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Integrated photonic circuits (PICs) operating at cryogenic temperatures are fundamental 10 

building blocks required to achieve scalable quantum computing, and cryogenic computing 11 

technologies1,2. Silicon PICs have matured for room temperature applications, but their 12 

cryogenic performance is limited by the absence of efficient low temperature electro-optic 13 

(EO) modulation. Here we demonstrate EO switching and modulation from room 14 

temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-15 

based devices3. We investigate the temperature-dependence of the nonlinear optical (NLO) 16 

properties of BaTiO3, showing an effective Pockels coefficient of 200 pm/V at 4 K. The 17 

fabricated devices exhibit an EO bandwidth of 30 GHz, ultra-low-power tuning which is 109 18 

times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our 19 

results demonstrate a missing component for cryogenic PICs. Our results remove major 20 

roadblocks for the realisation of cryogenic-compatible systems in the field of quantum 21 

computing, supercomputing and sensing, and for interfacing those systems with 22 

instrumentation at room-temperature. 23 

Cryogenic technologies are becoming essential for future computing systems, a trend fuelled by 24 

the world-wide quest to develop quantum computing systems and future generations of high-25 

performance classical computing systems4,5. While most computing architectures rely solely on 26 

electronic circuits, photonic components are becoming increasingly important (Supplementary 27 

Note, SN 1). First, PICs can be used for quantum computing approaches where the quantum nature 28 

of photons is exploited as qubits1,2. Second, optical interconnects can overcome limitations in 29 



bandwidth and heat leakage that are present in conventional electrical interconnect solutions for 30 

digital data transfer between cryogenic processors and the room temperature environment6 (SN 2). 31 

In addition, due to their low interaction with the environment, photons are the only viable carriers 32 

to transport quantum states over large distances. Optical interfaces are therefore essential for true 33 

quantum communication, necessary to connect multiple quantum computers7,8 and for secure 34 

remote operation of quantum computers9. Recently, integrated photonics have also been exploited 35 

in quantum computing architectures based on trapped ion qubits10. The scalability of such a system 36 

is directly reliant on integrated cryogenic electro-optic modulators. The need for cryogenic 37 

photonics is not limited to computing systems, but covers a wide range of technical fields, such as 38 

radio astronomy11, particle physics12, and THz sensing13.  39 

Today, the realisation of such photonic concepts is hindered by the lack of switches and modulators 40 

that operate at cryogenic temperatures with low-loss, high bandwidth, and low static power 41 

consumption. So far, only two concepts for cryogenic EO switches have been investigated, based 42 

either on the thermo-optic effect14 or the plasma-dispersion effect15. Both mechanisms have 43 

physical limitations which intrinsically restrict the low-temperature performance of such devices. 44 

Thermo-optic phase shifters exploit Joule heating with large static power consumption and exhibit 45 

a bandwidth of less than a few MHz16. Plasma-dispersion-based devices require very high doping 46 

levels to compensate for carrier freeze-out at cryogenic temperatures and are intrinsically 47 

incapable of pure phase modulation. The high doping leads to large propagation losses and devices 48 

are limited to a bandwidth of <5 GHz in micro-disk modulators15. Both of these technologies are 49 

fundamentally limited from providing low-loss, low-power, high-speed switching and tuning as is 50 

fundamentally required for e.g. photonic quantum computing1,17. InP-on-Si modulators have also 51 

been explored for cryogenic use18 but with limited performance and only to temperatures of 77 K, 52 

not reaching the few K or below as required by cryogenic applications. 53 

The use of EO switches based on the Pockels effect has been shown to offer low propagation losses 54 

and high-bandwidth, combined with low static power consumption at room temperature3,19–21. 55 

While the Pockels effect has no intrinsic physical limitations for use at cryogenic temperature22, 56 

making a Pockels devices requires an integrated material which retains a large Pockels coefficient 57 

and which does not suffer from additional spurious effects at low temperature. No integrated 58 

cryogenic Pockels modulator has previously been reported, but room temperature devices have 59 



recently been demonstrated using organics23, PbZrxTi1-xO3
19, LiNbO3

20, and BaTiO3
3. Among 60 

them, BaTiO3 stands out due to having the largest Pockels coefficients3 and exhibiting 61 

compatibility with advanced silicon photonics platforms24. We complete this triumvirate by 62 

demonstrating that BaTiO3 is also an ideal candidate for cryogenic EO integration. 63 

Both the NLO properties and structural behaviour of BaTiO3 thin-films are entirely unknown at 64 

temperatures below 300 K. In fact, even in bulk BaTiO3 crystals the NLO behaviour below 270 K 65 

is not known, and the room temperature NLO behaviour of BaTiO3 thin-films has only recently 66 

been thoroughly investigated3. The phase transitions of thin-films are expected to differ from bulk 67 

crystals25 due to the structural mismatch and thermal stress that exists between the substrate and 68 

the BaTiO3 layer26,27. They are entirely unknown for BaTiO3 on Si. Predictions of the Pockels 69 

tensor at cryogenic temperatures based on data at higher temperatures is not possible because in 70 

complex oxide materials the functional properties can change drastically with temperature. Here, 71 

we determine the cryogenic behaviour of BaTiO3 thin films by analysing the performance of 72 

BaTiO3-based EO switches at temperatures down to 4 K. Our results show that efficient EO 73 

switching at cryogenic temperature is indeed possible and with bandwidths beyond 30 GHz. We 74 

also demonstrate the applicability of such devices for low-power switching and tuning as well as 75 

high-speed data modulation at 20 Gbps at 4 K. 76 

In this work, we use two waveguide designs (Figure 1a) fabricated on single crystalline BaTiO3 77 

layers bonded to SiO2-buffered silicon substrates (see Methods). In the first design, silicon nitride 78 

(SiN)-based waveguides (Figure 1d) allowed us to study the pure NLO properties of BaTiO3 in 79 

absence of mobile charge carriers which could result in an additional, non-Pockels EO response. 80 

In the second, silicon (Si) waveguides served as more efficient devices (Figure 1e) to demonstrate 81 

high-speed data modulation. The enhanced efficiency originates from a larger optical-mode 82 

overlap with the BaTiO3 layer (41 %, Figure 1c) than with the SiN waveguides (18 %, Figure 1b). 83 

We found that the propagation losses (5.6 dB/cm, SiN device) were not affected by the presence 84 

of BaTiO3 in the active section (SN 3) throughout the temperature range studied. 85 

To characterise the NLO behaviour of BaTiO3 at 4 K, we measured the induced resonance shift in 86 

a racetrack resonator as a function of the DC bias (Figure 1f), from which we determined the 87 

refractive index change of BaTiO3 (ΔnBTO) as a function of the applied electric field (see Methods). 88 

This dependence allows us to study two of the three expected features of Pockels-based switching3: 89 



NLO hysteresis and angular anisotropy, the third being the persistence of the Pockels effect at high 90 

frequencies (>10 GHz)3. 91 

The NLO response with a hysteretic behaviour (Figure 2a) indicates that a non-vanishing Pockels 92 

effect is preserved in BaTiO3 down to a temperature of 4 K. We determine the effective Pockels 93 

coefficient, reff, by analysing the hysteretic behaviour of the refractive index change (SN 4). The 94 

dependence of reff on device orientation (Figure 2b) reveals the second signature of the Pockels 95 

effect, its anisotropy. The reduced magnitude at 4 K compared to room temperature is due to a 96 

temperature dependence of the Pockels effect, as discussed below. While reff is reduced with 97 

temperature, the EO response is expected to be present at high frequencies also at low temperature. 98 

Indeed, we observe a constant EO response in racetrack resonators with a low Q factor (Q ~ 1,800) 99 

up to 30 GHz (Figure 2b). This constitutes the highest bandwidth for any cryogenic modulator 100 

reported to date. The frequency response is expected to remain flat at even higher frequency but 101 

could not be measured in our experiment (see Methods). The hysteretic behaviour, anisotropy, and 102 

high-speed response prove the presence of the Pockels effect in BaTiO3 at 4 K. 103 

We performed electrical characterisation of the material at low temperature using dedicated 104 

electrical test structures (SN 5). The resistivity of BaTiO3 at 4 K is very high, >109 Ωm. In fact, 105 

the measured current is dominated by capacitive charging and ferroelectric switching currents 106 

(Figure 2d). The field-dependent capacitance shows clear hysteretic characteristics (Figure 2e), 107 

consistent with ferroelectric domain switching. 108 

The measured reff at 4 K is lower than at room temperature (Figure 2b), which has two causes. 109 

First, the Pockels effect itself is generally temperature dependent due to changes in strain and 110 

polarisation of the crystal28. Second, the non-zero elements of the Pockels tensor depend on the 111 

crystal symmetry, which can change abruptly with temperature due to structural phase transitions. 112 

BaTiO3 bulk crystals are known to transition from a tetragonal phase at room temperature to 113 

orthorhombic and rhombohedral phases at lower temperatures (~270 K and ~200 K 114 

respectively)25. Such transitions change the elements of the Pockels tensor and modify the 115 

magnitude of the effective Pockels coefficients28. Because phase transitions of thin-film materials 116 

can be drastically affected by substrate strain26,27,29, studying the properties of thin-film BaTiO3 117 

becomes critical when considering cryogenic applications. To investigate the effects of possible 118 

phase transitions, we measured reff in a range from 4 to 340 K. Indeed, the magnitude of reff is 119 



strongly temperature-dependent (Figure 3). A peak around 240 K, with reff >700 pm/V, is 120 

consistent with the reported divergence of the r42 element of the Pockels tensor close to the 121 

tetragonal-orthorhombic transition28. Consistently, the permittivity of the BaTiO3 layer (see 122 

Methods) also shows a peak in the same temperature range (SN 6), confirming that the abrupt 123 

change in reff is caused by a phase transition. Below 240 K the magnitude of reff decreases gradually 124 

to around 200 pm/V at 4 K. In addition to the phase transition at 240 K, a second phase transition 125 

occurs above 100 K causing a rapid change in reff of 90° devices. This phase transition is also 126 

observed in the qualitative behaviour of the NLO hysteresis which shows that the transitions is 127 

induced by the electric field (SN 6). While reff of BaTiO3 is reduced at 4 K compared to room 128 

temperature, the value of ~200 pm/V is still larger than most other material systems at room 129 

temperature19,20. The effect of a reduced Pockels coefficient on the energy efficiency of EO 130 

switching is partially compensated for by a simultaneous reduction of the permittivity of BaTiO3 131 

(SN 6). Additionally, the conductivity of BaTiO3 is reduced by more than four orders of magnitude 132 

(SN 5), resulting in a negligible static power consumption of BaTiO3-devices in cryogenic 133 

environments. No material instability or drift, as could for example be caused by pyroelectric 134 

effects, were observed at cryogenic or room temperature in any experiment. 135 

We have reported the first ever measurement of the cryogenic NLO properties of BaTiO3, and 136 

indeed of any oxide thin-film material. The methods used to characterize these properties will 137 

enable further research to improve the cryogenic performance through engineering of the material 138 

properties29. However, already today we can use BaTiO3 to demonstrate cryogenic devices with 139 

outstanding performance. 140 

We demonstrate the applicability of BaTiO3 for cryogenic photonic applications by two examples: 141 

low-power EO switching and high-speed data modulation. For switching we use a 500 µm Mach-142 

Zehnder interferometer with 2×2 multimode interference splitters, applying a voltage to one arm. 143 

Because the leakage current through BaTiO3 at 4 K is 104 times lower than at 300 K, less than 144 

10 pW static power is consumed when inducing a π phase shift to switch between the two optical 145 

outputs using an electric field of 6×106 V/m (Figure 4a,b), corresponding to a voltage of ~50 V in 146 

the given device geometry (VπL = 5 Vcm). Compared to state-of-the-art technology based on 147 

thermo-optic phase shifters14, static tuning using BaTiO3 is one billion times more power efficient. 148 

The dynamic energy of the switch is ~30 pJ, which could be reduced to ~2 pJ, at a voltage of <5 V, 149 



in an optimised device geometry (SN 7). Another important metric for EO switches is the losses 150 

in the device. Based on the measured propagation losses (5.6 dB/cm) and the device geometry we 151 

estimate an insertion loss of <1 dB (SN 3). The propagation losses are dominated by scattering 152 

losses in the SiN waveguide which can be reduced significantly by using a state-of-the-art 153 

fabrication process. SiN waveguides with propagation losses as low as 1 dB/m have been 154 

reported30. 155 

As a second example, we performed data modulation experiments by sending a pseudo-random 156 

bit-sequence to a ring modulator (Q ~ 6’000) fabricated with BaTiO3-Si waveguides and recording 157 

the optical eye-diagram (Figure 4c,d). Data transmission at rates up to 20 Gbps are achieved with 158 

our experimental setup using a drive voltage (Vpp) of just 1.7 V, resulting in an extremely low 159 

energy consumption of 45 fJ/bit. 160 

In conclusion, we have shown that BaTiO3 thin films can be used to realise electro-optic switches 161 

and modulators for efficient cryogenic operation of silicon photonic integrated circuits. We have 162 

demonstrated low-power switching, as well as high-speed data modulation. Combining BaTiO3 163 

with silicon photonic integrated circuits, we make a building block available that was previously 164 

inaccessible for any cryogenic circuits. We anticipate that these components are a milestone for a 165 

versatile platform of cryogenic photonics for applications as diverse as quantum computing and 166 

communiction1,8, astronomy11, fundamental physics12, and cryogenic sensing concepts13. 167 
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Methods 254 

Device design and fabrication. Single crystalline BaTiO3 was deposited on top of an epitaxial 4-255 

nm-thick SrTiO3 seed layer by molecular beam epitaxy on 8” silicon-on-insulator (SOI) wafers 256 

with 220-nm-thick device silicon layer for SiN-based devices, and on 2” SOI wafers with 100-nm-257 

thick device silicon for Si-based devices, following a process described elsewhere3. Direct wafer 258 

bonding was used to transfer the BaTiO3 and device Si layers onto high-resistivity Si wafers 259 

capped with a 3-µm-thick thermal oxide. Specifics of the direct wafer bonding process can be 260 

found in ref. 3. 261 

For SiN-based waveguides the device Si layer was removed by dry etching, followed by chemical 262 

vapor deposition of SiN. The waveguide layer (Si or SiN) was patterned by dry etching. After 263 

waveguide patterning, a combination of SiO2 cladding deposition, via etching, and metallisation 264 

was used to form the final cross-section. Intermediate annealing steps at 400°C under O2 265 

atmosphere were used to reduce propagation losses21. 266 

The SiN-based waveguides use an 80-nm-thick BaTiO3 layer, and 150-nm-thick SiN layer. The 267 

strip-waveguide width is 1.1 µm. The SiN thickness and waveguide width were chosen to ensure 268 

guiding of a single TE mode, and to maximize the overlap of that mode with the BaTiO3 layer. 269 

The electrode-to-electrode gap is 9 µm to ensure no added losses caused by metal absorption. The 270 

racetrack resonators have a bend radius of 50 µm and straight sections of 75 µm length. The 271 

coupling gap (0.53 µm) between the access waveguide and the resonator was optimized for critical 272 

coupling.  273 

The Si strip-waveguides were fabricated using 225-nm-thick BaTiO3 and 100-nm-thick Si. The 274 

waveguide width is 0.75 µm. As for the SiN-based waveguides the waveguide dimension, 275 

including the Si thickness, were designed for TE single mode operation, with an optimized optical 276 

overlap with the 225-nm-thick BaTiO3 layer. The racetrack resonator that was used has a bending 277 

radius of 15 µm and straight sections of 30 µm, and the electrode-to-electrode gap is 2.3 µm. The 278 

small electrode gap causes additional propagation losses in the resonator ensuring a Q-factor 279 

allowing >30 GHz bandwidth. The coupling gap of ~0.1 µm was optimized for critical coupling. 280 

Cryogenic measurements. The cryogenic electro-optic measurements were performed in a 281 

Lakeshore CPX cryogenic probe station, fitted with RF (40 GHz BW, K-type connectors) and 282 



optical feedthroughs. DC and RF signals were applied to the devices using RF probes, and optical 283 

coupling was achieved using a fibre array with polarisation maintaining fibres for 1550 nm. A 284 

tuneable laser (EXFO T100S-HP) and power meter were used to record transmission spectra 285 

(EXFO CT440). The cryogenic electrical measurements were performed in a Janis cryogenic probe 286 

station equipped with DC probes. Current-voltage and capacitance-voltage measurements were 287 

performed using a parameter analyser. Both cryogenic probe stations were cooled by liquid helium 288 

to a base temperature of 4.2 K. 289 

DC EO characterisation. The DC electro-optic response was extracted by applying a voltage to 290 

the electrodes of a racetrack resonator and measuring the shift in resonance wavelength (Δλ), 291 

compared to the unbiased case, as a function of the applied voltage. From the measured wavelength 292 

shift, the change in BaTiO3 refractive index (ΔnBTO) can be estimated as 293 

∆𝑛BTO =
𝜆0 ∙ Δ𝜆

𝐹𝑆𝑅 ∙ 𝐿E ∙ 𝛤BTO
 294 

where ΓBTO is the optical confinement in BaTiO3, FSR is the free spectral range of the resonator, 295 

LE is the electrode length, and λ0 is the resonance wavelength with no voltage.3 The effective 296 

Pockels coefficient, reff, was then determined according to the procedure described in SN 4. 297 

RF frequency response. To measure the EO frequency response (EO S21) a vector network 298 

analyser (VNA, Keysight PNA 50 GHz) was used to apply the electrical stimulus to a BaTiO3 ring 299 

modulator. The modulated optical signal was applied to a photodiode (Newport 1024) and the 300 

response recorded by the VNA. Electrical calibration was performed before the measurement, and 301 

the response of the photodetector was compensated for the data analysis. While the VNA could 302 

generate signals up to 50 GHz, the bandwidth of the photodetector was 26 GHz, which in 303 

combination with large frequency-dependent electrical losses in the cryogenic probe station (SN 8) 304 

makes it impossible to measure the bandwidth beyond 30 GHz. 305 

Data modulation experiments. For the data modulation experiment, a racetrack resonator 306 

modulator with a Si strip-waveguide was used. The electrical signal was generated using an 307 

arbitrary waveform generator. A pseudo-random bit stream of 27-1 bits was used for modulation. 308 

The electrical signal was pre-distorted to compensate for the finite time-response of the electrical 309 

signal path (SN 8). The signal was amplified using a RF amplifier and sent to the cryogenic setup, 310 

with an estimated voltage swing on the device of 1.7 V (SN 8). A Pritel FA-23 EDFA was used to 311 



amplify the modulated optical signal which was applied to a photo diode and recorded on an 312 

oscilloscope. 313 

314 



 315 

Figure 1. BaTiO3 electro-optic device concept. a, Schematic cross-section of the devices. A silicon or silicon nitride layer forms a strip-waveguide 316 

(grey) on top of an BaTiO3 layer (blue). A thin Al2O3 layer (red) was used to improve adhesion (Methods). Lateral electrodes fabricated with W 317 

(green) are used to apply an electric field across the BaTiO3. The devices are embedded in SiO2 (yellow) layers on top of silicon substrates (black). 318 

The refractive indices of BaTiO3 and SiN were measured using spectroscopic ellipsometry. b, c, Simulations of the Pointing vector, |Sz|, of the 319 

transverse electric (TE) mode of the SiN waveguide geometry and the Si waveguide geometry, respectively. The two waveguide geometries show 320 

an optical confinement in BaTiO3, ΓBTO, of 18 % and 41 %, respectively. d, e, Optical micrographs of BaTiO3-SiN and BaTiO3-Si racetrack 321 

resonators, respectively, used to characterise BaTiO3 and demonstrate device functionality. The phase shifter section is embedded in the resonator 322 

which is evanescently coupled to access waveguides. The signal electrodes are connected to pads and the ground electrodes to a ground plane, for 323 

contacting using electrical probes. f, Characterisation principle of resonant electro-optic switches, showing example data of the shift in resonance 324 

wavelength between no applied field (solid line) and 16.7 MV/m (dashed line), which in this device corresponds to 150 V resulting in a shift of 4.3 325 

pm/V. The shift in resonance wavelength, Δλ, is measured for an applied electric field and converted to the material properties of BaTiO3 (see 326 

Methods). 327 

328 



 329 

Figure 2. Electro-optic and electrical response of BaTiO3-based optical switches at 4 K. a, Refractive index change of BaTiO3 as a function of 330 

applied electric field for a device in the 11.25° direction (as defined in b). The hysteretic behaviour between increasing (blue) and decreasing (red) 331 

voltage originates from ferroelectric domain switching in the BaTiO3, as illustrated schematically on top. Pnet is the net polarization of all the 332 

domains. The arrows indicate the polarization of individual ferroelectric domains (blue) when a field is applied to lateral electrodes (green). b, 333 

Angular anisotropy of the effective Pockels coefficient in BaTiO3 measured at 4 K and 300 K. The angle is defined relative to the BaTiO3<100> 334 

direction. The same anisotropy as for BaTiO3 at room temperature is observed but with reduced magnitude. The error bars show the combined 335 

standard error of the fit and from averaging measurements of multiple devices with the same orientation. c, Electro-optic S21-parameter of BaTiO3 336 

ring resonator showing a flat response up to a frequency of 30 GHz at 4 K. The dashed line indicates 0 dB as a guide to the eye. d, Current measured 337 

as a function of electric field across the BaTiO3 layer showing extremely low current flowing through the material. The current is dominated by 338 

capacitive charging, causing the offset between the sweep directions (indicated by the arrows), together with ferroelectric switching current resulting 339 

in the observed peaks (SN 5). e, Capacitance as a function of electric field, showing characteristic ferroelectric hysteresis and field-dependent 340 

permittivity. 341 

342 



 343 

Figure 3. Temperature dependence of the Pockels effect in BaTiO3. The effective Pockels coefficient along different crystal orientations at 344 

temperatures from 4 K to 340 K. The peak around 240 K is the signature of a phase transition in BaTiO3. A second, field-induced phase transition 345 

occurs around 100 K, causing a sharp drop of reff in 90° devices (indicated by horizontal dashed lines). This phase transition is also evident in the 346 

qualitative evaluation of the optical response (SN 6). The grey areas indicate the temperature ranges of the respective phase transitions. The error 347 

bars show the standard error of the fit used to extract the Pockels coefficients (SN 4). 348 

349 



 350 

Figure 4. Demonstration of low-power switching and high-speed data modulation with BaTiO3-based devices at 4 K. a, Schematic of Mach-351 

Zehnder (MZ) configuration used to switch between two ports. The yellow arrow indicates the input port and the red and blue arrows indicate 352 

output ports 1 and 2, respectively. Multi-mode interference splitters were used to split and combine the signal at the input and output ports. A 353 

voltage source, V, is used to apply an electric field, E, indicated by green arrows, across one arm of the MZ interferometer. The inset shows the 354 

waveguide cross-section. b, Transmission from both ports of a MZ switch as a function of applied electric field, along with the static power 355 

consumption. When fully switching between outputs, less than 10 pW static power is consumed, and only 30 pJ of dynamic energy. The field is 356 

kept below the coercive field of BaTiO3 (SN 9) to exclude contributions from ferroelectric domain switching. c, Schematic of the experimental 357 

setup for data modulation. The data signal was generated using an arbitrary waveform generator (AWG) which was amplified and then combined 358 

with a bias voltage, Vbias, using a bias tee. A tuneable laser set to ~1550 nm provided the optical carrier. After modulation in the cryogenic probe 359 

station, the optical signal was amplified by a fibre amplifier and filtered before being detected by a photodiode. The electrical signal from the 360 

photodiode was amplified and then recorded on a real-time oscilloscope. The left inset show the waveguide cross-section and the right inset shows 361 

the electro-optic-electric (EOE) frequency response of the modulator. d, Eye diagrams recorded at 10 and 20 Gbps with Vpp = 1.7 V, corresponding 362 

to modulation energy of 45 fJ/bit. The opening of the eyes is limited by noise from amplified spontaneous emission of the amplifier used in the 363 

experiment (SN 8). 364 


