∗ in bind x ⇐ N ∗ in charge. (force f )x

rec f (x) = M return thunk (fix f . λx . M∗)

x1 : A1, . . . , xn : An ⊢ V : A x1 : A
∗
1, . . . , xn : A∗n ⊢v V

val : A∗

x x

n ñ

λx . M thunk λx . M∗

rec f (x) = M thunk (fix f . λx . M∗)

Fig. 14. Call-by-value PCF to CBPV translation

Proof. First, we need to establish two lemmas:

- V ∗ ≡α return V val for a call-by-value PCF value V
- (M[V /x])∗ ≡α M∗[V val/x]

These follow straightforwardly by induction on values and terms respectively. The first claim then
follows by induction onM ↓n V , and the second by induction onM∗ ⇓n returnW . □

7.3 Completing the Circle

Combining the bounding theorem of Section 6 and these results, we can prove the main theorems
of ğ4. For Theorem 4.2 we will make use of head reduction, viz. Lemma 6.5. We then define

M ⊏∼
val
A

E
def
≡ V val

≲
val
A∗ E M ⊏∼A E

def
≡ M∗ ≲cF (A∗) E

and calculate that the desired conditions hold. We then do the same for Theorem 4.5 and

M ⊏∼A E
def
≡ M† ≲c

A†
E

8 DENOTATIONAL SEMANTICS FOR PCF WITH COSTS

This section is concerned with the development of a denotational semantics for PCFc. Having
completed the step of recurrence extraction, we would now like to interpret our syntactic recur-
rencesÐexpressed in the formal language of PCFÐinto semantic recurrences. These should be as
close as possible to good old-fashioned recurrences found in textbooks on algorithms.
Because of the presence of recursion, this endeavour requires a modicum of domain theory.

Standard references to domain theory include [Abramsky and Jung 1994; Stoltenberg-Hansen et al.
1994], whereas references on the denotational semantics of PCF in domains may be found in ğ2.
We assume knowledge of the standard definition of complete partial order (cpo), i.e. a partial order
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(D, ⊑)with least upper bounds of directed subsets, and of Scott-continuous functions. We also recall
the notion of an ω-chain (xi )i ∈ω in a cpo, i.e. an increasing sequence of elements x1 ⊑ x2 ⊑ . . . .

8.1 Sized Domains

The relation usually modelled by the denotational semantics of PCF is that of equality: the semantics
of PCF terms is sound, in that it is stable under evaluation. However, our main notion here is that
of the axiomatic size order, and in order to model it we introduce the following kind of domain.

Definition 8.1. A sized domain (with joins) (D, ⊑, ⪯,∨,⊥, 0, 1) consists of

- a set D,
- a partial order ⊑, which we call the information order on D, and
- a preorder ⪯, which we call the size order on D, and
- an operation ∨ : D × D → D

such that

(1) (D, ⊑) is a cpo with least element ⊥,
(2) (D, ⪯) has chosen binary joins (maximums/least upper bounds) given by ∨ : D × D → D and

least element 0,
(3) ∨ : D × D → D is continuous with respect to (D, ⊑),
(4) x ⊑ y implies y ⪯ x , and
(5) if (xi )i ∈ω is a ω-chain in D and ∀i ∈ ω . z ⪯ xi , then z ⪯

⊔
i ∈ω xi .

We immediately know that

Proposition 8.2. ⊥ is the greatest element (up to iso) with respect to (D, ⪯).

Proof. For any x ∈ D we have that ⊥ ⊑ x , and hence x ⪯ ⊥ by axiom (4). Thus, ⊥ is a greatest
element in (D, ⪯). However, as (D, ⪯) is not a partial order, it is only unique up to isomorphism. □

The most interesting axioms in this definition are (4) and (5). The first one formalizes the idea that
amore defined bound is a better bound. Consider the function f = {1 7→ 2, x 7→ ⊥} on the flat domain
of natural numbers. When interpreted as a recurrence, f gives us an upper bound for the input
1, but no information about any other input. In fact, Proposition 8.2 tells us that ⊥ is the greatest
element in the size order: it represents the infinite value. Thus, the recurrence f maps all elements
other than 1 to the trivial upper bound of infinity. The recurrence д = {1 7→ 2, 2 7→ 2, x 7→ ⊥} is
more well-defined than f , as it is also defined (i.e. not ⊥) at input 2: we have f ⊑ д. As ⊥ represents
infinity, this is indeed a tighter bound, and axiom (4) stipulates that we should be able to treat it as
such: we should have д ⪯ f . Axiom (4) is closely related to rule (rat) of the axiomatic size order of
Figure 6, and is indeed used to verify its soundness.
Axiom (5) expresses the idea that a recursively defined recurrence is an upper bound if all its

approximants are. Recall that fixed points in PCF are interpreted as the least upper bound of a chain(
f i (⊥)

)
i ∈ω that is increasing in the information order ⊑. Intuitively, each element of this chain is

more well-defined than its predecessor. Axiom (5) requires that if every extra step of definition
f i (⊥) of a recurrence is indeed an upper bound for an element, then so must be the limit

⊔
i ∈ω xi .

Axiom (5) is very close to the rule (cpind), and is used to verify its soundness.
We define the category SizeDom to consist of sized domains and Scott-continuous functions. The

morphisms need not preserve any aspect of the size order; for example, we do not requiring size
monotonicity in general, because only the PCFc monotone contexts C are required to be interpreted
as size-monotonic functions. It is also easy to see that this category is cartesian closed, as it inherits
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products and exponentials from the underlying category Cpo of complete partial orders and Scott-
continuous functions: we only need to define the size order and the chosen joinsÐwhich are in
both cases defined pointwiseÐand show that the axioms of Definition 8.1 follow.

8.2 Interpreting PCF with Costs into Sized Domains

Defining a semantic interpretation of PCFc into sized domains is reasonably straightforward. To
each type A of PCF we associate a sized domain ⟦A⟧ = (DA, ⊑A, ⪯A,∨A,⊥A, 0A, 1A). We interpret
both the natural numbers nat and the type C of costs by the flat sized domain of natural numbers,

which is defined to be N⊥
def
= (N ∪ {⊥}, ⊑, ⪯,∨,⊥, 0, 1) where ⊥ < N. Its underlying set consists

of the natural numbers augmented with a ‘fresh’ element ⊥, which simultaneously models non-
termination and infinity. Writing ≤N, for the usual order on natural numbers, we define

x ⊑ y
def
≡ x = ⊥ or x = y, x ⪯ y

def
≡ y = ⊥ or x ≤N y, x∨y

def
=

{
⊥ if x = ⊥ or y = ⊥

maxN {x,y} otherwise

It is easy to see that the requisite axioms are satisfied. The rest of the types are interpreted by

⟦A1 ×A2⟧
def
= ⟦A1⟧ × ⟦A2⟧ ⟦A→ B⟧

def
= [⟦A⟧ → ⟦B⟧ ]

where [X → Y ] denotes the set of Scott-continuous functions from a cpo (X , ⊑X ) to a cpo (Y , ⊑Y ),
and where both the information and size orders are given pointwise.

To each judgment Γ ⊢ M : A, where Γ ≡ x1 : A1, . . . , xn : An , we associate a function ⟦Γ ⊢ M : A⟧ :

⟦Γ⟧ → ⟦A⟧ where ⟦Γ⟧
def
= ⟦A1⟧ × · · ·×⟦An⟧ . This definition is mostly standardÐsee e.g. [Streicher

2006, ğ3.2]. However, there are two unexpected elements, which arise because the PCFc monotone
contexts C must be interpreted as size-monotone functions in order to interpret the syntactic size
order axiom (ctx), and because we interpret nat with the usual 0 ≤ 1 ≤ 2 . . . ≤ ∞ size order to
facilitate reasoning about semantic recurrences. First, because if C then P else Q is a monotone
context, we must łmonotonizež the conditional. We do this by sending ∞ to ∞, and using the
chosen joins to make the interpretation for ≥ 1 dominate5 the answer for 0:

⟦Γ ⊢ if N then P else Q : A⟧ ( ®d)
def
=




⊥A if ⟦Γ ⊢ N : nat⟧ ( ®d) = ⊥

⟦P⟧ ( ®d) if ⟦Γ ⊢ N : nat⟧ ( ®d) = 0

⟦P⟧ ( ®d) ∨A ⟦Q⟧ ( ®d) otherwise

Second, because the operands of an arithmetic operation are monotone contexts, we must interpret
the operations by a monotone upper bound of their actual numerical value. While addition and
multiplication are already monotone, for subtraction, division and modulo, we use the following
definitions, where op− ∈ {−,÷}:6

�
Γ ⊢ M op− n : nat

�
( ®d)

def
= ⟦Γ ⊢ M : nat⟧ ( ®d) op− n

⟦Γ ⊢ M op− N : nat⟧ ( ®d)
def
= ⟦Γ ⊢ M : nat⟧ ( ®d)

⟦Γ ⊢ M mod N : nat⟧ ( ®d)
def
= ⟦Γ ⊢ N : nat⟧ ( ®d) − 1

5The standard definition of the conditional along with 0 ⩽ 1 and (ctx) would imply ⟦P⟧ =
�
if 0 then P else Q

�
⩽

�
if 1 then P else Q

�
= ⟦Q⟧ for arbitrary terms P and Q .

6We could in fact remove {−, ÷} with non-numerals and mod from PCFc, because they are never used as the target of

the recurrence extraction in Section 6. In general, there is a choice about whether to perform this monotonization in

recurrence extraction or in the semantic interpretation. The above recurrence extraction from CBPV to PCFc already does

monotonization, eliminating all mods and {−, ÷} with non-numerals. However, we prefer to leave these operations in PCFc

and interpret them similarly here to also support the other style of recurrence extraction into PCFc.
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rec exp(n) = if n then 1 else let z ← exp(n/2),y ← if n mod 2 then 1 else 2 in z ∗ z ∗ y

∥exp∥ =
〈
0, fix exp. λn.if n then ⟨0, 1⟩

else ⟨̂3 ⊞ (exp(n/2))c ,

(exp(n/2))p ∗ (exp(n/2))p ∗ (if 1 then 1 else 2)⟩
〉

Fig. 15. Divide-and-conquer exponentiation and its extracted recurrence

The ‘new’ clauses interpret ⟦0⟧ ( ®d)
def
= 0, ⟦1⟧ ( ®d)

def
= 1, and

⟦Γ ⊢ M ⊞ N : C⟧ ( ®d)
def
=

{
⊥ if ⟦M⟧ ( ®d) = ⊥ or ⟦N⟧ ( ®d) = ⊥

⟦M⟧ ( ®d) +N ⟦N⟧ ( ®d) otherwise

We have that

Theorem 8.3 (Soundness). Γ ⊢ M ⩽ N : A =⇒ ∀®d ∈ ⟦Γ⟧ . ⟦M⟧ ( ®d) ⪯A ⟦N⟧ ( ®d)

Moreover, we can use standard logical relations techniques to show that this interpretation is
adequate in an appropriately relaxed sense.

Theorem 8.4 (Adeqacy).

(1) IfM : nat, then ⟦M⟧ =m impliesM ↓ k for some k ≤N m.

(2) IfM : C, then ⟦M⟧ =m impliesM ↓ k̂ for some k ≤N m.

We anticipate the existence of other models of PCFc in sized domains, which we expect to obtain
by varying the orders on the interpretation of nat, or even × and→. For example, there should be
a more precise discrete model, where all size orders are interpreted by equality, all cost bounds are
exact, and the potentials include the programs themselves.

9 EXAMPLE: EXPONENTIATION

Next, we show how the above technique works on an example of a non-structurally-recursive
function, which is not supported by Danner et al. [2015]. Consider the recursive specification for
łexponentiation-by-squaringž:

2n =

{
(2n/2)2 if n is even

(2(n−1)/2)2 ∗ 2 otherwise

We implement this in CBV PCF in Figure 15, using let expressions as syntactic sugar for β-expansions
and recalling that we are performing floor division so that n/2 = (n − 1)/2 when n is odd. We
extract a recurrence in PCFc using the rules of Figure 7 and show the result in the same figure. In
order to keep the term from becoming unwieldy, we assume a few additional size order axioms on
PCFc terms beyond those of Figure 6, all of which are true in the semantics of sized domains (we
write equality for the size order ⩽ in both directions):

- the opposite direction of rules (assoc) and (zero), so that (⊞, 0) forms a monoid,
- the opposite direction of the β rules, as well as η equality rules for × and→ types,
- the ‘commuting conversion’ π1(if N thenM1 elseM2) = if N then π1(M1) else π1(M2), and
- if k then N else N = N
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It is ∥exp∥p that is the desired recurrence, and we observe that if T (n) = π1(∥exp∥p n), then

T (0) = 0 T (n) = 3 +T (n/2)

which is the expected recurrence from an informal analysis.
Whenn is even, the potential is an over-approximation of the actual value: we get 2∗((exp(n/2))p )

2

whether n is even or odd because the recurrence extraction sends n mod 2 to 1 in order to be mono-
tone. We leave a more precise treatment of non-monotone operations to future work.

10 INDUCTIVE TYPES

Our previous work [Danner et al. 2015] only permitted call-by-value functional programs with
strictly positive inductive datatypes and structural recursion. The present paper extends these
techniques to general non-structural recursion, which often leads to significantly more concise
and efficient code. It is thus interesting to examine the combination of this presentation with
the datatypes supported by the previous techniques of Danner et al. [2015]. We believe that this
combination is achievable. In this section we illustrate it by a careful treatment of the case of lists in
CBV PCF, and we briefly discuss the general case. In future work we plan to extend our techniques
to general recursive types, which subsume lazy/CBN PCF lists as well as other coinductive types,
though we expect that defining the bounding relation will be somewhat more challenging.
Figure 16 introduces the necessary additions to the syntax of CBV PCF and CBPV, and also

extends the cost-preserving embedding, recurrence extraction and bounding relation to the new
constructs. Intuitively, we choose here to represent a list by its length. This is useful for analyzing
many algorithms whose running time does not depend on the list elements; if the cost does
depend on list elements, one should instead represent a list by its length and maximum element, or
some other more precise information. We could perform this abstraction of lists as lengths in the
semantics, as in Danner et al. [2015], but this would introduce quite a bit of notational overhead.
For the sake of simplicity, we instead translate a list to its length in the recurrence extraction phase,
defining the type of potentials of lists to be nat. This way we do not need to add lists to PCFc .

The only essentially non-trivial clause is the recurrence extraction for case (V ;Mnil; (x, xs). Mcons).
Intuitively, this should map to a PCFc zero test ifW then P else Q , whereV ,Mnil, andMcons extract
toW , P , andQ respectively. However,Q has two free variables, x and xs , which must be substituted
for. These correspond to the potentials of the head and tail ofV . The answer for xs is immediate, as
its potential is bounded above byW − 1. As we have taken the potential of a list to be its length, we
do not have any information about the size of the list elements. Hence, we choose the potential of x
to be∞ (fix x . x ). This gives an upper bound in all cases, and is useful when the cost of the function
to be analyzed does not depend on the size of the list elements: in that case the∞ substituted for x
will drop out of the recurrence at some point, so we will still obtain a finite bound. To complete
the development, we extend the proof of the bounding theorem by adding a straightforward case
for each new term construct. To do so we need the size order axiomsM ⩽ (M + 1) − 1, 0 ⩽ 1 and
fix x . x ⩽ E[fix x . x] for eliminative contexts E, all of which are valid in the standard semantics.
Though we have not written out all of the details, we expect that we can extend the above

to allow potentials other than list length (e.g. length and maximum element), and to all strictly
positive inductive types. Briefly, we need to add the corresponding inductive types to PCFc, add
new size order axioms, extract case expressions as case expressions, and then modify the notion of
sized domains to provide an interpretation of lists and other inductive types, as in Danner et al.
[2015]. By doing so, the syntactic recurrence becomes a cost-annotated version of the original
CBPV program that preserves a maximal amount of information about the inductive type values in
the original program. Different sized domains can then be used to give different abstractions of size
for inductive types, e.g. length for lists, height for (labelled) trees, or more complicated metrics,
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CBV PCF

Types A ::= · · · | list A Canonical forms (CBV) V ,W ::= · · · | nil | cons(V ,W )

Γ ⊢ nil : list A

Γ ⊢ M : A Γ ⊢ N : list A

Γ ⊢ cons(M,N ) : list A

Γ ⊢ N : list A Γ ⊢ Mnil : B Γ, x : A, xs : list A ⊢ Mcons : B

Γ ⊢ case n of { nil 7→ Mnil | cons(x, xs) 7→ Mcons } : B

nil ↓0 nil

M ↓m V N ↓n W

cons(M,N ) ↓m+n cons(V ,W )

N ↓n nil Mnil ↓
m Z

case N of { nil 7→ Mnil | cons(x, xs) 7→ Mcons } ↓
n+m Z

N ↓n cons(V ,W ) Mcons[V /x,W /xs] ↓
m Z

case N of { nil 7→ Mnil | cons(x, xs) 7→ Mcons } ↓
n+m Z

CBPV

Value types A ::= · · · | list A

Γ ⊢v nil : list A

Γ ⊢v M : A Γ ⊢v N : list A

Γ ⊢v cons(M,N ) : list A

Γ ⊢v N : list A Γ ⊢c Mnil : B Γ, x : A, xs : list A ⊢c Mcons : B

Γ ⊢c case (N ;Mnil; (x, xs). Mcons) : B

Mnil ⇓
n T

case (nil;Mnil; (x, xs). Mcons) ⇓
n T

Mcons[V /x,W /xs] ⇓
n T

case (cons(V ,W );Mnil; (x, xs). Mcons) ⇓
n T

CBV PCF translation to CBPV

A (PCF type, CBV) A∗ (CBPV+ value type)

list A list A∗

x1 : A1, . . . , xn : An ⊢ M : A x1 : A
∗
1, . . . , xn : A∗n ⊢c M

∗ : F (A∗)

nil return nil

cons(M,N ) bindm ⇐ M∗ in bind n ⇐ N ∗ in return cons(m,n)

caseM of { nil 7→ Mnil | cons(x, xs) 7→ Mcons } bindm ⇐ M∗ in case
(
m;M∗

nil
; (x, xs). M∗cons

)

CBPV recurrence extraction

⎷list A⌄
def
= nat

Γ ⊢v nil↘ 0 : list A

Γ ⊢v W ↘ P : list A

Γ ⊢v cons(V ,W ) ↘ P + 1 : list A

Γ ⊢v V ↘W : list A Γ ⊢c Mnil ↘ P : B Γ, x : A, xs : list A ⊢c Mcons ↘ Q : B

Γ ⊢c case (V ;Mnil; (x, xs). Mcons) ↘ ifW then P else Q[fix x . x/x,W − 1/xs] : B

nil ≲vallist A E
def
≡ 0 ⩽ E cons(V ,W ) ≲vallist A E

def
≡ 1 ⩽ E ∧W ≲vallist A E − 1

Fig. 16. Extensions for handling call-by-value lists

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 15. Publication date: January 2020.



Recurrence Extraction for Functional Programs through Call-by-Push-Value 15:27

rec sort(xs) =
case xs of nil 7→ nil

| cons(y,ys) 7→ case ys of nil 7→ cons(y, nil)

| cons(z, zs) 7→ let q = divide(cons(y,ys)) in

merge(sort(π1 q), sort(π2 q))

∥sort∥ = ⟨0, fix sort. λxs .if xs then ⟨0, 0⟩

else if xs − 1 then ⟨0, 1⟩ else F (xs − 1)⟩

F (xs ′) = (̂2 ⊞ (divide(xs ′ + 1))c ) +c E((divide(xs
′
+ 1))p )

E(q) = (̂5 ⊞ (sort(π1 q))c ⊞ (sort(π2 q))c ) +c merge
〈
(sort(π1 q))p, (sort(π2 q))p

〉

Fig. 17. The merge sort function in CBV PCF and its extracted recurrence

such as one that records both the size of the tree along with the maximum label. These different
abstractions in turn allow for more or less detailed cost analyses of the original programs.

10.1 Merge Sort Example

We end with an example, viz. recurrence extraction for merge sort in CBV PCF. We assume the
existence of two functions divide : list A → list A × list A and merge : list A × list A → list A,
which perform the usual tasks of splitting a list into two (nearly) equal-sized pieces and merging
two sorted lists into a single sorted list. The translation into CBPV is extremely verbose, so we
directly give the extracted recurrence in Figure 17. Corresponding to divide and merge are CBPV
programs divide : U (list A∗ → F (list A∗ × list A∗)) and merge : U (list A∗ × list A∗ → F (list A∗)),
and thus PCFc recurrences divide : nat → C × nat × nat and merge : nat × nat → C × nat.
The recurrence for divide expresses the cost of the CBV PCF divide and the lengths of the two
returned lists in terms of the length of its input. The recurrence extraction is, as with exponentiation,
a tedious unwinding of definitions which uses a few additional size order axioms that are valid in
the standard semantics of ğ8.
We can then analyze the semantic recurrenceÐi.e. the denotation of ∥sort∥Ðand the two

projections for potential and cost. For this discussion, we will write syntactic expressions but
manipulate them as though they are the corresponding denotations. If S(n) = π2(∥sort∥p n) and
T (n) = π1(∥sort∥c n), then the Bounding Theorem tells us that S(n) and T (n) are upper bounds on
the length and cost of sort(xs) respectively, when xs has length n. We will assume that

divide k = ⟨ck, ⌈k/2⌉, ⌊k/2⌋⟩ merge ⟨k, ℓ⟩ = ⟨d(k + l),k + l⟩

for some fixed constants c and d . This is one way to formalize the assumption that the complexity
of sort does not depend on the potentials of the actual list elements: while merge depends on a
comparison function, we are asserting that its cost and the length of the result depend only on the
lengths of its arguments. Of course, this is exactly what we typically do for an informal analysis
of merge sort on lists of constant-size elements (e.g. machine words), or on lists of arbitrary data
under the assumption that the comparison function takes constant time. Moving the abstraction of
lists to numbers from the recurrence extraction to the denotational semantics would permit an
analysis that takes into account the complexity of the comparison function.
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We can now write out a more ‘traditional’ recurrence for S :

S(0) = 0 S(1) = 1 S(n) = (E((divide(n))p ))p = (E(⟨⌈n/2⌉, ⌊n/2⌋⟩))p

= (merge ⟨S(⌈n/2⌉), S(⌊n/2⌋)⟩)p

= S(⌈n/2⌉) + S(⌊n/2⌋)

The standard proof tells us that S(n) = n. Next we write out a more traditional recurrence for T (n)
when n is a power of 2, which mimics the usual approach for analyzing such algorithms:

T (1) = 0 T (n) = (2 + (divide(n))c ) + (E((divide(n))p )c

= (2 + cn) + (E(⟨n/2,n/2⟩))c

= (2 + cn) + (5 +T (n/2) +T (n/2)) + (merge ⟨S(n/2), S(n/2)⟩)c

= 7 + cn + 2T (n/2) + (merge ⟨n/2,n/2⟩)c

= 7 + (c + d)n + 2T (n/2).

This is precisely the recurrence we expect. To proceed further with this example, we could define
appropriate divide and merge functions and prove that the extracted recurrences satisfy the
aforementioned assumptions.

11 RELATED WORK

There is a long history of techniques for extracting cost information from programs, probably
starting with Wegbreit [1975], who computes closed bounds for Lisp programs. Much of the work
has been done for imperative languages, as exemplified by the COSTA project for Java bytecode
analysis [Albert et al. 2012, 2013] and SACO for parallel cost [Albert et al. 2018]. We cannot hope to
review the entire field here, so concentrate on recent work on cost analysis for functional programs.

The idea that the potential of a function is itself a function is taken from Danner et al. [2015], who
in turn adapt it from Danner and Royer [2007]. Danielsson [2008] focuses on amortized cost of lazy
programs and makes use of what is essentially the writer monad C×−, though he requires the user
to explicitly annotate programs with ticks (charges). The Resource Aware ML (RAML) project has
achieved great results in automating the cost analysis of higher-order functional programs using
automatic amortized resource analysis (AARA). This approach reduces the establishment of cost
bounds on a program to type inference in a resource-aware type system, and that in turn is reduced
to a linear programming problem. It has been used to verify the cost of significant portions of the
OCaml libraries [Hoffmann et al. 2017] and for analyzing space usage in the presence of garbage
collection [Niu and Hoffmann 2018], to name just a couple of recent achievements. However, the
version of RAML that is current as of the time of this writing is restricted to deriving polynomial
bounds, and hence it derives a quadratic bound for merge-sort; we simply derive a recurrence, and
if the user of the system can prove a tighter bound on it than quadratic (e.g., by using the Master
Theorem), more power to her. Another type-based approach is described by Avanzini and Dal Lago
[2017], where a form of size types with index polymorphism is used. As with AARA, cost analysis
comes down to type inference. This work also makes use of ticks (charges); an interesting aspect
of it is that the clock itself becomes part of the program to which type inference is applied, and so
cost comes down to an analysis of size. Somewhat earlier work takes a program transformation
approach, defunctionalizing higher-order programs in a cost-preserving way, and then applying
first-order analysis techniques to the result [Avanzini et al. 2015].
The accomplishments of these approaches in terms of automatically computing cost bounds is

impressive, and not something we claim our approach as described here does. It is possible that
after deploying our recurrence extraction technique, recurrence solvers such as OCRS [Kincaid
et al. 2017] could be used, similarly to how RAML uses an off-the-shelf LP solver (of course,
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since our recurrences are higher-order functions, this would presumably require some form of
defunctionalization, but perhaps Benzinger’s [2004] work would be applicable). The main contrast
between our work and all of the above is that our work puts the standard informal approaches to cost
analysis via recurrence extraction on firm mathematical footing, while the automatic techniques
use different methods than what we teach students in introductory classes or what programmers
do in their heads.

12 CONCLUSIONS AND FUTURE WORK

We have improved upon the results of Danner et al. [2015] by giving a uniform recurrence extraction
method for a variety of source languages. Instead of formulating extraction directly for each source
language, we embed them in an intermediate languageÐnamely CBPVÐand perform recurrence
extraction for that language instead. Our method uniformly handles general recursion irrespective
of the evaluation strategy of the source language. We have shown this strategy in action by showing
how to extract recurrences from both call-by-value and call-by-name PCF programs.

The natural next step would be to increase the expressiveness of the source language types. For
example, it would be very interesting to examine whether our strategy can be extended to cover
recursive types [Pierce 2002, ğ20]. This would lead us to an extraction function for call-by-value and
call-by-name versions of Plotkin’s Fixed Point Calculus (FPC) [Plotkin 1985], [Gunter 1992, ğ7.4],
thereby enabling the consideration of a large number of very expressive programming languages.
On the other hand, such a programme would present significant technical challenges: amongst
other things, it would require the solution of sized domain equations.
In either case, the combination of inductive or recursive data types and recursion would also

aid us in obtaining a handle on the complexity of coinductive data. For example, in a call-by-value
setting with inductive types and recursion we can express streams of natural numbers by the type
µX .1→ (1+ nat×X ). General recursion then allows us to define non-trivial streams and functions
that compute on them. Recurrence extraction in this setting would guide us towards various notions
of stream complexity. Moreover, this would be a special case of functional reactive programming
(FRP) [Elliott and Hudak 1997], and extending recurrence extraction to FRP would naturally lead us
to interesting notions of complexity for functional programs that intentionally do not terminate.
In another direction, deterministic programs with interesting average-case behavior, such as

those implementing Quicksort, typically use general recursion. It should be the case that the
notions of probabilistic recurrences [Karp 1994] used to informally analyze such algorithms can be
formalized in terms of appropriate semantic models in which the size of an argument is interpreted
as an appropriate random variable. Finally, formalizing amortized analysis is another direction of
significant interest. The current approach analyzes composition by composing worst-case bounds,
which do not always yield a tight result. The goal would not be the automated analysis of AARA,
but a formalization of informal techniques such as Tarjan’s [1985] banker’s and physicist’s methods.
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