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Abstract Value at Risk models are concerned with the estimation of conditional quantiles

of a time series. Formally these quantities are a function of conditional volatility and the

respective quantile of the innovation distribution. The former is often subject to asymmet-

ric dynamic behaviour, e.g. with respect to past shocks. In this paper we propose a model

in which conditional quantiles follow a generalised autoregressive process governed by two

parameter regimes with their weights determined by a smooth transition function. We de-

velop a two step estimation procedure based on a sieve estimator, approximating condi-

tional volatility using composite quantile regression, which is then used in the generalised

autoregressive conditional quantile estimation. We show the estimator is consistent and

asymptotically normal and complement the results with a simulation study. In our em-

pirical application we consider daily returns of the German equity index (DAX) and the

USD/GBP exchange rate. While only the latter follows a two regime model, we find that our

model performs well in terms of out-of-sample prediction in both cases.

JEL Codes: C13, C15, C22, C53

Keywords: CAViaR, Composite Quantile Regression, Conditional Quantiles, GARCH, Regime

Switching, Smooth Transition, Sieve Estimation

1 Introduction

With increasing regulatory efforts and new standards for determining capital requirements

for financial institutions and the associated importance of effective risk management, meth-

ods for estimating conditional volatilities and Value at Risk have been getting significantly

*Corresponding Author: Stefan Hubner (stefan.hubner@economics.ox.ac.uk)
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more attention. While a vast amount of models for conditional variance has been devel-

oped with Engle (1982) and Bollerslev (1986) leading the way by the Autoregressive and

Generalised Autoregressive Conditional Heteroscedasticity (ARCH and GARCH) models,

only very few models exist for directly estimating conditional quantiles. The main ones in-

clude the conditional quantile ARCH model (Koenker & Zhao, 1996) and the Conditional

Autoregressive Value at Risk (CAViaR) model by Engle & Manganelli (2004), which can be

interpreted as the conditional quantile analogue of the GARCH model. For a comprehen-

sive discussion of different Value at Risk estimators and their respective merits see Xiao,

Guo & Lam (2015).

Although there is a link between conditional volatility and conditional quantiles, which

allows the construction of a Value at Risk estimate based on a conditional volatility esti-

mate using a parametrically specified distribution of the error terms (see e.g. Alexander

& Leigh (1997), Frey & McNeil (1998), Richardson, Boudoukh & Whitelaw (1998), Adesi,

Giannopoulos & Vosper (1999), Gourieroux, Laurent & Scaillet (2000) and Scaillet (2004)),

specifying a wrong error distribution can adversely influence the estimates and interpre-

tation via two separate channels. First, the Maximum Likelihood based approaches, which

are usually employed for GARCH estimation, directly depend on the correct specification

of the innovation distribution. Second, in order to construct the 100τ%-Value at Risk based

on these estimates the τth quantile of the innovations is required.1 The second channel is

particularly harmful under a parametric distributional assumption, especially if the in-

terest lies in the tail estimation as is the case for the Value at Risk. Thus it is preferable

to estimate the conditional quantile directly without requiring an assumption about the

shape of the error distribution.

Further, it is considered a stylised fact in financial time series that dynamics with re-

spect to positive and negative news are different. In particular there is empirical evidence

indicating that volatility is often high after a negative shock, compared to a positive one

of equal magnitude (Black, 1976). Theoretically this can be justified by the leverage effect

and volatility feedbacks (Andersen & Bollerslev, 2006) or behavioural factors such as loss

aversion (McQueen & Vorkink, 2004). Alternatively, time series may be subject to cyclical-

ity which is also not captured by linear models (Tong & Lim, 1980). This can for example

be a consequence of business cycles. In any of these cases, it is beneficial and will im-

prove the accuracy of forecasts if one allows for such asymmetric dynamic behaviour. A

very general approach to modelling of asymmetric responses to past shocks is the smooth

transition approach of Terasvirta (1992), in which the data generating process is driven by

and moves between two separate regimes and which includes the threshold model (Tong

1 This will be discussed in more detail in Section 2, once the necessary notation has been introduced.
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& Lim, 1980) as a limit case. The study by Gerlach, Chen & Chan (2011) demonstrates that

the conditional volatility models with two regimes can often model better the Value at Risk,

especially for lower quantiles.

In this paper, we introduce a smooth transition generalised autoregressive conditional

quantile model in which we allow conditional quantiles to follow an autoregressive process

that also depends on past error terms as in Engle & Manganelli (2004) and Xiao & Koenker

(2009). We allow for asymmetric responses by specifying two regimes, each represented by

its own parameter vector. The active regime or regime weights are determined by a tran-

sition function characterised by location and scale parameters and a transition variable

that can be both a lag of the dependent variable or an exogenous variable. Our approach

is related to Xiao & Koenker (2009), who provide a method to estimate the CAViaR model

without regime switching by employing a three-stage procedure: first estimating an ARCH

approximation of the model, followed by a minimum-distance estimation step to calcu-

late conditional volatilities, which are then finally used for the estimation of the CAViaR

model’s parameters. The model and estimation procedure we propose can be seen as an

extension of this to a regime-switching framework. In addition to this, we improve the

original CAViaR estimation by merging the authors’ first and second steps using compos-

ite quantile regression (Zou & Yuan, 2008), which allows us to eliminate the second step by

directly estimating global parameters defining conditional volatilities. Conditionally upon

the latter, we can then estimate the CAViaR parameters by using standard quantile regres-

sion techniques as in Koenker & Bassett (1978). Our empirical results demonstrate that

our model fits the behaviour of two financial time series, the German equity index (DAX)

and the USD/GBP exchange rate, in terms of its out-of-sample Value at Risk predictions.

Our study is closely related to the literature on regime switching models, which in its

most general form is well established in the context of conditional variance estimation;

see Li & Li (1996), Gonzales-Rivera (1998), and Anderson, Nam & Vahid (1999), who use a

self-exciting threshold, a smooth transition, and an asymmetric non-linear smooth tran-

sition specification, respectively. While some simulation-based research has been done

on the topic of modelling regime-switching conditional quantiles, such as White, Tae-

Hwan & Manganelli (2008) and Huang et al. (2009), who allow for asymmetric responses

of autoregressive conditional quantiles without providing any theory, models allowing for

asymmetric responses of time series to positive and negative shocks are rather limited in

the quantile regression framework, compared to its conditional variance counterpart. Al-

though Engle & Manganelli (2004) propose an asymmetric version of the CAViaR model,

namely a Glosten, Jagannathan & Runkle (1993) specification (GJR), they only account for

the case where the regime switch is represented by a threshold located at zero and also
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disregard any asymmetric impacts of past conditional quantiles, which has been empir-

ically documented in economic and financial time series, see for example Nam, Pyun &

Avard (2001). An extension of this threshold model, which also allows for two regimes

with respect to past conditional quantiles, was studied by Gerlach, Chen & Chan (2011),

who demonstrate its performance on a range of different stock market indices. In contrast

to threshold models, it is well established that a smooth transition approach facilitates a

higher degree of flexibility, by parameterising not only the location at which an instanta-

neous transition from one regime to the other appears, but also allowing the time series to

be in a state determined by any given arbitrary combination of the two polar cases.

Besides not requiring a parametric distributional assumption about the innovations,

estimating conditional quantiles rather than the conditional variance concurs with sev-

eral other properties of quantile regression which prove very useful in this context. First, it

allows us to specify a linear structure of conditional volatility as in Taylor (1986) and Schw-

ert (1990). While there exists a quantile regression estimation procedure for a quadratic

form of conditional variance (Lee & Noh, 2013), we will instead use such a linear struc-

ture of conditional volatility because it has proven to be less sensitive to outliers due to

the fact that shocks enter the conditional volatility as a linear absolute value rather than

in a squared form. It is well established that the latter leads to an over-prediction of future

volatility levels in GARCH models (Klaassen, 2002). Another convenient consequence of a

linear specification is that it does not require the existence of the 6th moment for the inno-

vation distribution, but only the (4 + δ)th moment. Second, regime-switching models are

highly non-linear and generally relatively difficult to estimate using traditional numerical

methods such as maximum likelihood and thus often result in serious convergence issues,

especially if outliers are present. This makes convergence sensitive to the initial parameter

value and the choice of the transition function. Quantile regression has the advantage of

being numerically very stable at the cost of being computationally more complex. Some

of these issues are investigated as part of our simulation study; for a rigorous discussion

thereof we refer the reader to Chan & McAleer (2003) and references therein.

2 Model Specification

Let ut be a stochastic process defined on the real line, from which the stationary sample

{ut}
n
t=1 is observed. We assume that this process follows the standard conditional volatility

model

ut = σt (zt,θ0) εt, (1)
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where innovations {εt}
n
t=1 are i.i.d. distributed with mean zero and finite variance ac-

cording to a right-continuous distribution function Fε (x) and conditional volatility σt :

Ft−1 × Θ2 −→ R+ with Ft−1 denoting the σ-algebra generated by the process {us}
t−1
s=−∞ and

Θ2 denoting the parameter space. Finally, zt represents the past observations that enter

the conditional volatility function and that are assumed to be independent of εt.

Instead of the frequently used quadratic specification,2 in our proposed conditional

quantile model we use the following absolute value alternative of the GARCH(p,q) model

with zt = (σt−1, . . . , σt−p, |ut−1|, . . . , |ut−q|)
T and parameters θ = (β0, β1, . . . , βp, γ1, . . . , γq)

T :

σt(zt,θ) = β0 +

p∑
i=1

βiσt−i(zt,θ) +

q∑
j=1

γj |ut−j| . (2)

To introduce multiple regimes, we assume that the true conditional volatility process

follows a general two regime specification

σt
(
zt,θ

I,θII, ζ
)
= G (ξt (zt) , ζ, η)σt

(
zt,θ

I)+ [1−G (ξt (zt) , ζ, η)]σt
(
zt,θ

II) , (3)

in which each regime is allowed to have different dynamics characterised by regime-specific

parameter vectors θI and θII, respectively.3 The parameters θI and θII are restricted to be

positive to ensure positivity of both conditional volatility processes.4

The weight of the active regime in the convex combination of the two regimes in equa-

tion (3) is determined by the transition functionG : R2×R+ −→ [0,1], which depends on the

transition variable modelled as a pre-specified function ξ : Ft−1 −→ R of past observations

and parameterised by location parameter ζ ∈ R and scale parameter η ∈ R+. We restrict

the function ξ to be time-homogeneous, and as it is assumed to be known, it is referred to

as the transition variable ξt := ξ(zt). One example of ξt, in the case of daily data, could be

the last week’s average returns ξ(zt) = 1
5

∑5
j=1 ut−j, where 5 is the typical number of weekly

trading days for a financial instrument. Other examples and the selection of the transition

variable are discussed in Section 6.

Assumption 1. The transition function satisfies the following properties:

lim
ξ→−∞G(ξ, ζ, η)→ 0 and lim

ξ→+∞G(ξ, ζ, η)→ 1,

it is monotone, measurable, and Lipschitz. Further, ∂dG/∂(ζ, η)d exists almost everywhere

for d = 1 and 2, is bounded, and is Lipschitz with respect to ζ and η. In addition to this,

∂G/∂(ζ, η) is monotone or Lipschitz in ξ.

2The quadratic GARCH(p,q) specification is σt(zt,θ) =
(
β0 +

∑p
i=1 βiσ

2
t−i(z

2
t ,θ) +

∑q
j=1 γju

2
t−j

)1/2
.

3This specification does not represent an extension of Anderson, Nam & Vahid (1999), since the volatility
on the right hand side of (3) depends only on θI and θII, respectively. We demonstrate the usefulness of this
specification in Section 6 and discuss extensions to a fully general setting in Section 5.

4Technically, strict positivity only has to hold for some parameters (always including βr0 for both r ∈ {I, II})
and it is allowed that a strict subset of the parameters is non-negative. However, the asymptotic properties
we derive are only valid in the interior of the parameter space. We discuss this in more detail in Section 4.
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Standard choices for the transition function include:

(i) The logistic function as used in the Logistic Smooth Transition Autoregressive (LSTAR)

model by Terasvirta (1992) with Glogistic : R2 ×R+ −→ [0,1]:

Glogistic(ξ, ζ, η) =
(
1+ exp(−η−1(ξ− ζ))

)−1
,

(ii) the scale-invariant indicator function Gthreshold : R2 −→ {0, 1}, which reduces the

model to the threshold version as in Li & Li (1996):

Gthreshold(ξ, ζ) = 1 {ξ > ζ} ,

(iii) and a bounded linear function Glinear : R2 × R+ −→ [0,1] with location ζ centred be-

tween two cut-off points:

Glinear(ξ, ζ, η) =
(
η−1

(
ξ− ζ+

η

2

))
1

{
ξ ∈

[
ζ−

η

2
, ζ+

η

2

)}
+ 1

{
ξ ∈ [ζ+

η

2
,∞)
}

.
Our theoretical results are based on the class of transition functions defined by As-

sumption 1.5 For notational convenience, we will stack the transition parameters to the

vector ζ = (ζ, η)T and abbreviate the transition function as Gt(ζ) = G(ξt, ζ, η).

Having defined the ANST-GARCH model (2)–(3), the shift to the quantile specification

is straightforward. The τth conditional quantile of ut is defined by

Qut (τ|Ft−1) := inf
{
x ∈ R : Fut|Ft−1 (x) > τ

}
with Fut|Ft−1 being the conditional distribution function of ut given all past observations,

Fut|Ft−1 (x) = P (ut 6 x|Ft−1). For the model defined in equation (1), it follows that

τ = P (ut 6 Qut(τ|Ft−1)) = P (σtεt 6 Qut(τ|Ft−1)) = Fε
(
σ−1t Qut(τ|Ft−1)

)
so that we obtain

Qut(τ|Ft−1) = σtF
−1
ε (τ). (4)

Using this result and multiplying the ANST-GARCH model from equation (3) by F−1ε (τ),

for r ∈ {I, II} the final asymmetric non-linear smooth transition generalised autoregressive

conditional quantile model (ANST-GACQ) can be written as

Qut (τ|Ft−1) = Gt(ζ)Q
I
ut

(τ|Ft−1) + (1−Gt(ζ))Q
II
ut

(τ|Ft−1) (5)

Qr
ut

(τ|Ft−1) = β
r
0(τ) +

p∑
i=1

βr
iQ
r
ut−i

(τ|Ft−i−1) +

q∑
j=1

γr
j(τ) |ut−j| = θ

r(τ)Tzt, (6)

whereθr(τ) =
(
βr
0(τ), β

r
1(τ), . . . , β

r
p(τ), γ

r
1(τ), . . . , γ

r
q(τ)

)T and the parametersβr
i(τ) := β

r
iF

−1
ε (τ)

and γr
j(τ) := γr

jF
−1
ε (τ) for i ∈ I1,p, j ∈ I1,q, and r ∈ {I, II}.6 These parameters βr

i(τ), γ
r
j(τ), and

thus θr(τ) are local in the sense that they depend on quantile τ, whereas βr
i and θr are

5While there is no doubt that other functions also satisfy Assumption 1, for the empirical part of the study
we will restrict the set of transition functions to

{
Glogistic, Glinear

}
. Additionally, we will empirically evaluate

data generating processes that follow the limit case with Gthreshold.
6We defined the general index set running from a ∈ N to b ∈ N as Ia,b := (a, . . . , b) ⊆ N.
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global coefficients independent of quantile τ. The transition parameters ζ are global as

well. Global coefficients are not directly identified by the quantile regression. One can

however identify them by combining several local ones using composite quantile regres-

sion based on K quantiles τ1, . . . , τK ∈ (0,1) since the 2(p + q + 1) local parameters θr(τ),

r ∈ {I, II}, at quantile τk are determined by 2(p + q + 1) global parameters θr, r ∈ {I, II}, and

scalar F−1ε (τk); see Section 3. Since βr
i(τ) := βr

iF
−1
ε (τ), parameters βr

i and F−1ε (τ) cannot be

separately identified though without some scale normalisation such as F−1ε (τ1) = Φ
−1(τ1),

where Φ denotes the standard normal distribution function, for instance. As usual in the

smooth transition models, the identification of parameter vectors θr, r ∈ {I, II}, also pre-

sumes the existence of two distinct regimes (otherwise, only their convex combination is

identified).

Inversion

The estimation procedure which we will introduce in Section 3 and study in Section 4 is

based on invertibility of both GARCH regimes. According to the structure of our model as

defined in equation (3) each regime’s volatility σt (zt,θr) does not depend on θr
′

for r 6= r ′

through lags of σt. This implies that both GARCH regimes are required to be additively sep-

arable in their respective ARCH and GARCH parts, as discussed in Mele & Fornari (1997).

Assumption 2. Let Ar(L) := 1 −
∑p
i=1 β

r
iL
i and Br(L) :=

∑q−1
i=0 γ

r
iL
i where L denotes the lag-

operator L, such that ut−1 = Lut for any t ∈ I1,n. The polynomials Ar(L) and Br(L) have no

common factors and their roots lie outside the unit disc of the complex plane: for r ∈ {I, II}

and |φ| 6 1, it holds that Ar(φ) 6= 0 and Br(φ) 6= 0.

Hence both GARCH(p,q) regimes defined in equation (2) can be inverted separately,

Ar(L)σr
t = B

r(L) |ut| ⇐⇒ σr
t = A

r−1(L)Br(L) |ut| = α
r
0 +

∞∑
j=1

αr
j |ut−j−1| , (7)

where r ∈ {I, II} and the coefficients αj for j ∈ I1,m decrease at a geometric rate, that is, there

exist constants b < 1 and c such that |αj| < cbj.

While this is in line with various GARCH extensions to two regimes (Glosten, Jagan-

nathan & Runkle (1993), Gonzales-Rivera (1998), Rabemananjara & Zakoian (1993)) and is

equivalent for the threshold model where Gt(ζ) ∈ {0, 1}, it differs from the specification of

Anderson, Nam & Vahid (1999). The reason for this is that the latter imposes a smooth tran-

sition between two DGP’s and the transition acts upon the individual coefficients, whereas

our model impose a smooth transition between two volatility processes and the reality is a

convex combination of their outcomes.

7



In the following sections we discuss estimation and asymptotic properties of the ad-

ditively separable model defined in (3). Further, we discuss how the proposed estimation

procedure can be applied to the Anderson, Nam & Vahid (1999) specification

σt
(
zt,θ

I,θII, ζ
)
= Gt(ζ)σ(zt,θ

I,θII)) + (1−Gt(ζ))σ(zt,θ
I,θII), (8)

by discussing an extension in Section 5. In addition to this, we develop a test of the addi-

tively separable specification against the one in (8). We show that our model is empirically

relevant in two different applications.

3 Estimation Procedure

The estimation of the CAViaR model specified in Section 2 is complicated due to the de-

pendence of conditional quantiles on past conditional quantiles in equation (6).To address

this, we propose a two-step estimation procedure that is related to the three-stage sieve ap-

proximation idea of Xiao & Koenker (2009). In contrast to their single regime version, our

model requires the estimation of parameter vectors for both regimes as well as the location

and scale parameters of the transition function.

The proposed estimation procedure consists of two steps: first, we approximate the

conditional volatility process defined in equation (2) by an ARCH(∞)-approximation to

deal with the dependence of unknown conditional quantiles; second, after obtaining ap-

proximations of the conditional volatilities from the first step, the model structure (4) and

formulation (6) is used to estimate the CAViaR parameters and the transition parameters

by the quantile regression. What further complicates estimation is the fact that, although

the transition function is assumed to be known a priori, the objective function is not nec-

essarily convex in all of its parameters. In order to estimate the parameters of the transi-

tion function, we therefore have to combine linear quantile regression with a grid search

in both steps.

The model defined in (5) and (6) can be estimated using the objective function

min
θ∈Θτ

2

n−1

n∑
t=1

ρτ

(
ut − θ

ITzt(θ)Gt(ζ) − θ
IITzt(θ)(1−Gt(ζ))

)
,

where function ρτ(u) = u
(
τ− 1{u<0}

)
denotes the quantile loss function, zt(θ) = (σt−1(θ), . . . ,

σt−p(θ), |ut−1|, . . . , |ut−q|)
T , and σt(θ) has the structure defined in (2). The estimation of

conditional quantiles would thus be a linear programming exercise, if it were not for the

dependence on the latent conditional volatility process σt, which in turn dynamically de-

pends on the parameters θ to be estimated. To tackle this issue, a two-step procedure is

used.

8



In the first step, each regime’s GARCH(p,q) process in equation (3) is inverted to ARCH(∞)

and estimated using an ARCH(m) representation, m ∈ N, in order to find a sieve approxi-

mation of σt := σt(zt,θ). Consequently, each conditional volatility regime defined in equa-

tion (7) can be approximated by an ARCH(m) process up to a reminder term Op(b
m) and

the ANST-GACQ model can thus be rewritten as

Qut(τ|Ft−1) ≈

(
αI
0(τ) +

m∑
j=1

αI
j(τ) |ut−j|

)
Gt(ζ) +

(
αII
0 (τ) +

m∑
j=1

αII
j (τ) |ut−j|

)
(1−Gt(ζ))

with αr
j(τ) := αr

jF
−1
ε (τ) for all j ∈ I0,m and r ∈ {I, II}. In order to estimate the conditional

volatility process {σt}, we need to identify and estimate αr = (αr
1, . . . , α

r
m)
T separately from

F−1ε (τ). Moreover, the estimation of the transition parameters ζ is traditionally rather dif-

ficult and becomes very imprecise at more extreme quantiles. For this reason, we will not

only estimate single conditional quantiles but exploit information from a range of quan-

tiles7 τ1, . . . , τK ∈ (0,1) and employ composite quantile regression (Zou & Yuan, 2008) by

minimising the following objective function:

ân = arg min
a∈Θ1

K∑
k=1

n∑
t=m+1

ρτk

(
ut − qkα

ITzm
t Gt(ζ) − qkα

IITzm
t (1−Gt(ζ))

)
, (9)

where zm
t = (1, |ut−1| , . . . , |ut−m|)

T , αr = (αr
0, . . . , α

r
m)
T for r ∈ {I, II}, q = (q1, . . . , qK)

T with

qk = F−1ε (τk) for all k ∈ I1,K, and a =
[
αIT ,αIIT ,qT , ζT

]T ∈ Θ1 that is assumed to be a com-

pact subset of R2(m+1)
+ × RK+2. Similarly to the notation in (5) and (6), the global parame-

ters describing the evolution of conditional volatility are denoted α =
[
αIT ,αIIT , ζT

]T and

its estimate α̂n (which contains all elements of ân except q̂n). As discussed in Section 2,

one element of q has to be fixed in (9) to achieve identification, for example, q1 = Φ−1(τ1)

for τ1 6= 0.5 (this normalisation has of course no effect on the estimated volatility process).

In addition to this, we estimate α̂n subject to a non-negativity constraint to ensure that

both volatility processes are positive. The advantage of the proposed composite quantile

criterion lies in the joint estimation of the conditional volatility parameters in a single step,

and in particular, of the parameters of the transition function.

In the second step, we can now use the first-stage estimates and equation (7) to approx-

imate σ̂t by

σt(α̂n) =

(
α̂I
n

T

zm
t

)
Gt

(
ζ̂n

)
+

(
α̂II
n

T

zm
t

)(
1−Gt

(
ζ̂n

))
. (10)

Defining zt(α̂n) = (σt−1(α̂n), . . . , σt−p(α̂n), |ut−1|, . . . , |ut−q|)
T , we can estimate the CAViaR

model according to equation (5) and (6) for a single quantile τ ∈ (0,1) by minimising

θ̂n(τ) = arg min
θ∈Θτ

2

n∑
t=t0

ρτ

(
ut − θ

ITzt(α̂n)Gt(ζ) − θ
IITzt(α̂n) (1−Gt(ζ))

)
, (11)

7Xiao & Koenker (2009) solve this by first estimating the parameters for each τ and then exploit their
structure αr

j(τ) := α
r
jF

−1
ε (τ) in an additional minimum distance estimation step.
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where θ(τ) =
[
θIT (τ),θIIT (τ), ζT (τ)

]T ∈Θτ
2 and t0 = [(m+ p)∨ q] + 1.

Neither of the objective functions (9) and (11) are convex in the scale parameter. In

addition to this, the quantile loss function is not differentiable. For this reason, we use a

grid search over the space of feasible scale parameters in the first stage (this would also

apply to the location parameter if the transition function is not monotonic). Moreover,

to minimise the composite quantile criterion (9) for a given value of the scale parameter,

we employ a smoothed version of the objective function ρ defined by ρ∗(u) := ρ(u) if |u| >

δ and u2/δ otherwise with smoothing parameter δ. This approach is commonly used in the

literature (see e.g. Huber (1964); Zheng (2011)) and facilitates estimation of the parame-

ters for a given grid point using gradient based methods. In particular, we use sequential

quadratic programming to incorporate the inequality constraints on the ARCH(m) param-

eters. In the second stage, for a given location/scale parameter pair ζ obtained now from a

two-dimensional grid search, we can estimate θ(τ) using standard quantile autoregression

(Koenker & Zhao, 1996). To ensure positivity of the global coefficients, which translates to

negativity of local ones for τ < 0.5, we use an interior-point method for inequality con-

strained quantile regression (Koenker & Ng, 2005). Note that, we do not make use of the

estimated quantiles q̂n from the first stage, and additionally, we also re-estimate the lo-

cation and scale parameters, which we denote by ζ(τ) in the second stage to indicate the

local estimation at one quantile τ. Algorithm A.2.1 summarises the whole procedure as

pseudo-code and can be found in Section A.2 of the online appendix. We denote the one-

and two-dimensional grids as
{
η1, . . . , ηkη

}
and

{
ζ1, . . . ζkζ

}
×
{
η1, . . . , ηkη

}
and informally

denote the subspace of feasible location and scale pairs by Z.

The first-stage of Algorithm A.2.1 relies on an auxiliary set of K quantiles (τ1, . . . , τK).

Although a higher K and thus more quantiles allow us to recover more information about

the distribution of ut, the parameters θj for j ∈ I1,2(p+q+1) are not identified at the median

due to the model structure θj(τ) = F−1ε (τ)θj. Due to this lack of identification, one would

thus introduce extra noise by including quantiles at or close to τ = 0.5 in finite samples.

We thus face a bias-variance trade-off in the selection of K. While a data-driven optimal

choice of a vector of τ’s would be feasible, this goes beyond the scope of this paper; we refer

interested readers to Zhao & Xiao (2014). We assume that quantiles τk 6∈ (0.5−δ/2, 0.5+δ/2),

k ∈ I1,K, in (9) and demonstrate the insensitivity of the method to the choice of δ in our

simulation study; see Section A.4 of the online appendix.
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4 Asymptotic Results

In this section, the two-stage estimation procedure introduced for the proposed ANST-

GACQ model is shown to yield consistent and asymptotically normal estimates. To this

end, the true parameter values, minimising the corresponding population objective func-

tions, are labelled with subscript 0. All proofs can be found in Section A.1 of the supple-

mentary online appendix. Throughout this section, it is assumed that, in addition to the

previously defined assumptions, the following statements hold.

Assumption 3. The errors εt are independent and identically distributed with zero median

and finite variance σ2 = Var(εt) < +∞. The distribution function Fε(x) has a strictly positive

density fε(x) at F−1ε (τk) for all k ∈ I1,K, which is uniformly bounded by a finite constant M

and is Lipschitz continuous.

Assumption 4. The conditional distribution function Fut|Ft−1(x) has a strictly positive den-

sity fut|Ft−1(x) at F−1ut|Ft−1(τk) for all k ∈ I1,K, which is uniformly bounded by a finite constant

M and is Lipschitz continuous.

Assumption 5. There exist small positive constantsγ > 0 and δ > 0 such thatE |utGt(ζ0)|
2+δ

<

+∞, E |ut|
2+δ

< +∞, and E ‖ut∂Gt(ζ0)/∂ζ‖2+δ < +∞, and additionally, ut is strictly station-

ary and β-mixing with mixing coefficients βs = O(s−max{2,(2+δ)/δ}−γ) as s→∞.

Assumption 6. Let a = [αIT ,αIIT ,qT , ζT ]T and

xt,k(a) =



qkI2(p+q+1)

1 {k = 1} [αIT ,αIIT ]T

...

1 {k = K} [αIT ,αIIT ]T

qk(α
I − αII)T ∂Gt(ζ)

∂ζ

qk(α
I − αII)T ∂Gt(ζ)

∂η



 Gt(ζ) z
m
t

(1−Gt(ζ))z
m
t

,

see equation (18). The matrix

D1,m,n(a) := E
[
n−1

n∑
t=m

[
K∑
k=1

xt,k(a)xt,k(a)
T

]
/σt

]
evaluated ata0 has minimum and maximum eigenvalues λn,min and λn,max satisfying lim

n→∞ inf λn,min >

0 and lim
n→∞ sup λn,max < +∞. Additionally, assume that

E


Gt(ζ) z

m
t

(1−Gt(ζ))z
m
t

(Gt(ζ) −Gt(ζ0))z
m
t




Gt(ζ) z
m
t

(1−Gt(ζ))z
m
t

(Gt(ζ) −Gt(ζ0))z
m
t


T

has the full rank for any ζ 6= ζ0.
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Assumption 7. The number of lags for the ARCH(m)-approximation satisfies log(n)/m→ 0

andmn− 1
2 → 0. It holds for the number K of quantiles different from 0.5 that K > 1.

Assumption 8. There exist small positive constants δ1 > 0 and δ2 > 0 such that

P

(
max
16t6n

u2t > n
δ1

)
6 exp

(
−nδ2

)
.

Assumptions 2–5 guarantee that the process ut is stationary and weakly dependent.

These assumptions facilitate deriving general results, but it is also possible to find more

primitive sufficient conditions that guarantee the stationarity and β-mixing of particular

regime switching models using results of Carrasco & Chen (2002) and Meitz & Saikkonen

(2008), for instance. We discuss sufficient conditions in Appendix A.3 and show that they

are the same in the proposed specification (3) and the general specification (8). For ex-

ample in the case of the frequently used GARCH(1,1) model with the lagged dependent

variable serving as the transition variable, the stationarity and β-mixing properties require

max{βI
1, β

II
1 }+ max{γI

1, γ
II
2 } < 1 in models (3) and (8).

Assumption 5 also imposes the moment assumptions on ut, utGt(ζ0), and ut∂Gt(ζ)/∂ζ

that are required for central limit theorems under weak dependence. Note that a suffi-

cient condition for the existence of the finite (2+ δ) moment of the term ut∂Gt(ζ)/∂ζ is the

existence of the (4 + δ)th moments for ut and E |∂Gt(ζ)/∂ζ| < ∞. In the case of exogenous

switching, that is, if ξt is an exogenous time series, the existence of (2+δ)th finite moments

of ut suffices. Further by imposing the full rank assumptions on the matrices appearing in

the first and second stage first-order conditions, Assumption 6 provides identification, en-

suring that the two regimes have different conditional volatility processes, that the data in

the two regimes are not perfectly correlated and that, for the transition functions that have

zero slope on subsets of its domain, there are data in both regimes with positive probabil-

ity. Next, Assumption 7 restricts the rate of the ARCH(m) approximation, ensuring that we

have a sufficient number of lags to control the approximation error. In our empirical ap-

plication we will choose m = cn1/4 for some positive constant c > 0. We demonstrate the

accuracy of the estimates with respect to the choice of c as part of our simulation study;

see Section A.4 of the online appendix. Finally, Assumption 8 is a technical regularity con-

dition that is needed for the sieve estimation in the first stage (Xiao & Koenker, 2009).

We will now present the asymptotic properties of our estimation procedure. First, we

show that the sieve approximation of both regimes’ underlying GARCH processes holds

and the approximation error due to the mth-order truncation is bounded in probability.

Theorem 1. Let the parameter vector be defined as a = [αIT ,αIIT ,qT , ζT ]T . Under Assump-

tions 1–8, a is identified and it holds for n→∞ that ‖ân − a0‖2 = Op
(
mn−1

)
.
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The following corollary provides the asymptotic characteristics of the interim sieve es-

timator for the latent process σt defined as a function of a according to equation (10) and

as such a preliminary result for the second stage estimator where we use quantile regres-

sion with zt(ân) = (σt−1(ân), . . . , σt−p(ân), |ut−1|, . . . , |ut−q|)
T to obtain the final CAViaR pa-

rameters θ(τ). Before finding the asymptotic distribution of the second stage estimator,

Assumption 9 defines several matrices.

Theorem 2. Let sk = fε(F
−1
ε (τk)) and S0 =

K∑
k=1

skq
2
k. Also letα∆ = αI−αII. Under Assumptions

1–8, it then holds for n→∞ that

√
n


α̂I
n − αI

0

α̂II
n − αII

0

ζ̂n − ζ0

 ≈ D−1
m

1

S0
√
n

N∑
t=m+1


Gt(ζ) z

m
t

(1−Gt(ζ))z
m
t

α∆0
T
zmt

∂Gt(ζ)
∂ζ


K∑
k=1

qk

(
1

{
ut 6 F

−1
ut|Ft−1

(τk)
}
− τk

)

with reminder of stochastic order op
(
m

1
2n− 1

2

)
andDm :=

−E

 1σt

 Gt(ζ0)

1−Gt(ζ0)

 Gt(ζ0)

1−Gt(ζ0)

T⊗ zmt zmTt zmTt α∆0

 Gt(ζ0)

1−Gt(ζ0)

⊗ zmt
 ∂Gt(ζ0)

∂ζT

(zmTt α∆0 )
2 ∂Gt(ζ0)

∂ζ

∂Gt(ζ0)

∂ζT


 .

Assumption 9. Let Γθ,0 = Γθ(θ0,α0) and Γα,m,0 := Γα,m(θ0,α0) exist, where

Γθ(θ,α) := −
fε
(
F−1ε (τ)

)
σε

×

E


 Gt(ζ)

1−Gt(ζ)

 Gt(ζ)

1−Gt(ζ)

T⊗ zt(α)zt(α)T θ∆
T
zt(α)

 Gt(ζ)

1−Gt(ζ)

⊗ zt(α)∂Gt(ζ)∂ζT(
θ∆Tzt(α)

)2 ∂Gt(ζ)
∂ζ

∂Gt(ζ)

∂ζT


and

Γα,m(θ,α) := −
fε
(
F−1ε (τ)

)
σε

×

E




zt(α)Gt(ζ)

zt(α)(1−Gt(ζ))

θ∆Tzt(α)
∂Gt(ζ)
∂ζ

θT
 Gt(ζ)

1−Gt(ζ)

⊗
[L1, ..., Lq]T ⊗ [zm

t
T ,α∆

T
zm
t Gt(ζ0)

∂Gt(ζ0)
∂ζT

]

0p+1,m+2


 ,

and L denotes the lag operator. Further, let Γθ,0 be non-singular,

Mt,m =

I2(p+q+1),
(

K∑
k=1

skq
2
k

)−1

Γα,m,0D
−1
m





Gt(ζ0) zt(α0)

(1−Gt(ζ0))zt(α0)

θ∆0
T
zt(α0)

∂Gt(ζ0)
∂ζ

Gt(ζ0) z
m
t

(1−Gt(ζ0))z
m
t

α∆0
T
zmt

∂Gt(ζ0)
∂ζ


,
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and for a given value of τ ∈ (0,1), Ξτ be a 2(p + q + 1) × 2(p + q + 1) matrix with a typical

element

Ξi,j =


τ(1−τ)

fε(F
−1
ε (τ))2

if i 6 p+ q+ 1 and j 6 p+ q+ 1

qiqj(τi∧τj)(1−τi∨τj)

fε(F
−1
ε (τi))fε(F

−1
ε (τj))

if i > p+ q+ 1 and j > p+ q+ 1

qi(τi∧τ)(1−τi∨τ)

fε(F
−1
ε (τi))fε(F

−1
ε (τ))

otherwise (i > jw.l.o.g).

.

Then limm→∞ E [Mt,mΞ
τMt,m] is assumed to exist and be finite.

The following two theorems provide now consistency and asymptotic normality results

of the final ANST-GACQ estimator using the preliminary results from the first stage.

Theorem 3 (Second Stage Consistency). Under Assumptions 1–9, the second-stage estima-

tor is
√
n-consistent, that is, for n→∞ and given τ ∈ (0,1)∥∥∥θ̂n(τ) − θ0(τ)∥∥∥ = Op(n

− 1
2 ).

Theorem 4 (Second Stage Asymptotic Normality). If Assumptions 1–9 hold, then forθ0(τ) 6∈

∂Θτ
2 the second-stage estimator θ̂n(τ) is asymptotically normal, that is, for n→∞ and given

τ ∈ (0,1)
√
n
(
θ̂n(τ) − θ0(τ)

)
 N

(
0, lim
m→∞ Γ−1θ,0E [MtΞ

τMt] Γ
−1
θ,0

)
.

The asymptotic distribution and variance established in Theorem 4 can be evaluated

by using the finite-sample equivalence of the respective expectations, with the exception

of the densities in matrix Ξτ. An overview of estimation approaches for evaluating Ξτ can

be found in Koenker (2005), for instance.

5 Extension & Separability Test

We will now show that our estimation procedure can be extended in such a way that it

does not require additive separability and Assumption 2 and it accommodates the spec-

ification of Anderson, Nam & Vahid (1999). For this, note that using the definition of the

lag-polynomials from Assumption 2, the model (3) can be rewritten as

σt
(
zt,θ

I,θII, ζ
)

= Gt(ζ)
[
βI
0 + (1−AI(L))σt

(
zt,θ

I,θII, ζ
)
+ BI(L)|ut|

]
+ (1−Gt(ζ))

[
βII
0 + (1−AII(L))σt

(
zt,θ

I,θII, ζ
)
+ BII(L)|ut|

]
,

where the σt on the right-hand side is now allowed to depend both on θI and θII, and[
Gt(ζ)A

I(L) + (1−Gt(ζ))A
II(L)

]
σt
(
zt,θ

I,θII, ζ
)

=
[
Gt(ζ) (β

I
0 + B

I(L)) + (1−Gt(ζ))(β
II
0 + B

II(L))
]
|ut|.
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Conditionally on the transition variable ξt, one can again impose invertibility of the

lagged polynomial At(L) = Gt(ζ)A
I(L) + (1 − Gt(ζ))A

II(L) to transform the GARCH model

to its ARCH(∞) representation (recall that Gt(ζ) ∈ [0,1]). Contrary to the model under As-

sumption 2, this polynomial At(L) and its inversion will however depend on ξ (zt) and the

ARCH(∞) representation will therefore vary with ξt (zt).

Since the function G is smooth by Assumption 1, the model (5)–(6) can be estimated

analogously to Algorithm A.2.1 if the ARCH approximation (9) is replaced by a general

ARCH(m) approximation local to the value ξ (zt) when predicting the volatility using equa-

tion (10):[
α̂
T
n(zt), q̂

T
n(zt)

]T
= arg min

K∑
k=1

n∑
s=m+1

ρτk
(
ut − qk(zt)α

T (zt)z
m
s

)
Kh (ξ (zs) − ξ (zt)) ,

where K represents a univariate kernel indexed by a suitable bandwidth h; see for exam-

ple Cai & Xu (2009) for a discussion on kernel and bandwidth selection. Note, that ξ (zt)

is a scalar and is thus not subject to the curse of dimensionality in this non-parametric

estimation. Consequently, the asymptotic results presented in Section 4 will apply if the

conditions for valuem characterising the order of the ARCH approximation are replaced by

analogous conditions on m/h. The reason for this is that because of the local estimation,

the number of observations available for the local ARCH(m) estimation will be propor-

tional to nh and the rates in the proof of Theorem 1 will becomem/(nh). Since they should

be negligible with respect to 1/
√
n, this would require log(n)h/m→ 0 andmn−1/2/h→ 0 as

n→∞.

We will now show how to construct a test between the two specifications. Lemma 1

shows the structure of the lag-polynomials if the GARCH regimes are not invertible sepa-

rately as in equation (8).

Lemma 1 (Structure of Gt-Dependent Polynomial). Let P̄(L0) = Gt(ζ) c1 + (1 − Gt(ζ))c2 for

generic8 coefficients c1 and c2. Further let P̄(Lm+1) = P̄(Lm)LP̄(Lm). Then for any m ∈ N the

specification from equation (8) can be represented as

σt = P̄(Lm)σt−m−1 +

m∑
k=0

P̄(Lk)|ut−k−1|, (16)

with the first term vanishing asm→∞.

On the other hand, we have seen if we can separately invert both regimes according to

Assumption 2 and equation (3), the structure is

σt =

m∑
k=0

P̄(L0)|ut−k−1|. (17)

8These coefficients will be higher-order terms of β and γ. Invertibility is ensured by Assumption 2 and
the fact that Gt(ζ) ∈ [0,1].
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By including a sufficient amount of lags of order m = c log(n) for both models, we can

thus test by comparing the model-likelihoods (Vuong, 1989) which specification should

be used and if the above extension needs to be applied. We discuss details relating to the

implementation of the test in Section 6.

6 Simulation Study

In this section we summarise the results of a comprehensive simulation study. The study is

divided into two main parts. First, the proposed asymmetric non-linear smooth transition

generalised autoregressive conditional quantile (shortly referred to here and in tables as

GACQ instead of ANST-GACQ) procedure will be analysed with respect to different choices

of the sample sizes and auxiliary parameters. Later, results are compared with the regime

switching GARCH model of Anderson, Nam & Vahid (1999) (shortly labelled as GARCH) for

various error distributions, including distributions contaminated by outliers.9

By default, the estimation is performed for time series of length n = 1000, the num-

ber of simulations per experiment is s = 100, the composite quantile regression employs

by default k = 9 quantiles for τ ∈ [0.05,0.25] ∪ [0.75, 0.95], the truncation parameter for the

ARCH approximation is set to m = d5
2
n
1
4 e and the grid size is (kζ, kη) = (30, 30). The true

global parameter vector for both processes is chosen to be θ0 = (βI
0, β

I
1, γ

I
1, β

II
0 , β

II
1 , γ

II
1 )
T
0 =

(0.50, 0.15, 0.60, 0.25, 0.30, 0.15)T and the location-scale parameter pair equals ζ0 = (ζ, η)T0 =

(0.00, 0.2)T . While βI
0 and βII

0 are only determining the unconditional variances of the re-

spective regimes, we chose γI
1 and γII

1 in a way that is consistent with findings in the two

regime conditional heteroscedasticity literature (Gonzales-Rivera, 1998; Lubrano, 2001;

Wago, 2004; Khemiri, 2011). Unfortunately, the findings on regime-specific parameter val-

ues for βI
1 and βII

1 are rather limited and there is also no clear link to their single regime

counterparts. Thus coming up with a sensible prior is somewhat ad hoc. We approached

this by choosing their values in a way that generates both a higher and a lower persistence

regime. Unreported simulations show that different DGPs work similarly well, although,

perhaps unsurprisingly, numerical stability deteriorates as one of the regimes’ processes

becomes close to being integrated.

If not stated otherwise, we will assume the innovations to be standard normally dis-

tributed: εt ∼ N(0,1). When running simulations using different innovation distributions,

in order to ensure comparability, their variances will always be normalised to one. This

implies that there is one high and one low variance regime with unconditional variances,

9All experiments are conducted using Ox (Doornik, 2009) with extensions written in C for the computa-
tionally expensive parts.
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defined by βr
0/(1 − β

r
1 − γ

r
1) for r ∈ {I, II}, of 2 and 0.45, respectively. All of the presented

results use a specification with the logistic function Glogistic. However, unreported simu-

lations confirmed that the GACQ estimation is insensitive to the misspecification of the

transition function (e.g., if the logistic transition function is used while the true under-

lying model follows the linear or threshold function). Finally, note that we have to re-

strict the grid for both location and scale. We introduce the data-driven criterion en-

suring that location satisfies ζ ∈ [ζ, ζ̄] with unconditional sample quantiles ζ = F̂−1ut (0.1)

and ζ̄ = F̂−1ut (0.9). Similarly, the scale is restricted to η ∈ [η, η̄(ζ, ζ̄)] with fixed η = 0.1 and

η̄(ζ, ζ̄) =
[
log(0.1−1 − 1)(0.5ζ̄− 0.5ζ)

]−1
. The latter bound represents the inverse of the lo-

gistic function with respect to the scale evaluated at 0.1 and the location at the centre of

the considered location grid.

To evaluate the procedures, we report the biases and root mean squared errors (RMSE)

of all estimates. As the focus of the quantile regression modelling is on the estimation of

quantiles such as Value at Risk rather than parameters, the performance is measured by

the mean (absolute) prediction error averaged over the sample, denoted as M(A)PE, ab-

solute one-period-ahead out-of-sample forecast errors (MAFE) and by the coverage ratio,

each of them referring to the estimated 5% Value at Risk. Note that the coverage (ratio)

is defined as the proportion of observations falling below the estimated Value at Risk and

should thus be close to τ = 0.05 for the 5% Value at Risk. It should be mentioned that while

coverage, MPE, MAPE and MAFE are reported in the Bias column for the purpose of a tidy

exposition, their values represent the mean deviations from the value 0.0, which corre-

sponds to the perfect fit of the model: for example, coverage value 0 represents the exactly

correct coverage level 0.05 and MAPE value 0 would represent the exact fit. The RMSE of

these quantities additionally depict their corresponding Monte Carlo standard deviations.

We will use these metrics to compare different estimators with each other as well as the

impact of different features of the data generating process on prediction and forecasting.

Our first simulation experiment, considers the rate of convergence of the proposed es-

timator by studying its performance for different sample sizes n = 1000, n = 2000, and

n = 4000; Table S.5 summarises the results. It is comforting to report that the root mean

squared errors (from now on abbreviated as RMSE) of the parameter estimates decrease,

at a rate that is consistent with our theoretical conclusions, as the sample size increases.

Regarding the second-stage transition parameters, although they are estimated more pre-

cisely as the sample size increases too, their RMSEs seem to go down slower than expected.

This issue, which will be even more pronounced in the case of the standard GARCH model

later, can be caused by the non-linearity of the model with respect to the transition pa-

rameters that makes them difficult to estimate from a numerical point of view. This is
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most pronounced in the first stage, where we use a smooth approximation of the quantile

loss function, which is often very flat around the true parameters. Similarly, mean abso-

lute prediction errors (MAPE) and mean absolute forecast errors (MAFE) are decreasing,

and unsurprisingly, coverage ratios are accurate by construction of the quantile regression

estimator.10,11

Moving on to study the influence of auxiliary parameters, to begin with we look at the

amount of lags in the ARCH(m) approximation by considering different multiples c of n
1
4 ,

all satisfying the required order of the ARCH(m) approximation rate. The results for c =

2.0, 2.5, 3.0 and 3.5 multiples of n
1
4 , which translate to m = 12, 15, 17, and 20 for n = 1000,

are reported in Table S.6. We conclude they are fairly constant with respect to c, and thus

m, although there is a slight U-shape pattern with the optimum in terms of MAPE around

c = 2.5, which we will use for the remainder of the experiments and the following empirical

application.

Further, as discussed in Section 3, the model parameters are not identified at the me-

dian and we thus suggested to estimate the first-stage composite quantile regression with-

out using quantiles τ ∈ (0.5 − δ/2, 0.5 + δ/2) for some δ > 0 as they could introduced extra

noise into estimation. In Table S.7, results for different values of δ are collected, indicat-

ing that the precision of the estimates seems rather insensitive to a particular choice of

δ. For the remainder of the simulations and the empirical application we use δ = 0.25,

which corresponds to considering the first and fourth quartile of the data to approximate

conditional volatility.

In the second part of the simulation study, we compare smooth transition estimates

of conditional quantiles (GACQ) with traditional smooth transition GARCH estimates. In

particular, we consider the maximum likelihood estimators of the latter based on both

Normal (GARCH-N) and Student’s t4 distribution (GARCH-t).

Naturally, the correctly specified GARCH maximum likelihood estimator yields the best

parameter estimates for the case in which the data generating process exhibits standard

normally distributed innovations, εt ∼ N(0,1); see Table S.8. Neglecting the parameters

of the transition function, the GARCH-t model also performs relatively well in terms of

RMSEs of the parameter estimates. However, the wrong assumption about the innovation

distribution has serious negative consequences on the calculation of conditional quan-

10The reason for reporting the coverage ratio is to allow for a direct comparison to the GARCH models in
the second part of the simulation study, for which this property does not necessarily hold.

11To get an intuition for the magnitude of MAPE and MAFE which are of order 10−1, note that the 5th

unconditional quantile of ut is given by −2.4 for a typical series. The reported statistics refer to integrated
absolute deviations of the predictions our model makes for the conditional quantile process which is centred
at this value.
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tiles and thus its prediction and forecast errors, as can be seen by looking at the GARCH-t

estimates in Table S.8. The proposed GACQ model comes with the price of an efficiency

loss in the parameter estimates, but the model outperforms both GARCH-N and GARCH-t

in terms of predictions errors. While in-sample prediction errors of our model are only

slightly smaller than those of GARCH-N and GARCH-t, with respect to out-of-sample fore-

casting we see a substantial improvement using GACQ over the other two models. This

could be partially explained by more precise estimates of the transition function, and in

the case of forecasting errors, by directly modelling and fitting the quantiles of the innova-

tion distribution.

The picture is similar for the data generating process with Student errors, εt ∼ t4/
√
2.

Again the correctly specified model, in this case GARCH-t, provides the most precise co-

efficient estimates. Interestingly, the GARCH-N estimator performs better in terms of pre-

diction errors (MAPE) than GARCH-t despite the Student errors. Although the GACQ pa-

rameter estimates are less precise than the GARCH ones (with the exception of η), GACQ

has similar MAPE as GARCH-N, but outperforms GARCH-N (and thus GARCH-t) in terms

of out-of-sample forecasting.

We finalise the innovation-distribution related group of experiments by studying a mem-

ber of the class of asymmetric distributions. Table S.10 shows results for the case where

innovations follow a Gumbel distribution which is parameterised by location parameter

µG = 0 and scale parameter βG =
√
6/π. We re-centred the innovations by subtracting βGe1

from each realisation so that ε has mean zero. Since it is distribution-agnostic, it should

come with no surprise that the performance of the proposed GACQ model is similar to

the previous experiments with symmetric errors. Being misspecified, the GARCH-N and

GARCH-t models provide now less precise estimates in regime II and both their MAPEs

and MAFEs are larger than those of GACQ.

Finally, we look at the case in which normally distributed innovations are contaminated

by outliers. We define them as follows. Let εt ∼ N(0,1) or t4 and rt ∼ U[0,1] are independent

and uniformly distributed. Then for each ut(θ0) = σt(zt,θ0)εt, the contaminated series

{u ′}
n
t=1 is defined as

u ′t := ut + 1{rt60.025}sgn(εt)3σε

with σε = 1. Note that this might be considered a very small contamination, but we re-

port estimates for the 5% Value at Risk and thus these contaminated values form a large

proportion of the data used for estimation. Predictably, the RMSEs of all the parameters

estimates increase in the presence of contaminations irrespective of the considered model.

Considering MAPE, the increase in the prediction errors is relatively limited in the case of
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the GACQ method. On the other hand, the MAPE of GARCH-N increase substantially and

the model exhibits large prediction biases. The situation is similar for GARCH-t, which

however partially compensates for this fatter tails by underestimating its degrees of free-

dom parameter. Most importantly, the coverage ratio in the conditional variance GARCH

models are on average off by 1.4 and 2.7 percentage points, respectively, which is a rather

significant deviation given that we consider the 5% Value at Risk, whereas the coverage

ration of GACQ is unaffected by the contamination.

7 Empirical Application

For this empirical study we consider the 1% and 5% Value at Risk of daily closing data of

the USD/GBP exchange rate and the German equity index (DAX).

Before we estimate the GACQ model with the smooth transition specification (3), we

first test this specification against the alternative of the Anderson, Nam & Vahid (1999)

specification (8). For the implementation of this test we specify a quadratic GARCH model

as defined in Section 2. Under the null hypothesis, both regimes can be inverted separately

and approximated by an ARCH(m) process according to equation (17). Otherwise, the lag

polynomials will be dependent on higher-order interactions of the transition function as

derived in Lemma (1) leading to a different ARCH(m) specification. Table 1 presents the

exact specifications of the estimated lag polynomials of Gt(ζ) and 1 − Gt(ζ) under the null

and the alternative hypothesis, respectively, as well as likelihood ratio test statistics which

we obtain from maximum likelihood estimation of both specifications. We do not find ev-

idence in favour of the non–separable specification for both time series and thus proceed

with our baseline estimation procedure as discussed in Section 3.

Table 2 reports GACQ parameter estimates for the two series using data from 2002 to

2016 and a corresponding sample size of n = 3,000. Model selection was based on a for-

mal selection criterion based on the loss resulting from the second step of the estimation

procedure. The specification that is ultimately reported corresponds to the widely used

specification with p = q = 1 lags and the logistic transition function, although estimates

turned out to be very robust with respect to the choice of the latter. Results are reported

for the transition variable ξt = ut−1.12

Recall that these parameters are local with respect to the estimated innovation distri-

12Alternative models in ascending order or their loss for the respective 1% VaR are: 38.056 (ut−1), 39.265
(ut−2), 40.512 (ū5t ) and 40.515 (ut−3) for USD/GBP and 129.41 (ut−3), 133.15 (ut−1), 133.42 (ū5t ), 134.58 (ut−2)
for the DAX where ū5t :=

∑5
k=1 ut−k are weekly average returns
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Table 1: Polynomials, Likelihoods and Critical values of Specification Test

Lags H0 H1

1, ut−1 Gt, G
−
t Gt, G

−
t

ut−2 Gt, G
−
t GtGt−1, GtG

−
t−1, G

−
t Gt−1, G

−
t G

−
t−1

ut−3 Gt, G
−
t GtGt−1Gt−2, GtGt−1G

−
t−2, GtG

−
t−1Gt−2, GtG

−
t−1G

−
t−2

G−
t Gt−1Gt−2, G

−
t Gt−1G

−
t−2, G

−
t G

−
t−1Gt−2, G

−
t G

−
t−1G

−
t−2

ut−4 Gt, G
−
t GtGt−1Gt−2Gt−3, GtGt−1Gt−2G

−
t−3, GtGt−1G

−
t−2Gt−3, GtGt−1G

−
t−2G

−
t−3

GtG
−
t−1Gt−2Gt−3, GtG

−
t−1Gt−2G

−
t−3, GtG

−
t−1G

−
t−2Gt−3, GtG

−
t−1G

−
t−2G

−
t−3

G−
t Gt−1Gt−2Gt−3, G

−
t Gt−1Gt−2G

−
t−3, G

−
t Gt−1G

−
t−2Gt−3, G

−
t Gt−1G

−
t−2G

−
t−3

G−
t G

−
t−1Gt−2Gt−3, G

−
t G

−
t−1Gt−2G

−
t−3, G

−
t G

−
t−1G

−
t−2Gt−3, G

−
t G

−
t−1G

−
t−2G

−
t−3

USDGBP -1360.4 -1347.8 (χ20.95,22 = 33.9 > 25.2 = LR)
DAX 11606.5 11353.9 (H0 model superior to H1 (*))

Note: This table shows the included interaction terms according to Lemma (1), where we denote Gt = Gt(ζ)
and G−

t = 1 − Gt(ζ), according to the test derived in Section 5 for both the specification under the null
hypothesis (separability) and the alternative. It reports the respective log-likelihoods for both time series
and the results of a LR test. Tests were repeated form = 3, with the same conclusion.
(*) Note that H0 is not nested in H1. LR tests of non–nested hypotheses are studied in Vuong (1989).

bution, which results in negative estimates.13 Given that we consider financial time series,

which are known to react to news relatively quickly, it is not surprising that in most cases

the regime is determined by the previous observation of the lagged dependent variable.

This is with the exception of the 1% Value at Risk model for the DAX, for which our model

selection procedure suggests that the regime is determined by ut−3.

With −0.08% and −0.10%, corresponding to the 36th and 33rd unconditional quantile,

respectively, the location parameters for the USD/GBP are rather close to zero. The scale

parameter estimates suggest that there is a rapid transition from one regime to another

around these locations.14 The first regime is active more often, namely for about 62% of

the daily observations.15 The unconditional variance of the first regime is 0.19 and thus

approximately the same as the one for the second regime for which we obtain an estimate

of 0.14. Based on the ARCH parameter estimates from the first stage, we do not find one

regime to be more persistent than the other.

The estimated locations for the German equity index are 0.72% for the 5% VaR and

−1.09% for the 1% VaR, corresponding to the 74th and 15nd unconditional quantile, respec-

tively. The scale estimate also implies a rapid transition from one regime to the other

around the location. Finally the first regime of the DAX is active 40% of the time with an un-

conditional variance of 0.45. The variance of the second regime is higher with 0.59. Again,

13Note that one could theoretically apply another composite quantile regression procedure for the second
stage to identify the global GARCH parameters.

14No significance levels of the location and scale parameter estimates are reported, due to the lack of a
natural null hypothesis for either of them.

15We define this measure as an unconditional average of the value of the transition function.
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Table 2: Coefficients and standard errors for the Value at Risk GACQ estimates.

1% VALUE AT RISK

USD/GBP (ξ = ut−1) DAX (ξ = ut−1)
Regime I Regime II Regime I Regime II

coef s.e. coef s.e. P(>|Z|) coef s.e. coef s.e. P(>|Z|)

β0 -0.021 0.087 -0.556 0.365 0.012 -0.029 0.497 -0.771 0.123 0.003
β1 -1.557 0.371 -0.000 0.405 0.000 -1.846 0.225 -1.108 0.163 0.000
γ1 -0.011 0.165 -0.918 0.558 0.038 -0.000 0.305 -0.237 0.084 0.009

ζ -0.081 0.383 0.725 0.523
η 0.100 0.268 0.100 0.355

5% VALUE AT RISK

USD/GBP (ξ = ut−1) DAX (ξ = ut−1)
Regime I Regime II Regime I Regime II

coef s.e. coef s.e. P(>|Z|) coef s.e. coef s.e. P(>|Z|)

β0 -0.242 0.057 -0.783 0.125 0.000 -0.809 0.162 -2.832 0.780 0.000
β1 -2.084 0.168 -0.000 0.216 0.000 -2.367 0.200 -0.093 0.450 0.000
γ1 -0.000 0.064 -1.240 0.129 0.000 -0.000 0.133 -0.283 0.128 0.000

ζ -0.108 0.091 -1.096 0.670
η 0.100 0.078 0.131 0.564

Note: The parametersβr0, β
r
1, γ

r
1 for r ∈ {I, II} are local with respect to τ and estimated subject to non-positivity

constraints (Koenker & Ng, 2005). The reported p-values correspond to the test of the hypothesis that indi-
vidual parameters are different in the two respective regimes. Note that, technically these asymptotic tests
are only valid for the parameters in the interior of the parameter space, i.e. whenever the linear inequality
constraint is not binding.

there is no clear order of persistence between the regimes.

To conclude this first part of our application, Figure 1 presents the daily returns of ex-

change rate pair USD/GBP as well as the corresponding predicted 10%, 5%, and 1% value

at risk processes according to our estimation procedure.16 The main conclusions we can

draw from this are that the processes are indeed stationary, and compared to GARCH-

based models, they are not proportional to each other due to the non-linear nature of the

model in combination with the fact that estimates are local with respect to the considered

quantile of the innovations.

To compare the performance of the GACQ Value at Risk estimates, GARCH estimates,

and one regime GACQ estimates, we will now apply two different out of sample tests which

are based on the coverage ratios. For this, we consider a rolling sub-sample of both time

series, where we evaluate the forecast for each t within the last N = 100 periods. For each

16Technically the Basel regulation uses the actuarial convention that value at risk has a positive sign when
it corresponds to a loss. According to this definition Figure 1 shows estimates of “negative VaRs".
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Figure 1: USD/GBP returns and its (ANST-GACQ) predicted 10%, 5% and 1% VaR’s
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forecast we use the previous 1000 observations to obtain model estimates, based on which

we construct forecasts for the conditional quantile Q̂ut(τ|Ft−1) for τ ∈ (0,1). Using the

true value ut we calculate It = 1

{
ut 6 Q̂ut(τ|Ft−1)

}
for each t = n − N + 1, . . . , n, where

n denotes the latest observation in the data. The out-of-sample coverage ratio is then

equal to hoos :=
∑n
t=n−N+1 It/N. We use two different tests to verify that the proportion

of forecasts exceeding the estimated quantile, also referred to as “hits,” is not significantly

different from the specified τ. Both tests are widely used in the literature and evaluate un-

conditional coverage.17 The first test we use is the likelihood ratio test proposed by Kupiec

(1995). It assumes that the Bernoulli process It is an i.i.d. sequence, so that the number of

hits x = Nhoos follows a binomial distribution with hoos = τ under the null hypothesis. The

second test to verify that the out-of-sample forecasts represent the τth quantile exploits the

fact that It+1−τ is a martingale difference sequence with zero mean and varianceNτ(1−τ)

and thus its cumulative sum converges to a normal distribution (Campbell, 2007; Xiao &

Koenker, 2009). Detailed information and formal definitions of the tests statistics can be

found in Appendix ??. Table 3 summarizes the results for the two regime models.

It is apparent that the GACQ model estimates conditional quantiles more accurately

than both GARCH models and there is no evidence that the null hypothesis, stating that

the forecast represents the true quantile, has to be rejected for any of the confidence levels.

This is not the case for the regime-switching quadratic GARCH-N and GARCH-t models.

While there are situations in which these models also perform well, what we would take

away from this experiment is that our GACQ estimator should be preferred with regards to

17There are other tests which also consider conditional coverage, discussed for example in Christoffersen
(1998), Berkowitz, Christoffersen & Pelletier (2011) or the dynamic quantile test proposed in Engle & Man-
ganelli (2004).
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Table 3: Coverage and test statistics for GACQ and GARCH with two regimes.

USD/GBP Exchange rate

GACQ GARCH-N GARCH-t
1% 5% 10% 1% 5% 10% 1% 5% 10%

hIS 0.012 0.052 0.101 0.016 0.046 0.089 0.001 0.012 0.028
hOOS 0.000 0.030 0.070 0.000 0.030 0.060 0.000 0.010 0.040

P(>|Zn|) 0.315 0.359 0.317 0.315 0.359 0.183 0.315 0.067 0.046
P(>Ln) 0.156 0.323 0.293 0.156 0.323 0.153 0.156 0.026 0.024

DAX Equity Index

GACQ GARCH-N GARCH-t
1% 5% 10% 1% 5% 10% 1% 5% 10%

hIS 0.011 0.050 0.010 0.030 0.089 0.121 0.012 0.138 0.171
hOOS 0.000 0.060 0.100 0.040 0.110 0.150 0.020 0.080 0.150

P(>|Zn|) 0.315 0.646 1.000 0.003 0.006 0.096 0.315 0.169 0.096
P(>Ln) 0.156 0.656 1.000 0.023 0.017 0.118 0.376 0.204 0.118

Table 4: Coverage and test statistics for GACQ with one regime.

USD/GBP DAX Equity Index

Quantile hIS hOOS P(>|Zn|) P(>Ln) hIS hOOS P(>|Zn|) P(>Ln)

1% 0.012 0.000 1.000 1.000 0.011 0.010 1.000 1.000
5% 0.050 0.010 0.067 0.026 0.050 0.060 0.646 0.656
10% 0.099 0.050 0.096 0.068 0.099 0.140 0.183 0.206

its performance uniformly over different types of time series, as well as different estimated

quantiles for each of these series.

One could of course argue that the two regime models such as GACQ and GARCH are

unnecessary and a single regime CAViaR model would be sufficient. Therefore, we also

compare the two regime GACQ model with the single regime GACQ (CAViaR) by means of

analysing their out-of-sample forecasts. Results for the single regime model are reported

in Table 4 and are to be contrasted with the first three columns of Table 3. While it would in

principal be possible to develop a formal test for the regime-switching model against the

linear model (e.g., see Luukkonen, Saikkonen & Teraesvirta (1988) for the smooth transi-

tion autoregressive model), we think this exceeds the scope of this paper.

The results of this final part of our experiments again suggest different conclusions for

each of the two time series. For USD/GBP, the hypothesis that the proportion of hits equals

the specified Value at Risk in the out-of-sample forecast procedure can be rejected for the
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5% and 10% quantiles. This is not the case for the two regime GACQ model, which is a

strong indication that there is indeed a second regime in this time-series. On the other

hand we cannot reject the hypothesis that the one-regime GACQ model does not describe

the German equity index equally well as its two regime counterpart.

8 Conclusion

In the preceding analysis we proposed a model which bridges the gap between recent de-

velopments in Value at Risk estimation such as CAViaR models and traditional smooth

transition GARCH models. We believe some general conclusions can be drawn from our

experiments. First, from the case of USD/GBP we see that ignoring a second regime in

situations where the DGP seems to include one, unsurprisingly leads to inferior out of

sample predictions. Second, from the results for the DAX equity index we conclude that

while we find the parameter estimates of both regimes to be different suggesting the ex-

istence of two regimes, specifying only one works equally well in terms of out-of-sample

forecast errors for this particular time series. Despite this and in combination with the fact

that we needed a technical identification assumption of the existence of two regimes for

our theoretical results it is comforting to see that this does not harm the forecasting ac-

curacy of our estimator. Third, confirming the conclusions already found in some of the

related literature (see Xiao & Koenker (2009) and references therein), compared to their

conditional variance counterparts, a distribution-free specification and direct estimation

of conditional quantiles seems to work well in practice. From all these points we con-

clude that while other models and specifications do work for data generating processes

unknown to the empirical analyst, estimating the value at risk using the proposed GACQ

model reduces the risk of misspecification, since it works equally well and uniformly over

different DGPs.
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A.1 Auxiliary Results and Proofs

Within the following derivations, let Pn be the empirical distribution that puts mass dPn = n−1 to each

observation u1, . . . , un such that Pnf(ut) =
∫
f(ut)dPn = n−1

n∑
t=1

f(ut) for any measurable function f. Also let

the vector zmt = (|ut−1|, . . . , |ut−m|)T , and zmt (ζ) = [Gt(ζ) z
m
t , (1−Gt(ζ))z

m
t ]T , where the latter is defined as a

function of ζ to highlight the dependence on the transition function. Further, let the data considered in the

second stage be zt(α) = [1, |ut−1|, . . . , |ut−p|, σt−1(α), . . . , σt−q(α)]
T which is a function of α := [αI,T,αII,T, ζT ]T ,

where ζ refers to the location and scale parameters entering the first stage. Similarly, we define zt(α, ζ) =

[Gt(ζ) zt(α), (1−Gt(ζ))zt(α)]
T to be the vector that stacks both regimes weighted data. Also recall that a =

[αI,T,αII,T,qT , ζT ]T .

Now the right-side derivative of the check-function ρτk(u) = u(τk − 1 {u 6 0}) is given by ψτk,t(u) :=

(τk − 1 {u 6 0}) so that the directional derivative of the objective function defined in equation (9) is given as

gn(a) = gn(α
I,αII,q, ζ) := Pn

K∑
k=1



zmt (ζ)qk

1 {k = 1} [αI,αII]Tzmt (ζ)

...

1 {k = K} [αI,αII]Tzmt (ζ)

qk(α
I − αII)Tzmt (ζ)∂Gt(ζ)

∂ζ


︸ ︷︷ ︸

xt,k(a)

(τk − 1
{
ut 6 qk[α

I,αII]Tzmt (ζ)
}
). (18)

Similarly, without making any statements about convergence yet, the corresponding population equivalent

can be written as

g(a) = g(αI,αII,q, ζ) := E
K∑
k=1



zmt (ζ)qk

1 {k = 1} [αI,αII]Tzmt (ζ)

...

1 {k = K} [αI,αII]Tzmt (ζ)

qk(α
I − αII)Tzmt (ζ)∂Gt(ζ)

∂ζ


(τk − Fut|Ft−1(qk[α

I,αII]Tzmt (ζ)))

by applying the law of iterated expectations. In addition to this we will frequently make use of the identity

∂Fut|Ft−1(x)/∂x = σt
−1∂Fε(x)/∂x = σ

−1
t fε(x): as equation (4) establishes F−1

ut|Ft−1
(x) = σtF

−1
ε (x) and since both

Fut|Ft−1 and Fε are monotone and differentiable by Assumption 3 and 4, the expression follows by applying

the inverse function theorem.

Proof of Lemma 1: We show this by induction and omit the parameters of sigma for readability. By definition
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we have

σt = P̄(L0)σt−1 + P̄(L0)|ut−1|.

Lagging this equation and plugging in for σt−1, we get by construction of P̄(L1):

σt = P̄(L0)
[
LP̄(L0)σt−2 + LP̄(L

0)|ut−2|
]
+ P̄(L0)|ut−1|

= P̄(L1)σt−2 + P̄(L1)|ut−2|+ P̄(L0)|ut−1|.

Form 7→ m+ 1we note that σt−j = LjP̄(L0)σt−j−1 + LjP̄(L0)|ut−j−1|. Thus substituting for σt−m−1 in equation

(16) we obtain

σt = P̄(Lm)
[
Lm+1P̄(L0)σt−m + Lm+1P̄(L0)|ut−m|

]
+

m∑
k=0

P̄(Lk)|ut−k−1|,

and after using Lm+1P̄(L0) = LP̄(Lm) we get

σt = P̄(Lm+1)σt−(m+1)−1 + P̄(Lm+1)|ut−(m+1)−1|+

m∑
k=0

P̄(Lk)|ut−k−1|

= P̄(Lm+1)σt−(m+1)−1 +

m+1∑
k=0

P̄(Lk)|ut−k−1|,

where the first term is vanishing due to the parameter restrictions in Assumption 2 and Gt(ζ) ∈ [0,1] by

Assumption 1, which completes the proof.

Proof of Theorem 1: The proof is split into three parts: we first discuss the identification of the first-stage

parameters, then their consistency, and finally, the convergence rate is derived. First, we show that forα(τ) =

[αI,T(τ),αII,T(τ)],18 the vector
[
αT0 (τ), ζ

T
0

]T
is in fact the minimum of the objective function Eρτ(u). We show

this for an arbitrary quantile τ ∈ (0, 1
2
) ∪ (1

2
,1), from which the composite quantile result follows as K > 1 by

Assumption 7.

To see this let the objective function m(α(τ), ζ) = Eρτ(ut−αT (τ)zmt (ζ)). Then we have global identification

if and only if m(α(τ), ζ) − m(α0(τ), ζ0) > 0 for any
[
αT (τ), ζT

]
6=
[
αT0 (τ), ζ

T
0

]
.

Let α(τ)∆ = αI(τ) − αII(τ) and also let vt be the probability measure of ut conditional upon the filtration

Ft−1. Then we have to prove

inf
α(τ) : ‖α(τ) −α0(τ)‖ > δ

ζ : ‖ζ− ζ0‖ > δ

E
[∫
ρτ(ut − α(τ)

Tzmt (ζ))dvt −

∫
ρτ(ut − α0(τ)

Tzmt (ζ0))dvt

]
> εδ, (19)

where we can discuss the inside part of the expectation into two cases. First, consider α0(τ)Tzmt (ζ0) >

18In the first stage, the parameters of the transition function are estimated globally using the objective
function at quantiles τ1, . . . , τK and are therefore not included in the locally estimated α(τ).
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α(τ)Tzmt (ζ):

∫
ρτ(ut − α(τ)

Tzmt (ζ))dvt −

∫
ρτ(ut − α0(τ)

Tzmt (ζ0))dvt =

(τ− 1)

α(τ)Tzmt (ζ)∫
−∞
(ut − α(τ)

Tzmt (ζ))dvt + τ

α0(τ)
Tzmt (ζ0)∫

α(τ)Tzmt (ζ)

(ut − α(τ)
Tzmt (ζ))dvt + τ

+∞∫
α0(τ)Tzmt (ζ0)

(ut − α(τ)
Tzmt (ζ))dvt

−(τ− 1)

α(τ)Tzmt (ζ)∫
−∞
(ut − α0(τ)

Tzmt (ζ0))dvt − τ

α0(τ)
Tzmt (ζ0)∫

α(τ)Tzmt (ζ)

(ut − α0(τ)
Tzmt (ζ0))dvt − τ

+∞∫
α0(τ)Tzmt (ζ0)

(ut − α0(τ)
Tzmt (ζ0))dvt

=(1− τ)

α(τ)Tzmt (ζ)∫
−∞
(α(τ)Tzmt (ζ) − α0(τ)

Tzmt (ζ0))dvt +Ω1 + τ

+∞∫
α0(τ)Tzmt (ζ0)

(α0(τ)
Tzmt (ζ0) − α(τ)

Tzmt (ζ))dvt

>(1− τ)

α0(τ)
Tzmt (ζ0)∫
−∞
(α(τ)Tzmt (ζ) − α0(τ)

Tzmt (ζ0))dvt + τ

+∞∫
α0(τ)Tzmt (ζ0)

(α0(τ)
Tzmt (ζ0) − α(τ)

Tzmt (ζ))dvt (20)

=α0(τ)
Tzmt (ζ0) − α(τ)

Tzmt (ζ)

(1− τ) α0(τ)
Tzmt (ζ0)∫
−∞

dvt + τ

+∞∫
α0(τ)Tzmt (ζ0)

dvt


=
(
α0(τ)

Tzmt (ζ0) − α(τ)
Tzmt (ζ)

) [
τ− vt(−∞, F−1ut|Ft−1(τ)]] , (21)

where we use the fact that vt(−∞, F−1ut|Ft−1(τ)]+vt(F−1ut|Ft−1(τ),+∞) = 1 (vt is a probability measure) and where

the inequality in equation (20) follows from the fact that

Ω1 :=

α0(τ)
Tzmt (ζ0)∫

α(τ)Tzmt (ζ)

(ut − τα(τ)
Tzmt (ζ) − (1− τ)α0(τ)

Tzmt (ζ0))dvt > (1− τ)

α0(τ)
Tzmt (ζ0)∫

α(τ)Tzmt (ζ)

(α(τ)Tzmt (ζ) − α0(τ)
Tzmt (ζ0))dvt.

Similarly for α0(τ)Tzmt (ζ0) < α(τ)
Tzmt (ζ), it holds

=(1− τ)

α0(τ)
Tzmt (ζ0)∫
−∞

(α(τ)Tzmt (ζ) − α0(τ)
Tzmt (ζ0))dvt −Ω2 + τ

+∞∫
α(τ)Tzmt (ζ)

(α0(τ)
Tzmt (ζ0) − α(τ)

Tzmt (ζ))dvt

>(1− τ)

α0(τ)
Tzmt (ζ0)∫
−∞
(zmt (ζ)α(τ)T − zmt (ζ0)α0(τ)

T )dvt + τ

+∞∫
α0(τ)Tzmt (ζ0)

(α0(τ)
Tzmt (ζ0) − α(τ)

Tzmt (ζ))dvt

=
(
α(τ)Tzmt (ζ) − α0(τ)

Tzmt (ζ0)
) [
τ− vt(−∞, F−1ut|Ft−1(τ)]] , (22)

where we use

Ω2 :=

α(τ)Tzmt (ζ)∫
α0(τ)Tzmt (ζ0)

(ut − τα(τ)
Tzmt (ζ) − (1− τ)α0(τ)

Tzmt (ζ0))dvt 6 τ

α(τ)Tzmt (ζ)∫
α0(τ)Tzmt (ζ0)

(α0(τ)
Tzmt (ζ0) − α(τ)

Tzmt (ζ))dvt.

Then by the definition of the τth quantile, vt(−∞, F−1ut|Ft−1(τ)] 6 τ and the final expressions in both equation

(21) and equation (22) are thus non-negative. Thus the expectation in (19) with respect to the measure of zt is

zero for parameters other than the true parameter if and only if it holds for all zt that
(
α0(τ)

Tzmt (ζ0) − α(τ)
Tzmt (ζ)

)
=
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0. The parameters are thus identified if the following identification statement holds:

E
[
α(τ)Tzmt (ζ) − α0(τ)

Tzmt (ζ0)
]
= E

[
(α− α0)

TF−1ε (τ)zmt (ζ) + α∆0 F
−1
ε (τ)zmt (Gt(ζ) −Gt(ζ0))

]
= F−1ε (τ)E


α− α0

α∆

T  zmt (ζ)

zmt (Gt(ζ) −Gt(ζ0))


 = 0

if and only if α = α0 and ζ = ζ0. This however follows from the global identification Assumption 6, which

states that E[Gt(ζ) zmt , (1 − Gt(ζ))zmt , zmt (Gt(ζ) − Gt(ζ0))]
T [Gt(ζ) z

m
t , (1 − Gt(ζ))z

m
t , z

m
t (Gt(ζ) − Gt(ζ0))] has full

rank for any ζ 6= ζ0. Thus α(τ) = αF−1ε (τ) is identified for an arbitrary τ ∈ (0, 1
2
) ∪ (1

2
,1). Note that the result

does not hold for τ = 1
2

for which F−1ε (τ) is zero.

Given this identification result, the consistency for a fixed dimension m would follow once the sam-

ple objective function is shown to converge uniformly in probability to its (continuous) population coun-

terpart, which we just analysed above (Theorem 2.1, p. 2121 in Newey & McFadden, 1994); note that for

τ ∈ (0, 1
2
) ∪ (1

2
,1) the parameter space Θτ1 is a compact subset of R2(m+1)+2. An m → ∞, the consistency

of the proposed sieve estimator is obtained by Theorem 1 in Chen & Shen (1998, p. 297), for which we

have to check conditions A.1-A.4 therein. Let us first denote m = ρτ ◦ ωt, where ωt : (αI(τ),αII(τ), ζ) 7→

zm,Tt αII(τ) + (αI(τ) −αII(τ))Tzmt G(ξt, ζ, η), α(τ) = [αI(τ, T),αII,T(τ)]T and ζ = [ζ, η]T . For condition A.4, we have

to show that the functionm = ρτ ◦ωt is Lipschitz. By Assumption 1, the transition functionGt(ζ) is Lipschitz

in ζ, and by construction, ωt is Lipschitz in α and G(). Thus, ωt is Lipschitz in α and ζ since the property is

preserved under function composition.19 The piecewise linear function ρτ is Lipschitz as well and so is thus

m = ρτ ◦ ωt. Further, note that we actually have a special case of s = 1 in the Hölder condition A.4, which

by Chen & Shen (1998, Remark 1(c)) implies their condition A.2. In addition to this, condition A.1 holds by

Assumption 5 which states that ut is β-mixing with decay rate satisfying βs 6 β0s
−(2+δ) for some δ > 0.

Finally, we note that, by Chen (2008, p. 5595), it holds for Lipschitz functions that the bracketing numbers

logN[](ε
s,Fn, ‖�‖2) 6 logN(ε,Θτ1, ‖�‖) 6 Cm log( 1

ε
) for some constant C > 0, where m is the dimension of the

sieve parameter space, and that this implies their condition A.3. Therefore, we can apply Theorem 1 in Chen

& Shen (1998) and conclude that the first-stage sieve estimator is consistent.

Next to derive the convergence rate of the first-stage estimator, we have to show that the directional

derivative of the non-differentiable gn around the true value a0 is positive in every direction with probability

tending to one. Let ϕt(a) =
K∑
k=1

xt(a)(τk − 1
{
ut 6 aTxt(a)

}
). Then we have to prove that

∀ε > 0 : ∃B <∞ : lim
n→∞P

[
inf

λ∈R2(m+1)+K+2:‖λ‖=1
PnλTϕt

(
a0 + B

(m
n

) 1
2

λ

)
> 0

]
> 1− ε. (23)

Adding and subtracting PnλTE
[
ϕt

(
a0 + B

(
m
n

) 1
2 λ
)∣∣∣Ft−1]−PnλTE [ϕt (a0)| Ft−1] as well as PnλTϕt (a0),

19If both f and g are Lipschitz so is f ◦ g since (f ◦ g)(x) − (f ◦ g)(x0) = f(g(x)) − f(g(x0)) 6 Cf(g(x) − g(x0)) 6
CfCg(x− x0) for finite constants Cf and Cg.
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the random quantity in (23) can be rewritten as:

PnλTϕt
(
a0 + B

(m
n

) 1
2

λ

)
(24)

=
{
PnλTϕt (a0)

}
(25)

+

{(
PnλTϕt

(
a0 + B

(m
n

) 1
2

λ

)
− PnλTϕt (a0)

)
(26)

−

(
PnλTE

[
ϕt

(
a0 + B

(m
n

) 1
2

λ

)∣∣∣∣Ft−1]− PnλTE [ϕt (a0)| Ft−1]

)}
+

{
PnλTE

[
ϕt

(
a0 + B

(m
n

) 1
2

λ

)∣∣∣∣Ft−1]− PnλTE [ϕt (a0)| Ft−1]

}
. (27)

This expansion can be now analysed term by term. Term (26) will turn out to be stochastically negligible,

whereas term (25) and (27) can be made explicit. Let us start by rewriting (27) in the following way, using the

definition of ϕt:

PnλTE
[
ϕt

(
a0 + B

(m
n

) 1
2

λ

)∣∣∣∣Ft−1]− PnλTE [ϕt (a0)| Ft−1]

= PnλTE

[
K∑
k=1

(
τk − 1

{
ut 6

(
a0 + B

(m
n

) 1
2

λ

)T
xt,k(a0)

})
xt,k(a0)

∣∣∣∣∣Ft−1
]

− PnλTE

[
K∑
k=1

(
τk − 1

{
ut 6 a

T
0xt,k(a0)

})
xt,k(a0)

∣∣∣∣∣Ft−1
]

= −PnλT
K∑
k=1

(
Fut|Ft−1

((
a0 + B

(m
n

) 1
2

λ

)T
xt,k(a0)

)
− Fut|Ft−1

(
aT0xt,k(a0)

))
xt,k(a0).

Applying the Taylor expansion around a0 to the first term for each t ∈ Im,n yields:

− PnλT
K∑
k=1

fut|Ft−1
(
aT0xt,k(a0)

)
xt,k(a0)xt,k(a0)

TB
(m
n

) 1
2

λ+ Op
(
m1n−1

)
= −B

(m
n

) 1
2

λTPn

[
K∑
k=1

1

σt
fε
(
F−1ε (τk)

)
xt,k(a0)xt,k(a0)

T

]
λ+ Op

(
m1n−1

)
=
(m
n

) 1
2

λTD1,n,mλ+ Op
(
m1n−1

)
,

using equations (6), (4) for the last step and definingD1,n,m =

−EPn
1

σt


ιTKh(q)ν(ζ)ν(ζ)

T ⊗ ztzTt zTt ᾱ(ζ)(ν(ζ)⊗ zt)⊗ h(ιK)T ιTKh(q)α
∆zt(ν(ζ)⊗ zt) ∂G∂ζT

diag(s)(ᾱTzt)2 ᾱTzt(ζ)α
∆zth(ιK)

∂G

∂ζT

ιTKh(q)(α
∆zt)

2 ∂G
∂ζ

∂G

∂ζT


where ᾱ = Gt(ζ)α

I+(1−Gt(ζ))α
II, ν(ζ) = [Gt(ζ) , 1−Gt(ζ)]

T , s = (s1, . . . , sK)
T , q = (q1, . . . , qK)

T , h(χ) = s�q�χ

and where � is the Hadamard product.

To analyse the remaining terms, let ηt(ν) = ϕt (a0 + ν) − ϕt (a0). Then term (26) is negligible in proba-

bility with rate
(
m
n

)− 1
2 if

sup
‖ν‖6B(mn )

1
2

∣∣PnλT (ηt(ν) − E [ηt(ν)| Ft−1])
∣∣ = op( 1√

mn

)
.

The considered process is a martingale difference sequence. The next step is to divide the ball defined
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as
{
ν ∈ R2(m+1)+K+2 : ‖ν‖ 6 B(m

n
)
1
2

}
in equation (23) into cubes Cj ⊂ R2(m+1)+K+2 centred at νj and with

side-length m
1
2n− 5

2 . The resulting cardinality for 2(m + 1) + K + 2 dimensions is then N(n) := ‖{Cj}‖ =

(2n)2(m+1)+K+2. Now then for each k ∈ I1,K, the term ηt(ν) can be bounded by

ηt(ν) 6 ηt(νj) + bk,t(νj)xt,k(a0), (28)

and similarly,

ηt(ν) > ηt(νj) + (bk,t(νj) − dk,t(νj)) xt,k(a0), (29)

with bk,t(νj)xt,k(a0) and dk,t(νj)xt,k(a0) being the process ηt evaluated at the maximum possible distance

on each axis from the centre to the boundary of the cube and the maximum possible distance on each axis

between the boundaries of the cube Cj, respectively:

bk,t(νj) = 1

{
ut < (a0 + νj)

T
xt,k(a0)

}
− 1

{
ut < (a0 + νj)

T
xt,k(a0) + B

(
n
1
2m− 5

2

)
‖xt,k(a0)‖

}
,

dτ,t(νj) = 1

{
ut < (a0 + νj)

T
xt,k(a0) + B

(
n
1
2m− 5

2

)
‖xt,k(a0)‖

}
− 1

{
ut < (a0 + νj)

T
xt,k(a0) − B

(
n
1
2m− 5

2

)
‖xt,k(a0)‖

}
.

Taking expectations of (29) and subtracting it from (28) implies that, for all ν ∈ Cj, for all t, and for all k, it

holds that

(ηt(ν) − E [ηt(ν)| Ft−1]) 6 (η(νj) − E [ηt(νj)| Ft−1])

+ (bk,t(νj) − E [bk,t(νj)| Ft−1]) xt,k(a0) + E [dk,t(νt)| Ft−1] xt,k(a0),

which implies that

sup
‖ν‖6B(mn )

1
2

∣∣PnλT (ηt(ν) − E [ηt(ν)| Ft−1])
∣∣

6 max
j∈I1,N(n)

∣∣Pn ∥∥λTxt,k(a0)∥∥ (bk,t(νj) − E [bk,t(νj)| Ft−1])
∣∣ (30)

+ max
j∈I1,N(n)

∣∣Pn ∥∥λTxt,k(a0)∥∥E [dk,t(νt)| Ft−1]
∣∣ (31)

+ max
j∈I1,N(n)

∣∣PnλT (η(νj) − E [ηt(νj)| Ft−1])
∣∣ . (32)

Expressions (30), (31), and (32) are equivalent to expressions (A.5)–(A.7) in Xiao & Koenker (2009), who show

these terms are asymptotically negligible of order
√
m/n in probability. As their proof is general and relies

on the existence of the exponential bound on innovations imposed in Assumption 8, the results also apply to

the present analysis since the current problem is piecewise linear with a bounded transition function, with

finite second moments of the conditional volatility process, and satisfying Assumption 8.

Hence, with term (26) being negligible, equation (24) can be written as

PnλTϕt
(
a0 + B

(m
n

) 1
2

λ

)
= PnλTϕt (a0) + B

(m
n

) 1
2

λTD1,n,mλ+ op

((m
n

) 1
2

)
. (33)
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Whenever the right hand side of this equation exceeds zero, it is implied that so does the left hand side.

The left-hand side is however positive with probability tending to one as B → ∞ and n → ∞ since the

following equation holds by Assumption 6:

inf
λ∈R2(m+1)+K+2:‖λ‖=1

(m
n

)− 1
2 PnλTϕt (a0) > −

B

2
λn,min − op (1) < 0,

noting that PnλTϕt (a0) = Op(
√
m/n) and λn,min > 0 as n → ∞. Statement (23) and the convergence rate

following from it are thus verified.

Proof of Theorem 2: Let ν̂ = ân − a0 where ân solves the objective function defined in equation (9). By

Theorem 1, we can write ν̂ as B
(
m
n

) 1
2 λ, B in a compact set, with a probability arbitrarily close to 1. This

substitution in equation (33) leads to

PnλTϕt (ân) = PnλTϕt (a0) + λTD1,n,m(ân − a0) + op

((m
n

) 1
2

)
.

By construction, the moment function on the left-hand side is zero at the estimate ân. Thus, the right hand

side satisfies for all λ ∈ Rm, ‖λ‖ = 1,

λT
[
Pnϕt (a0) +D1,n,m(ân − a0) + op

(
1√
n

)]
= 0,

and hence, the expression inside the bracket must be zero. After pre-multiplying it by
√
n and D1,n,m, the

Bahadur representation for
√
n(ân − a0) follows as well as the one for

√
n(α̂n − α0) by only considering the

first 2(m + 1) and the last 2 elements. The submatrix consisting of the corner blocks (upper right, upper left,

bottom right, and bottom left corners) of the matrixD1,n,m is denotedDm here.

Additionally, applying the central limit theorem (Theorem 18.5.3 in Ibragimov & Linnik, 1971) to 1√
n

∑N
t=1ϕt (a0),

it follows for any linear combination of the components of the (2(m+1)+2)-dimensional Bahadur represen-

tation that

√
nµTn(α̂n − α0) N

0 ,
K∑
k=1

K∑
k′=1

qkqk′(τk ∧ τk′)(1− τk ∨ τk′)(
K∑
k=1

q2kfε
(
F−1ε (τk)

))2 lim
m→∞µTmD−1

m µm

 (34)

where µm ∈ R2(m+1)+2 is such that the limit limm→∞ µTmD−1
m µm exists. The assumptions of the central limit

theorem are satisfied due to the moment and mixing conditions stated in Assumption 5, which ensure that

the (2+ δ) moments of the data exist and mixing coefficient satisfying βs → 0 and
∞∑
s=1

β
δ/(2+δ)
s < +∞.

For the second stage, the directional derivative of the objective function as in equation (11) is re-defined as

gn (θ,α) = gn

(
(θI,θII, ζ), (αI,αII, ζ)

)
:= Pn


zt(α)Gt(ζ)

zt(α)(1−Gt(ζ))

θ∆Tzt(α)
∂Gt(ζ)
∂ζ

(τ− 1

{
ut 6 [θI, θII]

T
zt(α, ζ)

})
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and the one for the population, using the law of iterative expectations, as

g (θ,α) = g
(
(θI,θII, ζ), (αI,αII, ζ)

)
:= E




zt(α)Gt(ζ)

zt(α)(1−Gt(ζ))

θ∆Tzt(α)
∂Gt(ζ)
∂ζ

(τ− Fu|Ft−1 ([θI, θII]
T
zt(α, ζ)

)) .

Note that we re-estimate ζ, and therefore, we consider only the first-order conditions for the parameter ζ

that is a part of θ; parameters within α are fixed and will be substituted for by the first-stage estimates. Due

to Assumption 3, the population derivative g (θ,α) is differentiable and the partial derivatives with respect

to the two parameter vectors θ and α evaluated at the true parameters are given by Γθ,0 = Γθ(θ0,α0;P), and

Γα,m,0 := Γα,m(θ0,α0;P) with

Γθ(θ,α;µ) := −
fε
(
F−1ε (τ)

)
σε

×

∫ 
 Gt(ζ)

2
Gt(ζ) (1−Gt(ζ))

Gt(ζ) (1−Gt(ζ)) (1−Gt(ζ))
2

⊗ zt(α)zt(α)T θ∆Tzt(α)

 Gt(ζ)

1−Gt(ζ)

⊗ zt(α)∂Gt(ζ)∂ζT(
θ∆Tzt(α)

)2 ∂Gt(ζ)
∂ζ

∂Gt(ζ)

∂ζT

dµ

and

Γα,m(θ,α;µ) := −
fε
(
F−1ε (τ)

)
σε

∫ 
zt(α)Gt(ζ)

zt(α)(1−Gt(ζ))

θ∆Tzt(α)
∂Gt(ζ)
∂ζ

θT

 Gt(ζ)

1−Gt(ζ)

 ⊗
 0p+1,m

[L1, . . . , Lq]T ⊗ zm
t


ιTq[L

1, . . . , Lq]T ⊗ zmT
t α∆ ∂G

∂ζ

dµ,

respectively, where L is the lag operator. These expectations are well-defined and exist by Assumptions 1–

5. In addition to this, Γθ,0 is positive definite and has full rank due to the invertibility of the conditional

scale process in Assumption 2 and Assumption 9. Finally, let Γθ,n(θ,α) = Γθ(θ,α;Pn) and Γα,n(θ,α) :=

Γα,m(θ,α;Pn) be the corresponding sample analogues.

Proof of Theorem 3: It needs to be shown that
∥∥∥θ̂n(τ) − θ0(τ)∥∥∥ = Op

(
n− 1

2

)
. For this, note that g (θ,α) is

differentiable for any θ. Thus, the first-order Taylor expansion around θ0(τ) can be applied, and due to

continuity of Γθ in θ, it follows that

g
(
θ̂n(τ),α0

)
− g (θ0(τ),α0) = (Γθ,0 + op (1))

(
θ̂n(τ) − θ0(τ)

)
+ .

Taking norms, a bound for the right hand side is obtained with a probability arbitrarily close to 1 for n→∞:

∥∥∥g(θ̂n(τ),α0)− g (θ0(τ),α0)∥∥∥ > 1
2
λmin (Γθ,0)

∥∥∥(θ̂n(τ) − θ0(τ))∥∥∥ , (35)

with λmin (Γθ,0) being the the smallest eigenvalue of Γθ,0, which is strictly positive as argued above. Since

g (θ0(τ),α0) = 0, it is sufficient to show that
∥∥∥g(θ̂n(τ),α0)∥∥∥ = Op

(
n− 1

2

)
to prove the theorem. Using the
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triangle inequality, it follows that

∥∥∥g(θ̂n(τ),α0))∥∥∥ 6 ∥∥∥g(θ̂n(τ),α0)− g(θ̂n(τ), α̂n)∥∥∥+ ∥∥∥g(θ̂n(τ), α̂n)∥∥∥
6
∥∥∥g(θ̂n(τ),α0)− g(θ̂n(τ), α̂n)∥∥∥ (36)

+
∥∥∥g(θ̂n(τ), α̂n)− g (θ0(τ),α0) − gn (θ̂n(τ), α̂n)+ gn (θ0(τ),α0)

∥∥∥ (37)

+
∥∥∥gn (θ̂n(τ), α̂n)∥∥∥ (38)

+ ‖gn (θ0(τ),α0)‖ , (39)

where g (θ0(τ),α0) = 0 was subtracted within the second norm (37). By the central limit theorem (Theorem

18.5.3 in Ibragimov & Linnik, 1971), the existence of the (2 + δ) moments of zmt , zmt Gt(ζ0), and zmt ∂Gt(ζ)/∂ζ,

respectively, and the boundedness of both Gt(ζ0) and ∂Gt(ζ0)/∂ζ implies that the expression (39) is tight

and it holds ‖gn (θ0(τ),α0)‖ = Op

(
n− 1

2

)
. The remaining terms (36), (37), and (38) can again be analysed

separately. Starting with the first term, again using the triangle inequality, and changing the signs within the

norm, term (36) can be bounded by

∥∥∥g(θ̂n(τ),α0)− g(θ̂n(τ), α̂n)∥∥∥ 6 ∥∥∥g(θ̂n(τ), α̂n)− g(θ̂n(τ),α0)− Γα,n (θ̂n(τ),α0) (α̂n − α0)
∥∥∥ (40)

+
∥∥∥Γα,n (θ̂n(τ),α0) (α̂n − α0) − Γα,n (θ0(τ),α0) (α̂n − α0)

∥∥∥ (41)

+ ‖Γα,n (θ0(τ),α0) (α̂n − α0)‖

Applying the Taylor series expansion of g
(
θ̂n(τ), α̂n

)
around α0 in (40) and using the fact that Γα,n is Lips-

chitz inα (since ∂Gt(ζ0)/∂ζ is Lipschitz and σt is bounded as it is invertible to an ARCH model by Assumption

2), term (40) is negligible in probability wrt. ‖α̂n − α0‖2 = Op (m/n) = op
(
n−1/2

)
by Theorem 1 and Assump-

tion 7. Similarly for equation (41), we use that Γα,n
(
θ̂n(τ),α0

)
is Lipschitz in θ0(τ), which has bounded

parameter space. Thus, (40) reduces to

∥∥∥g(θ̂n(τ),α0)− g(θ̂n(τ), α̂n)∥∥∥ (42)

6 Op

(
‖α̂n − α0‖2

)
+ Op

(
‖α̂n − α0‖

∥∥∥θ̂n(τ) − θ0(τ)∥∥∥)+ ‖Γα,m,0 (α̂n − α0)‖

= ‖Γα,m,0 (α̂n − α0)‖ (1+ op (1)) = Op

(
n−1/2

)
,

where the the last term follows from (i) the fact that the elementwise Γα,n → Γα,0 in probability by law of

large numbers (the respective moments exist by Assumption 5) and Slutsky’s lemma and (ii) equation (34),

which applies due to Assumption 9.

In a next step, we analyse the remaining terms (37) and (38), for which we have to check the conditions

of Lemma 4.2 in Chen (2008). For this, let

mτ(zt,θ,α) =


zt(α)Gt(ζ)

zt(α)(1−Gt(ζ))

θ∆Tzt(α)
∂Gt(ζ)
∂ζ

(τ− 1

{
ut 6 [θI, θII]

T
zt(α, ζ)

})
(43)

so that gn (θ,α) = Pnmτ(zt(α),θ,α) and g (θ,α) = Emτ(zt,θ,α). Then if zt is stationary, which is true by

Assumption 2 and 3, has β-mixing decay rate as in Assumption 5 (see e.g. Carrasco & Chen (2002), Meitz &

Saikkonen (2008)),Θτ2 is a compact subset of R2(p+q+1)+2 andΘ1 one of R2(m+1) ×R×R+, we have to verify
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for each jth component mτ,j, j ∈ I2(p+q+1)+2, of mτ that

(
E

[
sup

(θ′′,ζ′′,α′,ζ′)∈Uδ((θ′′
0,ζ0,α

′
0,ζ0)

∣∣mτ,j(zt,θ′′, ζ′′,α′, ζ′) − mτ,j(zt,θ
′′
0, ζ0,α

′
0, ζ0)

∣∣r]) 1
r

6 Kjδ
sj ,

where α′ = [αI,αII]T and θ′′ = [θI,θII]T , for some sj that is bounded by the degree of smoothness of Gt(ζ), for

some constant Kj > 0, and for r = 2+ δ satisfying the restriction in Assumption 5 to claim that:

sup
(θ,α)∈Uδ(θ0(τ),α0)

‖g (θ,α) − g (θ0(τ),α0) − gn (θ,α) + gn (θ0(τ),α0)‖ = op
(
n− 1

2

)

with Uδ := {(θ,α) ∈Θτ2 ×Θ1 : ‖θ− θ0(τ)‖ < δ, ‖α− α0‖ < δ} by Lemma 4.2 in Chen (2008). As discussed in

Chen (2008), mτ,j needs to be a member of a function class with covering numbers satisfying condition∞∫
0

√
logN(ε1/sj ,H, ‖�‖H)dε < ∞, where the degree of smoothness satisfies d = 1 > 2/(2sj) with sj = 1 in

our case. Alternatively, we can make use of the class of monotone functions which is sufficient for the for-

mer condition; for details, see Chen (2008). Consequently, we either need continuity of ∂Gt(ζ)
∂ζ

(Theorem 2.7.1

in van der Vaart & Wellner, 1996) or monotonicity (Theorem 2.7.5 in van der Vaart & Wellner, 1996) of ∂Gt(ζ)
∂ζ

with respect to ξt and Assumption 1 ensures that the transition function belongs to one of these classes.

The uniform boundedness relative to the Lr-norm of the distance between (43) evaluated at any two

parameter values within a neighbourhood of the true parameters can be shown as follows.

By definition,

zt,j(θ
′′, ζ′′,α′, ζ′) =



G(ζ′′)
[
zt(α

′, ζ′)
]
j

if 0 < j 6 p+ q+ 1,

(1−G(ζ′′))
[
zt(α

′, ζ′)
]
j−(p+q+1)

if p+ q+ 1 < j 6 2(p+ q+ 1),

θ′′∆Tzt(α
′, ζ′)∂G(ζ′′,η′′)

∂ζ
if j = 2(p+ q+ 1) + 1,

θ′′∆Tzt(α
′, ζ′)∂G(ζ′′,η′′)

∂η
if j = 2(p+ q+ 1) + 2.

.

In addition to this, it holds that

∣∣mτ,j(zt,θ′′, ζ′′,α′, ζ′) − mτ,j(zt,θ
′′
0, ζ0,α

′
0, ζ0)

∣∣r
6 τ

∣∣zt,j(θ′′, ζ′′,α′, ζ′) − zt,j(θ′′, ζ′′,α′, ζ′)∣∣r (44)

+
∣∣zt,j(θ′′, ζ′′,α′, ζ′)1{ut 6 θ′′Tzt(α′, ζ′, ζ′′)}− zt,j(θ′′0, ζ0,α′0, ζ0)1{ut 6 θT0zt(α′0, ζ0, ζ0)}∣∣r . (45)

We start by expanding equation (44) and bounding each term individually:

τE
∣∣zt,j(θ′′, ζ′′,α′, ζ′) − zt,j(θ′′0, ζ0,α′0, ζ0)∣∣r 6 τE ∣∣zt,j(θ′′, ζ′′,α′, ζ′) − zt,j(θ′′0, ζ′′,α′, ζ′)∣∣r (46)

+ τE
∣∣zt,j(θ′′0, ζ′′,α′, ζ′) − zt,j(θ′′0, ζ′′,α′0, ζ′)∣∣r (47)

+ τE
∣∣zt,j(θ′′0, ζ′′,α′0, ζ′) − zt,j(θ′′0, ζ0,α′0, ζ′)∣∣r (48)

+ τE
∣∣zt,j(θ′′0, ζ0,α′0, ζ′) − zt,j(θ′′0, ζ0,α′0, ζ0)∣∣r . (49)

Given that
∥∥θ′′ − θ0∥∥ < δ, a bound for the first term (46) can be obtained by noting that we have finite (2+ δ)

moments of ut (for all t) and finite derivatives of the transition function G by Assumptions 1 and 6 such

that τrE
∣∣∣(θ′′∆ − θ∆0 )

Tzt,j(α
′, ζ′)∂G(ζ′′,η′′)

∂�

∣∣∣r 6 K1,1,jδr. Since zt,j is linear in ut, the same bound also applies to

the expectation of the supremum of the absolute value. For the second term (47) if ‖α′ − α0‖ < δ, a bound

denoted by K1,2,jδr follows immediately from the linearity of zt,j(θ′′, ζ′′,α′, ζ′) with respect to α, finite second
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moments of ut and Assumption 1. For the remaining terms (48) and (49), with the transition parameters∥∥ζ′′ − ζ0∥∥ < δ and
∥∥ζ′ − ζ0∥∥ < δ, the differentiability of G and the Lipschitz continuity and boundedness of

∂G
∂ζ

(both stated in Assumption 1), along with previous arguments imply that their respective suprema and

the expectations thereof can also be bounded by K1,3,jδr and K1,4,jδr, respectively.

Putting all these terms together we get the bound with constant K1,j = 4 sup
l

K1,l,j

τrE sup
(θ′′,ζ′′,α′,ζ′)∈Uδ((θ′′

0,ζ0,α
′
0,ζ0)

∣∣zt,j(θ′′, ζ′′α′, ζ′) − zt,j(θ′′0, ζ0,α′0, ζ0)∣∣r 6 K1,jδr. (50)

Returning to the original inequality (44)-(45), for the second term (45) we note that

∣∣zt,j(θ′′, ζ′′,α′, ζ′)1{ut 6 θ′′Tzt(α′, ζ′, ζ′′)}− zt,j(θ′′0, ζ0,α′0, ζ0)1{ut 6 θT0zt(α′0, ζ0, ζ0)}∣∣r
6
∣∣zt,j(θ′′, ζ′′,α′, ζ′) (1{ut 6 θ′′Tzt(α′, ζ′, ζ′′)}− 1

{
ut 6 θ

T
0zt(α

′
0, ζ0, ζ0)

})∣∣r (51)

+
∣∣(zt,j(θ′′, ζ′′,α′, ζ′) − zt,j(θ′′0, ζ0,α′0, ζ0))1{ut 6 θT0zt(α′0, ζ0, ζ0)}∣∣r . (52)

While the bound of the expectation of term (52) follows from (50), we need to take care of equation (51). Let

z′t,j = zt,j(θ
′′, ζ′′,α′, ζ′). Taking expectations in neighbourhoods of the true parameter, it follows

E
∣∣z′t,j (1{ut 6 θ′′Tzt(α′, ζ′, ζ′′)}− 1

{
ut 6 θ

T
0zt(α

′
0, ζ0, ζ0)

})∣∣r
6

{
E
∣∣z′t,j∣∣r (1{ut 6 θ′′Tzt(α′, ζ′, ζ′′)}− 1

{
ut 6 θ

T
0zt(α

′, ζ′, ζ′′)
})

+E
∣∣z′t,j∣∣r (1{ut 6 θT0zt(α′, ζ′, ζ′′)}− 1

{
ut 6 θ

T
0zt(α

′
0, ζ
′, ζ′′)

})
+2E

∣∣z′t,j∣∣r (1{ut 6 θT0zt(α′0, ζ′, ζ′′)}− 1
{
ut 6 θ

T
0zt(α

′
0, ζ
′, ζ0)

})
+ 2E

∣∣z′t,j∣∣r (1{ut 6 θT0zt(α′0, ζ′, ζ0)}− 1
{
ut 6 θ

T
0zt(α

′
0, ζ0, ζ0)

})}
6 E
{ ∣∣z′t,j∣∣r fut|Ft−1 (φ̃1) zt(α′, ζ′, ζ′′)T (θ′′ − θ′′0) (53)

+
∣∣z′t,j∣∣r fut|Ft−1 (φ̃2)

G(ζ′′) q∑
j=1

θI
p+j+1L

jzmt (ζ′) + (1−G(ζ′′))

q∑
j=1

θII
p+j+1L

jzmt (ζ′)

T (α′ − α′0) (54)

+ 2
∣∣z′t,j∣∣r fut|Ft−1 (φ̃3)(zt(α′0, ζ′, ζ′′)Tθ′′∆0 ∂G(ζ0)

∂ζ

)T (
ζ′′ − ζ0

)
(55)

+ 2
∣∣z′t,j∣∣r fut|Ft−1 (φ̃4)

G(ζ′′) q∑
j=1

θI
p+j+1L

jzmt (ζ′)Tα∆
∂LjGt(ζ0)

∂ζ

+ (1−G(ζ′′))

q∑
j=1

θII
p+j+1L

jzmt (ζ′)Tα∆
∂LjGt(ζ0)

∂ζ

T(ζ′ − ζ0)}, (56)

where the first inequality follows from the triangle inequality and the fact thatω 7→ 1 {ut 6 ω} is monotone in

ω, which is in turn linear in θ and α. In addition to this, 1 ◦G is monotone in the first parameter (location) of

ζ, namely ζ, and piece-wise monotone – increasing over half of the domain and decreasing over the other half

– in its second parameter η (scale). For the second inequality, we apply the law of iterated expectations and

the mean value theorem for which we require the density fut|Ft−1 to exist and to be bounded (Assumption

4). The variables φ̃j for j ∈ I1,4 refer to the elements of small neighbourhoods of the respective parameters

at which we applied the mean value theorem. While the existence and boundedness of the density and the

finiteness of (2 + δ) moments of zt,j (Assumption 5) are sufficient for the terms (53) and (54) not to diverge,

the final two terms (55) and (56) additionally require the bound on ∂Gt(ζ)
∂ζ

(Assumption 1). Then for any
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(θ′′, ζ′′,α′, ζ) in a neighbourhood of their true counterparts Uδ = Uδ(θ
′′
0, ζ0,α

′
0, ζ0), i.e. where

∥∥θ′′ − θ0∥∥ < δ,∥∥ζ′′ − ζ0∥∥ < δ, ‖α′ − α0‖ < δ and
∥∥ζ′ − ζ0∥∥ < δ, there exists a K2,j > 0 such that the second term in equation

(45) can be bounded by

E sup
(θ′′,ζ′′,α′,ζ′)∈Uδ

∣∣zt,j(θ′′, ζ′′,α′, ζ′)1{ut 6 θ′′Tzt(α′, ζ′, ζ′′)}− zt,j(θ′′0, ζ0,α′0, ζ0)1{ut 6 θT0zt(α′0, ζ0, ζ0)}∣∣r ,
which can then be bounded by K2,jδr. Subsequently, by Lemma 4.2 in Chen (2008) the following expression

holds:

sup
(θ,α)∈Uδ(θ0(τ),α0)

‖g (θ,α) − g (θ0(τ),α0) − gn (θ,α) + gn (θ0(τ),α0)‖ = op
(
n−1/2

)
.

Thus, (37) reduces to
∥∥∥g(θ̂n(τ), α̂n)− g (θ0(τ),α0) + gn (θ̂n(τ), α̂n)− gn (θ0(τ),α0)

∥∥∥ = op

(
n− 1

2

)
, whereas

for (38) we have by definition
∥∥∥gn (θ̂n(τ), α̂n)∥∥∥ = op

(
n− 1

2

)
and we immediately get from equation (35):

λmin (Γθ,0)
∥∥∥(θ̂n(τ) − θ0(τ))∥∥∥ 6 ∥∥∥g(θ̂n(τ),α0)∥∥∥ = Op

(
n− 1

2

)
,

which completes the proof.

Corollary 1. Under Assumptions 1-5, the following linearisation holds as n→∞:

gn

(
θ̂n(τ), α̂n

)
− gn (θ0(τ),α0) − Γθ,0(θ̂n(τ) − θ0(τ)) − Γα,0 (α̂n − α0) = op

(
n− 1

2

)
. (57)

Proof. By adding and subtracting, equation (57) can be rewritten as:

gn

(
θ̂n(τ), α̂n

)
− gn (θ0(τ),α0) − Γθ,0(θ̂n(τ) − θ0(τ)) − Γα,0 (α̂n − α0)

= gn

(
θ̂n(τ), α̂n

)
− gn (θ0(τ),α0) − Γθ,0(θ̂n(τ) − θ0(τ)) − Γα,0 (α̂n − α0)

+ g
(
θ̂n(τ), α̂n

)
− g

(
θ̂n(τ), α̂n

)
+ g (θ0(τ),α0) − g (θ0(τ),α0)

+ g
(
θ̂n(τ),α0

)
− g

(
θ̂n(τ),α0

)
+ Γα,n

(
θ̂n(τ),α0

)
(α̂n − α0) − Γα,n

(
θ̂n(τ),α0

)
(α̂n − α0)

Again taking norms, rearranging the terms on the right hand side, using the triangle inequality, the following

bound is obtained as n→∞:

∥∥∥gn (θ̂n(τ), α̂n)− gn (θ0(τ),α0) − Γθ,0(θ̂n(τ) − θ0(τ)) − Γα,0 (α̂n − α0)
∥∥∥

6
∥∥∥gn (θ̂n(τ), α̂n)− gn (θ0(τ),α0) −

(
g
(
θ̂n(τ), α̂n

)
− g (θ0(τ),α0)

)∥∥∥
+
∥∥∥g(θ̂n(τ), α̂n)− g(θ̂n(τ),α0))− Γα,n (θ̂n(τ),α0) (α̂n − α0)

∥∥∥
+
∥∥∥g(θ̂n(τ),α0)− g (θ0(τ),α0) − Γθ,0 (θ̂n(τ) − θ0(τ))∥∥∥

+
∥∥∥Γα,n (θ̂n(τ),α0) (α̂n − α0) − Γα,0 (α̂n − α0)

∥∥∥ = op

(
n− 1

2

)
,

where we use stochastic equicontinuity verified in the previous lemma for the first term and reason along

the lines of (40), (41), (42) using Lipschitz continuity of Γα,0 and Γθ,0 as well as the law of large numbers for

Γα,n and
√
n-consistency of θ̂n(τ) for the remaining terms.
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Proof of Theorem 4: The first order condition gn (θ(τ), α̂n) = 0 is solved by θ̂n(τ) so that

0 = gn

(
θ̂n(τ), α̂n

)
= gn (θ0,α0) + Γθ,0(θ̂n(τ) − θ0(τ)) + Γα,0 (α̂n − α0) + op

(
n− 1

2

)
,

using the linearisation from Corollary 1. Since Γθ,0 has full rank by Assumption 9, by pre-multiplying
√
n, an

asymptotic representation of the second stage estimator is obtained for n→∞
√
n
(
θ̂n(τ) − θ0(τ)

)
= −Γ−1θ,0

[√
ngn (θ0(τ),α0)) + Γα,0

√
n (α̂n − α0)

]
+ op(1).

Finally, we apply the α-mixing central limit theorem (Theorem 18.5.3 in Ibragimov & Linnik, 1971), for

which the (2 + δ) moments of the data has to exist and mixing coefficients have to satisfy βs → 0 and∞∑
s=1

β
δ/(2+δ)
s < +∞. These conditions are guaranteed by Assumption 5. After stacking the two summands

in the last equation, we can therefore write as n→∞

√
n
(
θ̂n(τ) − θ0(τ)

)
= Γ−1θ,0

[
I2(p+q+1), Γα,m,0

]√
n


gn (θ0(τ),α0)

α̂I
n − αI

0

α̂II
n − αII

0

ζ̂n − ζ0

+ oP(1)

≈ 1√
n
Γ−1θ,0

I2(p+q+1), Γα,m,0D−1
n

K∑
k=1

skq
2
k


T∑

t=m+1




zt(α0)Gt(ζ0)

zt(α0)(1−Gt(ζ0))

θ∆T0 zt(α0)
∂Gt(ζ0)
∂ζ

(1{ut 6 F−1ut|Ft−1(τ)}− τ
)


Gt(ζ0) z

m
t

(1−Gt(ζ0))z
m
t

α∆0 z
m
t
∂Gt(ζ0)
∂ζ

 K∑
k=1

qk

(
1

{
ut 6 F

−1
ut|Ft−1

(τk)
}
− τk

)


 N

(
0, lim
n→∞ Γ−1θ,0E

[
MtΞ

τMT
t

]
Γ−1θ,0

)
,

where we use independence of the innovations εt and zmt and zt(α0), respectively. The matrices Ξτ,Mt, and

Γθ,0 are defined in Assumption 9, which also postulates the existence of the asymptotic variance matrix.

A.2 Algorithm for Estimation

Algorithm A.2.1: Two-stage estimation procedure

(l1min, α̂
I
n, α̂

II
n, ζ̂n, η̂n)← (∞, 0, 0, 0, 0)

for all η ∈
{
η1, . . . , ηkη

}
do

Define G(ξt, ζ, η), using ξt ← ξ(zt) for given scale η as a function of ζ

Estimate α̂I
n,kη

, α̂II
n,kη

, q̂kη , ζ̂kη and obtain loss l1kη according to (9)

by (smoothed) composite quantile regression

if l1kη 6 l
1
min then

(l1min, α̂
I
n, α̂

I
n, ζ̂n, η̂n)← (l1kη , α̂

I
n,kη

, α̂II
n,kη

, ζ̂kη , η)

end if

end for
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Calculate σt(α̂n) according to equation (10) using α̂n = (α̂IT
n , α̂

IIT
n , ζ̂n, η̂n)

T

Construct zt(α̂n) = (σt−1(α̂n), . . . , σt−p(α̂n), |ut−1|, . . . , |ut−q|)
T

(l2min, θ̂
I
n, θ̂

II
n, ζ̂n, η̂n)← (∞, 0, 0, 0, 0)

for all (ζ, η) ∈
{
ζ1, . . . ζkζ

}
×
{
η1, . . . , ηkη

}
∩ Z do

Calculate G(ξt, ζ, η) using ξt ← ξ(zt) for given location ζ and scale η

Estimate θ̂I
n,kζ,η

, θ̂II
n,kζ,η

and obtain loss l2kζ,η according to (11)

by linear (inequality constrained) quantile regression

if l2kζ,η 6 l
2
min then

(l2min, θ̂
I
n, θ̂

II
n, ζ̂n, η̂n)← (l2kζ,η , θ̂

I
n,kζ,η

, θ̂II
n,kζ,η

, ζ, η)

end if

end for

Set the final estimate to θ̂n = (θ̂IT
n , θ̂

IIT
n , ζ̂n, η̂n)

T .

A.3 Sufficient conditions for absolute regularity

Let us recall existing results regarding the (nonlinear) GARCH processes. Meitz & Saikkonen (2008) derive

Theorems 1 and 2 stating sufficient conditions for the geometric ergodicity of Markov processes follow-

ing various nonlinear GARCH models and implying their stationarity and absolute regularity (see Meitz &

Saikkonen, 2008, Section 2.2 and Theorem 3). We limit ourselves for simplicity to the models of order 1 here

with the transition variable being the lagged dependent variable.

First, various regularity assumptions (Meitz & Saikkonen, 2008, Assumption 2) have to hold so that the

volatility process defined by (3) or a GARCH model have some basic properties such as irreducibility and

aperiodicity. These regularity assumptions are however satisfied in our and GARCH models due to the im-

posed assumptions (i.e., Assumption 3) and the model definitions, implying the boundedness of volatility

function on compact subsets of the support, its positivity on the compact subsets of the support, and its

monotonicity and differentiability in the transition variable (Assumption 1). More importantly, Theorems 1–

3 of Meitz & Saikkonen (2008) require that the volatility is bounded by a linear function of the past volatility

and its slope has a finite expectation smaller than 1. Denoting the volatility in (1) by σt for the sake of con-

ciseness and recalling that all parameter values are assumed to be non-negative, the standard GARCH(1,1)

volatility process in model (1) is for example bounded by

σ2t = β0 + β1σ
2
t−1 + γ1u

2
t−1 6 β0 + [β1 + γ1ε

2
t−1]σ

2
t−1.

Assuming that E(β1 + γ1ε2t−1) < 1 holds, that is, β1 + γ1 < 1 if the variance of εt−1 is normalised to 1, Meitz

& Saikkonen (2008, Theorems 1–3) with V(σ) = 1 + σ imply that the GARCH(1,1) volatility process is V-

geometrically ergodic and the GARCH(1,1) process itself is geometrically ergodic and β-mixing.

Under the above mentioned regularity assumptions, Theorems 1–3 of Meitz & Saikkonen (2008) allow us

to directly obtain the same results also for the single-regime model (1)–(2), where for the first-order model

σt = β0 + β1σt−1 + γ1|ut−1| 6 β0 + [β1 + γ1|εt−1|]σt−1

and it has to hold that E(β1 + γ1|εt−1|) < 1 and β1 + γ1 < 1 if E|εt−1| is normalised to 1. Finally, a similar
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condition can be found for the general model (8) (again of the first order), where

σt = Gt(ζ)[β
I
0 + β

I
1σt−1 + γ

I
1|ut−1|] + [1−Gt(ζ)][β

II
0 + βII1 σt−1 + γ

II
1 |ut−1|]

6 max{βI0, β
II
0 }+ [max{βI1, β

II
1 }+ max{γI1, γ

II
2 }|εt−1|]σt−1

since Gt(ζ) ∈ [0,1]. To apply Meitz & Saikkonen (2008, Theorems 1–3), it has to hold that E([max{βI1, β
II
1 } +

max{γI1, γ
II
2 }|εt−1|]) < 1, that is, max{βI1, β

II
1 }+ max{γI1, γ

II
2 } < 1 if E|εt−1| = 1.

The theorems above can be also extended to model (3), but we have to formulate the volatility as a mul-

tivariate process as the volatility σt depends on volatilities σIt and σIIt of each regime:

σIt = βI0 + β
I
1σ
I
t−1 + γ

I
1|ut−1|

σIIt = βII0 + βII1 σ
II
t−1 + γ

II
1 |ut−1|

σt = Gt(ζ)[β
I
0 + β

I
1σ
I
t−1 + γ

I
1|ut−1|] + [1−Gt(ζ)][β

II
0 + βII1 σ

II
t−1 + γ

II
1 |ut−1|].

Defining V(σI, σII, σ) = 1 + σ, the proof of Meitz & Saikkonen (2008, Theorem 1) applies to (σIt, σ
II
t , σt) using

V(σI, σII, σ) since by definition (3),

σt = Gt(ζ)[β
I
0 + β

I
1σ
I
t−1 + γ

I
1|ut−1|] + [1−Gt(ζ)][β

II
0 + βII1 σ

II
t−1 + γ

II
1 |ut−1|]

= Gt(ζ)[β
I
0 + β

I
1σ
I
t−1 + γ

I
1|εt−1|σt−1] + [1−Gt(ζ)][β

II
0 + βII1 σ

II
t−1 + γ

II
1 |εt−1|σt−1]

6 max{βI0, β
II
0 }+ [max{βI1, β

II
1 }+ max{γI1, γ

II
2 }|εt−1|]σt−1.

Hence, if E[max{βI1, β
II
1 }+ max{γI1, γ

II
2 }|εt−1|] < 1, that is, max{βI1, β

II
1 }+ max{γI1, γ

II
2 } < 1 after normalisation of

E|εt−1| to 1, (σIt, σ
II
t , σt) is V-geometrically ergodic, and following Meitz & Saikkonen (2008, Theorems 2–3),

we can obtain the geometric ergodicity and β-mixing properties for the ANST-GARCH process.

A.4 Simulation Results

By default, the estimation is performed for time series of length n = 1000, the number

of simulations per experiment is s = 100, the composite quantile regression employs by

default k = 9 quantiles for τ ∈ [0.05,0.25] ∪ [0.75, 0.95], the truncation parameter for the

ARCH approximation is set to m = d5
2
n
1
4 e and the grid size is (kζ, kη) = (30, 30). The true

global parameter vector for both processes is chosen to be θ0 = (βI
0, β

I
1, γ

I
1, β

II
0 , β

II
1 , γ

II
1 )
T
0 =

(0.50, 0.15, 0.60, 0.25, 0.30, 0.15)T and the location-scale parameter pair equals ζ0 = (ζ, η)T0 =

(0.00, 0.2)T . While βI
0 and βII

0 are only determining the unconditional variances of the re-

spective regimes, we chose γI
1 and γII

1 in a way that is consistent with findings in the two

regime conditional heteroscedasticity literature (Gonzales-Rivera, 1998; Lubrano, 2001;

Wago, 2004; Khemiri, 2011). Unfortunately, the findings on regime-specific parameter val-

ues for βI
1 and βII

1 are rather limited and there is also no clear link to their single regime

counterparts. Thus coming up with a sensible prior is somewhat ad hoc. We approached

this by choosing their values in a way that generates both a higher and a lower persistence
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regime. Unreported simulations show that different DGPs work similarly well, although,

perhaps unsurprisingly, numerical stability deteriorates as one of the regimes’ processes

becomes close to being integrated.

If not stated otherwise, we will assume the innovations to be standard normally dis-

tributed: εt ∼ N(0,1). When running simulations using different innovation distributions,

in order to ensure comparability, their variances will always be normalised to one. This

implies that there is one high and one low variance regime with unconditional variances,

defined by βr
0/(1 − β

r
1 − γ

r
1) for r ∈ {I, II}, of 2 and 0.45, respectively. All of the presented

results use a specification with the logistic function Glogistic. However, unreported simu-

lations confirmed that the GACQ estimation is insensitive to the misspecification of the

transition function (e.g., if the logistic transition function is used while the true under-

lying model follows the linear or threshold function). Finally, note that we have to re-

strict the grid for both location and scale. We introduce the data-driven criterion en-

suring that location satisfies ζ ∈ [ζ, ζ̄] with unconditional sample quantiles ζ = F̂−1ut (0.1)

and ζ̄ = F̂−1ut (0.9). Similarly, the scale is restricted to η ∈ [η, η̄(ζ, ζ̄)] with fixed η = 0.1 and

η̄(ζ, ζ̄) =
[
log(0.1−1 − 1)(0.5ζ̄− 0.5ζ)

]−1
. The latter bound represents the inverse of the lo-

gistic function with respect to the scale evaluated at 0.1 and the location at the centre of

the considered location grid.

To evaluate the procedures, we report the biases and root mean squared errors (RMSE)

of all estimates. As the focus of the quantile regression modelling is on the estimation of

quantiles such as Value at Risk rather than parameters, the performance is measured by

the mean (absolute) prediction error averaged over the sample, denoted as M(A)PE, ab-

solute one-period-ahead out-of-sample forecast errors (MAFE) and by the coverage ratio,

each of them referring to the estimated 5% Value at Risk. Note that the coverage (ratio)

is defined as the proportion of observations falling below the estimated Value at Risk and

should thus be close to τ = 0.05 for the 5% Value at Risk. It should be mentioned that while

coverage, MPE, MAPE and MAFE are reported in the Bias column for the purpose of a tidy

exposition, their values represent the mean deviations from the value 0.0, which corre-

sponds to the perfect fit of the model: for example, coverage value 0 represents the exactly

correct coverage level 0.05 and MAPE value 0 would represent the exact fit. The RMSE of

these quantities additionally depict their corresponding Monte Carlo standard deviations.

We will use these metrics to compare different estimators with each other as well as the

impact of different features of the data generating process on prediction and forecasting.
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Table S.5: The bias and RMSE of GACQ for different sample sizes n.

n = 1000 n = 2000 n = 4000

Bias RMSE Bias RMSE Bias RMSE

βI
0 0.1797 0.4120 0.1223 0.2489 0.0749 0.2123
βI
1 -0.0129 0.3559 0.0065 0.2779 -0.0068 0.1179
γI
1 -0.1196 0.3270 -0.0653 0.2276 -0.0228 0.1404

βII
0 0.0319 0.1650 0.0337 0.1231 0.0236 0.1006
βII
1 0.0263 0.2274 0.0272 0.1701 0.0187 0.1021
γII
1 0.0050 0.1310 0.0011 0.0984 0.0150 0.0891

ζ 0.3798 0.4923 0.3252 0.4703 0.4595 0.5632
ζ(τ) 0.1063 0.3730 0.1149 0.3138 0.0541 0.2547
η 0.0870 0.1341 0.0627 0.1170 0.0743 0.1229
η(τ) -0.0622 0.0867 -0.0327 0.0807 -0.0353 0.0826

MPE 0.0082 0.0482 0.0027 0.0447 0.0032 0.0203
MAPE 0.1259 0.1310 0.0974 0.1004 0.0682 0.0700
MAFE 0.1129 0.1420 0.0848 0.1182 0.0530 0.0718

coverage 0.0008 0.0013 0.0004 0.0007 0.0001 0.0003

Table S.6: The bias and RMSE of GACQ as a function of the order of the first-stage ARCH(m)
approximation withm = dcn1/4e.

c = 2.0 c = 2.5 c = 3.0 c = 3.5

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

βI
0 0.2070 0.4318 0.1727 0.3901 0.2041 0.4427 0.1837 0.4149
βI
1 -0.0031 0.3767 0.0173 0.3590 0.0037 0.3643 -0.0286 0.3606
γI
1 -0.1409 0.3316 -0.1264 0.3310 -0.1441 0.3568 -0.1154 0.3110

βII
0 0.0377 0.1666 0.0295 0.1714 0.0317 0.1714 0.0205 0.1777
βII
1 0.0091 0.2168 0.0444 0.3932 0.0075 0.2022 0.0181 0.1984
γII
1 0.0047 0.1319 0.0085 0.1354 0.0070 0.1265 0.0123 0.1359

ζ 0.3779 0.4898 0.3939 0.4912 0.4618 0.5484 0.4818 0.5685
ζ(τ) 0.1380 0.3901 0.0955 0.3617 0.1198 0.3849 0.0855 0.3644
η 0.0573 0.1175 0.0412 0.0970 0.0740 0.1319 0.0635 0.1197
η(τ) -0.0531 0.0864 -0.0608 0.0882 -0.0503 0.0860 -0.0605 0.0888

MPE 0.0104 0.0504 0.0117 0.0507 0.0128 0.0516 0.0104 0.0516
MAPE 0.1273 0.1321 0.1248 0.1297 0.1270 0.1324 0.1270 0.1316
MAFE 0.1009 0.1307 0.1074 0.1409 0.1070 0.1502 0.1091 0.1473

coverage 0.0008 0.0013 0.0004 0.0013 0.0008 0.0014 0.0007 0.0014
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Table S.7: The bias and RMSE of GACQ if quantiles τ ∈ (0.5− δ/2, 0.5+ δ/2) are not used in
estimation.

δ = 0.15 δ = 0.20 δ = 0.30 δ = 0.50

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

βI
0 0.1748 0.4086 0.1897 0.4217 0.1816 0.4322 0.2021 0.4270
βI
1 0.0106 0.3652 0.0133 0.3825 -0.0035 0.3550 -0.0078 0.3897
γI
1 -0.1275 0.3335 -0.1374 0.3503 -0.1258 0.3465 -0.1385 0.3509

βII
0 0.0281 0.1610 0.0415 0.1655 0.0260 0.1611 0.0391 0.1589
βII
1 0.0281 0.2159 0.0283 0.2271 0.0474 0.2331 0.0191 0.2095
γII
1 0.0040 0.1213 -0.0024 0.1125 -0.0030 0.1222 0.0004 0.1206

ζ 0.3641 0.4925 0.3341 0.4811 0.3311 0.4334 0.3259 0.4628
ζ(τ) 0.1073 0.3647 0.1211 0.3811 0.1017 0.3608 0.1348 0.3727
η 0.0639 0.1226 0.0717 0.1210 0.0748 0.1223 0.0606 0.1148
η(τ) -0.0532 0.0863 -0.0581 0.0849 -0.0571 0.0853 -0.0536 0.0868

MPE 0.0116 0.0496 0.0105 0.0518 0.0092 0.0484 0.0111 0.0498
MAPE 0.1228 0.1275 0.1262 0.1310 0.1260 0.1308 0.1263 0.1318
MAFE 0.1042 0.1392 0.1123 0.1408 0.1134 0.1426 0.0955 0.1208

coverage 0.0008 0.0014 0.0008 0.0014 0.0009 0.0014 0.0006 0.0012

Table S.8: The bias and RMSE of the GACQ and GARCH estimators in the case of normally
distributed errors.

GACQ GARCH-N GARCH-t
Bias RMSE Bias RMSE Bias RMSE

βI
0 0.1797 0.4120 0.0343 0.0986 -0.1489 0.2789
βI
1 -0.0129 0.3559 -0.1351 0.1410 -0.1020 0.1405
γI
1 -0.1196 0.3270 -0.1507 0.1752 -0.0145 0.2500

βII
0 0.0319 0.1650 -0.0820 0.1007 0.0180 0.2037
βII
1 0.0263 0.2274 -0.0190 0.0991 -0.0938 0.1928
γII
1 0.0050 0.1310 -0.0571 0.1094 0.1146 0.2908

ζ 0.3798 0.4923 0.1248 0.3144 0.4136 0.6883
ζ(τ) 0.1063 0.3730 0.1248 0.3144 0.4136 0.6883
η 0.0870 0.1342 -0.1478 0.1593 73247 248720
η(τ) -0.0622 0.0867 -0.1478 0.1593 73247 248720

MPE 0.0082 0.0482 0.0771 0.0861 -0.2142 0.3402
MAPE 0.1259 0.1310 0.1461 0.1568 0.3320 0.3877
MAFE 0.1129 0.1420 0.2939 0.4278 0.4325 0.5591

coverage 0.0008 0.0013 0.0071 0.0094 -0.0150 0.0219
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Table S.9: The bias and RMSE of the GACQ and GARCH estimators in the case of Student’s
t4 distributed errors.

GACQ GARCH-N GARCH-t
Bias RMSE Bias RMSE Bias RMSE

βI
0 0.2086 0.5754 0.0209 0.1717 0.0298 0.1314
βI
1 0.0547 0.6786 -0.0723 0.1494 -0.1037 0.1293
γI
1 -0.1722 0.4184 -0.2043 0.2504 -0.1763 0.2143

βII
0 0.0455 0.2513 -0.0824 0.1638 -0.1066 0.1271
βII
1 0.0429 0.3827 -0.0279 0.1677 -0.0270 0.1181
γII
1 0.0024 0.1858 -0.0749 0.1085 -0.0753 0.0939

ζ 0.3625 0.4689 0.1240 0.3008 0.1386 0.2587
ζ(τ) 0.1940 0.4330 0.1240 0.3008 0.1386 0.2587
η 0.0304 0.0781 -0.1453 0.1657 -0.1267 0.1560
η(τ) -0.0845 0.0927 -0.1453 0.1657 -0.1267 0.1560

MPE 0.0046 0.0596 -0.0325 0.0676 -0.3239 0.3368
MAPE 0.1536 0.1585 0.1409 0.1517 0.3271 0.3397
MAFE 0.1286 0.1798 0.3164 0.5886 0.4561 0.6462

coverage 0.0008 0.0013 -0.0044 0.0081 -0.0254 0.0259

Table S.10: The bias and RMSE of the GACQ and GARCH estimators in the case of errors
following the re-centered Type 1 Gumbel distribution.

GACQ GARCH-N GARCH-t
Bias RMSE Bias RMSE Bias RMSE

βI
0 0.1368 0.2631 -0.0183 0.0286 -0.0113 0.0694
βI
1 -0.0295 0.2081 -0.0857 0.1405 -0.1261 0.2264
γI
1 -0.0838 0.1921 -0.0076 0.0573 0.0045 0.0550

βII
0 0.0615 0.1230 0.1304 0.1903 0.1162 0.1783
βII
1 -0.0365 0.1255 -0.1858 0.2224 -0.1296 0.1966
γII
1 -0.0025 0.1153 0.0949 0.1826 0.0571 0.1329

ζ 0.2723 0.4382 -0.1837 0.2432 0.4859 2.4011
ζ(τ) 0.1346 0.2908 -0.1837 0.2432 0.4859 2.4011
η 0.0575 0.0967 -0.0476 0.1115 -0.0615 0.0898
η(τ) -0.0418 0.0751 -0.0476 0.1115 -0.0615 0.0898

MPE 0.0108 0.0279 0.0351 0.0414 -0.2860 0.2961
MAPE 0.0727 0.0750 0.1045 0.1161 0.2905 0.2999
MAFE 0.0611 0.0836 0.1261 0.1815 0.5775 0.6107

coverage 0.0006 0.0014 0.0017 0.0064 -0.0263 0.0269
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Table S.11: The bias and RMSE of the GACQ and GARCH estimators in the case of normally
and Student distributed errors with 2.5% outliers.

GACQ: ε ∼ N GARCH-N: ε ∼ N GACQ: ε ∼ t(4) GARCH-t: ε ∼ t(4)
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

βI
0 0.2656 0.6630 -0.3962 0.4538 0.2758 0.7464 -0.0975 0.2817
βI
1 0.0358 0.4642 0.0647 0.3166 0.1187 0.6819 -0.0614 0.1429
γI
1 -0.0749 0.2867 0.0804 0.3435 -0.0615 0.3810 -0.0911 0.2344

βII
0 0.0668 0.2337 0.4326 0.4719 0.1801 0.5841 0.1139 0.2651
βII
1 0.0315 0.2780 -0.0313 0.2028 0.0659 0.5414 -0.0089 0.1635
γII
1 -0.0010 0.1379 -0.1096 0.1308 -0.0290 0.1701 -0.0689 0.0972

ζ 0.1545 0.5263 1.0059 1.0553 0.1686 0.5461 0.3365 0.5907
ζ(τ) 0.1832 0.5171 1.0059 1.0553 0.1599 0.5316 0.3365 0.5907
η 0.0678 0.1588 -0.1480 0.3122 0.0262 0.1183 -0.0419 0.5081
η(τ) -0.0445 0.0929 -0.1480 0.3122 -0.0805 0.0939 -0.0419 0.5081

MPE -0.1023 0.1291 -175.09 1008.6 -0.1528 0.1940 -0.9166 0.9684
MAPE 0.2180 0.2311 175.22 1008.6 0.2749 0.2933 0.9182 0.9696
MAFE 0.2175 0.4203 0.5545 0.6154 0.2791 0.5217 0.9664 1.1980

coverage 0.0007 0.0013 -0.0144 0.0164 0.0009 0.0014 -0.0269 0.0273
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