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Introduction 11 

The use of mathematical models to guide reservoir operations has a long history. The first reviews of 12 

the scientific literature on the topic already appeared in the 1980s (e.g. Yeh 1985), while the number of 13 

papers introducing new methods and applications has steadily grown in recent years (see e.g. Fig. 2 in 14 

Dobson et al., 2019a). Over time, algorithmic advances have enabled the application of reservoir 15 

operation optimization to increasingly complex simulation models and to larger number of objectives 16 

(e.g. Reed et al. 2013). Given the renewed interest in dam construction, particularly for hydropower 17 

development (Zarfl et al. 2014), and the pressure to expand the range of interests considered in dam 18 

operation, particularly towards environment conservation targets (e.g. Poff and Schmidt 2016; Chen 19 

and Olden, 2017), (multi-objective) optimisation would be expected to play a growing role in informing 20 

reservoir operations. 21 

 22 

Despite this potential, however, there is a shared perception among researchers that optimisation 23 

methods have seen limited uptake by practitioners. For example, in a state-of-art review of the Water 24 

Resource System Analysis (WRSA) field, Brown et al. (2015) concluded that, while simulation models 25 

are widely used for what-if analyses and manual appraisal of options, optimisation methods are rarely 26 

used outside academia (with the notable exception of hydropower applications, see e.g. Ibanez et al. 27 

(2014)). Perhaps surprisingly, attempts at formally surveying practitioners to assess the validity of this 28 

perception have been quite limited so far. To our knowledge, the first study of this type dates back to 29 

the survey of US practitioners by Rogers and Fiering (1986), who reported a very limited uptake of 30 

WRSA methods at the time. More recently, Rosenberg et al. (2017) interviewed some practitioners in 31 

the US and Asia and found that “all practitioners mentioned use of simulation modeling” whereas most 32 

“indicated that they never implemented formal optimization algorithms”, and “were more inclined to 33 

either manually generate scenarios or use simple search algorithms”. The apparent disconnect between 34 

research and practice communities is a recurrent theme in commentary papers in the WRSA field, and 35 

further efforts have been advocated to provide more stringent evidence of the contribution of WRSA to 36 

society (Kasprzyk et al., 2018). 37 

 38 

In this paper, we contribute to this ongoing discussion by presenting the results of a survey of 39 

practitioners of water companies in England and Wales, aimed at assessing specifically the use of 40 
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reservoir simulation and optimisation tools. We complement the survey results with interviews of 41 

practitioners in consultancy companies and our own experience of interacting with the UK water 42 

industry. Finally, we suggest some directions for future research that we think may be interesting for 43 

researchers while also helping to make the field more relevant for practice. 44 

 45 

Background 46 

Beyond our own links to the region, we think England and Wales are interesting places to measure the 47 

uptake of reservoir simulation and optimisation software for several reasons. The region is relatively 48 

water stressed, having the 63rd smallest renewable water resources per capita worldwide (FAO, 2008), 49 

mainly because of high population density, particularly in the South-East of England. Importantly, 50 

water companies are private, so they should seek to maximise efficiency and profitability, but their 51 

water management decisions are open to scrutiny by the public and they must be approved by the 52 

regulator (the UK Environment Agency).  Specifically, every 5 years each company must prepare a 53 

“water resource management plan”, which appraise options for closing the demand-supply balance over 54 

the next 25 years, and a “drought plan”, which describes the management measures that will be taken 55 

in drought conditions (WaterUK, 2016). Clearly, all these planning activities may benefit from the 56 

adoption of state-of-art modelling tools to increase both efficiency and transparency. Furthermore, 57 

companies have a certain degree of flexibility in the operation of their reservoirs, which are often part 58 

of a wider connected water supply network (around 80% of the population receive their water from 59 

treatment works that can be supplied from multiple sources), so they could specifically benefit from 60 

using reservoir operation optimisation to design operating rules, or to define the thresholds triggering 61 

drought conditions, or even to inform real-time decisions.  62 

Survey design 63 

Before carrying out the survey it was important to determine a set of questions and a terminology 64 

appropriate for the target group. Therefore, we first performed two pilot interviews with water resource 65 

planners and managers in two companies, scoping the company’s operational procedures and 66 

understanding the terminology in use. We then prepared a questionnaire that could be meaningfully 67 

answered by water resource managers across other companies. We selected the format of self-68 

administered questionnaire via the internet to enable recipients to respond without time pressure and to 69 

avoid introducing ‘interviewer effects’ into the results, i.e. subconsciously guiding the interviewee 70 

towards certain responses (Opdenakker, 2006).  71 

 72 

The questionnaire covered the following topics:  73 

i) Availability and use of rule curves for the company’s reservoirs’ operation. 74 

ii) Approaches to decision-making during normal and drought conditions. 75 

iii) Use of software tools for simulation and/or optimisation of reservoir operations. 76 

iv) Outlook on future challenges and opportunities.  77 



We did not ask which specific optimisation algorithm was in use or under consideration (a question we 78 

originally aimed to ask) because the pilot interviews suggested that water managers did not have in-79 

depth knowledge of different algorithms or were not clear about the use and purpose of optimisation in 80 

the first place. This led us to introduce a question in our survey to specifically investigate the 81 

respondents’ view of the purposes of reservoir operation optimisation, and to formulate the other 82 

questions about optimisation tools in hypothetical terms (i.e. make them answerable even if respondents 83 

do not actually use these tools).  84 

 85 

The questionnaire was sent to the 11 water supply companies in England and Wales that operate more 86 

than one large reservoir, and which (together with the 2 companies of the pilot interviews)  collectively 87 

cover 96% of the total storage for water supply. Given that the relatively small size of the target group 88 

would not have allowed a statistical analysis of the responses, we allowed respondents to both select 89 

from multiple answers for each question or write their own answer, in order to maximise the amount of 90 

information gained through the questionnaire. We complement the survey results with further insights 91 

gained through our own experience of working with the UK water industry, and with interviews we 92 

held with consultants (3 based in the UK and 6 from other countries - Australia, South Africa, South 93 

Korea – with whom we have ongoing collaborations). 94 

 95 

Survey results 96 

Figures 1 and 2 report the survey results. Each column corresponds to one company (in total we received 97 

responses from 8 companies via the questionnaire, plus 2 companies via the pilot interviews, for a total 98 

coverage of 88% of England and Wales’s total supply storage capacity). All respondents declare that 99 

their reservoirs have rule curves (Q1) but these rules are mostly used informally (Q2). The decision-100 

making process in both normal (Q3) and drought (Q4) conditions uses a variety of information sources 101 

and mechanisms. It heavily relies on expert judgement (Q3b), often involving an increased number of 102 

staff during drought conditions (Q4b). Yet most respondents are also familiar with simulation software 103 

and use it for what-if analyses in normal and/or drought conditions (Q3c,Q4e). Only two respondents 104 

declared using real-time optimisation software (Q3d), however, based on their responses to a later 105 

question on the purposes of reservoir operation optimisation (Q8), we suspect these respondents may 106 

be referring here to optimisation of source-supply allocation, rather than reservoir operation 107 

optimisation as typically defined in the scientific literature (more on this later). It should also be noted 108 

that in many companies, particularly large ones, the planning department is separate from operations 109 

teams, hence our survey respondents may not have full knowledge of software used in real-time. 110 

Reasons for concern about current decision-making approaches (Q5) and perceptions of main 111 

challenges ahead are also varied (Q6), with about half of all respondents concerned about very system-112 

specific problems such as the inadequacy of ageing infrastructure (Q6b and Q6c) and the introduction 113 

of more stringent regulations (Q6d and Q6e). 114 



When it comes to assessing tools in support of decision-making, we find that respondents’ reservations 115 

regarding simulation software are mainly about its realism (Q7). Also, as anticipated in the pilot 116 

interviews, there seems to be a certain confusion about the scope and purpose of “reservoir operation 117 

optimisation software” (Q8). Most respondents would put under this name almost any optimisation 118 

activity, instead of the more focused definition used by researchers: essentially all respondents think of 119 

reservoir optimisation as a spatial optimisation problem (i.e. optimal allocation of water volumes across 120 

a network of source-demand nodes, answer Q8b) whereas the scientific literature typically refers to the 121 

temporal optimisation problem (optimal allocation of water volumes over time, answer Q8a). A possible 122 

reason for this emphasis on the spatial allocation problem is that the software simulation tools currently 123 

in use in the UK industry, such as Aquator (Oxcisoft, 2020) and Miser (Servelec, 2020), represent 124 

simulation as a source-supply solving problem. No particular reason for the limited use of optimisation 125 

tools emerges from the survey (Q9) but about half of the respondents declared that they are evaluating 126 

it or have started to use it (Q9f).  127 

 128 

Looking ahead, the feature of optimisation software that respondents would value most (Q10) is the 129 

ability to interact with the software and manipulate and visualize outputs (Q10d,e) – a response which 130 

is expected given the high degree of informality of the decision-making process. Last, most respondents 131 

expect reservoir operation optimisation software will be much more extensively used in the future 132 

(Q11). 133 

 134 

Discussion and implications 135 

Our survey results are consistent with previous studies (Brown et al. 2015; Rosenberg et al. 2017) in 136 

confirming a widespread use of simulation software but very little use of optimisation tools. This main 137 

conclusion was also confirmed by the interviewed consultants. Interestingly, the consultant who 138 

mentioned applying reservoir operation optimisation in the way most similar to the scientific literature 139 

(i.e. using a genetic algorithm to optimise rule curves) did so within a simulation experiment, where 140 

they had to mimic the behaviour of the water company (their client) under out-of-record inflow 141 

scenarios. Indeed, it was the simulation outputs, in the form of an assessment of the system’s sensitivity 142 

to droughts, and not the optimised rule curves that were provided to the client.  143 

Whereas the answers to the specific question on the applicability of operation optimisation tools (Q10) 144 

do not shed much light on the reasons for its limited use, we think some interesting points indirectly 145 

emerge from the results. In the remainder of the paper, we discuss these points, complement them with 146 

comments found in the literature or made by the interviewed consultants, and we suggest possible ways 147 

forward. 148 

 149 

Reconciling optimization with users’ expertise 150 



As highlighted by our survey, the decision-making process in reservoir operation does not rigidly follow 151 

automatic rules but involves considerations that are difficult to code into a computer model. 152 

Mathematical formulations of the decision-making problem are perceived by practitioners as too 153 

simplistic to capture the complex nuances of the real processes. As summarized by one of the 154 

interviewed consultants:  155 

“The human elements of our system are so enormously complex that anything as formal as optimisation 156 

is unlikely to be of benefit”.  157 

This may help explaining the preference for simulation over optimisation tools. Answering ‘what-if?’ 158 

questions through simulation allows users to complement the model responses with their own system-159 

specific knowledge, whereas answering ‘what’s best?’ questions through optimisation leaves little 160 

space for further adjustments. Formulating the reservoir operation problem in purely quantitative 161 

(mathematical) terms, as required by optimisation tools, is particularly difficult when the system is 162 

highly integrated into a wider infrastructural and socio-economic context. As affirmed by one of the 163 

interviewed consultants:  164 

 “We find that the rule curves we produce [for our clients at water companies] are either followed rigidly 165 

or not at all; we would prefer that they are incorporated with a wider understanding of the water 166 

resources system in question” 167 

The emphasis here is on the inability of the computer algorithm to account for complex, possibly 168 

intangible, aspects that humans would be able to consider in their decision-making. Indeed, a feature 169 

that most survey respondents identified as very important for reservoir operation optimisation software 170 

is the ability to interact with other software and allow effective visualisation and manipulation of results 171 

(Q10); presumably to facilitate the integration of model-generated information with human thinking.  172 

 173 

Conversely, a criticism sometimes raised in the optimisation literature is that the working mechanisms 174 

of optimisation algorithms are too complex to be understood by humans, who are then reluctant to 175 

accept their results. Hence the increasing interest in developing new approaches to ‘open the black-box’ 176 

of optimisation and to deliver optimal operating rules in forms that are easier to understand by users 177 

(e.g. Herman and Giuliani, 2018). We believe there is an overarching issue here, that is, if optimisation 178 

is ever to be accepted and used by practitioners, it needs to be better integrated with user knowledge 179 

and expertise of the system to be optimised. This applies to both the formulation of the optimisation 180 

problem (see for example discussion in Smith et al., 2017) as well as its solution. Interestingly, new 181 

approaches for linking automatic optimisation algorithms and human knowledge, i.e. for ‘putting 182 

humans in the loop’, are an active area of research in machine learning (e.g. Holzinger et al., 2019). 183 

Researchers in reservoir operation optimisation may look in this direction of hybrid strategies to find 184 

new interesting avenues for future research.  185 

 186 

Promoting a value-for-decisions approach to model evaluation  187 



One result we found particularly interesting is the rather widespread concern about the lack of realism 188 

of current simulation models (Q7). This also resonates with comments from previous studies, e.g. Asefa 189 

(2015): “A key challenge that the applied research community needs to address is how to avoid the use 190 

of simplifying assumptions that may limit the usefulness of models/methods in a practical setting”. The 191 

criticism has some merit. Research studies typically do not include detailed representations of 192 

regulations that constrain system operations, or contingent system properties (for example, recurrent 193 

misfunctioning of an ageing infrastructure) that may be known to operators – and that are often of big 194 

concern to them, according to the responses to our questions about challenges ahead (Q6). Again, this 195 

may contribute to explain practitioners’ preference for simulation over optimisation tools, as the former 196 

enables users to complement model responses with their domain-specific knowledge. As pointed out 197 

by one of the interviewed consultants:  198 

“Optimised results are inherently optimistic due to the assumption that the system is working perfectly; 199 

this results in decisions that are overly risky”. 200 

On the other hand, accommodating detailed aspects of system functioning could lead to developing 201 

extremely case-specific tools, which would conflict with the researchers’ ambition to find general 202 

methods and principles that can be transferred across systems. Furthermore, the very idea that increasing 203 

the level of detail embedded in the model guarantees, per se, higher accuracy or value for decision-204 

making, is debatable.  205 

 206 

Several authors across environmental modelling domains have shown that more detailed representation 207 

of processes within a model does not necessarily imply it will provide more accurate predictions (e.g. 208 

Young et al., 1996, Beven et al., 2015). Moreover, analyses of the input-output relationship in 209 

environmental models consistently shows that spatially and/or temporally aggregated output metrics 210 

are typically controlled by a very small number of inputs (Wagener and Pianosi, 2019). This finding 211 

implies that, if practitioners only focus on few summary metrics (or “performance indicators”, e.g. 212 

Groves et al. 2015) to inform their decisions (as they often must do, in search for synthesis), then the 213 

model components or parameters that actually control those metrics may be quite limited. Hence, most 214 

enhancements or additions to the model might actually make little difference to their decisions. The 215 

case for using simple models has been repeatedly made over time, also in the WRSA context, e.g. by 216 

Ford (2006) and Doherty (2011), who nicely summarised: “Unfortunately our industry fosters a culture 217 

that makes it too easy to discredit a model that does not resemble a picture from a geological textbook, 218 

and too hard to accept one that entails incisive abstraction”. Clearly the discussion is still ongoing and 219 

far from being settled. Last, in a decision-making oriented context, one should remember that prediction 220 

accuracy and value for decision-making do not necessarily coincide. The fact that model predictions 221 

are erroneous does not necessarily imply that they carry no value for informing decisions, particularly 222 

if the possible extent of those errors, i.e. the ‘output uncertainty’, is explicitly recognised. Several 223 



studies have indeed shown that when optimization takes into account uncertainty in model predictions, 224 

it can largely compensate for their inaccuracy (e.g. Ficchì et al. (2016)).  225 

 226 

In summary, we believe that we should promote a culture where prediction accuracy and value-for-227 

decisions of simulation and optimisation models is explicitly assessed and scrutinized, instead of being 228 

assumed as a consequence of increasing model fidelity to the system (i.e. model complexity). To this 229 

end, researchers should keep developing new tools for quantifying, visualising and communicating 230 

output uncertainty and its impact on model-informed decisions. Several studies have started scrutinizing 231 

optimization results and their robustness to uncertain assumptions in the problem formulation, such as 232 

the stationarity of future hydrological conditions (Herman et al., 2016), the definition of system 233 

performance metrics (Quinn et al., 2017) or the delineation of the system boundaries (Dobson et al., 234 

2019b). Making uncertainty quantification approaches easier to use, and demonstrating their benefits 235 

in real-world applications, will hopefully help practitioners to evaluate model adequacy more 236 

coherently with their goals (i.e. to inform decisions), while also contributing to increase trust in 237 

simulation and optimisation models.  238 

 239 

Considering implementation as part of methods development 240 

 241 

Another issue that somehow runs through our survey responses and interviews is the cost of taking up 242 

new and more sophisticate approaches, which requires additional training and expertise. A similar point 243 

was raised before by Asefa (2015) (“From a utilities perspective, these tools require a commitment to 244 

in-house expertise and computing resources.”). The problem is only exacerbated in the context of a 245 

highly regulated industry, where new methods need to be understood and accepted not only by their 246 

direct users but also by the regulators. As one of the survey respondents commented in responding to 247 

question Q9: 248 

[reservoir operation optimisation tools will be applicable to our system...] “if regulators approve of the 249 

methods and lots of other water companies use them” 250 

The point is echoed by one of the interviewed consultants, who said:  251 

“Changing the way things are done means attracting a lot of attention and scrutiny by regulators”.  252 

These problems are typically overlooked by researchers, who tend to evaluate models and methods only 253 

based on the improvements they yield, with little consideration of how difficult these new methods will 254 

be to understand and to implement by practitioners. As pointed out by Kasprzyk et al. (2018) “Because 255 

WRSA is so focused on problem solving methods, it is easy for researchers especially to get distracted 256 

from monitoring results, ignoring how the recipients of information react, or how new techniques 257 

compare to the needs and capabilities of practitioners”.  258 

 259 



Responding to this challenge is not easy. More interaction between higher education and practice in 260 

WRSA is certainly key, and was advocated already in this journal e.g. by Rosenberg et al. (2017). While 261 

that paper focused on the US and Asia, similar discussion would certainly be useful in other regions, 262 

including the UK. On the other hand, researchers may also give more consideration to implementation 263 

issues when proposing and evaluating new methods. For example, they could develop evaluation 264 

metrics that capture performance improvement – how much does a new method improve the system 265 

operation with respect to benchmark approaches – relative to the cost and difficulty of their 266 

implementation, instead of focusing on absolute improvements only. Also, researchers could do more 267 

towards publishing open source implementations of their methods – something that is still often missing 268 

in computational hydrology, hence limiting the transparency and credibility of newly proposed 269 

approaches (see e.g. discussion in Hutton et al. (2016)) and their uptake by practitioners. Analysing the 270 

challenges of implementation and execution of new approaches (e.g. as done in Turner et al. (2016) for 271 

the introduction of ‘risk-based approaches’ to water resource planning in England and Wales) would 272 

not only be helpful to bridge the gap with practice but could also lead to identifying new interesting 273 

directions for further method development – as the examples discussed in the previous paragraphs show. 274 

 275 

Conclusions 276 

Our survey and interviews of practitioners in England and Wales echo previous findings of the few 277 

surveys and commentary papers on the topic, that is, we see a growing uptake of simulation models by 278 

water resource managers but a very limited uptake of optimisation tools. The reasons for this difference 279 

include a limited understanding of the benefits and scope of optimisation software, including a 280 

perception that adopting excessively complex methodologies may generate practical problems that do 281 

not compensate for the benefits; a lack of trust into the realism of models that lead to discarding 282 

optimisation results; and a prevalence of informal decision-making approaches that do not align well 283 

with the very essence of optimisation. Interestingly, our study also revealed many commonalities 284 

between problems identified by practitioners and issues that are currently debated by the scientific 285 

community – for instance on how we evaluate model adequacy, on how to increase the transparency 286 

and reproducibility of modelling tools, and how to integrate automatic optimisation with human 287 

knowledge. We would thus conclude that ‘there is still hope’ for reservoir operation optimisation to be 288 

used by practitioners: looking at ways to achieve that may not only make our research efforts more 289 

relevant for society but also bring interesting new questions for future research. 290 

 291 
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Figure and Tables 408 
 409 
Figure 1 – responses to questions 1-6 of our survey from the 10 interviewed water resource managers 410 
across England and Wales. 411 
 412 
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 416 
 417 
 418 
 419 



 420 
Figure 2 – responses to questions 7-11 of our survey from the 10 interviewed water resource 421 
managers across England and Wales. 422 
 423 
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