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Abstract 

 

Mendelian randomisation (MR) is the use of genetic variants associated with an exposure to 

estimate the causal effect of that exposure on an outcome. Mediation analysis is the method of 

decomposing the effects of an exposure on an outcome that act directly and those that act via 

mediating variables.  These effects are decomposed through the use of multivariable analysis to 

estimate the causal effects between three types of variables; exposures, mediators and an outcome. 

Multivariable Mendelian randomisation (MVMR) is a recent extension to MR that uses genetic 

variants associated with multiple, potentially related, exposures to estimate the effect of each 

exposure on a single outcome. MVMR allows for equivalent analysis to mediation within the MR 

framework and therefore can also be used to estimate mediation effects. This approach retains the 

benefits of using genetic instruments for causal inference, such as avoiding bias due to confounding, 

whilst allowing for estimation of the different effects required for mediation analysis.    This chapter 

explains MVMR, what is estimated when one exposure is a mediator of another in a MVMR 

estimation and how MR and MVMR can therefore be used to estimate mediated effects. This 

chapter then goes on to consider the advantages and limitations of using MR and MVMR to conduct 

mediation analysis.  
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Introduction   

Mendelian randomisation (MR) is a form of Instrumental Variable (IV) analysis that uses genetic 

variants, normally single nucleotide polymorphisms (SNPs), as instruments to obtain estimates of the 

causal effect of an exposure on an outcome that is, under certain assumptions, free from bias due to 

unobserved confounding, measurement error and reverse causation (Davey Smith and Ebrahim 

2003). This has recently been extended to estimate the independent direct effects of multiple, 

potentially related, exposures through multivariable MR (MVMR) (Burgess and Thompson 2015; 

Sanderson et al. 2019). A key feature of MVMR is that it estimates the effect of each exposure 

included in the estimation on the outcome conditional on the other exposures included in the 

model, i.e. the direct effect of each exposure.  

Often in causal inference we are interested in not only how much an exposure effects an 

outcome but also the mechanisms or pathways through which the exposure acts to affect that 

outcome. Mediation analysis is a field of analysis that attempts to unpick these effects and 

determine the causal pathways by which an exposure influences an outcome and their relative 

importance.  Understanding the structure of this relationship is particularly important when the 

exposure is difficult or impossible to intervene on. Mediation analysis can identify which factors 

mediate the relationship between that exposure and the outcome enabling intervention on those 

mediators to mitigate the effects of the exposure. Mediation analysis can also identify where acting 

on an exposure will only have limited effectiveness in changing the outcome if the mediating factors 

do not also change in response to that intervention.  An early use of MR to understand causal 

pathways was through ‘Two-step epigenetic MR’ which applied MR to understand a causal pathway 

from an exposure on an outcome through DNA methylation (Relton and Davey Smith 2012). More 

recently MVMR  and network MR (Burgess et al. 2014) have been used to estimate mediation in MR 

studies (Carter et al. 2019b). Studies have looked at a range of different topics such as the effect of 

age of menarche on breast cancer risk and whether there is an indirect effect via BMI (Burgess et al. 

2017), whether the effect of BMI on coronary heart disease is mediated by lipids and glycaemic 

factors (Xu et al. 2017), the extent to which BMI, blood pressure and smoking mediate the effects of 

education on cardiovascular disease outcomes (Carter et al. 2019a) whether DNA metalation 

mediates the effect of smoking on lung function (Jamieson et al. 2019), and if pulmonary factors 

mediate the effect of height on coronary artery disease (Marouli et al. 2019).  

The causal effect of an exposure on an outcome of interest, including any effect through 

potential mediators is the total effect of the exposure on the outcome. This effect can be 

decomposed into two parts; one part is the direct effect of the primary exposure on the outcome, 

this is the effect of the primary exposure that does not act through the mediators included in the 
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model, represented by the arrow from 𝑋 to 𝑌 labelled 𝛽1 in Figure 1. The other part is the indirect 

effect, which is the effect of the primary exposure on the outcome that only operates through the 

mediators included in the model, in Figure 1 this is the edge from 𝑋 to 𝑌via 𝑀 only, the size of this 

edge is 𝛼𝛽2.  The total effect of the exposure on the outcome is the sum of both of these effects, i.e. 

total effect = direct effect + indirect effect. From these effects the proportion of the total effect 

mediated can be calculated as the indirect effect/total effect.  

 

Figure 1 – Illustration of the direct and indirect effects of 𝑋 on 𝑌. 

  

X – exposure, M- mediator, Y – outcome.  

Mediation analysis uses regression analysis to distinguish between the direct and indirect 

effects of the exposure on the outcome and calculate the proportion mediated (Baron and Kenny 

1986; MacKinnon 2012; VanderWeele 2015; VanderWeele 2016). These traditional mediation 

methods have been extended to ‘counterfactual mediation analysis’ which uses a counterfactual 

framework to estimate mediation effects (MacKinnon 2012; VanderWeele 2013). As well as allowing 

the estimation of interaction effects, this form of mediation analysis also allows estimation of 

different effects such as the natural, controlled and interventional direct and indirect effects (Naimi 

et al. 2014; VanderWeele et al. 2014). The natural direct and indirect effects are the effects 

estimated when the mediator is allowed to take its natural level given the exposure. These are 

estimated by traditional mediation analysis and by MVMR estimation, therefore throughout the rest 

of this chapter when I use direct effect to mean the natural direct effect.   Methods to estimate 

interaction effects using MR or MVMR are not currently well understood and therefore I do not 

discuss them here (Carter et al. 2019b). 

There are a number of assumptions required for mediation analysis to give reliable 

estimates of the proportion of the total effect of the exposure on the outcome that is mediated 

(MacKinnon 2012). Important assumptions for mediation analysis to give unbiased estimates of the 

causal effects include that there are no unobserved confounders that cannot be accounted for in the 
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estimation and no measurement error in the exposure or mediator. MR is an alternative method of 

estimation that can produce estimates of causal effects in the presence of unobserved confounding 

and measurement error in the exposure.   

Using MR for mediation analysis does not change the objective of the mediation analysis to 

determine the  proportion of the total effect of an exposure on an outcome that acts through a 

particular mediator or set of mediators.  In this context MR and MVMR use genetic variants to help 

researchers determine these causal pathways using a different set of assumptions to traditional 

mediation analysis. In the rest of this chapter I describe MVMR and the assumptions underlying a 

MVMR estimation in detail. I explain how MR and MVMR can be used to unpick the total and direct 

effects of an exposure on an outcome in the presence of a mediator or group of mediators. I then go 

on to explain the benefits, limitations and potential considerations required to obtain causal 

estimates for mediation from the use of MR and MVMR.  

 

Multivariable MR  

MR can be conducted with either individual level data or using summary data from Genome-wide 

association studies (GWAS) which give the estimated effect of each SNP on each of the exposure and 

the outcome. For (univariable) MR to provide valid causal estimates of the effect of the exposure on 

the outcome there are three assumptions that must be satisfied, the SNPs used as instruments must 

be; 

- IV1: associated with the exposure  𝑋 (the “relevance” assumption);  

- IV2: independent of the outcome 𝑌 given the exposure 𝑋 (the “exclusion restriction”); and  

- IV3: independent of all confounders of 𝑋 and 𝑌 (the “exchangeability” assumption).  

When these assumptions are satisfied MR can test for a causal effect of an exposure on an outcome 

without bias from unobserved confounding. Under additional assumptions described in detail 

elsewhere (Didelez et al. 2010) MR will give an estimate of the size of the causal effect of the 

exposure on the outcome. MR methods, the  assumptions required and their implications are 

discussed in detail earlier in this volume and elsewhere (Lawlor et al. 2008; Burgess et al. 2013; 

Davey Smith and Hemani 2014).  

MVMR is an extension of MR that allows for the causal effects of multiple exposures on an 

outcome to be estimated (Burgess and Thompson 2015; Sanderson et al. 2019). MVMR estimates 

the direct causal effects of each exposure included in the estimation on the outcome, conditional on 

the other exposures included in the model. It is therefore particularly useful where two or more 

potentially related exposures are of interest and the researcher wishes to understand if both 

exposures exert a causal effect on the outcome or, as described later, where one exposure is 



 

5 
 

potentially a mediator of another exposure.  One example of where MVMR has been used to 

estimate the direct effects of multiple related exposures is in estimating the effect of lipid traits on 

outcomes such as coronary heart disease (Richardson et al. 2019b), breast cancer (Johnson et al. 

2019) or age related macular degeneration (Burgess and Davey Smith 2017).  

A simple MVMR model with two exposures is illustrated in Figure 2.  The direct effects of 𝑋1 

and 𝑋2 on the outcome 𝑌 are represented by 𝛽1 and 𝛽2 respectively. 

 

Figure 2 – A simple MVMR model with two exposures.  

 

X1 – exposure, X2 – second exposure, Y – outcome, SNPs represents a group of SNPs each associated with at least one of the 
exposures. The line between 𝑋1 and 𝑋2 is left bidirectional and dashed as no assumptions are made about this relationship 
in the estimation of 𝛽1 and 𝛽2. 

MVMR requires a set of SNPs which are associated with the exposure variables but do not affect 

the outcome other than through these variables. In the same way as standard (single exposure) MR, 

these SNPs are used to predict each of the exposure variables in the model and these predicted 

values are then used to estimate the effect of the exposures on the outcome in a multivariable 

regression analysis. With individual level data MVMR is implemented through two-stage least 

squares (2SLS) regression of the model: 

 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +  𝑣𝑦  

Where 𝑌 is the outcome of interest 𝑋1and 𝑋2 are the exposures of interest, 𝛽0, 𝛽1 and 𝛽2 are the 

intercept and effects of 𝑋1 and 𝑋2 on the outcome respectively. 𝜈𝑦 is a random error term that is 

assumed to be normally distributed. This estimation includes all of the exposures in the MVMR 

model. Each of the exposures are predicted from the full set of SNPs in a first stage regression: 

𝑋1 = 𝜋1𝐺 + 𝑣𝑥1  

  𝑋2 = 𝜋2𝐺 + 𝑣𝑥2  
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Where, in addition to the definitions for the previous equation, 𝐺 is the set of SNPs used as 

instruments, 𝜋1is the effect of those SNPs on 𝑋1, 𝜋2 is the effect of those SNPs on 𝑋2 and 𝜈𝑥1
and 𝜈𝑥2

 

are normally distributed random error terms.  In the two sample summary data setting, Burgess and 

colleagues (Burgess et al. 2015; Burgess and Thompson 2015) show how MVMR can be implemented 

using GWAS summary data estimates of the association between SNP 𝑗 (out of 𝐿) and; the outcome, 

 Γ̂𝑗; exposure 𝑋1,  �̂�1𝑗;  and exposure 𝑋2, �̂�2𝑗. This is done by regressing the effect of each SNP on the 

outcome on the effect of each SNP on each exposure. i.e. by fitting the model:                                                              

 Γ̂j = β1�̂�1,j +  β2�̂�2,j + 𝜖j    

Weighted by the inverse variance of Γ̂𝑗.  𝜖𝑗 is a random error term for each SNP and all other terms 

are as defined above.  

To conduct an MVMR analysis it is necessary to have at least as many genetic instruments as 

there are exposures to be instrumented in the model, this is true regardless of whether single 

sample or two sample summary data are used. As with (conventional) univariable MR it is important 

that the instrumental variable assumptions are satisfied. In MVMR these assumptions become; 

- MV-IV1: the exposures must be strongly predicted by the SNPs given the other exposures 

included in the model;  

- MV-IV2: the SNPs must be independent of the outcome 𝑌 given all of the exposures 

included in the model; and  

- MV- IV3: independent of all confounders of any of the exposures and the outcome 𝑌. 

MV-IV1: In any MR analysis the set of genetic instruments G must be strong in order to avoid 

weak instrument bias (assumption IV1). In MVMR it is necessary, but not sufficient, for the 

exposures to be strongly predicted by the set of SNPs; the exposures must also be strongly predicted 

by the SNPs conditional on the other exposures included in the estimation.  For example in a model 

with lipid traits HDL, LDL and triglycerides included as exposures the set of SNPs used as instruments 

must be able to strongly predict HDL once the association between the SNPs and LDL and 

triglycerides have been accounted for (Sanderson and Windmeijer 2016; Sanderson et al. 2019). If 

this assumption is not satisfied then there will be multicollinearity between the predicted exposures 

and the MVMR estimates obtained will suffer from weak-instrument bias (Cragg and Donald 1993; 

Sanderson and Windmeijer 2016).  

MV-IV2/MV-IV3: MVMR analysis requires that the SNPs do not have an effect on the 

outcome other than through the set of exposures included in the model. However SNPs that affect 

multiple phenotypes can be included in the estimation, as long as all of those phenotypes are 

included as exposures. These assumptions are therefore slightly less restrictive than for univariable 
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MR. Pleiotropy, where a SNP is associated with multiple phenotypes, can take two forms; vertical 

pleiotropy where the SNP is associated with one phenotype which then affects another phenotype 

and horizontal pleiotropy where the SNP is associated with two or more phenotypes independently. 

Horizontal pleiotropy is a violation of the third IV assumption if any phenotype associated with the 

SNP (other than the exposure of interest) is also associated with the outcome. MVMR can be used as 

a form of pleiotropy adjustment when SNPs have potential horizontal pleiotropic effects on a 

phenotype that influences the outcome as this phenotype can be included as an additional exposure 

in the analysis and accounting for the pleiotropic pathway. This is illustrated in the examples of 

MVMR using lipid traits as exposures given earlier, there is a high level of overlap between the SNPs 

associated with HDL, LDL and triglycerides meaning that (univariable) MR analysis of any one of 

these exposures on an outcome will potentially be biased by pleiotropic effects through the other 

exposures. MVMR however avoids this bias by including all of these lipid traits in the same model.  It 

is still necessary however to test for heterogeneity in the SNP outcome association as an indicator of 

potential pleiotropy in MVMR that has not been accounted for. this can be done using a Sargan 

statistic (Sargan 1958)  with individual level data or an adjusted Cochran Q statistic with summary 

data (Sanderson et al. 2019). There are currently limited methods for sensitivity analysis/adjustment 

in MVMR if pleiotropy is thought to be present, however one method of analysis that can be used to 

adjust for pleiotropy is multivariable MR-Egger (Rees et al. 2017) which allows for directional 

pleiotropy which is uncorrelated with the size of the SNP-exposure association.  

 

What is estimated by multivariable MR? 

MR and MVMR target different causal effects of the exposure on the outcome. In general, MR 

estimates the total effect of the exposure on the outcome, whereas MVMR estimates the direct 

effect of each exposure on the outcome (Sanderson et al. 2019). Whether or not these are the same 

depends on the relationship between the exposures in the model, and between the other exposures 

and the outcome. Table 1 considers a model with 2 exposures, 𝑋1 which is the primary exposure of 

interest and 𝑋2 which is an exposure of secondary interest. Three different relationships between 

the exposures are considered; where 𝑋2 is a confounder of 𝑋1 and the outcome, where 𝑋2 is a 

collider of 𝑋1 and the outcome and where 𝑋2 is a mediator of 𝑋1 and the outcome. A collider is a 

variable that is independently affected by two other variables, in this case 𝑋1 and the outcome 𝑌. In 

a conventional (non-MR) analysis conditioning on this variable by including it as an additional 

exposure in a regression of 𝑌 on 𝑋1will introduce bias in the estimated effect of 𝑋1on 𝑌. This bias 

occurs because conditioning on the collider is equivalent to only observing the effect of 𝑋1 on 𝑌 in a 

population of individuals who share the same value of 𝑋2 and so can induce an association where 
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none exists, or change the observed magnitude of the association (Hernán et al. 2004; Munafò et al. 

2017).  In each of the cases considered (confounder, collider and mediator) Table 1 shows what is 

estimated by MR using the full set of SNPs for both exposures, for MR using only SNPs associated 

with 𝑋1 and for MVMR.  

 

Table 1 – Results for the effect of exposure 𝑋1on outcome 𝑌 obtained from MR and Multivariable MR under different 

relationships between exposures in a two exposure model. 

Relationship between 𝑿𝟐 and 𝑿𝟏 MR – including 
all SNPs 

MR – including 
SNPs that only 

affect 𝑿𝟏 

MVMR 

Confounder  

 

Biased. 
Assumption IV2 
is violated  

Direct effect 
=total effect  
= 𝛽1 

Direct effect 
=total effect  
= 𝛽1 

Collider 

 

Direct/total 
effect  
= 𝛽1 

Direct effect 
=total effect  
= 𝛽1 

Direct effect 
=total effect  
= 𝛽1 

Mediator 

 

Biased. 
Assumption IV2 
is violated  

Total effect 
= 𝛽1 + 𝛼𝛽2 

Direct effect  
= 𝛽1 

  

 

As this table shows when 𝑋2 is a confounder or collider of the relationship between 𝑋1 and 

the outcome both the univariable MR and MVMR estimate the same causal effect. However, MVMR 

has the advantage of not requiring that the SNPs only affect 𝑋1 and so allowing estimation of the 

effect of 𝑋1 on the outcome including SNPs that also have an effect on 𝑋2. In the third scenario 

considered, 𝑋2 is a mediator of the relationship between 𝑋1 and the outcome, in this case 

univariable MR with all of the SNPs is biased but univariable MR using the appropriate set of SNPs 
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(i.e. those that affect 𝑋1 only) and MVMR estimate different causal effects. The univariable MR in 

this scenario estimates the total effect of 𝑋1 on the outcome, including any effect that acts through 

𝑋2, however MVMR estimates the effect of 𝑋1 on the outcome holding 𝑋2 constant and therefore 

gives an estimate of the effect of 𝑋1 on the outcome that doesn’t act through 𝑋2, i.e. the direct 

effect.  

 

Estimating mediated effects using MR and MVMR 

Table 1 shows that when a secondary exposure is a mediator of the exposure-outcome relationship, 

MR and MVMR estimate the total and direct effects of the exposure on the outcome respectively. It 

is therefore possible to use MR and MVMR to estimate equivalent effects to traditional mediation 

analysis methods and so obtain estimates of the proportion of the effect of the exposure on the 

outcome that acts through a mediator or set of mediators.  

Traditional mediation analysis uses two different methods to distinguish the direct and 

indirect effects and estimate the proportion mediated; the difference method and the product-of-

coefficients method (Baron and Kenny 1986; MacKinnon 2012; VanderWeele 2016). Both methods 

rely on the estimation of a set of regressions from which the direct and indirect effects of the 

exposure on the outcome can be obtained by combining estimation results.  

The difference method uses two regression models. First the outcome is regressed on the primary 

exposure of interest and any confounders. The estimated parameter for the exposure from this 

regression gives the total effect of the exposure on the outcome. This model is then re-estimated 

with the potential mediator included as an additional explanatory variable. The estimated parameter 

for the exposure from this second regression gives the direct effect of the exposure on the outcome 

that does not act through the mediator.  

The product of coefficients method also uses two regression models to obtain the direct and indirect 

effects. Firstly, the direct effect of the exposure and the mediator on the outcome are obtained 

through regression of the outcome on the exposure and mediator. The estimated parameter for the 

exposure from this regression gives the direct effect of the exposure on the outcome and the 

estimated parameter for the mediator gives the direct effect of the mediator on the outcome. The 

mediator is then regressed on the exposure to estimate the effect of the exposure on the mediator. 

Multiplying this result with the direct effect of the mediator on the outcome gives the indirect effect 

of the exposure on the outcome.    

 In each method described above the proportion of the total effect that is mediated can be 

obtained by dividing the indirect effect of the exposure on the by the total effect. For the results 

obtained from these traditional mediation methods to be interpreted as causal estimates of the 
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direct and indirect effects of the exposure on the outcome two key assumption are that there is no 

unmeasured confounding and no measurement error in the exposure or mediator. These are strong 

assumptions that are unlikely to be met in many scenarios. It is possible to apply MR and MVMR to 

obtain causal estimates of the total, direct and indirect effects and so implement a mediation 

analysis without making these assumptions. However, these assumptions are replaced by the IV 

assumptions described earlier. Estimation of the size of the direct and indirect effects also only 

applies to continuous exposures and mediators as MR does not give accurate point estimates of the 

size of effect when the exposure is binary. 

The difference method Univariable MR estimates the total effect of the exposure on the outcome 

and MVMR estimates the direct effect of the exposure on the outcome conditional on the mediator. 

The difference between these estimates will then give the indirect effect of the exposure on the 

outcome that acts via the mediator (or mediators) included in the MVMR. This is equivalent to the 

difference method of mediation analysis described above.  

The product of coefficients method An alternative method that utilises MR to estimate these effects 

is network (or two-step) MR (Relton and Davey Smith 2012; Burgess et al. 2014). Network MR uses a 

series of univariable MR analyses to estimate the total effect of the exposure on the outcome, the 

effect of the exposure on the mediator and the effect of the mediator on the outcome. However, 

the direct effect of the mediator on the outcome could also be estimated from MVMR estimation of 

the direct effects of the exposure and mediator on the outcome. The indirect effect of the exposure 

on the outcome can then be calculated by multiplying the effect of the exposure on the mediator 

and the effect of the mediator on the outcome. This is equivalent to the product of coefficients 

method of mediation analysis.  

Network MR estimates the effect of an exposure on an outcome that acts via a single 

mediator variable at a time. Using MVMR it is possible to determine the direct and indirect effects 

when there are multiple mediators included in the model as multiple exposures can be included in 

the MVMR estimation. It is not, however, possible to distinguish the effects of each mediators and 

so disentangle the contribution of each mediator to the indirect effect.  This is because although 

MVMR estimates the direct effect of each exposure in the model, it does not say anything about the 

relationships between the exposure and the different mediators included. These two methods could 

however be combined to determine the total proportion of the effect of the primary exposure on 

the outcome that is mediated by the full set of potential mediators (through MVMR) and then the 

relative importance of each mediator (through a series of network MR analyses that looked at each 

mediator in turn).  
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Table 2 - Estimation of total, direct and indirect effects and proportion mediated using MR and MVMR. 

Effect Estimation – Difference method 
 

Estimation – Product of coefficients method 
(network/two-step MR) 

Total effect Univariable MR of exposure on 
outcome using SNPs associated 
with exposure only. (Fig 3a) 

𝛽1
∗ Univariable MR of exposure on 

outcome using SNPs associated 
with exposure only. (Fig 3a) 

𝛽1
∗ 

Direct effect Effect of exposure on outcome 
from MVMR including exposure 
and mediator as exposures.   
(Fig. 3b) 

𝛽1 Total effect – indirect effect 𝛽1
∗ − 𝛼𝛽2 

Indirect effect Total effect – direct effect 𝛽1
∗ − 𝛽1 

 
Effect of exposure on mediator 
from univariable MR (Fig. 3c) 
multiplied by effect of mediator on 
the outcome from univariable MR 
(Fig. 3d) or multivariable MR (Fig. 
3b) 

𝛼𝛽2 

 

Figure 3 - Illustration of the parameters estimated to obtain total, direct and indirect effects and proportion mediated using 
MR and MVMR.  

a. 

 

b. 

 

c. 

 

d. 
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X – exposure, M - mediator, Y – outcome, SNPsX – set of SNPs associated with the exposure, SNPsM – set of SNPs associated 
with the mediator.   
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Advantages and limitations of using mendelian randomisation to estimate mediated effects 

An important advantage of using MR and MVMR to estimate mediation effects is that if 𝑀 is 

not a mediator of 𝑋 and 𝑌 but is in fact a confounder (or even collider) of 𝑋 and 𝑌 the estimated 

direct effect will be equal to the estimated total effect and so the lack of mediation will be clear 

from the results obtained. This overcomes the limitation of traditional mediation analysis that the 

correct specification of the model through assignment of variables to mediators or confounders is 

essential to correctly identifying the role of mediators. In mediation analysis it is not possible to 

distinguish statistically between a model where 𝑀 is a mediator of 𝑋 and 𝑌 and the equivalent 

model where 𝑀 is infact a confounder of 𝑋 and 𝑌 (MacKinnon et al. 2000). This is no longer the case 

for MR and MVMR, allowing for correct estimation even when a confounder is mis specified as a 

mediator.  

Another key assumption of observational mediation analysis is the cross-world assumption. 

This assumption states that there must be no confounder of the mediation and outcome that is a 

descendent of the exposure (VanderWeele 2016).  Violation of this assumption introduces bias in 

the observational mediation analyses as any variable violating this assumption is part of the total 

effect of the exposure on the outcome but should be adjusted for as a confounder of the mediator 

outcome association. Methods for mediation analysis are available that can adjust for variables that 

violate this assumption when they are observed (Vansteelandt and Daniel 2017). However, using MR 

and MVMR for meditation analyses this assumption is no longer necessary and so reliable estimates 

can be obtained even when these variables are not observed. This is because it is no longer 

necessary to adjust for confounders and so the effect of the confounder that violates the cross 

worlds assumption will be appropriately differentiated into the direct and indirect effects.    

 One advantage of MVMR is that it can be used to estimate direct effects even when SNPs 

are associated with multiple exposures, as long as all of those exposures are included in the model. 

However, when MR and MVMR are used to estimate direct and indirect effects it is necessary to 

ensure that all SNPs used to estimate the total effect of the exposure on the outcome are only 

associated with the exposure; i.e. they have no pleiotropic effects on the mediator. If this 

assumption is not satisfied then the estimated total effect of the exposure will be biased and 

consequently the estimate of the direct effect will also be biased. In the case where the estimated 

direct effect differs from the estimated total effect it is not possible to distinguish mediation from a 

pleiotropic effect of the SNPs for the exposure through the potential mediator. Therefore, it is 

important to be as confident as possible that the univariable MR estimates are not biased by a 

pleiotropic effect of the SNPs on the outcome. There are a number of sensitivity analyses that can be 

used to try to identify pleiotropic effects in the MR analysis (Chen et al. 2008; Davey Smith and 
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Hemani 2014; Bowden et al. 2015; Bowden et al. 2016; Bowden et al. 2017; Hartwig et al. 2017; 

Spiller et al. 2018). However pleiotropy is notoriously difficult to identify in MR analysis and this lack 

of distinction between mediation and pleiotropy driving a difference in results is an important 

weakness of MVMR when one exposure is a potential mediator of the other.    

All of the description here focuses on the estimation of MVMR and mediation effects when 

the exposure, mediator and outcome are continuous variables. When the outcome is binary and the 

effects are estimated on the odds ratio scale it is no longer possible to reliably calculate direct and 

indirect effects due to the non-collapsibility of odds ratios. The value of an odds ratio marginal on 

another variable may have a different value to the value of the odds ratio conditional on that 

variable, even when that variable is not associated with the exposure, i.e. the value of an odds ratio 

is dependent on the distribution over which the odds ratio is evaluated.(Greenland et al. 1999; 

VanderWeele and Vansteelandt 2010; Burgess 2017) In practice this means that the total and direct 

effects estimated may differ because the direct effect is estimated conditional on the potential 

mediator, even if the potential mediator is not actually a mediator of the exposure outcome 

relationship.  This problem cannot be avoided through the use of MR and is explored in more detail 

elsewhere (Carter et al. 2019b). When the exposure is binary MR analyses can be used to test causal 

hypotheses, however the effect estimates obtained are not reliable estimates of the size of the 

causal effect (Angrist et al. 1996; Palmer et al. 2011; Vansteelandt et al. 2011; Clarke and 

Windmeijer 2012). This applies to all MR analyses, including those for mediation analysis. Therefore, 

although the presence, or lack of, of a mediation effect can be detected when the exposure or 

mediator is binary caution should be exercised in interpreting the size of the direct and indirect 

effects from the results obtained.   

A feature of MR analyses of all types is that they are primarily estimating lifetime effects of 

the exposure (or exposures) of interest on the outcome (Holmes et al. 2017; Labrecque and Swanson 

2018).  When interpreting the results from estimating the total and direct effects from a MR and 

MVMR analysis it is therefore important to consider this. The effects obtained are the total and 

direct lifetime effects of the exposure on the outcome which may differ from the effects at any 

timepoint if there is a bidirectional relationship or feedback loop between the exposure and the 

mediator that acts over time. If SNPs differ in their effects on an exposure over different time points 

then it may be possible to distinguish the effects of at exposure at each time point on an outcome 

using MVMR (Richardson et al. 2019a). However it will not be possible to determine how much of 

the effect of an earlier time point is mediated by a later time point unless there are SNPs available as 

instruments which only affect the earlier time point enabling unbiased univariable MR estimates to 

be obtained of the earlier timepoint on the outcome.  
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Conclusion 

MVMR is a recently developed extension to MR that can be used to estimate the effect of 

multiple exposures on an outcome when the relationship between the exposures is unknown and/or 

the SNPs used as instruments are thought to have an effect on multiple exposures. When one 

exposure is a potential mediator of the effect of another on the outcome, MR and MVMR can be 

used to obtain an estimate of the total and direct effects of the exposure on the outcome even in 

the presence of unmeasured confounding. However, the assumption of no unmeasured confounding 

is replaced by a set of IV assumptions required for the estimates obtained to be consistent. 

Therefore, consideration of these assumptions and the weaknesses of using MR and MVMR to 

estimate mediated effects is required when estimating direct and indirect effects of an exposure on 

an outcome.  

 

References 

Angrist JD, Imbens GW, Rubin DB. 1996. Identification of causal effects using instrumental variables. 
Journal of the American statistical Association 91: 444-455. 

Baron RM, Kenny DA. 1986. The moderator–mediator variable distinction in social psychological 
research: Conceptual, strategic, and statistical considerations. Journal of personality and 
social psychology 51: 1173. 

Bowden J, Davey Smith G, Burgess S. 2015. Mendelian randomization with invalid instruments: effect 
estimation and bias detection through Egger regression. International journal of 
epidemiology 44: 512-525. 

Bowden J, Davey Smith G, Haycock PC, Burgess S. 2016. Consistent estimation in Mendelian 
randomization with some invalid instruments using a weighted median estimator. Genetic 
epidemiology 40: 304-314. 

Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan N, Thompson J. 2017. A framework for 
the investigation of pleiotropy in two‐sample summary data Mendelian randomization. 
Statistics in medicine 36: 1783-1802. 

Burgess S. 2017. Estimating and contextualizing the attenuation of odds ratios due to non 
collapsibility. Communications in Statistics-Theory and Methods 

 46: 786-804. 
Burgess S, Butterworth A, Thompson SG. 2013. Mendelian randomization analysis with multiple 

genetic variants using summarized data. Genetic epidemiology 37: 658-665. 
Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium E-I. 2014. Network Mendelian 

randomization: using genetic variants as instrumental variables to investigate mediation in 
causal pathways. International journal of epidemiology 44: 484-495. 

Burgess S, Davey Smith G. 2017. Mendelian Randomization Implicates High-Density Lipoprotein 
Cholesterol–Associated Mechanisms in Etiology of Age-Related Macular Degeneration. 
Ophthalmology 124: 1165-1174. 

Burgess S, Dudbridge F, Thompson SG. 2015. Re:“Multivariable Mendelian randomization: the use of 
pleiotropic genetic variants to estimate causal effects”. American journal of epidemiology 
181: 290-291. 



 

16 
 

Burgess S, Thompson DJ, Rees JM, Day FR, Perry JR, Ong KK. 2017. Dissecting causal pathways using 
Mendelian randomization with summarized genetic data: application to age at menarche 
and risk of breast cancer. Genetics 207: 481-487. 

Burgess S, Thompson SG. 2015. Multivariable Mendelian randomization: the use of pleiotropic 
genetic variants to estimate causal effects. American journal of epidemiology 181: 251-260. 

Carter AR, Gill D, Davies NM, Taylor AE, Tillmann T, Vaucher J, Wootton RE, Munafò MR, Hemani G, 
Malik R et al. 2019a. Understanding the consequences of education inequality on 
cardiovascular disease: mendelian randomisation study. BMJ 365: l1855. 

Carter AR, Sanderson E, Hammerton G, Richmond RC, Smith GD, Heron J, Taylor AE, Davies NM, 
Howe LD. 2019b. Mendelian randomisation for mediation analysis: current methods and 
challenges for implementation. bioRxiv: 835819. 

Chen L, Davey Smith G, Harbord RM, Lewis SJ. 2008. Alcohol Intake and Blood Pressure: A Systematic 
Review Implementing a Mendelian Randomization Approach. PLOS Medicine 5: e52. 

Clarke PS, Windmeijer F. 2012. Instrumental variable estimators for binary outcomes. Journal of the 
American Statistical Association 107: 1638-1652. 

Cragg JG, Donald SG. 1993. Testing identifiability and specification in instrumental variable models. 
Econometric Theory 9: 222-240. 

Davey Smith G, Ebrahim S. 2003. ‘Mendelian randomization’: can genetic epidemiology contribute to 
understanding environmental determinants of disease? International journal of 
epidemiology 32: 1-22. 

Davey Smith G, Hemani G. 2014. Mendelian randomization: genetic anchors for causal inference in 
epidemiological studies. Human molecular genetics 23: R89-R98. 

Didelez V, Meng S, Sheehan NA. 2010. Assumptions of IV methods for observational epidemiology. 
Statistical Science 25: 22-40. 

Greenland S, Robins JM, Pearl J. 1999. Confounding and collapsibility in causal inference. Statistical 
science 14: 29-46. 

Hartwig FP, Davey Smith G, Bowden J. 2017. Robust inference in summary data Mendelian 
randomization via the zero modal pleiotropy assumption. International journal of 
epidemiology 46: 1985-1998. 

Hernán MA, Hernández-Díaz S, Robins JM. 2004. A structural approach to selection bias. 
Epidemiology 15: 615-625. 

Holmes MV, Ala-Korpela M, Smith GD. 2017. Mendelian randomization in cardiometabolic disease: 
challenges in evaluating causality. Nature reviews Cardiology 14: 577-590. 

Jamieson E, Korogolou-Linden R, Wootton R, Guyatt A, Battram T, Burrows K, Gaunt T, Tobin M, 
Munafo M, Davey Smith G et al. 2019. Smoking, DNA methylation and lung function: a 
Mendelian randomization analysis to investigate causal relationships. 19003335. 

Johnson KE, Siewert KM, Klarin D, Damrauer SM, Chang K-M, Tsao PS, Assimes TL, Maxwell KN, 
Voight BF. 2019. Assessing a causal relationship between circulating lipids and breast cancer 
risk: Mendelian randomization study. bioRxiv: 794594. 

Labrecque JA, Swanson SA. 2018. Interpretation and Potential Biases of Mendelian Randomization 
Estimates With Time-Varying Exposures. American Journal of Epidemiology 188: 231-238. 

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. 2008. Mendelian randomization: 
using genes as instruments for making causal inferences in epidemiology. Statistics in 
medicine 27: 1133-1163. 

MacKinnon D. 2012. Introduction to statistical mediation analysis. Routledge. 
MacKinnon DP, Krull JL, Lockwood CM. 2000. Equivalence of the Mediation, Confounding and 

Suppression Effect. Prevention Science 1: 173-181. 
Marouli E, Del Greco MF, Astley CM, Yang J, Ahmad S, Berndt SI, Caulfield MJ, Evangelou E, McKnight 

B, Medina-Gomez C et al. 2019. Mendelian randomisation analyses find pulmonary factors 
mediate the effect of height on coronary artery disease. Communications Biology 2: 119. 



 

17 
 

Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. 2017. Collider scope: when selection bias 
can substantially influence observed associations. International Journal of Epidemiology 47: 
226-235. 

Naimi AI, Kaufman JS, MacLehose RF. 2014. Mediation misgivings: ambiguous clinical and public 
health interpretations of natural direct and indirect effects. International Journal of 
Epidemiology 43: 1656-1661. 

Palmer TM, Sterne JA, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Smith GD, Didelez V. 
2011. Instrumental variable estimation of causal risk ratios and causal odds ratios in 
Mendelian randomization analyses. American journal of epidemiology 173: 1392-1403. 

Rees JM, Wood AM, Burgess S. 2017. Extending the MR‐Egger method for multivariable Mendelian 
randomization to correct for both measured and unmeasured pleiotropy. Statistics in 
medicine 36: 4705-4718. 

Relton CL, Davey Smith G. 2012. Two-step epigenetic Mendelian randomization: a strategy for 
establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 
41: 161-176. 

Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey Smith G. 2019a. Can the impact of 
childhood adiposity on disease risk be reversed? A Mendelian randomization study. 
medRxiv: 19008011. 

Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Smith GD, Holmes MV. 2019b. 
Apolipoprotein B underlies the causal relationship of circulating blood lipids with coronary 
heart disease. medRxiv: 19004895. 

Sanderson E, Davey Smith G, Windmeijer F, Bowden J. 2019. An examination of multivariable 
Mendelian randomization in the single-sample and two-sample summary data settings. 
International Journal of Epidemiology 48: 713-727. 

Sanderson E, Windmeijer F. 2016. A weak instrument F-test in linear IV models with multiple 
endogenous variables. Journal of Econometrics 190: 212-221. 

Sargan JD. 1958. The estimation of economic relationships using instrumental variables. 
Econometrica: 393-415. 

Spiller W, Slichter D, Bowden J, Davey Smith G. 2018. Detecting and correcting for bias in Mendelian 
randomization analyses using Gene-by-Environment interactions. International Journal of 
Epidemiology 48: 702-712. 

VanderWeele T. 2015. Explanation in causal inference: methods for mediation and interaction. 
Oxford University Press. 

VanderWeele TJ. 2013. A three-way decomposition of a total effect into direct, indirect, and 
interactive effects. Epidemiology 24: 224-232. 

VanderWeele TJ. 2016. Mediation analysis: a practitioner's guide. Annual review of public health 37: 
17-32. 

VanderWeele TJ, Vansteelandt S. 2010. Odds ratios for mediation analysis for a dichotomous 
outcome. American journal of epidemiology 172: 1339-1348. 

VanderWeele TJ, Vansteelandt S, Robins JM. 2014. Effect decomposition in the presence of an 
exposure-induced mediator-outcome confounder. Epidemiology 25: 300. 

Vansteelandt S, Bowden J, Babanezhad M, Goetghebeur E. 2011. On instrumental variables 
estimation of causal odds ratios. Statistical Science 26: 403-422. 

Vansteelandt S, Daniel RM. 2017. Interventional effects for mediation analysis with multiple 
mediators. Epidemiology 28: 258. 

Xu L, Borges MC, Hemani G, Lawlor DA. 2017. The role of glycaemic and lipid risk factors in mediating 
the effect of BMI on coronary heart disease: a two-step, two-sample Mendelian 
randomisation study. Diabetologia 60: 2210-2220. 

 

 


