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Abstract— Magnetic gears offer several advantages over 

mechanical transmissions. However, across a broad range of 

research studies, their practical performance has not matched 

design predictions. Even with extensive 3D Finite Element 

Analysis (FEA), large discrepancies of 4% to 10% can exist – 

usually attributed to manufacturing error. Research studies 

typically assume ideal realization of the prototype geometry 

while employing basic, poorly characterized manufacturing 

processes in the hardware development. Geometric deviations 

due to manufacturing error are difficult to predict and 

inherently random. Therefore, their effect needs to be assessed 

through a statistical approach, which requires a rapid but 

accurate model of the gear. This paper assesses the effect of 

geometric error on the performance of a magnetic gear using a 

new computationally efficient asymmetric analytical model to 

conduct a Monte-Carlo simulation. The analytical technique is 

validated by comparing the results with a finite element solution 

and very close agreement is observed. By repeatedly analyzing 

the gear, with the position and size of each pole piece 

independently varied each time, a resultant distribution of 

performance can be derived. It is also shown that, for this case 

study, the distribution derived using the analytical model can be 

scaled to match the equivalent, but much more computationally 

onerous, FEA based solution. A predicted statistical distribution 

of a gear’s performance, based on a set of manufacturing 

tolerances, would provide designers with a more realistic 

estimate of a gear’s capability than an idealized analysis. This 

will be increasingly important as magnetic gears become more 

widely adopted. 

 

Keywords—Magnetic gears, asymmetric analytical method, 

geometric deviation, manufacturing error, Monte-Carlo 

I. INTRODUCTION 

Many engineering applications require a multiplication of 
either angular speed or torque, and there is a wide range of 
transmission systems which can be used for this purpose. 
Mechanical gears are a highly developed technology which 
dominates the transmission sector of many engineering 
applications. However, the mechanical contact between the 
gears creates some fundamental drawbacks, including 
friction-induced wear and vibrations, increased maintenance 
requirements and reduced reliability. Since the beginning of 
the 21st century, Magnetic Gears (MGs) have received 
increased attention due to their contactless nature, low 
maintenance requirements and inherent overload protection. 
Researchers have also shown torque densities exceeding      
100 kNm/m3 can be achieved; comparable to two and three 
stage helical gearboxes [1]. They are therefore considered as 
promising alternatives in applications ranging from electrified 

vertical takeoff vehicles to tidal turbines and small-scale 
robotics [2]–[4].  

There is a substantial body of work in the literature 

investigating a number of different topologies, including 

coaxial, harmonic and planetary MGs [5]–[13]. Such research 

projects typically concentrate on the optimization of the gear 

for a particular performance metric, with much of the 

literature focusing on torque density. The most common 

analysis method for MGs is Finite Element Analysis (FEA). 

However, there are numerous examples in the literature 

where a discrepancy is observed between FEA and 

experimental outcomes. Two-dimensional (2D) FEA is 

frequently used as it offers accessibility and gives a 

reasonable indication of performance. In studies using 2D 

FEA, large discrepancies can be observed ranging from 20% 

to 40% [10], [14], [15]. These are attributed to some 

combination of end-effects and manufacturing error. Three-

dimensional (3D) FEA is significantly more computationally 

intensive but, can be employed to overcome the inherent 

limitations of 2D planar models. This can include the 

modelling of end effects and allow the influence of 

supporting structures to be assessed. However, as shown in 

[15], for the analysis of Coaxial Magnetic Gears (CMGs) 

(Fig.  1), knowledge of the aspect ratio allows compensation 

to be applied to 2D results with very good correlation to those 

obtained using 3D FEA. Even so, 3D FEA can still give a 

discrepancy of 4% to 10% [16]–[19]. In particular, in [19], 

3D FEA is used and the end-effects due to almost all the 

supporting structures are considered, in addition to those of 

the active components. In this study a discrepancy of 9% is 

reported, which is attributed to “manufacturing error”. 

Despite extensive research studies, very few MGs can be 

found in the transmission industry. The reasons for this are 

unclear but, accurate techniques for predicting real-world 

performance will be essential for widespread adoption. MGs 

implemented in real-world applications would require a more 

wholistic design approach having to consider a wide range of 

characteristics including electromagnetic performance, 

thermal management, structural requirements and cost. The 

design philosophy must also be suited to scalable production 

processes. In particular, large scale production is only viable 

if the range in expected performance of the product can be 

predicted and deemed acceptable. 

Calculated performance in research studies typically 

assumes exact geometry. Therefore, the effects of geometric 

imperfections are rarely considered. These imperfections are 

effectively a combination of geometric deviations due to 

manufacturing error and deflection of components under   



load [20]. This may be confounded by the fact that practical 

development of research machines is typically undertaken in 

a prototyping environment where manufacturing and 

assembly controls are basic.  Consideration of the effect of 

geometric deviations can lead to better estimation of the 

expected performance and, in cases where deflections can be 

calculated, better correlation between modelling and 

prototypes.  

 This paper presents an analysis of the effects of 

geometric deviations on the performance of a CMG 

(illustrated in Fig.  1 with parameters outlined in Table I). 

This study focuses on geometric deviations in the modulation 

ring which are expected to be most significant [20]. The 

effects are assessed through a Monte-Carlo analysis for which 

an efficient and accurate analysis method is required. FEA, 

due to its high dependency on the mesh form, requires very 

high mesh density and, as a result, becomes computationally 

expensive and impractical for such a study [21]. Therefore, 

an asymmetric analytical subdomain model has been 

developed considering individual radial and tangential 

deviations of each ferromagnetic pole piece.  

  

II. ASYMMETRIC ANALYTICAL MODEL 

In the literature, analytical models for CMGs have been 

developed using solutions of the magnetic vector potential 

(A) [22]–[27]. However, these assume radial symmetry for 

each of the three main components (the two PM rotors and 

the modulation ring) and are therefore only able to model 

simple bulk geometric errors, such as incorrect radii. More 

realistic geometric deviations are inherently asymmetric and 

cannot be considered with the models mentioned above. 

In [28], Pina et. Al presented an asymmetric analytical 

model of a permanent magnet machine, which allowed 

efficient analysis of rotor and stator asymmetries. With this 

they were able to study the effect of manufacturing error on 

cogging torque. Following their approach, in [21] Leontaritis 

et. Al presented an initial asymmetric model of a CMG, 

however this model considered only tangential deviation of 

each pole piece and radial deviation of each PM. In [20] it 

was concluded that realistic deviation of the modulation ring 

pole pieces in r and θ is likely to be a more significant source 

of error than incorrect rotor geometry. This stems from the 

fact that PM rotors are now a relatively mature technology 

and their manufacturing processes are likely to be relatively 

well controlled – even in research prototypes. 

Here an analytical model is presented that allows the size 

and position of each pole piece to be deviated, emulating 

realistic manufacturing error in the modulation ring. In 

common with [21], the CMG is separated into concentric 

regions (Fig.  2) and the modulation ring is divided further 

into angular subdomains equal to the number of pole pieces 

(Q). However, to account for the asymmetries in the radial 

and tangential position of each pole piece, careful treatment 

of the boundary conditions is required. Here the air-gaps are 

also divided into angular subdomains to match the 

modulation ring. Each region II subdomain is now bounded 

to its equivalent subdomain of region III. The full set of 

boundary conditions is given in (15) – (22). The following 

assumptions are also applied: 

 

 

• A is a function of r and θ and only has a vector 

component in the z-direction; 

• Infinite permeability is applied to the ferromagnetic 

regions; 

• The PMs are assumed to be linear and have unity 

relative permeability; 

• End effects are neglected. 

 

Quantity Value 

Number of pole pieces (𝑄) 5 

Inner rotor poles (𝑃𝑖𝑛) 4 

Outer rotor poles (𝑃𝑜𝑢𝑡) 6 

Inner rotor OD 100 mm 

Outer rotor OD 148 mm 

Axial Length 100 mm 

Fig.  1. CMG  component identification 

TABLE  I. CMG PARAMETERS 



The magnetic vector potential in each region can be 

calculated by solving Poisson’s equation and Laplace’s 

equation in the PM and non-magnetized regions, 

respectively. The general solutions have been simplified by 

adopting the following notations:  

 𝑈𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)

𝑧

+ (
𝑏

𝑎
)

𝑧

 (1) 

 𝑄𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)

𝑧

− (
𝑏

𝑎
)

𝑧

 (2) 

Using the separation of variables method, the general 

solution for each region can be derived. The solutions, 

described by Fourier series, are provided in (3), (4), (11) – 

(13). In the rotor PM regions (I, V) the general solutions are 

as follows: 

 

𝐴(𝐼)(𝑟, 𝜃) = ∑(𝑊1𝑘𝐶𝐼 + 𝑊2𝑘𝑀𝑟𝑐𝑘
(𝐼) ) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐴(𝐼)(𝑟, 𝜃) + ∑(𝑊1𝑘𝐸𝐼 + 𝑊2𝑘𝑀𝑟𝑠𝑘
(𝐼) ) sin(𝑘𝜃)

𝐾

𝑘=1

 

(3) 

 

𝐴(𝑉)(𝑟, 𝜃) = ∑(𝑊3𝑘𝐶𝑉 + 𝑊4𝑘𝑀𝑟𝑐𝑘
(𝑉)

) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐴(𝑉)(𝑟, 𝜃) + ∑(𝑊3𝑘𝐸𝑉 + 𝑊4𝑘𝑀𝑟𝑠𝑘
(𝑉)

) sin(𝑘𝜃)

𝐾

𝑘=1

 

(4) 

 

 

where 

 𝑊1𝑘 =
𝑈𝑘(𝑟, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
 (5) 

 
𝑤2𝑘 = [1 +

1

𝑘
(
𝑅1

𝑟
)
𝑘+1

] ∙ 𝑟 

𝐶2𝑘 −
𝑈𝑘(𝑟, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
[1 +

1

𝑘
(
𝑅1

𝑅2

)
𝑘+1

] ∙ 𝑅2 

(6) 

 
 

𝑊3𝑘 =
𝑈𝑘(𝑟, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
 (7) 

 
𝑊4𝑘 = [1 +

1

𝑘
(
𝑅6

𝑟
)
𝑘+1

] ∙ 𝑟 

𝐶4𝑘 −
𝑈𝑘(𝑟, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
[1 +

1

𝑘
(
𝑅6

𝑅5

)
𝑘+1

] ∙ 𝑅5 

(8) 

 

and 

 𝑀𝑟𝑐𝑘
(𝐼,𝑉)

=
2𝑃𝐵𝑟𝑚

𝑘𝜋𝜇0

𝑠𝑖𝑛 (
𝑘𝜋𝛼𝑝

𝑃
) 𝑐𝑜𝑠(𝑘𝜑0) (9) 

 
 

𝑀𝑟𝑠𝑘
(𝐼,𝑉)

=
2𝑃𝐵𝑟𝑚

𝑘𝜋𝜇0

𝑠𝑖𝑛 (
𝑘𝜋𝛼𝑝

𝑃
) 𝑠𝑖𝑛(𝑘𝜑0) (10) 

for 𝑘 𝑃⁄ = 1, 3, 5, … 

Each general solution is bounded by the inner (R1, R5) and 

outer (R2, R6) radii of each PM region. The parameter k 

denotes the order of harmonics in each region, with Brm being 

the residual flux and P, µo, αp are the number of poles, the 

permeability of free space and the magnet arc to pole pitch 

ratio, respectively. The terms 𝐶𝐼  and 𝐸𝐼  are Fourier 

coefficients. The initial angular position of the rotor is 

defined by φo. 

Similarly, the general solution for each air-gap 

subdomain (II, IV) and the pole-pieces region (III) can be 

described as: 

 

 

This research has been funded by the Engineering and Physical 

Sciences Research Council (EPSRC). 

Fig.  2. Definition of regions, radii and slot angle 



 

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃) = ∑ (𝐶𝐼𝐼,i

𝑅2

𝑘

𝑈𝑘(𝑟, 𝑅3,i)

𝑄𝑘(𝑅2, 𝑅3,i)

𝐾

𝑘=1

+ 𝐷𝐼𝐼,i

𝑅3,i

𝑘

𝑈𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,i, 𝑅2)
) cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃) + ∑ (𝐸𝐼𝐼,i

𝑅2

𝑘

𝑈𝑘(𝑟, 𝑅3,i)

𝑄𝑘(𝑅2, 𝑅3,i)

𝐾

𝑘=1

+ 𝐹𝐼𝐼,i

𝑅3,i

𝑘

𝑈𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,i, 𝑅2)
) sin(𝑘𝜃) 

(11) 

 

𝐴𝑖
(𝐼𝑉)(𝑟, 𝜃) = ∑ (𝐶𝐼𝑉,i

𝑅4,i

𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑄𝑘(𝑅4,i, 𝑅5)

𝐾

𝑘=1

+ 𝐷𝐼𝑉,𝑖

𝑅5

𝑘

𝑈𝑘(𝑟, 𝑅4,i)

𝑄𝑘(𝑅5, 𝑅4,i)
) cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝑉)(𝑟, 𝜃) + ∑ (𝐸𝐼𝑉,i

𝑅4,i

𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑄𝑘(𝑅4,i, 𝑅5)

𝐾

𝑘=1

+ 𝐹𝐼𝑉,𝑖

𝑅5

𝑘

𝑈𝑘(𝑟, 𝑅4,i)

𝑄𝑘(𝑅5, 𝑅4,i)
) sin(𝑘𝜃) 

(12) 

 

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  = 𝐶𝐼𝐼𝐼,𝑖 + 𝐷𝐼𝐼𝐼,𝑖 ln(𝑟) 

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  + ∑ (𝐸𝐼𝐼𝐼,𝑖,𝑚

𝑄𝑓𝑚,𝑖
(𝑟, 𝑅4,s)

𝑄𝑓𝑚,𝑖
(𝑅3,s, 𝑅4,s)

𝑀

𝑚=1

− 𝐹𝐼𝐼𝐼,𝑖,𝑚

𝑄𝑓𝑚,𝑖
(𝑟, 𝑅3,s)

𝑄𝑓𝑚,𝑖
(𝑅3,s, 𝑅4,s)

) 

 𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  =                  ∙ cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 

(13) 

with 

 𝑓𝑚,𝑖 =
𝑚𝜋

𝛽𝑖

 (14) 

where m defines the order of harmonics and βi, θi are the 

opening angle and angular position of the ith slot between 

consecutive pole pieces and s is equal to i  or i-1 depending 

on the matching of pole pieces and slots in the clockwise or 

anticlockwise directions. The terms 𝐶𝐼𝐼,i , 𝐷𝐼𝐼,i , 𝐸𝐼𝐼,i and 𝐹𝐼𝐼,i 

are Fourier coefficients. 

Each air-gap subdomain solution is calculated for the       

[0, 2π] angular domain. The complete solution in the air-gap 

can then be constructed by using the appropriate subdomain 

for the angular region it occupies (Fig.  3). This fact, in 

addition to the continuity of the radial component of the flux 

density and the tangential component of the field intensity 

leads to the following boundary equations that are used to 

define the expressions at each interface: 

 𝐻𝜃
(𝐼)

|
𝑟=𝑅2

= 𝐻𝜃,i
(𝐼𝐼)

|
𝑟=𝑅2

 (15) 

 
 

𝐵𝑟
(𝐼)

|
𝑟=𝑅2

= 𝐵𝑟,i
(𝐼𝐼)

|
𝑟=𝑅2

 (16) 

 𝐻𝜃,𝑖
(𝐼𝐼)

|
𝑟=𝑅3,i

= 𝐻𝜃
(𝐼𝐼𝐼)

|
𝑟=𝑅3,i

 (17) 

 
 

𝐴𝑖
(𝐼𝐼)

|
𝑟=𝑅3,i

= 𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅3,i

 (18) 

 𝐻𝜃
(𝐼𝐼𝐼)

|
𝑟=𝑅4,i

= 𝐻𝜃,𝑖
(𝐼𝑉)

|
𝑟=𝑅4,i

 (19) 

 𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅4,i

= 𝐴𝑖
(𝐼𝑉)

|
𝑟=𝑅4,i

 (20) 

 𝐻𝜃,i
(𝐼𝑉)

|
𝑟=𝑅5

= 𝐻𝜃
(𝑉)

|
𝑟=𝑅5

 (21) 

 
 

𝐵𝑟,i
(𝐼𝑉)

|
𝑟=𝑅5

= 𝐵𝑟
(𝑉)

|
𝑟=𝑅5

 (22) 

Applying the boundary equations (15) – (22) to the 

general solutions in each subdomain (3), (4), (11) – (13) the 

complete solution can be derived and expressed in matrix 

form as in (23).  

 

 

Fig.  3. Angular regions occupied by the air-gap subdomain 



 𝑿 ∙ 𝑲 = 𝒀 (23) 

where 𝑲  is a column matrix containing all the unknown 

Fourier coefficients of each general solution. The 

supplementary matrices 𝑿, 𝒀  are defined through algebraic 

manipulation. This analytical solution is presented in more 

detail in Appendix A.  

A. Analytical Model Validation 

The accuracy of the analytical model is assessed by 

comparing a solution of a sample deviated gear to a 2D finite 

element analysis of the same geometry. For the purpose of 

this study, a degree of error has been arbitrarily introduced to 

the two dimensions and radial and tangential position of each 

pole piece. This error is recorded in Table II. For each region 

the first 200 harmonics were considered. The field solution 

shows excellent correlation with FEA results (Fig.  4), under 

the same infinite permeability assumption. The FEA software 

used in this analysis is FEMM [29]. The mesh density in the 

FE model was set using the approach outlined in [21].  

The computational efficiency of this approach depends on 

the number of harmonics used. The consideration of higher-

order harmonics can increase the accuracy of the model; 

however, this comes at the expense of computational time. 

The relationship between the number of harmonics and the 

accuracy and speed of the model is shown in Fig.  5. It is 

observed that the analytical torque results converge to the 

FEA after the first 50 harmonics. For the purpose of the 

Monte-Carlo analysis, the first 100 harmonics are considered, 

as the simulation samples will differ slightly to the sample 

model of Fig.  4. The computational time of the model with 

the selected harmonics is 2.9 s, more than an order of 

magnitude faster than the equivalent FEA. It must be noted 

the relationship between speed and number of harmonics is 

unique for each CMG. CMGs with higher number of poles, 

and hence higher number of pole pieces, will increase the 

computational time. Therefore, harmonic selection methods 

Variable Pole Piece Error 

 No. 1 No. 2 No. 3 No. 4 No. 5 

Length (mm) 0.018 -0.014 0.001 -0.020 -0.019 

Angular arc 

(deg) 
0.019 -0.018 0.001 0.009 0.018 

Radial 

position (mm) 
-0.001 0.204 -0.103 0.050 -0.030 

Angular 

position (deg) 
0.206 0.011 -0.199 -0.099 -0.142 

 

 

Fig.  4. Analytical vs FEA flux density comparison, assuming infinite permeability 

TABLE  II. PARAMETER ERROR FOR MODEL VALIDATION 

Fig.  5. Model harmonics vs accuracy and speed for sample CMG 



such as the ones presented in [27], [30] may be required to 

speed up the model. 

III. MONTE CARLO ANALYSIS 

In a mass production environment, defining the 

acceptable range of product performance is as important as 

calculating ideal performance. Manufacturing tolerances are 

then specified to achieve an economically acceptable 

probability of a specific product falling into this range. The 

stochastic nature of manufacturing error means assessment of 

its effect requires the use of statistical methods. The range of 

outputs from a manufacturing process can be described 

through a Probability Density Function (PDF) of the desired 

performance variable. In cases where the PDF is unknown, 

PDF estimators can be used in conjunction with a number of 

samples to construct the PDF.  

In this study the effect of geometric deviation of the pole 

pieces of a CMG is discerned through a Monte-Carlo 

analysis. A group of deviated samples is analyzed, each 

employing a different set of parameters. The parameters 

considered are the radial and angular position along with the 

length and angular arc of each pole piece. For each simulation 

the value of each parameter is obtained through random 

sampling of their respective distribution. It is assumed that 

the manufacturing error in the dimensions of the pole pieces 

is normally distributed [28]. In [20] the expected tolerances 

with respect to a selected manufacturing process are 

provided. A tolerance of 0.05 mm has been selected as the 

three-sigma value for the respective distribution, which 

corresponds to stamping and Electric Discharge Machining 

(EDM). The position of the pole pieces is affected by errors 

in manufacture and assembly but also by deflection due to 

magnetic forces within the gear. Assessing the distribution of 

pole piece position is therefore much more complicated than 

pole piece dimensions. This deflection due to magnetic forces 

is highly dependent on the mechanical properties of the pole 

pieces themselves and their supporting structure. 

Furthermore, as the pole pieces deflect, they will experience 

new magnetic loads which lead to further deflections [20], 

[31]. Proper assessment of this is likely to require an iterative 

solution such as [31] and can only be meaningfully 

undertaken with a full mechanical design. Therefore, for the 

purpose of this study, the position distributions have also 

been assumed to be normally distributed with a three-sigma 

value of 0.4 mm for the radial error and 0.4 deg for the 

tangential error. These values are similar to the positional 

error reported in [31], [32].  

A PDF can be estimated using parametric or 

nonparametric methods. Nonparametric methods are well 

suited to cases where there is insufficient information 

regarding the profile of the PDF, whereas parametric 

estimators initially assume an underlying PDF form [33]. The 

estimator used in this study is the Kernel Density Estimator 

(KDE) which is a nonparametric method approximating the 

true PDF at discrete points rather than volumetrically. The 

KDE formula is defined in (24): 

 𝑓ℎ(𝑥) =
1

𝑁ℎ
∑𝑘 (

𝑥 − 𝑥𝑖

ℎ
)

𝑁

𝑖=1

 (24) 

 

Fig.  6. Process diagram of the Monte-Carlo analysis 
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where x1, …, xN are the samples of the unknown distribution, 

h is the bandwidth and k is the user-defined kernel function.  

The properties of k are provided in (25) [33] 

 

 
∫𝑘(𝑢)𝑑𝑢 = 1,    ∫ 𝑢𝑘(𝑢) 𝑑𝑢 = 0,     

∫𝑢2𝑘(𝑢)𝑑𝑢 = 𝑘2 ≠ 0 
(25) 

The bandwidth has a significant effect on the results of 

the KDE. In the literature, an optimal bandwidth has been 

reported which minimizes the Mean Integrated Square Error 

(MISE) [34]. The KDE is obtained through the KDE function 

in Matlab [35], which uses (24) with the optimal bandwidth 

calculated from (26) [36]. 

 ℎ = (
4

3𝑁
)

1
5
𝜎 (26) 

where σ is an initial estimate of the standard deviation of 

𝑓ℎ(𝑥) and is calculated as in [36]. The Epanechnikov kernel 

[37], which is also known to minimize the MISE according 

to the properties in (25) [33], has also been used throughout 

this study. 

The last important factor of the Monte-Carlo analysis is 

the number of samples. The larger the number of samples, the 

better the correlation will be between the simulated and true 

PDFs. However, this comes at a cost of increasing 

computational time. Equation (27) is provided in [38] as a 

mean of calculating the required number of samples when 

investigating the probability of an “event”. Therefore, 

computational efficiency is maximized. 

 𝑁 =
𝑝′(1 − 𝑝′)

𝐸2
𝑧(1+𝛾) 2⁄

2  (27) 

where p’ is an estimate of the probability, E is the allowable 
error in the estimation of p’, γ represents the confidence 
interval and za is the 100(α) percent point of a standard normal 
distribution [38]. 

The process diagram of the Monte-Carlo analysis is 

shown in Fig.  6. Initially, the aim is set and the statistical 

parameters p’, E and γ are selected. An initially conservative

 p’ of 0.5 is set and the value of each variable is obtained from 

their respective distributions. A solution is then calculated 

from the analytical model in Section II and a value of the stall 

torque is obtained. This is normalized with respect to the 

nominal torque of a non-deviated CMG. Using the KDE the 

PDF is re-constructed and a better estimate of p’ is obtained. 

The required number of samples is then updated 

automatically according to (27) and, when reached, the 

simulation is completed. For validation and comparison 

purposes the same Monte-Carlo analysis is performed in 

FEMM and the two results are discussed in Section IV. 

 

IV. RESULTS 

  
For the purpose of this study, an initial aim was set to 

determine the probability of a sample achieving an inner rotor 

stall torque within ± 1% of the nominal. The acceptable error 

E was set to 0.01 and the 95% confidence interval was 

selected, leading to a z value of 1.96.  The complete set of 

parameters of the analysis is provided in Table III. Two 

scenarios were considered; a standard and a “poorly 

manufactured” case, where the stated tolerance corresponds 

to the three-sigma and two-sigma values, respectively. For 

each case, a Monte-Carlo simulation was performed using 

three modelling techniques: non-linear FEA; linear FEA 

assuming infinite permeability in the iron regions and the 

analytical model. 

The Monte-Carlo simulation for the standard case was 

completed according to Fig.  6 and 7545 samples were 

required. The total computational time using the analytical 

solution was approximately 7.3 hours using a computer with 

the following specifications: Intel(R) Core(TM) i7-6700 

CPU @ 3.40GHz, 16 GB RAM. In comparison, the linear 

FEA took approximately 150 hours, with the more 

computationally heavy non-linear FEA requiring around 480 

hours to complete. Consequently, the latter was completed by 

operating 30 computers of the same specification 

concurrently for approximately 16 hours. 
The results of each of the three analysis methods are 

shown in their re-constructed Cumulative Distribution 
Function (CDF) plots of Fig.  7 and Fig.  8. Considering the 
standard case (Fig.  7), the CDF shows good correlation 
between the analytical solution and the linear FEA. However, 
both linear analyses give a more conservative distribution (i.e. 

Parameter Value Distribution 

Tolerance 

Length (mm) 0.05 Normal 

Angular arc (deg) 0.05 Normal 

Radial position (mm) 0.4 Normal 

Angular position (deg) 0.4 Normal 

Statistical Parameters 

𝐸 0.01 N/A 

𝑧 1.96 N/A 

Initial 𝑝′ 0.5 N/A 

TABLE  III. PARAMETERES FOR MONTE CARLO ANALYSIS 



it predicts a higher probability of poor performance) than the 
non-linear FEA. This is even more pronounced for the poorly 
manufactured case. 

However, when comparing stall torque results for a 
specific gear instance (i.e. a defined set of geometric 
deviations) calculated using the analytical model and non-
linear FEA, a linear trend can be observed. This indicates that 
a scaling factor could be applied to calibrate the analytical 
results. Fig.  9 shows the normalised stall torque results for 
115 gear instances using both types of analysis. A line of fit 
can be applied through the central point (1,1) and the gradient 
of this line can then be used to scale results of the analytical 
model as a function of the stall torque. 

From Fig.  7 and Fig.  8 it is evident that excellent 
correlation is achieved between the calibrated analytical and 
the non-linear FEA with only a small number of FEA 
solutions required for the calibration. This translates into very 
similar results in the calculation of the probability p’ (Table 
IV), the initial aim of this section. 

 

V. DISCUSSION 

The nature of stochastic manufacturing variations in a 

complex system makes experimental validation of probable 

performance impractical. However, fast and accurate models 

allow a large number of products, each with unique 

manufacturing errors, to be simulated so that a distribution of 

product performance can be predicted.   
The analytical model has been shown to be very 

computationally efficient but conservative in overestimating 
the probability of poor performance when compared to FEA. 
On the other hand, while non-linear FEA is in practice too 
slow to complete Monte-Carlo studies of this nature, it does 
precisely model subtleties of geometry and material non-
linearity. A hybrid approach is clearly the ideal solution 
combining the accuracy of FEA and computational efficiency 
of the analytical model. This way, even if the raw data from 
the analytical model overestimates the effect of manufacturing 
error (compared with the FEA), the results can be easily 
calibrated using a small number of FEA solutions. Thus, 
accuracy and computational efficiency are both maximized. 

Considering the results of the study, the extent to which 
geometric deviations can affect the stall torque of the CMG is 
related to how well the manufacturing processes are 
controlled. From Fig.  7 and Fig.  8 it is clear that poorly 
controlled manufacturing processes substantially widen the 
cumulative density function. For the well-manufactured case, 
approximately 1.5% of the gear instances have a stall torque 
more than 2% lower than the nominal. For this design with 
these manufacturing tolerances, a relatively modest safety 
factor could ensure that virtually all gears meet the required 
performance. However, if manufacturing processes are not 
well controlled, the situation worsens. This can be seen in   
Fig.  8 with 7.5% of gear instances having a stall torque more 
than 2% lower than the nominal. 

It is likely that the methods outlined in this study could be 

equally applied to similar gear designs. However, the number 

of FEA studies required to ensure an accurate calibration 

needs to be considered. This could relate to both the 

underlying manufacturing distributions and the specific gear 

parameters. In addition, further work would be required to 

apply an asymmetric model of this type to other gear 

topologies - for example those where a permeable mechanical 

bridge exists between adjacent pole pieces [39]. A general 

conclusion on the applicability of this method would 

probably require a large sample of CMGs of different types 

to be analyzed.  
To relate this work to discrepancies in gear performance 

reported in the literature, specific knowledge of the 
manufacturing processes for each case would be required, 
along with enough evidence to predict the relevant underlying 
distributions. As outlined earlier, practical development of 
research machines is typically undertaken in a prototyping 

TABLE  IV. PARAMETERES FOR MONTE CARLO ANALYSIS 

Standard Case 

 Analytical Linear 
FEA 

FEA Calibrated 
Analytical 

p’ 0.58 0.61 0.73 0.73 

Poorly manufactured Case 

 Analytical Linear 
FEA 

FEA Calibrated 
Analytical 

p’ 0.40 0.45 0.53 0.53 

Fig.  7. Analytical vs FEA comparison CDF – Standard case  

 

Fig.  9. Analytical calibration – Poorly manufactured case   

 

Fig.  8. Analytical vs FEA comparison CDF – Poorly manufactured case 



environment with limited controls on manufacturing and 
assembly error. These underlying distributions could therefore 
be much worse that those considered in this study. 

In addition to manufacturing error, geometric deviations 
caused by deflections of the structure under its own magnetic 
loads will also have an effect. These deflections are a more 
complex consideration than manufacturing error as it would 
be difficult to accurately approximate this effect by assuming 
an underlying distribution. As stated in Section III and in [31], 
calculating deflections is likely to require an iterative process 
linking a mechanical model with an electromagnetic 
simulation. If these calculations could be performed with 
comparable efficiency to the model presented in this paper, the 
compounding effects of manufacturing error and deflection of 
the structure could be assessed in similar statistical studies. 

In terms of performance of the analytical model itself, it 

can be observed that the correlation with both linear and non-

linear FEA deteriorates for gear instances with large 

geometric deviations. While this can be calibrated as 

demonstrated here for a statistical analysis, this observation 

may suggest that there are limits to the approximation of an 

asymmetric problem using Fourier Series. Further research to 

quantify this limitation is certainly warranted. 
 
 

VI. CONCLUSIONS 

Statistical analysis of the effect of manufacturing errors 

in complex products requires fast and accurate models. This 

study has developed and verified a statistical method using a 

novel asymmetric analytical model to calculate the effects of 

geometric deviations on the performance of CMGs. A 

complete methodology has been demonstrated and several 

conclusions and indications for further study have been 

drawn from the results. 

The new analytical model can simulate realistic 

asymmetric variations in the modulation ring; previously 

found to be the most susceptible region for geometric error. 

It is flexible and computationally efficient and can therefore 

be used as part of a Monte-Carlo analysis. A balanced 

approach has been demonstrated using the analytical model 

to develop the output distribution profile and a small number 

of FEA solutions to calibrate the results. This maximizes both 

accuracy and computational efficiency. The set of statistical 

techniques employed is as important as the system model. In 

a study such as, this the resultant PDF is always an unknown. 

The Kernel Density Estimator, which does not assume a 

parametric distribution, has been shown to be well-suited to 

this task. 

Close correlation has been achieved between the CDFs 

developed using the calibrated analytical model and non-

linear FEA – with calibration in this case being achieved with 

only 115 data pairs. The methods presented in this paper 

provide a practicable means to assess the effect of 

manufacturing processes, and their errors, on CMG 

performance.  
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APPENDIX 

A. Asymmetric Analytical Model 

The analytical method is based on solutions of the 

magnetic vector potential (A). These solutions reduce to the 

Laplace’s and Poisson’s equations using magnetic flux 

density (B), which is the curl of A (A-1), and Maxwell’s 

Ampere law equation (A-2). 

�⃗� = ∇ × 𝐴  (A-1) 

∇ × �⃗� = µ0 𝐽 + µ0휀0

𝜕�⃗� 

𝜕𝑡
 (A-2) 

Since a magnetostatic solution is required, the partial 

derivative of the electric flux density (E) disappears. 

Furthermore, as there is no applied current, the current 

density (J) is given by the curl of the magnetization vector 

(M) in the PM regions and is zero elsewhere. Therefore, 

equations (A-1) and (A-2) lead to (A-3) in the PM regions 

and (A-4) in all other regions: 

∇2𝐴 = −µ0∇ × �⃗⃗�  (A-3) 

∇2𝐴 = 0 (A-4) 

The general solutions of equations (A-3), (A-4), described 

by Fourier series, are provided in (A-7), (A-8),                   

(A-15) – (A-17). These solutions have been simplified by 

adopting the notation in (A-5), (A-6). 

𝑈𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)

𝑧

+ (
𝑏

𝑎
)

𝑧

 (A-5) 

𝑄𝑧(𝑎, 𝑏) = (
𝑎

𝑏
)

𝑧

− (
𝑏

𝑎
)

𝑧

 (A-6) 

In the rotor PM regions (I, V) the general solutions are as 

follows: 

𝐴(𝐼)(𝑟, 𝜃) = ∑(𝑊1𝑘𝐶𝐼 + 𝑊2𝑘𝑀𝑟𝑐𝑘
(𝐼) ) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐴(𝐼)(𝑟, 𝜃) + ∑(𝑊1𝑘𝐸𝐼 + 𝑊2𝑘𝑀𝑟𝑠𝑘
(𝐼) ) sin(𝑘𝜃)

𝐾

𝑘=1

 

(A-7) 

𝐴(𝑉)(𝑟, 𝜃) = ∑(𝑊3𝑘𝐶𝑉 + 𝑊4𝑘𝑀𝑟𝑐𝑘
(𝑉)

) cos(𝑘𝜃)

𝐾

𝑘=1

 

𝐴(𝑉)(𝑟, 𝜃) + ∑(𝑊3𝑘𝐸𝑉 + 𝑊4𝑘𝑀𝑟𝑠𝑘
(𝑉)

) sin(𝑘𝜃)

𝐾

𝑘=1

 

(A-8) 

 

where  

𝑊1𝑘 =
𝑈𝑘(𝑟, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
 (A-9) 

𝑊2𝑘 = [1 +
1

𝑘
(
𝑅1

𝑟
)
𝑘+1

] ∙ 𝑟 

𝐶2𝑘 −
𝑈𝑘(𝑟, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
[1 +

1

𝑘
(
𝑅1

𝑅2

)
𝑘+1

] ∙ 𝑅2 

(A-10) 

𝑊3𝑘 =
𝑈𝑘(𝑟, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
 (A-11) 

𝑊4𝑘 = [1 +
1

𝑘
(
𝑅6

𝑟
)
𝑘+1

] ∙ 𝑟 

𝐶4𝑘 −
𝑈𝑘(𝑟, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
[1 +

1

𝑘
(
𝑅6

𝑅5

)
𝑘+1

] ∙ 𝑅5 

(A-12) 

 

and 

𝑀𝑟𝑐𝑘
(𝐼,𝑉)

=
2𝑃𝐵𝑟𝑚

𝑘𝜋𝜇0

𝑠𝑖𝑛 (
𝑘𝜋𝛼𝑝

𝑃
) 𝑐𝑜𝑠(𝑘𝜑0)  (A-13) 

𝑀𝑟𝑠𝑘
(𝐼,𝑉)

=
2𝑃𝐵𝑟𝑚

𝑘𝜋𝜇0

𝑠𝑖𝑛 (
𝑘𝜋𝛼𝑝

𝑃
) 𝑠𝑖𝑛(𝑘𝜑0) (A-14) 

for 𝑘 𝑃⁄ = 1, 3, 5, … 

 

Each general solution is bounded by the inner (R1, R5) and 

outer (R2, R6) radii of each PM region. The parameter k 

denotes the order of harmonics in each region, with Brm being 

the residual flux and P, µo, αp are the number of poles, the 

permeability of free space and the magnet arc to pole pitch 

ratio, respectively. The terms 𝐶𝐼  and 𝐸𝐼  are Fourier 

coefficients. The initial angular position of the rotor is 

defined by φo. 

Similarly, the general solution for each air-gap 

subdomain (II, IV) and the pole-pieces region (III) can be 

described as: 

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃) = ∑ (𝐶𝐼𝐼,i

𝑅2

𝑘

𝑈𝑘(𝑟, 𝑅3,i)

𝑄𝑘(𝑅2, 𝑅3,i)

𝐾

𝑘=1

+ 𝐷𝐼𝐼,i

𝑅3,i

𝑘

𝑈𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,i, 𝑅2)
) cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝐼)(𝑟, 𝜃) + ∑ (𝐸𝐼𝐼,i

𝑅2

𝑘

𝑈𝑘(𝑟, 𝑅3,i)

𝑄𝑘(𝑅2, 𝑅3,i)

𝐾

𝑘=1

+ 𝐹𝐼𝐼,i

𝑅3,i

𝑘

𝑈𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,i, 𝑅2)
) sin(𝑘𝜃) 

(A-15) 

 

 



𝐴𝑖
(𝐼𝑉)(𝑟, 𝜃) = ∑ (𝐶𝐼𝑉,i

𝑅4,i

𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑄𝑘(𝑅4,i, 𝑅5)

𝐾

𝑘=1

+ 𝐷𝐼𝑉,𝑖

𝑅5

𝑘

𝑈𝑘(𝑟, 𝑅4,i)

𝑄𝑘(𝑅5, 𝑅4,i)
) cos(𝑘𝜃) 

𝐴𝑖
(𝐼𝑉)(𝑟, 𝜃) + ∑ (𝐸𝐼𝑉,i

𝑅4,i

𝑘

𝑈𝑘(𝑟, 𝑅5)

𝑄𝑘(𝑅4,i, 𝑅5)

𝐾

𝑘=1

+ 𝐹𝐼𝑉,𝑖

𝑅5

𝑘

𝑈𝑘(𝑟, 𝑅4,i)

𝑄𝑘(𝑅5, 𝑅4,i)
) sin(𝑘𝜃) 

(A-16) 

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  = 𝐶𝐼𝐼𝐼,𝑖 + 𝐷𝐼𝐼𝐼,𝑖 ln(𝑟) 

𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  + ∑ (𝐸𝐼𝐼𝐼,𝑖,𝑚

𝑄𝑓𝑚,𝑖
(𝑟, 𝑅4,s)

𝑄𝑓𝑚,𝑖
(𝑅3,s, 𝑅4,s)

𝑀

𝑚=1

− 𝐹𝐼𝐼𝐼,𝑖,𝑚

𝑄𝑓𝑚,𝑖
(𝑟, 𝑅3,s)

𝑄𝑓𝑚,𝑖
(𝑅3,s, 𝑅4,s)

) 

 𝐴𝑖
(𝐼𝐼𝐼)(𝑟, 𝜃)  =                  ∙ cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 

(A-17) 

with  

𝑓𝑚,𝑖 =
𝑚𝜋

𝛽𝑖

 (A-18) 

where m defines the order of harmonics and βi, θi are the 

opening angle, angular position of the ith slot between 

consecutive pole pieces and s is equal to i  or i-1 depending 

on the matching of pole pieces and slots in the clockwise or 

anticlockwise directions. The terms 𝐶𝐼𝐼,i , 𝐷𝐼𝐼,i , 𝐸𝐼𝐼,i and 𝐹𝐼𝐼,i 

are Fourier coefficients. 

The boundary conditions at each interface are provided in 

(A-19) – (A-26). 

 

𝐻𝜃
(𝐼)

|
𝑟=𝑅2

= 𝐻𝜃,i
(𝐼𝐼)

|
𝑟=𝑅2

 (A-19) 

𝐵𝑟
(𝐼)

|
𝑟=𝑅2

= 𝐵𝑟,i
(𝐼𝐼)

|
𝑟=𝑅2

 (A-20) 

𝐻𝜃,𝑖
(𝐼𝐼)

|
𝑟=𝑅3,i

= 𝐻𝜃
(𝐼𝐼𝐼)

|
𝑟=𝑅3,i

 (A-21) 

𝐴𝑖
(𝐼𝐼)

|
𝑟=𝑅3,i

= 𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅3,i

 (A-22) 

𝐻𝜃
(𝐼𝐼𝐼)

|
𝑟=𝑅4,i

= 𝐻𝜃,𝑖
(𝐼𝑉)

|
𝑟=𝑅4,i

 (A-23) 

𝐴𝑖
(𝐼𝐼𝐼)

|
𝑟=𝑅4,i

= 𝐴𝑖
(𝐼𝑉)

|
𝑟=𝑅4,i

 (A-24) 

𝐻𝜃,i
(𝐼𝑉)

|
𝑟=𝑅5

= 𝐻𝜃
(𝑉)

|
𝑟=𝑅5

 (A-25) 

𝐵𝑟,i
(𝐼𝑉)

|
𝑟=𝑅5

= 𝐵𝑟
(𝑉)

|
𝑟=𝑅5

 (A-26) 

  

At the interface (I-II) between the inner rotor PM 

subdomain and the inner air-gap subdomains the following 

expressions can be derived (A-27) – (A-30) using (A-7), 

(A-15) and boundary equations (A-19), (A-20). The Fourier 

coefficients 𝑪𝑰, 𝑬𝑰, 𝑪𝑰𝑰, 𝑫𝑰𝑰, 𝑬𝑰𝑰 and 𝑭𝑰𝑰 are all column vector 

of length equal to 𝑄 ∙ 𝐾 . All constant terms are defined 

similarly and therefore the definition of only 𝑮𝟏 is provided 

below. Same applies for the magnetization column vectors 

that are defined as 𝑴𝒓𝒄𝒌
(𝑰)

 (A-37).  

𝑰𝑲𝑸𝑪𝑰 + 𝑮𝟏𝑪𝑰𝑰 + 𝑮𝟐𝑫𝑰𝑰 = 0 (A-27) 

𝑰𝑲𝑸𝑬𝑰 + 𝑮𝟏𝑬𝑰𝑰 + 𝑮𝟐𝑭𝑰𝑰 = 0 (A-28) 

𝑮𝟑𝑪𝑰 + 𝑰𝑲𝑸𝑪𝑰𝑰 = 𝑮𝟏𝟑 ∙ 𝑴𝒓𝒄𝒌
(𝑰)  (A-29) 

𝑮𝟑𝑬𝑰 + 𝑰𝑲𝑸𝑬𝑰𝑰 = 𝑮𝟏𝟑 ∙ 𝑴𝒓𝒔𝒌
(𝑰)  (A-30) 

 

where 

𝑰𝑲𝑸 = 𝑑𝑖𝑎𝑔(1, 1, … , 1)𝐾𝑄×𝐾𝑄 (A-31) 

𝑮𝟏 = 𝑑𝑖𝑎𝑔(𝒈𝟏(1), 𝒈𝟏(2), … , 𝒈𝟏(Q))𝑄𝐾×Q𝐾  (A-32) 

𝒈𝟏(𝐢) = 𝑰𝑲 ∙ (−
𝑅2

𝑘

𝑈𝑘(𝑅2, 𝑅3,i)

𝑄𝑘(𝑅2, 𝑅3,i)
) (A-33) 

𝒈𝟐(𝐢) = 𝑰𝑲 ∙ (−
𝑅3,i

𝑘

2

𝑄𝑘(𝑅3,i, 𝑅2)
) (A-34) 

𝒈𝟑(𝐢) = 𝑰𝑲 ∙ (−
𝑘

𝑅2

𝑄𝑘(𝑅2, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
) (A-35) 

𝒈𝟏𝟑(𝒊) = 𝑰𝑲 (1 − (
𝑅1

𝑅2

)
𝑘+1

−
𝑘

𝑅2

𝑄𝑘(𝑅2, 𝑅1)

𝑈𝑘(𝑅2, 𝑅1)
 

𝒈𝟏𝟑(𝒊) = 𝑰𝑲    · (1 +
1

𝑘
(
𝑅1

𝑅2

)
𝑘+1

)𝑅2) 

(A-36) 

𝑴𝒓𝒄𝒌
(𝑰) = [𝒎𝒓𝒄𝒌

(𝑰) (1),𝒎𝒓𝒄𝒌
(𝑰) (2), … ,𝒎𝒓𝒄𝒌

(𝑰) (𝑄) ]
𝑻

 (A-37) 

𝒎𝒓𝒄𝒌
(𝑰) (𝐢) = [𝑚𝑟𝑐𝑘

(𝐼) (1),𝑚𝑟𝑐𝑘
(𝐼) (2), … ,𝑚𝑟𝑐𝑘

(𝐼) (𝐾) ] (A-38) 

 

Algebraic manipulation of (A-15), (A-17) and boundary 

conditions (A-21), (A-22) lead to the following relationships 



at the inner air-gap and slot subdomains interface (II-III). The 

Fourier coefficients 𝑬𝑰𝑰𝑰, 𝑭𝑰𝑰𝑰  are column vectors of length 

𝑀 ∙ 𝑄 and 𝑪𝑰𝑰𝑰, 𝑫𝑰𝑰𝑰 of length equal to 𝑄. 

−𝑰𝑲𝒊 𝑹𝟑𝑫𝑰𝑰 + 𝜹𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝜼𝒊

𝑻𝒇𝒎𝑮𝟒𝑬𝑰𝑰𝑰

− 𝜼𝒊
𝑻𝒇𝒎𝑮𝟓𝑭𝑰𝑰𝑰 = 0 

(A-39) 

−𝑰𝑲𝒊 𝑹𝟑𝑭𝑰𝑰 + 𝝈𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝝃𝒊

𝑻𝒇𝒎𝑮𝟒𝑬𝑰𝑰𝑰

− 𝝃𝒊
𝑻𝒇𝒎𝑮𝟓𝑭𝑰𝑰𝑰 = 0 

(A-40) 

𝜹𝒊,𝝅𝑮𝟔𝑪𝑰𝑰 + 𝜹𝒊,𝝅𝑮𝟕𝑫𝑰𝑰 + 𝝈𝒊,𝝅𝑮𝟔𝑬𝑰𝑰 + 𝝈𝒊,𝝅𝑮𝟕𝑭𝑰𝑰

− 𝑰𝑸𝑪𝑰𝑰𝑰 − 𝑰𝑸 ln(𝑅3,i)𝑫𝑰𝑰𝑰 = 0 
(A-41) 

𝜼𝒊,𝝅𝑮𝟔𝑪𝑰𝑰 + 𝜼𝒊,𝝅𝑮𝟕𝑫𝑰𝑰 + 𝝃𝒊,𝝅𝑮𝟔𝑬𝑰𝑰 + 𝝃𝒊,𝝅𝑮𝟕𝑭𝑰𝑰

− 𝑰𝑴𝑸𝑬𝑰𝑰𝑰 = 0 
(A-42) 

where 

𝑰𝑲𝒊 𝑹𝟑 = 𝑑𝑖𝑎𝑔(𝑅3,1, 𝑅3,2, … , 𝑅3,Q)𝑄𝐾×Q𝐾 (A-43) 

𝛿(𝑖, 𝑘) =
1

𝜋
∫ cos(𝑘𝜃)𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A-44) 

𝜹𝒊 = (𝛿(𝑖, 𝑘), 𝛿(𝑖, 𝑘),… , 𝛿(𝑖, 𝑘))
𝑄×𝑄𝐾

 (A-45) 

𝜹𝒊,𝝅 = 𝑑𝑖𝑎𝑔 (
𝜋

𝛽𝑖

𝛿(1, 𝑘),
𝜋

𝛽𝑖

𝛿(2, 𝑘) , 

𝜹𝒊,𝝅 = 𝑑𝑖     (… ,
𝜋

𝛽𝑖

𝛿(𝑄, 𝑘))
𝑄×𝑄𝐾

 
(A-46) 

𝜎(𝑖, 𝑘) =
1

𝜋
∫ sin(𝑘𝜃)𝑑𝜃

𝜃𝑖+𝛽𝑖

𝜃𝑖

 (A-47) 

𝜂(𝑚, 𝑘, 𝑖) =
1

𝜋
∫ cos(𝑘𝜃)

𝜃𝑖+𝛽𝑖

𝜃𝑖

 

𝜂(𝑚, 𝑘, 𝑖) =
1

𝜋
         · cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃 

(A-48) 

𝜼𝒊 = [
𝜂(𝑚, 𝑘, 1) ⋯ 𝜂(𝑚, 𝑘, 1)

⋮ ⋱ ⋮
𝜂(𝑚, 𝑘, 𝑄) ⋯ 𝜂(𝑚, 𝑘, 𝑄)

]

𝑄𝑀×Q𝐾

 (A-49) 

𝜼𝒊,𝝅 = 𝑑𝑖𝑎𝑔 (
2𝜋

𝛽𝑖

𝜼(𝑚, 𝑘, 1),
2𝜋

𝛽𝑖

𝜼(𝑚, 𝑘, 2) , 

𝜹𝒊,𝝅 = 𝑑𝑖     (… ,
2𝜋

𝛽𝑖

𝜼(𝑚, 𝑘, Q))
𝑄𝑀×𝑄𝐾

 
(A-50) 

𝜉(𝑚, 𝑘, 𝑖) =
1

𝜋
∫ sin(𝑘𝜃)

𝜃𝑖+𝛽𝑖

𝜃𝑖

 

𝜉(𝑚, 𝑘, 𝑖) =
1

𝜋
         · cos (𝑓𝑚,𝑖(𝜃 − 𝜃𝑖)) 𝑑𝜃 

(A-51) 

𝒇𝒎,𝒊 = 𝑓𝑚,𝑖 ∙ 𝑰𝑴 (A-52) 

𝒇𝒎 = 𝑑𝑖𝑎𝑔 (𝒇𝒎,𝒊(1), 𝒇𝒎,𝒊(2), … , 𝒇𝒎,𝒊(𝑄)) (A-53) 

𝑮𝟒 = 𝑑𝑖𝑎𝑔(𝒈𝟒(1), 𝒈𝟒(2), … , 𝒈𝟒(𝑄))𝑄𝑀×𝑄𝑀  (A-54) 

𝒈𝟒(𝒊) = 𝑰𝑴 ∙ (
𝑈𝑓𝑚,𝑖

(𝑅3,i, 𝑅4,i)

𝑄𝑓𝑚,𝑖
(𝑅3,i, 𝑅4,i)

) (A-55) 

𝒈𝟓(𝒊) = 𝑰𝑴 ∙ (
2

𝑄𝑓𝑚,𝑖
(𝑅3,i, 𝑅4,i)

) (A-56) 

𝒈𝟔(𝒊) = 𝑰𝑲 ∙ (
𝑅2

𝑘

2

𝑄𝑘(𝑅2, 𝑅3,i)
) (A-57) 

𝒈𝟕(𝒊) = 𝑰𝑲 ∙ (
𝑅3,i

𝑘

𝑈𝑘(𝑅3,i, 𝑅2)

𝑄𝑘(𝑅3,i, 𝑅2)
) (A-58) 

Similar to the interface with the inner air-gap subdomains, 

the interface (III-IV) between the outer air-gap and the slot 

subdomains is described as in (A-59) – (A-62) using (A-16), 

(A-17) and boundary equations (A-23), (A-24). 

−𝑰𝑲𝒊 𝑹𝟒𝑪𝑰𝑽 + 𝜹𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝜼𝒊

𝑻𝒇𝒎𝑮𝟓𝑬𝑰𝑰𝑰

− 𝜼𝒊
𝑻𝒇𝒎𝑮𝟒𝑭𝑰𝑰𝑰 = 0 

(A-59) 

−𝑰𝑲𝒊 𝑹𝟒𝑬𝑰𝑽 + 𝝈𝒊
𝑻𝑫𝑰𝑰𝑰 + 𝝃𝒊

𝑻𝒇𝒎𝑮𝟓𝑬𝑰𝑰𝑰

− 𝝃𝒊
𝑻𝒇𝒎𝑮𝟒𝑭𝑰𝑰𝑰 = 0 

(A-60) 

𝜹𝒊,𝝅𝑮𝟖𝑪𝑰𝑽 + 𝜹𝒊,𝝅𝑮𝟗𝑫𝑰𝑽 + 𝝈𝒊,𝝅𝑮𝟖𝑬𝑰𝑽 + 𝝈𝒊,𝝅𝑮𝟗𝑭𝑰𝑽

− 𝑰𝑸𝑪𝑰𝑰𝑰 − 𝑰𝑸 ln(𝑅4,i)𝑫𝑰𝑰𝑰 = 0 
(A-61) 

𝜼𝒊,𝝅𝑮𝟖𝑪𝑰𝑽 + 𝜼𝒊,𝝅𝑮𝟗𝑫𝑰𝑽 + 𝝃𝒊,𝝅𝑮𝟖𝑬𝑰𝑽 + 𝝃𝒊,𝝅𝑮𝟗𝑭𝑰𝑽

− 𝑰𝑴𝑸𝑭𝑰𝑰𝑰 = 0 
(A-62) 

where 

𝒈𝟖(𝒊) = 𝑰𝑲 ∙ (
𝑅4,𝑖

𝑘

𝑈𝑘(𝑅4,𝑖 , 𝑅5)

𝑄𝑘(𝑅4,𝑖, 𝑅5)
) (A-63) 



𝒈𝟗(𝒊) = 𝑰𝑲 ∙ (
𝑅5

𝑘

2

𝑄𝑘(𝑅5, 𝑅4,𝑖)
) (A-64) 

The equations at the interface (IV-V) between the outer 

air-gap subdomains and the outer rotor PM region can be 

derived adopting the same approach as for the inner rotor 

using the general solutions (A-8), (A-16) and boundary 

equations (A-25), (A-26). The Fourier coefficients 

𝑪𝑰𝑽, 𝑫𝑰𝑽, 𝑬𝑰𝑽 , 𝑭𝑰𝑽, 𝑪𝑽  and 𝑬𝑽  are column vectors of length 

𝑄 ∙ 𝐾 and they are described as: 

𝑰𝑲𝑸𝑪𝑽 + 𝑮𝟏𝟎𝑪𝑰𝑽 + 𝑮𝟏𝟏𝑫𝑰𝑽 = 0 (A-65) 

𝑰𝑲𝑸𝑬𝑽 + 𝑮𝟏𝟎𝑬𝑰𝑽 + 𝑮𝟏𝟏𝑭𝑰𝑽 = 0 (A-66) 

𝑮𝟏𝟐𝑪𝑽 + 𝑰𝑲𝑸𝑪𝑰𝑽 = 𝑮𝟏𝟒 ∙ 𝑴𝒓𝒄𝒌
(𝑽)

 (A-67) 

𝑮𝟏𝟐𝑬𝑽 + 𝑰𝑲𝑸𝑬𝑰𝑽 = 𝑮𝟏𝟒 ∙ 𝑴𝒓𝒔𝒌
(𝑽)

 (A-68) 

where 

 

 

𝒈𝟏𝟎(𝒊) = 𝑰𝑲 ∙ (−
𝑅4,𝑖

𝑘

2

𝑄𝑘(𝑅4,𝑖, 𝑅5)
) (A-69) 

𝒈𝟏𝟏(𝒊) = 𝑰𝑲 ∙ (−
𝑅5

𝑘

𝑈𝑘(𝑅5, 𝑅4,𝑖)

𝑄𝑘(𝑅5, 𝑅4,𝑖)
) (A-70) 

𝒈𝟏𝟐(𝒊) = 𝑰𝑲 ∙ (−
𝑘

𝑅5

𝑄𝑘(𝑅5, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
) (A-71) 

𝒈𝟏𝟒(𝒊) = 𝑰𝑲 (1 − (
𝑅6

𝑅5

)
𝑘+1

−
𝑘

𝑅5

𝑄𝑘(𝑅5, 𝑅6)

𝑈𝑘(𝑅5, 𝑅6)
 

𝒈𝟏𝟒(𝒊) = 𝑰𝑲     · (1 +
1

𝑘
(
𝑅6

𝑅5

)
𝑘+1

)𝑅5) 

(A-72) 

 

The torque on each rotor is calculated using the 

Maxwell’s Stress Tensor along a contour in each air-gap 

(A-73). The accuracy of the torque calculation where large 

asymmetries exist is maximized by taking an average of the 

torque calculations for s = i and s = i-1 as per (A-17). 

𝑇 =
𝐿 ∙ 𝑅𝑎𝑖𝑟−𝑔𝑎𝑝

2

𝜇0

∫ 𝐵𝑟
(𝐼𝐼/𝐼𝑉)

(
2𝜋

0

𝑅𝑎𝑖𝑟−𝑔𝑎𝑝, 𝜃)

∙ 𝐵𝜃
(𝐼𝐼/𝐼𝑉)

(𝑅𝑎𝑖𝑟−𝑔𝑎𝑝 , 𝜃)  ∙ 𝑑𝜃 

(A-73) 

 

Considering the expressions for 𝐵𝑟
(𝐼𝐼/𝐼𝑉)

 and 𝐵𝜃
(𝐼𝐼/𝐼𝑉)

, 

equation (A-73) can be expanded to the following: 

 

𝑇 =
𝐿 ∙ 𝑅𝑎𝑖𝑟−𝑔𝑎𝑝

2

𝜇0

(∑(∑∑𝑂𝐼𝐼,𝑖,𝑘 ∙ 𝑉𝐼𝐼,𝑖,𝑗

𝑘

𝑙=1

2𝐾

𝑘=1

𝑄

𝑖=1

− ∑ ∑ 𝑂𝐼𝐼,𝑖,𝑘 ∙ 𝑉𝐼𝐼,𝑖,𝑙

2𝐾−𝑘+1

𝑙=𝐾+1

𝐾

𝑘=1

)) 

(A-74) 

where, 

𝑗 = 𝑘 − 𝑙 + 1 (A-75) 

𝑂𝐼𝐼,𝑖,𝑘 = −(𝐶𝐼𝐼,𝑖,𝑘

𝑅2

𝑟

𝑈𝑘(𝑟, 𝑅3,𝑖)

𝑄𝑘(𝑅2, 𝑅3,𝑖)

+ 𝐷𝐼𝐼,𝑖,𝑘

𝑅3,𝑖

𝑟

𝑈𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,𝑖 , 𝑅2)
)

∙ ∫ 𝑠𝑖𝑛(𝑘𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

𝑂𝐼𝐼,𝑖,𝑘 = +(𝐸𝐼𝐼,𝑖,𝑘

𝑅2

𝑟

𝑈𝑘(𝑟, 𝑅3,𝑖)

𝑄𝑘(𝑅2, 𝑅3,𝑖)

+ 𝐹𝐼𝐼,𝑖,𝑘

𝑅3,𝑖

𝑟

𝑈𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,𝑖 , 𝑅2)
)

∙ ∫ 𝑐𝑜𝑠(𝑘𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

(A-76) 

𝑉𝐼𝐼,𝑖,𝑗 = −(𝐶𝐼𝐼,𝑖,𝑗

𝑅2

𝑟

𝑄𝑘(𝑟, 𝑅3,𝑖)

𝑄𝑘(𝑅2, 𝑅3,𝑖)

+ 𝐷𝐼𝐼,𝑖,𝑗

𝑅3,𝑖

𝑟

𝑄𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,𝑖 , 𝑅2)
)

∙ ∫ cos(𝑗𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

𝑉𝐼𝐼,𝑖,𝑗 = +(𝐸𝐼𝐼,𝑖,𝑗

𝑅2

𝑟

𝑄𝑘(𝑟, 𝑅3,𝑖)

𝑄𝑘(𝑅2, 𝑅3,𝑖)

+ 𝐹𝐼𝐼,𝑖,𝑗

𝑅3,𝑖

𝑟

𝑄𝑘(𝑟, 𝑅2)

𝑄𝑘(𝑅3,𝑖 , 𝑅2)
)

∙ ∫ sin(𝑗𝜃) 𝑑𝜃

𝜃𝑖+1

𝜃𝑖

 

(A-77) 
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