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Abstract: We prove the invariance principle for a random Lorentz-gas particle in 3
dimensions under the Boltzmann-Grad limit and simultaneous diffusive scaling. That is,
for the trajectory of a point-like particle moving among infinite-mass, hard-core, spher-
ical scatterers of radius r, placed according to a Poisson point process of density o, in
the limit ¢ — oo, r — 0, Qr2 — 1 up to time scales of order 7' = o(r2 |logr|_2). To
our knowledge this represents the first significant progress towards solving rigorously
this problem in classical nonequilibrium statistical physics, since the groundbreaking
work of Gallavotti (Phys Rev 185:308-322, 1969, Nota Interna Univ di Roma 358,
1970, Statistical mechanics. A short treatise. Theoretical and mathematical physics
series, Springer, Berlin, 1999), Spohn (Commun Math Phys 60:277-290, 1978, Rev
Mod Phys 52:569-611, 1980) and Boldrighini-Bunimovich-Sinai (J Stat Phys 32:477—
501, 1983). The novelty is that the diffusive scaling of particle trajectory and the kinetic
(Boltzmann-Grad) limit are taken simultaneously. The main ingredients are a coupling
of the mechanical trajectory with the Markovian random flight process, and probabilis-
tic and geometric controls on the efficiency of this coupling. Similar results have been
earlier obtained for the weak coupling limit of classical and quantum random Lorentz
gas, by Komorowski—Ryzhik (Commun Math Phys 263:277-323, 2006), respectively,
Erdés—Salmhofer—Yau (Acta Math 200:211-277, 2008, Commun Math Phys 271:1-53,
2007). However, the following are substantial differences between our work and these
ones: (1) The physical setting is different: low density rather than weak coupling. (2) The
method of approach is different: probabilistic coupling rather than analytic/perturbative.
(3) Due to (2), the time scale of validity of our diffusive approximation—expressed in
terms of the kinetic time scale—is much longer and fully explicit.

1. Introduction
We consider the Lorentz gas with randomly placed spherical hard core scatterers in RY.

That is, place spherical balls of radius » and infinite mass centred on the points of a
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Poisson point process of intensity o in R?, where ¢ is sufficiently small so that with
positive probability there is free passage out to infinity, and define > X"0(r) € R?
to be the trajectory of a point particle starting with randomly oriented unit velocity,
performing free flight in the complement of the scatterers and scattering elastically on
them.

A major problem in mathematical statistical physics is to understand the diffusive
scaling limit of the particle trajectory

X"e(Tt)
—ﬁ ,

Indeed, the Holy Grail of this field of research would be to prove the invariance prin-
ciple (i.e. weak convergence to a Wiener process with nondegenerate variance) for the
sequence of processes in (1) in either the quenched or annealed setting (discussed in
Sect. 1.1). For extensive discussion and historical background see the surveys [8,24,28]
and the monograph [29].

The same problem in the periodic setting, when the scatterers are placed in a periodic
array and randomness comes only with the initial conditions of the moving particle, is
much better understood, due to the fact that in the periodic case the problem is reformu-
lated as diffusive limit of particular additive functionals of billiards in compact domains
and thus heavy artillery of hyperbolic dynamical systems theory is efficiently applicable.
In order to put our results in context, we will summarise very succinctly the existing
results, in Sect. 1.4.

There has been, however, no progress in the study of the random Lorentz gas infor-
mally described above, since the ground-breaking work of Gallavotti [15—17], Spohn
[27,28] and Boldrighini-Bunimovich—Sinai [4] where weak convergence of the pro-
cess t — X"€(t) to a continuous time random walk ¢ +— Y (¢) (called Markovian
flight process) was established in the Boltzmann-Grad (a.k.a. low density) limit » — 0,
0 —> 0, rd’lg — 1, in compact time intervals ¢ € [0, T'], with T < o0, in the annealed
[15-17,27,28], respectively, quenched [4] setting.

Our main result (see Theorem 2 in Sect. 1.3) proves the invariance principle in the
annealed setting if we take the Boltzmann-Grad and diffusive limits simultaneously:
r—0,0— 00,r% o — land T = T(r) — oo. Thus while the diffusive limit (1)
with fixed » and o remains open, this is the first result proving convergence for times
growing to infinity as » — 0 in the setting of randomly placed scatterers, and hence it
is a significant step towards the full resolution of the problem in the annealed setting.

as T — oo. D

1.1. The random Lorentz gas. We define now more formally the random Lorentz pro-
cess. Place spherical balls of radius r and infinite mass centred on the points of a Poisson
point process of intensity o in R?, and define the trajectory  — X" (r) € R of a par-
ticle moving among these scatterers as follows:

— If the origin is covered by a scatterer then X"-€(z) = 0.

— If the origin is not covered by a scatterer then r — X"9(¢) is the trajectory of a
point-like particle starting from the origin with random velocity sampled uniformly
from the unit sphere S~ ! and flying with constant speed between successive elastic
collisions on any one of the fixed, infinite mass scatterers.

The randomness of the trajectory ¢ — X"€(z) (when not identically 0) is due to two
sources: the random placement of the scatterers and the random choice of initial velocity
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of the moving particle. Otherwise, the dynamics of the moving particle is fully deter-
ministic, governed by classical Newtonian laws. With probability 1 (with respect to both
sources of randomness) the trajectory t > X"9(¢) is well defined.

Due to elementary scaling and percolation arguments

P(the moving particle is not trapped in a compact domain) = U4 (Qrd), 2)

where ¥; : Ry — [0, 1] is a percolation probability which is (i) monotone non-
increasing; (ii) continuous except for one possible jump at a positive and finite critical
value u, = u.(d) € (0, 00); (iii) vanishing for u € (u., 0o0) and positive foru € (0, u.);
(iv) lim, 0 ¥4 (1) = 1. We assume that or? < u,. In fact, in the Boltzmann-Grad limit
considered in this paper (see (3) below) we will have Qrd — 0.

As discussed above, the Holy Grail of this field is a mathematically rigorous proof of
the invariance principle of the processes (1) in either one of the following two settings.

(Q) Quenched limit: For almost all (i.e. typical) realisations of the underlying Poisson
point process, with averaging over the random initial velocity of the particle. In this
case, it is expected that the variance of the limiting Wiener process is deterministic,
not depending on the realisation of the underlying Poisson point process.

(AQ) Averaged-quenched (ak.a. annealed) limit: Averaging over the random initial
velocity of the particle and the random placements of the scatterers.

Remarks on the Hamiltonian character of the problem: We use a probabilistic lan-
guage and setting in this paper, previously much of the literature has chosen to work in
the Hamiltonian setting [15-17,27,28]. However, we should emphasise that this prob-
abilistic description is equivalent to the annealed setting of a Hamiltonian system: The
Lorentz particle moves according to Newton’s Second Law in the potential field of spher-

ical hard core scatterers centred in the points of a Poisson Point Process. The potential
field is

() = Y p(x —@)/r),

gewy

where w, is the realisation of a Poisson Point Process of intensity ¢ in RZ \ By, (that
is, no scatterer within distance r from the origin) and ¢(x) := ool{jx|<1} is a spherical
hard-core potential. The Hamiltonian equations of motion of the Lorentz particle are
formally written as follows

Xre(ty=vre@r),  V"e(r) = —grad ®"°(X" (1)),
with initial conditions
X"y =0, V"20) e s

However, since the interaction potential is hard core, the equations of motion are singular
and should be taken with a grain of salt.
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1.2. The Boltzmann-Grad limit. The Boltzmann-Grad limit is the following low (rela-
tive) density limit of the scatterer configuration:

r— 0, 0 — 00, or?™h — vy_y, €)]

where vg_1 is the area of the (d — 1)-dimensional unit disc. In this limit the expected free
path length between two successive collisions will be 1. Other choices of lim or¢~! €
(0, 00) are equally legitimate and would change the limit only by a time (or space)
scaling factor.

Itis not difficult to see that in the averaged-quenched setting and under the Boltzmann-
Grad limit (3) the distribution of the first free flight length starting at any deterministic
time, converges to an EX P (1) and the jump in velocity after the free flight happens in
a Markovian way with transition kernel

P(vout € dv/ | Vin = v) =0 (v, V)dV, 4)

where dv’ is the surface element on S ! and o : S9! x §9~! — R, is the normalised
differential cross section of a spherical hard core scatterer, computable as

(&)

1 3-d
N _a
o(v,v)—4vd_ |v v’ .
Note that in 3-dimensions the transition probability (4) of velocity jumps is uniform.
That is, the outgoing velocity vyt is uniformly distributed on S2, independently of the
incoming velocity vip.
It is intuitively compelling but far from easy to prove that under the Boltzmann-Grad
limit (3)

{t — X’*Q(t)} = {t — Y(t)}, (6)

where the symbol = stands for weak convergence (of probability measures) on the space
of continuous trajectories in R, see [2]. The process ¢t +— Y (¢) on the right hand side is
the Markovian random flight process consisting of independent free flights of EX P(1)-
distributed length, with Markovian velocity changes according to the scattering transition
kernel (4). A formal construction of the process ¢ — Y (¢) is given in Sect. 2.1. The limit
(6), valid in any compact time interval ¢+ € [0, T], T < oo, is rigorously established
in the averaged-quenched setting in [15-17,27,28], and in the quenched setting in [4].
In [27] more general point processes of the scatterer positions, with sufficiently strong
mixing properties are considered.

The limiting Markovian flight process ¢ +— Y (¢) is a continuous time random
walk. Therefore, by taking a second, diffusive limit after the Boltzmann-Grad limit
(6), Donsker’s theorem (see [2]) yields indeed the invariance principle,

{t > T_I/ZY(TI)} - {t > W(t)}, %

as T — oo, where 1 — W (z) is the isotropic Wiener process in R of non-degenerate
variance. The variance of the limiting Wiener process W can be explicitly computed but
its concrete value has no importance.

The natural question arises whether one could somehow interpolate between the
double limit of taking first the Boltzmann-Grad limit (6) and then the diffusive limit (7)
and the plain diffusive limit for the Lorentz process, (1). Our main result, Theorem 2
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formulated in Sect. 1.3 gives a positive partial answer in dimension 3. Since our results
are proved in three-dimensions from now on we formulate all statements in d = 3 rather
than general dimension. However, in some comments we will refer to general dimension
d, when appropriate.

1.3. Results. In the rest of the paper we assume ¢ = o(r) = 72 and drop the
superscript o from the notation of the Lorentz process.

Our results (Theorems 1 and 2 formulated below) refer to a coupling—joint realisation
on the same probability space—of the Markovian random flight process ¢ +— Y (¢),
and the quenched-averaged (annealed) Lorentz process t +— X' (¢). The coupling is
informally described later in this section and constructed with full formal rigour in
Sect. 2.2.

The first theorem states that in our coupling, up to time 7 < r~!, the Markovian
flight and Lorentz exploration processes stay together.

Theorem 1. Let T = T (r) be such that lim,_,o T (r) = o0 and lim,_,qrT (r) = O.
Then

m% P(inf{t : X" (1) #Y(1)} < T) =0. (8)

Remarks on Theorem 1: This result flashes some light on the strength of the proba-
bilistic coupling method employed in this paper. In particular, with some elementary,
purely probabilistic arguments it provides a formally stronger result than [15-17,27]
which state the weak limit (6) (which follows from (8)) for any fixed T < oo. Note,
however, that complementing the cited papers with explicit error bounds (which seems
feasible) would give Theorem 1. So, Theorem 1 on its own is a complement to these
fundamental results. The full strength of our method is truly exhibit in Theorem 2, our
main result, which extends this result to time scales where nontrivial correlations already
appear. However the proof of Theorem 1 is included as it sheds light on the structure of
the proof of Theorem 2.

Theorem 2. Let T = T (r) be such thatlim,_.o T (r) = oo andlim,_, o r? |10gr|2 T(r)=
0. Then, for any § > 0,

lim P( sup |X"(1) —Y(1)| > 8v/T) =0, ©)
r—0 0<t<T
and hence
{z > T‘l/zX’(Tt)} = {t > W(t)}, (10)

asr — 0, in the averaged-quenched sense. On the right hand side of (10) W is a
standard Wiener process of variance 1 in R3,

Indeed, the invariance principle (10) readily follows from the invariance principle for
the Markovian flight process, (7), and the closeness of the two processes quantified in
(9). So, it remains to prove (9). This will be the content of the larger part of this paper,
Sects. 4-7.

The point of Theorem 2 is that the Boltzmann-Grad limit of scatterer configuration (3)
and the diffusive scaling of the trajectory are done simultaneously, and not consecutively.
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The memory effects due to recollisions and shading are controlled up to the time scale

T =

T(r) = o(r2 logr|™2).

Remarks on dimension: Our proof of Theorem 2 as it stands is valid in dimension
d = 3 only. We give here some comments on this fact and some hints on what can/could
be proved by appropriate extensions of our method. However, we stress that any of these
extensions would require some extra technical efforts. In order to keep the length of this
paper under a reasonable limit, we do not include these arguments and extensions.

e))
(a)

(b)

(@)

3)

Issues in dimension d = 2:
Probabilistic estimates at the core of our proofs are valid (as stated and used) only
in the transient dimensions of random walk, d > 3. This difference is implicit
in the Green’s function estimates of Sects. 3.3 and 5.2. Nevertheless, with extra
effort and the cost of an extra logarithmic factor (of order [log |) the estimates in
Sect. 3.3, used in the proof of Theorem 1, can be saved in d = 2, as well. Using
these estimates (and relying on the Doeblin argument as hinted at in comment (2)
below, Theorem 1, with a lorgarithmic factor, i.e. with T'(r) = o(r~! |10gr|_1)
turns out to be valid in d = 2, as well.
A subtle geometric argument which will show up in Sects. 6.4—6.6 below, is valid
only in d > 3, as well. This is unrelated to the recurrence/transience dichotomy
and it is crucial in controlling the short range recollision and shadowing events,
in the proof of Theorem 2.
The fact that in d = 3 the differential cross section of hard spherical scatterers
is uniform on S9~1, c.f. (4), (5), facilitates our arguments, since, in this case, the
successive velocities of the random flight process Y (¢) form an i.i.d. sequence. In
dimensions d # 3 this is not the case. However, this is a technical issue only,
not of crucial importance in the argument. In dimensions d > 3 the differential
cross section (5) satisfies Doeblin’s condition inf,,cga-1 0 (v, v') > 0 and, using
Doeblin’s subtle trick, the sequence of successive velocities (#,),>1 can be bro-
ken up in random i.i.d. blocks of exponentially tight lengths. This way, the main
probabilistic steps of proof can be saved. In dimension d = 2 Doeblin’s condi-
tion does not hold directly, see (5). However, it holds for the second convolution
power o2 (v, V') 1= de’l o (v, v")o (v, v')dv” (that is, for the conditional distri-
bution of velocity after two consecutive scatterings). In this way the sequence of
successive velocities (#,),>1 can be broken up in random 1-dependent strongly
stationary (rather than i.i.d.) blocks of exponentially tight lengths. The necessary
bounds can be proved with the use of Green’s function estimates for random walks
with 1-dependent strongly stationary (rather than i.i.d.) steps.
Possible relation with singularity of the diffusion coefficient at r < 1 and certain
limitations of our method: We state without proof the following estimates: In any
dimension d > 3, there exist constants Cy, k > 1, such that

Ciprk ifkel[l,d-2],
P(tinf 1Y) = Y(0)| <r) <3 Cqerr?logr| ifk=d—1,
>T)
! Crrd-! ifk € [d, o).

In plain words, these are bounds on the probability of the continuous time random
walk ¢t +— Y (¢) returning to the r-neighbourhood of its starting point, after k or
more scattering events. As we are not going to use these bounds in a technical sense
we don’t prove them in this paper. The proof is not hard, however. We present these
bounds for the following two reasons:
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(a) The logarithmic factor in the case k = d — 1 seems to be related to the expected
singularity of the diffusion coefficient in the presumed (but not proved) diffusive
limit (1), at r < 1.

(b) The fact that for k > d the probability of recollision after k scattering events is
of order r~!, no matter how large k, is a clear warning about a limitation of
our method, as is. Indeed, beyond time scales of order T (r) ~ r~4*1 recollision
patterns of all kinds of complexities occur, preventing any attempt of breaking
up the time-line into quasi-independent legs, in a rigorously controlled way, as
done in our proof. In conclusion, with hard work (in particular, hard geometric
estimates) in dimension d > 3 our proof could possibly be pushed up to time
scales of order T'(r) = o(r_dJrl [log r|=%), with some @ > 0, but certainly not
further than this. Our proof of Theorem 2 reaches essentially this limit, in d = 3.
Going to time scales longer than r~4*! would require some genuinely new idea.

Remarks on robustness of the method: Our coupling method is robust, and could be
applied to a variety of other interaction potentials with only technical and not conceptual
extra difficulties. However, it does not seem to be easily extendable to point processes
with correlations.

(a) Extending our methods to non-spherical hard-core scatterers would change the dif-
ferential cross-section (5). As such, the sequence of successive velocities of the
Y -process would not be i.i.d. but a genuine Markov chain. However there are prob-
abilistic methods to handle such difficulties (e.g. using Doeblin’s decomposition to
independent blocks, as described in comment (2) above). For example, we quote the
invariance principle for Ehrenfest’s wind-tree model (with hyper-cube scatterers),
where - since the geometry is simpler—in a subsequent work we prove a result
analogous to Theorem 2 for times of order 7' (r) = o(r—2 |logr|’1), c.f. [23].

(b) Extension to smooth potentials can be done as well, though this is somewhat trickier.
In this case, besides changing the differential cross section (5) one should also deal
with non-instantaneous interactions. This can be handled in the case of finite range
smooth potentials. The coupled Markov process will be different: not simple flights
with instantaneous velocity jumps but flights with sharp but smooth scatterings. For
details of the realisation of this coupling see the forthcoming work [19] where the
weak coupling limit is pushed beyond the kinetic time scale with a similar, but not
identical, probabilistic coupling method.

(c) In the construction of the exploration process - as a Markov process - it is essen-
tial, however, that the point process where the scatterers are centred be Poisson.
Otherwise, the exploration process could not be realised as a Markov process and
probably would be of not much use. (Recall that in [27] the Boltzmann-Grad limit
(6) is proved for point processes with certain correlations allowed.) This is certainly
a limitation of our method. However, spatially inhomogeneous Poisson Point Pro-
cesses could be handled.

Remarks on time scales: In various works the kinetic and diffusive limiting procedures
are parametrised in different ways. We chose r — 0, 0 = r~ /@~ — o0, In order to
gauge how far beyond the bare kinetic limit the diffusive limit is pushed, and to compare
our time scale with existing results on weak coupling diffusive limits, cf [12,13,21] (see
Sect. 1.4 below for some details), we should introduce the kinetic time scale Tiip. This is
the space-time scale on which the kinetic limits [4,10,14-17,20,27] hold, if formulated
as scaling limit of the microscopic trajectory. In our notation it is

Ty 1= /4 = =470/, an
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This time scale is the reference to which the time scale of validity of the diffusive
limit should be gauged. In terms of the microscopic space-time - where typical spacing
between scatterers is of order 1 and the Lorentz particle travels with velocity of order 1
- our diffusive limit holds for time scales up to

Taitt = Tyin T (12)
with

_ _ — _ d=3 _
T =0 (r 2 llog 7| 2) =0 (Tkziﬁ/(d D (log Tiin) 2) =3, (Tlgn(log Tiin) 2). (13)

This is to be compared with the time scales of the similar-in-spirit classical [21], respec-
tively, quantum [12, 13], weak coupling diffusive limits, cf. (16). See Sect. 1.4 below for
some details.

The proof of Theorems 1 and 2 will be based on a coupling (that is: a joint realisa-
tion on the same probability space) of the Markovian flight process ¢ +— Y (¢) and the
averaged-quenched realisation of the Lorentz process t — X' (¢), such that the maxi-
mum distance of their positions up to time 7' be small order of /7. The Lorentz process
t — X'"(¢) is realised as an exploration of the environment of scatterers. That is, as
time goes on, more and more information is revealed about the position of the scatterers.
As long as X" (¢) traverses yet unexplored territories, it behaves just like the Markovian
flight process Y (¢), discovering new, yet-unseen scatterers with rate 1 and scattering on
them. However, unlike the Markovian flight process it has long memory, the discovered
scatterers are placed forever and if the process X" (f) returns to these positions, recol-
lisions occur. Likewise, the area swept in the past by the Lorentz exploration process
X" (t)—that is: a tube of radius r around its past trajectory—is recorded as a domain
where new collisions can not occur. For a formal definition of the coupling see Sect. 2.2.
Let the associated velocity processes be U(¢) := Y (¢t) and V' (¢) := X" (¢). These are
almost surely piecewise constant jump processes. The coupling is realised in such a way,
that

(A) At the very beginning the two velocities coincide, V" (0) = U (0).

(B) Occasionally, with typical frequency of order » mismatches of the two velocity
processes occur. These mismatches are caused by two possible effects:

o Recollisions of the Lorentz exploration process with a scatterer placed in the
past. This causes a collision event when V" (¢) changes while U (¢) does not.

o Scatterings of the Markovian flight process Y (#) in a moment when the Lorentz
exploration process is in the explored tube, where it can not encounter a not-yet-
seen new scatterer. In these moments the process U (¢) has a jump discontinuity,
while the process V' (¢) stays unchanged. We will call these events shadowed
scatterings of the Markovian flight process.

(C) However, shortly after the mismatch events described in item (B) above, a new
jointly realised scattering event of the two processes occurs, recoupling the two
velocity processes to identical values. These recouplings occur typically at an
E X P(1)-distributed time after the mismatches.

Summarising: The coupled velocity processes ¢t +— (U(t), V' (t)) are realised in such
a way that they assume the same values except for typical time intervals of length of
order 1, separated by typical intervals of lengths of order ~!. Other, more complicated
mismatches of the two processes occur only at time scales of order r~2 [log r| 2. If the
probability of all mismatches, and the separation associated to those that do occur, can
be controlled (this will be the content of the proof) then the following holds:
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Fig. 1. The above image shows a recollision (left) and a shadowing event (right). Note that after each event
U and V" are no longer coupled. However at the next scattering, if possible, the velocities are recoupled. On
the right-hand-side the virtual scatterer drawn in dotted line is shadowed. That is: it is physically not present
in the mechanical trajectory

Upto T = T(r) = o(r~"), with high probability there is no mismatch whatsoever
between U (¢) and V" (¢). That is,

limOP(inf{t VO #FUDY<T) = lin})P(inf{t (X' A£YM}<T)=0. (14)

In particular, the invariance principle (10) also follows, with 7 = T'(r) = o(r~!), rather
than T = T (r) = o(r 2 |log rI72). Asa by-product of this argument a new and handier
proof of the theorem (6) of [15-17,27,28] also drops out.

Goingupto T = T(r) = o(r > |10gr|_2) needs more argument. The ideas exposed in
the outline (A), (B), (C) above lead to the following chain of bounds:

X"(Tt) Y(Tt)
max —

o<t<l| /T VT

1
max

zﬁ 0<r<1

I 1
<— Vi(s)—U(s)|ds x —=Tr =~Tr.
=77 Jo V" (s) ()] N NGY

In the =< step we use the arguments (B) and (C) . Finally, choosing in the end T =
T(r) = o(r~%) we obtain a tightly close coupling of the diffusively scaled processes
t X’(Tt)/ﬁ and 1 — Y(Tt)/\/T, (9), and hence the invariance principle (10),
for this longer time scale. This hand-waving argument should, however, be taken with a
grain of salt: it does not show the logarithmic factor, which arises in the fine-tuning.

Tt
/ (V'(s) = U(s)) ds
0

1.4. Summary of related work. In order to put our results in context we succinctly sum-
marise the related most important results in the mathematically rigorous treatment of
diffusion in the Lorentz gas. As Hendrik Lorentz’s seminal paper [22]—where he pro-
poses the periodic setting of what we call today the Lorentz gas for modelling diffusion
and transport in solids—was published in 1905, and due to the large amount of work
done in this field, we can not strive for exhaustion, and mention only a (possibly subjec-
tive) selection of the mathematically rigorous results. For more comprehensive historical
overview we refer the reader to the survey papers [8,24,28] and the monograph [29].

Scaling limit of the periodic Lorentz gas As already mentioned, diffusion in the periodic
setting is much better understood than in the random setting. This is due to the fact that
diffusion in the periodic Lorentz gas can be reduced to the study of limit theorems of
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some particular additive functionals of billiard flows in compact domains. Heavy tools
of hyperbolic dynamics provide the technical arsenal for the study of these problems.

The first breakthrough was the fully rigorous proof, by Bunimovish and Sinai [5], of
the invariance principle (diffusive scaling limit) for the Lorentz particle trajectory in a
two-dimensional periodic array of spherical scatterers with finite horizon. (Finite horizon
means that the length of the straight path segments not intersecting a scatterer is bounded
from above.) This result was extended by Chernov [7], to higher dimensions, under a
still-not-proved technical assumption on singularities of the corresponding billiard flow.

In the case of infinite horizon (e.g. the plain Z¢ arrangement of the spherical scatterers
of diameter less than the lattice spacing) the free flight distribution of a particle flying in
a uniformly sampled random direction has a heavy tail which causes a different type of
long time behaviour of the particle displacement. The arguments of Bleher [3] indicated
that in the two-dimensional case super-diffusive scaling of order /7 logt is expected.
For the Lorentz-particle displacement in the 2-dimensional periodic case with infinite
horizon, a central limit theorem with this anomalous scaling was proved with full rigour
by Varjui and Szasz [30] and Dolgopyat and Chernov [9]. The periodic infinite horizon
case in dimensions d > 3 remains open.

Boltzmann-Grad limit of the periodic Lorentz gas The Boltzmann-Grad limit in the peri-
odic case means spherical scatterers of radii r < 1 placed on the points of the hypercubic
lattice r@~1/47d The particle starts with random initial position and velocity sampled
uniformly and collides elastically on the scatterers. For a full exposition of the long and
complex history of this problem we quote the surveys [18,24] and recall only the final,
definitive results.

In Caglioti-Golse [6] and Marklof-Strombergsson [25] it is proved that in the
Boltzmann-Grad limit the trajectory of the Lorentz particle in any compact time interval
t € [0, T]with T < oo fixed, converges weakly to a non-Markovian flight process which
has, however, a complete description in terms of a Markov chain of the successive colli-
sion impact parameters and, conditionally on this random sequence, independent flight
lengths. (For a full description in these terms see [26].) As a second limit, the invariance
principle is proved for this non-Markovian random flight process, with superdiffusive
scaling +/1 log ¢, in Marklof-T6th [26]. Note that in this case the second limit doesn’t just
drop out from Donsker’s theorem as it did in the random scatterer setting. The results of
[6] are valid in d = 2 while those of [25] and [26] in arbitrary dimension.

Interpolating between the plain scaling limit in the infinite horizon case (open in
d > 3) and the kinetic limit, by simultaneously taking the Boltzmann-Grad limit and
scaling the trajectory by /T log T, where T = T (r) — oo with some rate, would be
the problem analogous to our Theorem 1 or Theorem 2. This is widely open.

The weak coupling limit The weak coupling is physically a different limiting procedure
for obtaining diffusion of moving particle among fixed scatterers. In conformity with
the usual notation of the weak coupling literature we will use the scaling parameter
& — 0. Infinite mass fixed scatterers are again placed on the points of a Poisson point
process of density o = ¢~¢ in R?. However, now it is assumed that the compactly
supported and spherically symmetric scattering potential % of radius r = ¢, centred at
the scatterer positions, is smooth and bounded rather than hard core. Note that o = e,
r = & means just a linear spatial scaling by a factor ¢. In this limit, rather than scaling
down excessively the radius of support, the strength of the potential is scaled. Newton’s
equations of motion for the kinetically scaled particle are
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XE(r) = VE(r),  VE(r) = —VU (X*(1))

in the potential field

Us() =Y e'Pu & (x — q)).

gew

where w is the realisation of the Poisson point process of intensity o = ¢ <.

From the work of Kesten and Papanicolaou [20] it follows that
t
VE@r) = YV (1), X)) = 2°() = / Y (s)ds, (15)
0

where the limiting velocity process ¥'(¢) is a homogeneous diffusion (i.e. Brownian
motion) on the surface of S¢~! and the weak convergence is meant in the space of
continuous trajectories endowed with uniform topology on compact time intervals, cf
[2]. See also the survey [28]. Taking a second, diffusive limit, 7~'/2.2°(Tt) — W (1),
the displacement process converges to Brownian motion, as 7 — oo.

The simultaneous kinetic and diffusive limit in this context is done by Komorowski
and Ryzhik in [21] where it is proved that in dimension d > 3, up to time scales

T=TE)=¢"=T5, k € (0, kg), ko > 0, (16)
the diffusive limit
T 12X5(Tr) = W) 17)

holds. In (16) «q is small (possibly, very small) and positive, its numerical value is not
specified and difficult to determine from the various technical estimates.

To our knowledge this was the first case when diffusive limit was rigorously estab-
lished beyond the kinetic time scale in a context which includes the random Lorentz
gas. We also note that the results in [20,21] are formulated in more general context of
spatially ergodic random potential fields with regularity conditions assumed. This covers
weak coupling of the random Lorentz gas as particular case. Our main Theorem 2 should
be compared with this result. In particular, the time scale of validity of the diffusive limit
(16) is to be compared with the time scale (13) up to which our Theorem 2 is valid.

In the forthcoming work [19] the diffusive limit under weak coupling (17) is proved
with probabilistic coupling method somewhat similar but not identical to the present one,
for time scales 7' (¢) = 0(8_d+2 [log e|~%) in any d > 3, with some & < 00, improving
thus considerably the result of [21].

The quantum Lorentz gas The quantum versions of the weak coupling and low den-
sity limits for the random Lorentz gas were considered in Erd6s-Yau [14], respectively,
Eng-Erdds [10], where the long time evolution of a quantum particle interacting with a
random potential is studied. It is proved that the phase space density of the quantum evo-
lution converges weakly to the solution of the linear Boltzmann (or, Langevin) equation,
with diffusive, respectively, hopping scattering kernels. These results are the quantum
analogues of the classical (i.e. non-quantum) kinetic limits of [20] (for weak coupling),
respectively, [15-17,27,28] (for low density).

In the weak coupling setup the simultaneous kinetic and diffusive scaling limit,
formally analogous to [21] was done by Erdés-Salmhofer-Yau [12, 13] where it is proved
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that under a scaling limit similar to (16), (17) the time evolution of the spatial density of
the quantum particle weakly coupled with the fixed scatterers converges to the solution
of the heat equation. In this case the numerical value of the upper bound on the scaling
exponent « is specified in d = 3 as kg = 1/370 (see Theorem 2.2 in [12]).

For a comprehensive survey of the kinetic and kinetic-diffusive limits in the quantum
case see also [11].

Miscellaneous Looking into the future: Liverani investigates the periodic Lorentz gas
with finite horizon with local random perturbations in the cells of periodicity: a basic
periodic structure with spherical scatterers centred on Z¢ with extra scatterers placed
randomly and independently within the cells of periodicity, [1]. This is an interesting
mixture of the periodic and random settings which could succumb to a mixture of dynam-
ical and probabilistic methods, so-called deterministic walks in random environment.

1.5. Structure of the paper. The rest of the paper is devoted to the rigorous statement
and proof of the arguments exposed in (A), (B), (C) above. Its overall structure is as
follows:

— Section 2: We construct the Markovian flight and Lorentz exploration processes and
thus lay out the coupling argument which is essential moving forward. Moreover, we
will also introduce an auxiliary process, Z, a short-sighted or forgetful version of X
which somehow interpolates between the processes Y and X.

— Section 3: We prove Theorem 1. We go through the proof of this statement as it is
both informative for the dynamics, and the proof of Theorem 2 in its full strength
will follow partially similar lines, however with substantial differences.

Sections 4-7 are fully devoted to the proof of Theorem 2, as follows:

— Section 4: We break up the process Z into independent legs of exponentially tight
lengths. From here we state two propositions which are central to the proof. They
state that
(i) with high probability the process X does not differ from Z in each leg;

(i1) with high probability, the different legs of the process Z do not interact (up to
times of our time scales).

— Section 5: We prove the proposition concerning interactions between legs.

— Section 6: We prove the proposition concerning coincidence, with high probability,
of the processes X and Z within a single leg. This section is longer than the others,
due to the subtle geometric arguments and estimates needed in this proof.

— Section 7: We finish off the proof of Theorem 2.

2. Construction

2.1. Ingredients and the Markovian flight process. Let §; € R, and u; € R3,
j=-2,—-1,0,1,2,..., be completely independent random variables (defined on an
unspecified probability space (2, %, P)) with distributions:

£j~EXP(), u;~UNIS?, (18)
and let

vji=§&ju;j e R3. (19)
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For later use we also introduce the sequence of indicators
€j:=1{& < 1}, (20)

and the corresponding conditional exponential distributions EX P (1]1) := distrib(§ | e =
1), respectively, EX P (1|0) = distrib(§ | ¢ = 0), with distribution densities

(e— D7l 1{0 <x < 1}, respectively, e 1{1 < x < oo}

We will also use the notation € := (¢;) j>0 and call the sequence ¢ the signature of the
iid. EXP(1)-sequence (§;);>0.
The variables &; and u ; will be, respectively, the consecutive flight length/flight times
and flight velocities of the Markovian flight process ¢ — Y (t) € R? defined below.
Denote, forn € Z,,t € R,,

n
T, = Zéj, vy :=max{n : 1, <t}, {t} =1t —1,,. 21D
j=1

That is: 7, denotes the consecutive scattering times of the flight process, v; is the number
of scattering events of the flight process ¥ occurring in the time interval (0, ¢], and {¢}
is the length of the last free flight before time 7.

Finally let

n n
Yo=Y Euj=Y  yj. Y (1) =Yy, + {thy41.
j=1 j=1

We shall refer to the process ¢ — Y (¢) as the Markovian flight process. This will
be our fundamental probabilistic object. All variables and processes will be defined in
terms of this process, and adapted to the natural continuous time filtration (.%;);>0 of
the flight process:

Ft = o (u, (Y ($))o<s<t)-
Note that the processes n — Y, t +— Y (¢) and their respective natural filtrations

(Fn)n>0, (Z1)1>0, do not depend on the parameter r.
We also define, for later use, the virtual scatterers of the flight process t +— Y (¢). Let

— Y(t,) = Y(z

Y]é ::Yk+r Uk Uk+1 — Y+ -(k,) (]i) ’ 207
lug — upr |Y(t) =Y ()|

Y ={v[eR*:0<k <n), n>0.

Here and throughout the paper we use the notation f(t¥) := lim, 10 ft£e).

The points ¥, € R? are the centres of virtual spherical scatterers of radius 7 which would
have caused the nth scattering event of the flight process. They do not have any influence
on the further trajectory of the flight process Y, but will play role in the forthcoming
couplings.
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2.2. The Lorentz exploration process. Letr > 0, and ¢ = o(r) = 7wr~2. We define the
Lorentz exploration process t — X (f) = X" () € R3, coupled with the flight process
t — Y (t), adapted to the filtration (.%;),~(. The process t — X (¢) and all upcoming
random variables related to it do depend on the choice of the parameter » (and @), but
from now on we will suppress explicit notation of dependence upon these parameters.
The construction goes inductively, on the successive time intervals [t,_1, 7,,), n =
1,2, .... Start with [Step 1] and then iterate indefinitely [Step 2] and [Step 3] below.

[Step 1 ] Start with

uo —uj

XO0)=Xo=0, VOHY=u, X):= S = (X}).

r———,
lug — u1l
Note that the trajectory of the exploration process X begins with a colli-
sion at time ¢ = 0. This is not exactly as described previously but is of no
consequence and aids the later exposition. Go to [Step 2].
Step 2 This step starts with given X(1,—1) = X,—1 € R3, V(r;_l) € S?% and
SX =1{X}; :0 <k <n—1} C R}U {5k}, where
o % is a fictitious point at infinity, with inf g3 |x — Y| = oo, introduced for
bookkeeping reasons;
o |Xy—1—X}| € (ool for0 <k <n—1,and |X,—; — X, _,| € {r, 00}.
(Note that, due to absolute continuity of the flight time distribution ‘X 1— X}, | #*
r, for k # [, with probability 1.)
The trajectory ¢t — X(t),t € [t,—1, Tn), is defined as free motion with elas-
tic collisions on fixed spherical scatterers of radius r centred at the points in
Ynx_ |- At the end of this time interval the position and velocity of the Lorentz
exploration process are X (7,) =: X,,, respectively, V(t, ). Go to [Step 3].
Step 3 Let

X=X, +rM, dy ;= min |X(s) — X |.
}V(‘L’n ) — un+1| 0<s<t,
Note that d,, < r.
olIfd, <rthenlet X), :=%,and V() = V(1,).
olIfd, =rthenlet X := X, and V(7)) = up41.
Set /X = X, U{X}}.Go back to [Step2].

The process ¢ — X (¢) is indeed adapted to the filtration (.%;)o<;<co and indeed has the
averaged-quenched distribution of the Lorentz process. This follows from the fact that
the scatterers of the Lorentz process are centred on a Poisson Point Process and thus
when sweeping not-yet-seen areas no information from the past interferes.

Our notation is fully consistent with the one used for the Markovian process Y:
X, = X(1,) and

X)) — X(5)

, X +r— X(T_) X(T+),
X =1"" |X(t,) — X(r)] _ ) # ' k k>0,
* if X(ry) = X(x),
X =X, eRPU{Kk}:0<k <n}, n>0.

The second alternative above happens when the scattering event offered by the Poisson
flaw is suppressed due to shadowing.
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2.3. Mechanical consistency and compatibility of piece-wise linear trajectories in R3.
The key notion in the exploration construction of Sect. 2.2 was mechanical r-consistency,
and r-compatibility of finite segments of piece-wise linear trajectories in R, which
we are going to formalise now, for later reference. We will apply the notion of r-
consistency/compatibility to several different process in what follows. Thus we let
{t — Z(z)} denote any one of the aforementioned/forthcoming piece-wise linear pro-
cesses.
Thus, let

neN, 70 € R, Z()ER3, vo,...,v,,+1652 Hy....t, € Ry,

be given and define for j =0,...,n — 1,

Vj — Vj4] .
Zj+r¥ 1fvj #v/q.],

[vj = vju]
* ifvj =vj41,

J j

Tj = 1'0+Ztk, Zj = Z.0+Ztkvk, Z’] =
k=1 k=1
and for 7 € [tj, 7j41], j =0,...,n,

2(t) == Z’j +(t — rj)vj+1.

We call the piece-wise linear trajectory (Z(z) Ty <t<T ) mechanically r-consistent
or r-inconsistent, if

<r.

(22)

min min
T0=I=Ty 0<j<n

2(t) — Z/j =7, respectively, min min

T0=t=7, 0<j<n

2(t) — Z/j

Note, that by formal definition the minimum distance on the left hand side can not be
strictly larger than r.

Given two finite pieces of mechanically r-consistent trajectories (Za (Dt p<t<
T, na) and (Zb(t) T < < t,; nh), defined over non-overlapping time intervals:
(74,0, Ta.n,] O [T5,05 Toon, ] = 9, with 74, < 75,0, we will call them mechanically
r-compatible or r-incompatible if

min{ min min |Z,(t) — 2}, ;|, min min |Zp(1) — Z), |} >,
Ta,0=1=<Ta,ng 0<j<nyp o] T,0=I=Tp,np 0<j<ng +J
(23)
min{ min min |Z,(1) — 2}, |, min min |Zp(1) — Z), ~‘} <7,
T0,0=t<Tang 0<j<ny 1 1 0=t <Th 0y, 0<j<ng +J

respectively.

It is obvious that given a mechanically r-consistent trajectory, any non-overlapping
parts of it are pairwise mechanically r-compatible, and given a finite number of non-
overlapping mechanically r-consistent pieces of trajectories which are also pair-wise
mechanically r-compatible their concatenation (in the most natural way) is mechanically
r-consistent.
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2.4. An auxiliary process. It will be convenient to introduce a third, auxiliary pro-
cess t — Z(t) € R3, and consider the joint realisation of all three processes
t — (Y(t), X (), Z(t)) on the same probability space. This construction will not be
needed until Sect. 4, but this is the optimal logical point to introduce it. The reader may
safely skip to Sect. 3 and come back here before turning to Sect. 4.

The process t +— Z(t) will be a short-sighted version of the true physical process
t — X(¢) in the sense that in its construction only memory effects by the last seen
scatterers are taken into account. That is: only direct recollisions with the last seen
scatterer and direct shadowings by the last straight flight segment are incorporated,
disregarding more complex memory effects. Later in the paper the following two basic
facts will be shown:

(@ Uptotimes T = T(r) = o(r_2 |10gr|_2) the trajectories of the short-sighted
process Z(t) and the true physical process X (¢) coincide. This is the main part of
the proof, filling Sects. 5 and 6 and concluded in Lemma 9.

(b) The short-sighted process Z(¢) and the Markovian process Y (¢) stay sufficiently
close together with probability tending to 1 (as » — 0). This is the content of
Lemma 10, its proof is relatively simple.

Based on these two conclusions, the invariance principle (7) can be transferred to the
true physical process X (¢), thus yielding the invariance principle (10).
Define the following indicator variables:

. Uj—1 —Uj

~ o~ . J J
nj =n(yj-2,yj-1,y;) =1 |yj_1| <land min |yj (+r————=+tuj 2| <rg,

0<t<&; > }uj_l —uj|

Uj—1 —Uj-2

yj—1+r +1u;

(24)

N =70i—2,vj-1,v;) =11]|yi_1| < 1and min
J J J J | J | 0<i<¢; {uj—1 _uj_2|

nj := max{n;, 7;}.

Before constructing the auxiliary process ¢ +— Z(t) we prove the following

Lemma 1. There exists a constant C < oo such that for any sequence of signatures
€ = (€j)j>1 the following bounds hold

E(n; | e) = Cr, (25)
Crijlogr| if |j —kl =1,
E(n: < 26
(”””“g)—{cﬂ if 17—kl > 1. (26)
Proof of Lemma 1. Define the following auxiliary, and simpler, indicators:
2r - 2r
=1 {4(—uj_1,uj_2) < —}, =1 {4(—uj_1,uj) < —} )

§j—1 Ei 1

Here, and in the rest of the paper we use the notation
/:8*x S§*—> [0, 7], Z(u, v) := arccos(u - v).

Then, clearly,
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It is straightforward that the indicators (77\3 1<j< oo), and likewise, the indicators

(ﬁ; 1=<j< oo), are independent among themselves and one-dependent across the

two sequences. This holds even if conditioned on the sequence of signatures €.
Therefore, the following simple computations prove the claim of the lemma.

o
E®@;|e) < Crzf e Y min{y 2, r2}dy < Cr,
0

o0
E(7; | e) < Cr2/ e min{y~2,r 2}y < Cr,
0

o0 o0
E(ﬁ/jﬂﬁ} ’ é) = Cr2/ / e e Fmin{y 2,z 72, r *}dydz < Cr*|logr].
o Jo

We omit the elementary computational details. O

Lemma I assures that, asr — 0, with probability tending to 1, up to time of order T =
T@r) = o(r_2 |log r|_1) it will not occur that two neighbouring or next-neighbouring
n-s happen to take the value 1 which would obscure the following construction.

The algorithmic definition of the process t = Z(t), in terms of and adapted to the
natural filtration of the flight process t — Y (¢), goes as follows. The process ¢ +— Z(t)
is constructed on the successive intervals [t; 1, 7;), j = 1,2, ..., as follows:

o(No interference with the past.)
Ifn; =0thenfort;_| <t <71;, Z(t) = Z(tj—1) +{t}u;.
o (Direct shadowing.)
Ifﬁj =1,thenforz; | <t <71, Z(t) = Z(zj—1) + {t}u; 1.
o(Direct recollision with the last seen scatterer.)
If 7; = 0 and i; = 1 then, in the time interval t;_; < r < t; the trajectory 7 >
Z(t) is defined as that of a mechanical particle starting with initial position Z(z;_1),
initial velocity Z (‘L’}'_l) = u; and colliding elastically with two infinite-mass spherical
scatterers of radius r centred at the points

Uj—1—Uuj
uj—t —uj|’

Uj—1—uj-2

Z(tj—1) +r .
luj1 —uj2|

respectively  Z(tj_2) —r

These steps define the process t — Z(¢) in a unique way and adapted to the natural
filtration of the process ¢ — Y (¢). As we already stressed, the basic facts about the
process t +— Z(t) (listed earlier in this subsection) will be proved in later sections of
the paper, and will have a key role in proving our main Theorem 2.

Consistently with the notations adopted for the processes Y (¢) and X (¢), we denote
Zy = Z(tg) fork > 0.

3. No Mismatches up to T D o(r ~!): Proof of Theorem 1

In this section we prove that the Markovian flight trajectory Y (¢), up to time scales of
order T = T(r) = o(r™1), is mechanically r-consistent with probability 1 — o(1),
and therefore the coupling bound of Theorem 1 holds. On the way we establish various
bounds to be used in later sections. This section is purely classical-probabilistic. It also
prepares the ideas (and notation) for Sect. 5 where a similar argument is explored in
more complex form.
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éa)

)

Fig. 2. The above image shows a section of trajectory during which X, Y, and Z would all three differ. On
the left we see Y and Z remain together until point (b), where a direct recollision is respected by Z. Note that
Z ignores the mismatch at (a) as it is indirect. On the right, the process X is coupled to Y on the left. Note that
X respects the indirect recollision at point (a) and the direct recollision at (b)

3.1. Interferences. Lett — Y(t) and t — Y*(t) be two independent Markovian flight
processes. Think about Y () as running forward and Y *(¢) as running backwards in time.
(Note, that the Markovian flight process has invariant law under time reversal.) Define
the following events

= {min{‘Y(t) - Y]’- 0<t<tis1)<r),

= min{|Y - Y@ :0<k<j-1, 1o <t<y)<r)
* = {min{|Y*(t) — Y1/| 0<t < ‘L’j_l} <r},

={min{|Y” —Y(0)|:0<k<j—1 0<t<tu}<r}

8§*) \-g*z \%92 \%2 '\§)

= {min{|Y*(t) — Y{| : 0 <t < 00} <r},
W = {min{|Y;” —Y(®)|:0 <k <00, 0<t<t}<rh

In words Wj is the event that the virtual collision at Y; is shadowed by the past path.
While W; is the event that in the time interval (t;_1, 7;) there is a virtual recollision

with a past scatterer.
It is obvious that

P(W;) = P(W?) < P(W3,)) < P(W5).

~ ~ ~ ~ 27
P(W;) =P(W}) = P(W},,) = (W),
On the other hand, by union bound and independence
P(Wi) <Y P({l <k <o00: ¥ €Byo} #D)P({0 <1 <& :Y(t) € By} # 9),
773
<Y @O TE([(l <k <o00:¥f € B | JE(J10 <t <& :Y() € Byall)
(A (28)
P(W2) < Y P({0 <t <o00:Y*(t) € Buror) # B)P(Y1 € Byoy),
773
< Y @T'E([{0 <1 <o00: Y* () € Byy}| )P(Y1 € Buray),
723

recall that &; is the time of the first collision for the forwards process ¢ — Y (¢). Here
and in the rest of the paper we use the notation |{- - - }| for either cardinality or Lebesgue
measure of the set {- - - }, depending on context.
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3.2. Occupation measures (Green’s functions). Define the following occupation mea-
sures (Green’s functions): for A C R?

g(A) := P(Y1 € A)

h(A) :=E(|{0 <t <& :Y() € A}])

G(A) :=E(|{1 <k<oo:Y;e A}|)

H(A) :=E([{0 <t <o00:Y(t) € A}).

Obviously,
G(A) =g+ /2 8(A —x)G(dx)
- (29)
H(A) = h(A) +/ h(A —x)G(dx).
R3
3.3. Bounds.
Lemma 2. The following identities and upper bounds hold:
h(dx) = g(dx) < L(dx) (30)
H(dx) = G(dx) < K(dx) + L(dx), a3
where
K(dx) := Cmin{l, |x| "}dx, L(dx):= Ce ™ |x|2dx, (32)

with appropriately chosen C < oo and ¢ > 0.

Proof of Lemma 2. The identity h = g is a direct consequence of the flight length &
being E X P (1)-distributed. The distribution g has the explicit expression

g(dx) = C |x| 2 e Wldx

from which the the upper bound (30) follows.
(31) then follows from (29) and standard Green’s function estimate for a random
walk with step distribution g. O

For later use we introduce the conditional versions—conditioned on the sequence €
(see (20))—of the bounds (30), (31). In this order we define the conditional versions of
the Green’s functions, given € € {0, 1}, respectively € € {0, 1}N :

ge(A):=P(Y € A|¢)

he(A) =E(|{0 <t <& :Y(t) € A}| | €)
Ge(A) =E([{1 <k <oo:Yi € A}l|¢)
Ho(A):=E([{0 <t <o00:Y() € A}l | €),

and state the conditional version of Lemma 2:
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Lemma 3. The following upper bounds hold uniformly in € € {0, 1}1:

8e(dx) = L(dx), he(dx) < L(dx), (33)
Ge(dx) < K(dx) + L(dx), H(dx) < K(dx) + L(dx), (34)

with K (x) and L(x) as in (32), with appropriately chosen constants C < oo and ¢ > 0.

Proof of Lemma 3. Noting that
ge(dx) < Clx[2e Wdx,  he(dx) < Clx|72e Wdx,

the proof of Lemma 3 follows very much the same lines as the proof of Lemma 2. We
omit the details. O

3.4. Computation. According to (27), (28), forevery j = 1,2, ...

P(W;) <P(WL) < @)Y G(Boro)h(Bar),

773

P(W)) <P(WZ) < @)™ Y H(Br3)8(Burar).

zeZ3
Moreover, straightforward computations yield

Lemma 4. In dimension d = 3 the following bounds hold, with some C < o0

Y K(Bu3)L(Beoy) < Cr?, > L(Ba)L(Byor) <Cr2 (39)

773 773

Proof of Lemma 4. The bounds (35) readily follow from explicit computations. We omit
the details. ]

We conclude this section with the following consequence of the above arguments
and computations.

Corollary 1. There exists a constant C < oo such that for any j > 1:

P(W;) <cCr, P(W;)<Cr (36)

3.5. No mismatching—up to T ~ o(r~"). Define the stopping time
o :=min{j > 0: max{]lAj, ]lﬁ,j} =1},
and note that by construction
inf{t >0: X)) AY(®)} > 15-1. (37
Lemma 5. Let T = T (r) be such that lim,_,o T (r) = oo and lim, _,qrT (r) = 0. Then

lim P(t,—1 <T) =0. (38)



Invariance Principle for the Random Lorentz Gas

Proof of Lemma 5.

271
P(t, 1 <T)<P(o <2T)+P( > & <T) <CrT+Ce™ 7, 39)

Jj=1
where C < oo and ¢ > 0. The first term in the middle expression of (39) is bounded
by union bound and (36) of Corollary 1. In bounding the second term we use a large

deviation upper bound for the sum of independent £ X P (1)-distributed &;-s.
Finally, (38) readily follows from (39). m|

(8) follows directly from (37) and (38), and this concludes the proof of Theorem 1.
O

4. Beyond the Naive Coupling

The forthcoming parts of the paper rely on the joint realisation (coupling) of the three
processes t +—> (Y 1),X@®),Z (t)) as described in Sect. 2. In particular, recall the con-
struction of the process ¢ +— Z(¢) from Sect. 2.4.

4.1. Breaking Z into legs. LetT'g := 0, ®9 =0 and forn > 1

Fpi=min{j > T, +2:min{§; 1, §;, 41, §j42} > 1}, Vo =Ty —Tht,

(40)
0, =1, On = Op — Op_1,
and denote
Envj = SFn*l"’j’ un,j = Mrnfl‘*']" yn,j = yr,171+ja 1 S J S Vn,
Yp(t) =Y (On-1+1) = Y (On-1), 0 =<1 <0p,
Zy(t) := Z(Op-1 +1) — Z(Op—1), 0<1<0n
Then, it is straightforward that the packs of random variables
@n = (Y G jottn) 1< j<wm), n=1, (41)

are fully independent (for n > 1), and also identically distributed for n > 2. (The
first pack is deficient if min{&, &1} < 1.) It is also straightforward that the legs of the
Markovian flight process

Gn; Y1) :0<t <86,), n>1,

are fully independent, and identically distributed for n > 2.
A key observation is that due to the rules of construction of the process t +— Z(t)
exposed in Sect. 2.4, the legs

On; Z,(1) :0<1<6,), n>1, (42)

of the auxiliary process ¢t +— Z(t) are also independently constructed from the packs
(41), following the rules in Sect. 2.4. Note, that the restrictions | yj-1 | < 1in (24) were
imposed exactly in order to ensure this independence of the legs (42). Therefore we
will construct now the auxiliary process t — Z(¢) and its time reversal ¢t — Z*(t)
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from an infinite sequence of independent packs (41). In order to reduce unnecessary
complications of notation from now on we assume min{&yp, §1} > 1.

Remark: In order to break up the auxiliary process ¢t — Z(t) into independent legs the
choice of simpler stopping times
[, :=min{j > T, +1:min{§;, &1} > 1},

would work. However, we need the slightly more complicated stoppings I',,, given in
(40), for some other reasons which will become clear towards the end of Sect. 4.2 and
in the statement and proof of Lemma 6.

4.2. One leg. Let&j,u;, j > 1, be fully independent random variables with the distri-
butions (18), conditioned to

min{&;, &2} > 1,
and y; asin (19). Let
y :=min{j > 2:min{g; 1. &, &1, 62} > 1} € 2JU(S.6,...}.  (43)
Note that y can not assume the values {1, 3, 4}. Call

o= (y; Euj):1<j<y) (44)

a pack, and keep the notation 7; := Z,]C: &k, and 0 :=1,,.
The forward leg

0:Z(1):0=<1<0)

is constructed from the pack @ according to the rules given in Sect. 2.4. We will also
denote

Zj=2Z(j)), 0<j<y; Z:=27,=27(0).

These are the discrete steps, respectively, the terminal position of the leg.
It is easy to see that the distributions of y and 6 are exponentially tight: there exist
constants C < oo and ¢ > 0 such that for any s € [0, c0)

P(y > s) <Ce™ ™, P(9 > s) <Ce™ . (45)
The backwards leg
(0; Z():0<1<9)
is constructed from the pack @ as
Z¥t,w) =20 —t,w") — Z(w™),
where the backwards pack
@ = (y; Gy—js—uy-j):0<j<y—1)

is the time reversion of the pack @ .
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Note that since the velocities u, are uniformly distributed the forward and backward
packs, @ and @w*, are identically distributed. However, since under time reversal, recol-
lisions become shadowed scattering and vice-versa, the forward and backward processes
(t— Z@) :0=<t<6)and (t = Z*(t) : 0 < ¢ < 6) are not identically distributed.
The backwards process t — Z*(t) could also be defined using an explicit step-by-step
construction, similar (but not identical) to those in Sect. 2.4, but we will not rely on
these step-wise rules and therefore omit their explicit formulation. Thus it suffices to
take (1 > Z*(1) : 0 <t < 6) to be the time-reversal of (1 — Z() : 0 <t < 0).

Consistent with the previous notation, we denote

Zi =7, 0<j=<vy: 7 =23 =2"0) = 7.
Note, that due to the construction rules of the forward and backward legs, their beginning,
middle and ending parts
(t1;Z(1): 0=t <11),
(o1 —t Z(i+0) —Z(1) :0<t <11 — 11), (46)
(ty =13 Z(ty—1 +1) — Z(ty—1) 10 <t <7 —Ty_1)
are independent, and likewise for the backwards process Z*,
(t:Z*(1):0<1=<11),
(yo1—m: 2%+ —Z" () : 01 <11 — 1), 47)
(ry — Ty 13 Z (ty—1+1) = Z*(1y—1) : 0 <t < 1) — ry_l) .
This fact will be of crucial importance in the proof of Proposition 2, Sect. 5.2 below. This

is the reason (alluded to in the remark at the end of Sect. 4.1) we chose the somewhat
complicated stopping time as defined in (43).

4.3. Multi-leg concatenation. Let w, = (yn; Cn,jrunj):1<5j=< yn), n>1bea
sequence of i.i.d packs (44), and denote 0, (Z,(¢) : 0 <t < 6,), (Zn,j : 1 < j < va),
(Zi(t) 10 <t <6y, (Z;’;j 1< j < v, Zn, 7; the various objects defined in
Sect. 4.2, specified for the n-th independent leg.

In order to construct the concatenated forward and backward processes t — Z(t),
t— Z*(),0 <t < oo, we first define for n € Z,, respectively t € R,

n

r,:= Zyk, v, := max{m : '), <n}, {n}:=n-T,,
k=1
n
®, = Z@k, vy := max{m : ®,, <t}, {t} =1t —-0,,.
k=1

The concatenated (multi-leg) forward and backward Z-processes are

=Y Zk. Zy = By, + Zo,41(n)» Z(t) := By, + Zui (1)),
k=1
n
— —% — —
Er =Y 7, Zr =B 420y ZH(1) = B + Z5 ().
k=1

(48)
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Note that &, and & are random walks with independent steps; t > Z(t),0 <t < 00, is
exactly the Z-process constructed in Sect. 2.4, with Z,, = Z(t,),0 < n < oo. Similarly,
t = Z*(),0 <t < oo, is the time reversal of the Z-process and Z* = Z*(t,),
0<n<oo.

Theorem 2 will follow from Propositions 1 and 2 of the next two sections.

4.4. Mismatches within one leg. Given a pack w = (y; CEjouj):1<j=< y) (44),
and arbitrary incoming and outgoing velocities uq, uy 4+ € S2 let ((Y(t), (), Z(1)) :
0" <t < 9+),be the triplet of Markovian flight process, Lorentz exploration process and
auxiliary Z-process jointly constructed with these data, as described in Sects. 2.1, 2.2,
respectively, 2.4. We use the notation 2~ to denote a mechanical Lorentz exploration
constructed using the rules of Sect. 2.2 defined on a leg for times ¢ € [07, 0], and
independently for different legs. By 0~ < 7 < 6* we mean that the incoming velocities
at 0~ are given as Y 07) = A 07) = Z (07) = up and the outgoing velocities at
0* are Y (0%) = Z(0%) = Uy 41, while 2 (%) is determined by the construction from

Sect. 2.2. Thatis, 2" (8*) = uy 41 if this last scattering is not shadowed by the trajectory
(2 (t):0=<t<6)and 2°(0%) = 2 (") if it is shadowed.

Proposition 1. There exists a constant C < 00 such that for any ug, uy+1 € S 2
P(Z(1)#£Z1t): 0" <t <6%) < Crllogr|*. (49)

The proof of this Proposition relies on controlling the geometry of mismatchings,
and is postponed until Sect. 6.

4.5. Inter-leg mismatches. Lett — Z(t) be a forward Z-process built up as concatena-
tion of legs, as exposed in Sect. 4.3 and define the following events

Wi = {min{|Z() ~Z;|: 0<r<®;1, Tjo1<k<T;}<r},

~ ) (50)
Wi:={min{|Z, —Z(®t)|: 0<k<T;_, ©j_1<t<0®;}<r}

In words Wj is the event that a collision occuring in the j-th leg is shadowed by the past
path. While W j 1s the event that within the j-th leg the Z-trajectory bumps into a scatterer
placed in an earlier leg. That is, VT/j U VT/j is precisely the event that the concatenated
first j — 1 legs and the j-th leg are mechanically r-incompatible (see Sect. 2.3).

The following proposition indicates that on our time scales there are no “inter-leg
mismatches”:

Proposition 2. There exists a constant C < oo such that for all j > 1
P(W;) <Cr?,  P(W;) <cCr 51

The proof of Proposition 2 is the content of Sect. 5.

5. Proof of Proposition 2

This section is purely probabilistic and of similar spirit as Sect. 3. The notation used is
also similar. However, similar is not identical. The various Green’s functions used here,
although denoted g, &, G, H, as in Sect. 3, are similar in their rdle but not the same. The
estimates on them are also different.
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5.1. Occupation measures (Green’s functions). Letnow t — Z*(t),0 <t < oo, be a
backward Z*-process and ¢ > Z(t), 0 < t < 6, a forward one-leg Z-process, assumed
independent. In analogy with the events W and W defined in (50) we define

W= { min{|Z* (1) — 2} - 0<t<®;, 0<k=<y}<rh
VT/; = {minf{|Z}' — Z(1)| : 0<k=<Tj_y, 0<t<6)<r}
W2 = {min{|Z*() — 7| 0 <t <oo, 0<k=<y}<r}
W, = {min{|Z}' — Z(1)| : 0 <k < oo, 0<t<6)<r}

It is obvious that

P(W;) = P(W)) < P(W}.,) < P(72) )
P(W;) = P(W}) < P(W},,) < P(Wg
On the other hand, by the union bound and independence we have
P(Wi)< Y P({0<t<o00:Z*(t) € By} #WP({l <k <y : Zi € By} # 9)
773
= D CTE(J{0 <t <o00: Z"1) € By )| )E(|{1 <k <y : Z € Byl
~ ze7? (53)
P(We) < Y P({l sk <00:Zf € By} MNP0 <1 <0: Z(t) € Bupoy} # 1),
773
<Y @)TE([(1 <k <o00: Zf € Buyor)| )E([{0 <1 <0 : Z(t) € Borar}|).
(A

Therefore, in view of (52) we have to control the mean occupation time measures
appearing on the right hand side of (53).
Define the following mean occupation measures (Green’s functions): for A C R3 let

g(A) =E([{l =k <y:Z € A}]),
A =E([ll<k<y:Z ).
h(A) :=E(|{0 <t <0:Z@) € A}]),
h*(A)=E([{0<t<6:2Z* ),

(

(

(

R*(A) =E(|{l1<n<o0:E} ),
G*(A) =E(|{l =k <o0:Z] ),
H*(A) :=E([{0 <t < 00: Z*(t) € A}|).

It is obvious that

G*(A) = g"(A) + / g" (A — )R*(dx),
- (54)
H*(A) = h*(A) + /3 h*(A — x)R*(dx).
R
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5.2. Bounds.
Lemma 6. The following upper bounds hold:

max{g(dx), g*(dx)} < M(dx), max{h(dx), h*(dx)} < L(dx), (55)

R*(dx) < K(dx), (56)

G*(dx) < K(dx), H*(dx) < K(dx) + L(dx), (57)
where

K(dx) := Cmin{l, |x|""}dx, L(dx):=Ce ™ |x|72dx, M(dx):= Ce Fldx,
with appropriately chosen C < oo and ¢ > 0.

Proof of Lemma 6. The proof of the bounds (55) hinges on the decompositions (46) and
(47) of the forward and backward legs into independent parts.

Let
g1(A) :=P(Z; € A) =P(Z] € A)
= c/ 1(|x| > De ™ldx,
| (58)
h(A) =E(l{r <t1: Z(t) € A}]) =E(|{r =71 : Z*(1) € A}])
:C// |x|_2€_max{1"x|}dx,
A
and

gA) =E(|{1 =k <y:Z—Z € A}]),
G =E(|[{l<k=<y:Z{—Zf € A}|).
ho(A) =E(|{0 <t <0 —1:Z(t1 +1) — Z; € A}]),
5(A) :=E(|[{0 <t <0 —1:Z%1 +1) — Z] € A}]).

Due to the exponential tail of the distribution of y and 6, (45), there are constants C < 0o
and ¢ > 0 such that for any s < 0o

max{g>({x : |x| > s}), g;({x x> s} < Ce™ s,

_ (59
max{ha({x : x| > s}), A5({x : |x| > s})} < Ce™,

and furthermore,

©@®) = g R =E(y) < o,

60
hy(R?) = h3(RY) =E(0 — 1) < oc. ©0

From the independent decompositions (47) and (46) it follows that
g(A) = /Rs g2(A — x)g1(dx), g (A) = /R3 g (A —x)g1(dx),

h(A) = A@ ha(A — x)g1(dx) + hi(A), h*(A) = /R3 h3 (A — x)g1(dx) + hi(A).
(61)
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The bounds (55) readily follow from the explicit expressions (58), the convolutions (61)
and the bounds (59) and (60).
The bound (56) is a straightforward Green’s function bound for the the random walk
&) defined in (48), by noting that the distribution of the i.i.d. steps 7; of this random
walk has bounded density and exponential tail decay.
Finally, the bounds (57) follow from the convolutions (54) and the bounds (55), (56).
O

Remark: On the difference between Lemmas 2 and 6 . Note the difference between
the upper bounds for g in (30), respectively, (55), and on G in (31), respectively, (57).
These are important and are due to the fact that the length first step in a Z- or Z*-leg is
distributed as (§ | € > 1) ~ EX P(1]0) rather than § ~ EX P(1).

5.3. Computation. According to (53)

P(W;) <P(W) < @) " Y H*(Buar)g(Bara).

7€73
_ _ 1 (62)
P(W;) <P(WZ) < @) " Y G*(Bra)h(Burs).
773
Lemma 7. In dimension d = 3 the following bounds hold, with some C < oo
> K(Bur3r)M(Beyor) <Cr’. > M(Buar)L(Boy) <Cr. (63)

7€73 7€73

Proof of Lemma 7. The bounds (63) (similarly to the bounds (35)) readily follow from
explicit computations which we omit. O

Proof of Proposition 2. Proposition 2 now follows by inserting the bounds (63) and one
of the bounds in (35) into equations (62). o

6. Proof of Proposition 1

Given a pack o = (y; CEjuj):1<j< y) (44), and arbitrary ug, )+ € S2, let
((Y(t), Z@),Z(1):0<t < 9) be the triplet of Markovian flight process, Lorentz
exploration process and auxiliary Z-process jointly constructed with these data. We will
prove the following bounds, stated in increasing order of difficulty/complexity.

14
P{2Z 1) #£Z1):0" <t <07 N (D n; > 1}) < Cr?llogr|, (64)
j=1
Y
P2 (1) #Z(1): 0" <t <0*}N{>_n; =0}) < Cr’|logr|, (65)
j=1

14
P{Z () #Z(1t):0” <t <6"}N {Z nj =1}) < Cr?[logrf*. (66)
j=1
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Note that by construction n; = 72 = n3 = n, = 0, so the sums on the left hand
side go actually from 4 to y — 1 . We stated and prove these bounds in their increasing
order of complexity: (64) (proved in Sect. 6.1) and (65) (proved in Sect. 6.2) are of
purely probabilistic nature while (66) (proved in Sects. 6.3—-6.7) also relies on the finer
geometric understanding of the mismatch events 7; = 1 and 77; = 1.

6.1. Proof of (64). This follows directly from Lemma 1. Indeed, given y and € =
(€j)1<j<y» due to (26),

Y
Z > 1]g) =y maxP(nj =njm =1 e)+y721,<}1;a’,§|>11’(m =mn=1]¢)

< C)/r2 [logr| + C)/zr2

and hence, due to the exponential tail bound (45) we get
y—1 y—1

P(Y nj=1)=EP() nj>1]¢) = Crllogrl,

j=4 j=4

which concludes the proof of (64). O

6.2. Proof of (65). First note that by construction of the processes ((5&” (1), Z(t)) :
0" <t < 9+) the following identities hold:

Y 14
(Z0#Z0):07 <160 0 =0 ={2O#Y®):07 <1 <6 }N{) n; =0},
j=1 j=1

(Zn#yn: 0 <r<6t= J {min vi) Y(z)‘<r}u{ min

Tj<t<6 O0=<t=z;

Yl - Y(t)‘ < r} ,
O<j<y

and, hence

Y
(2 ()£ Z@1): 0" 5:59*}0{2;,,- =0}

j=1
- i [ i i~ j
- U <{fjﬁnllgflj+l Yl*l Y(t)’ = r} U {Tj—rlnfltnffj YJH Y(t)‘ h r}) N =1
O<j<y
o U ({,min, i - vol <rfof min | -vw| <)),
O<j<y
< U <Lj§r?£j+1 |Yj71 B Y(l)| = 21‘} ; {ff—rlnflfnffj |Yj+1 - Y([)’ = 2r}) : {%_j -1
O<j<y
0 U (| min, 1t - ol <ol pin 1t -vool <), @D
J<

By simple geometric inspection we see

{ min |Yj_1 — Y(t)| < ZV} N{g > 1} C {4(—uj_1,uj) < 4r},

Tj<I=Tj41
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{ min_|Yjq — Y(0)| < Zr} N{E > 1) C {ZL(—ujr,uj) < 4r}.

ijlftf‘fj

And therefore,

mEaxP({ijr?éI;ﬂ1 |YJ~_1 — Y(t)| < Zr} N{g; > 1} | g) <Cr?

(68)

Tj—1=

meaxP({ min Vi —Y(0)| < 2r} N{& > 1} | e) < Cr.

On the other hand, from the conditional Green’s function computations of Sect. 3, in
particular from Lemma 3, we get

méaxP(ijlnﬁi?Sg |Yj_1 — Y(t){ <2r |§) < stﬁlpP(QISntigoo Y ()| < 2r |§) < Cr? [logr|,

69)
mgaxP(OSrtléigil ‘Yj+1 - Y(t)| <2r } g) < st;pP(tzgigool)’(tﬂ <2r | g) < Cr?llogr|.

Putting (67), (68) and (69) together yields

y—1
P{2 () £Z(t): 0" <t <6*)n{> _n; =0}|¢e) < Cyr*llogr|.
j=4

and hence, taking expectation over €, we get (65).

6.3. Proof of (66)—preparations. Let y € {2} U {5,6,...}, and € = (€j)1<j<y €
{0, 1}” compatible with the definition of a pack, and 3 < k < y be fixed. Given a pack
@ with signature € we define yet another auxiliary process (Z O@y: 07 <t < 0*) as
follows:

oOn0 <t <11, Z0@) =Y.

oOn 1 <t <1, Z® (1) is constructed according to the rules of the Z-process,
given in Sect. 2.4.

oOnt <t <0, Z01) =20 () + Y1) — Y(w).

Note that on the event {n; =6 : 1 < j < y} we have ZOM =Z@0),0” <1 < 0.
We will show that

max P({2°(1) # 200 : 07 <1 <0} n{n; =8ju:1<j<v}|e)
€,
=maxP({2°(0) # 20 () : 0" <t <0} n{m =1} | €) (70)
€,
< C)/zr2 |10gr|2 ,

and hence

Y
maxP({2°(1) £ Z(®) : 0" <1 <N (Y} _m =1} ¢)
- k=1

=ymaxP({Z' () #Z():0" <t <07 )N{;=8:1=j=<v}|e)

< C)/3r2 |10gr|2 .
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Then, taking expectation over € we get (66).
In order to prove (70) first write

P21 #2000 <1< n{nj=8,:1<j<y}]e)
<P{Z0£zP®:0" <t < n{m=1}]¢)
=P({20)#ZzP0: 0" <t <0 n{H=1}]¢)

+ P20 #z®@):0" <=0 =10n{H=0}¢).
and note that the three parts

(ZP@W): 0" <t <m3)=(Y(0):0" <t < T—3),
(z2® (3 +1) - ZW(3) 1 0 < 1 < o — w_3),

(Z® @+ - 2P () :0<t <0 —n) = (Y(w+D) = Y(5) : 0 <t <0 — 1),
(71)

are independent—even if the events {1, = 1}, respectively, {7y = 1} N {nr = 0} are
specified.

From the construction of the processes ((%(t), ZO@) 0" <t < 9+) it follows
that if (Z® (1) : 07 <t < 67) is mechanically r-consistent then (2°(t) = Z® () :
0" <1 <6%).

Denote by Agf;, 1 < a < 3, the event that the a-th part of the decomposition (71) is
mechanically r-inconsistent, and by A, p, = Ape, 1 < a,b < 3,a # b, the event that
the a-th and b-th parts of the decomposition (71) are mechanically r-incompatible—in
the sense of the definitions (22) and (23) in Sect. 2.3. In order to prove (70) we will have
to prove appropriate upper bounds on the conditional probabilities

P(( = 1) N AL | €).
P({fi = )N (G =0} n A% | e).

These are altogether 12 bounds. However, some of them are formally very similar.

a,b=1,2,3. (72)

Aﬁki, A(k; and Agk; do not involve the middle part and therefore do not rely on the
geometric arguments of the forthcoming Sects. 6.4-6.6. Applying directly (25), (33),
(35) and similar procedures as in Sect. 3.4, without any new effort we get

P({ = 11N A} | €) < Cy*r?

~ R ® - a,b=1,3. (73)
P((fi = N @ =0 N ALY | ) < CoPr
We omit the repetition of these details.
The remaining six bounds rely on the geometric arguments of Sects. 6.4-6.6 and,
therefore, are postponed to Sect. 6.7.

6.4. Geometric estimates. We analyse the middle segment of the process Z*), presented
in (71), restricted to the events {5y = 1}, respectively, {7y = 1} N {ix = 0}. Since
everything done in this analysis is invariant under time and space translations and also
under rigid rotations of R3 it will be notationally convenient to place the origin of space-
time at (tx_2, Z(t%—2)) and choose ux_» = e = (1,0, 0), a fixed element of S2. So,
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the ingredient random variables are (§_, u, &, v, &), fully independent and distributed
as & ~ EXP(llex—2), &€ ~ EXP(llex—1) = EXP(|1), & ~ EXP(l|€x), u,v ~
UNI(S?).

It will be enlightening to group the ingredient variables as (§_, (u, &, v), &), and
accordingly write the sample space of this reduced context as Ry x I x Ry, where
D := §? x R, x §2, with the probability measure EX P (1|e;_2) x u x EXP(1|e)
where, on D,

w=UNI(S*) x EXP(1|1) x UNI(S?). (74)
Forr < 1,leto,, o0, : D — R, U{oo} be
~ . u—v
or(u,E,v) :=inf{t : |Eu+r +te| <r},
lu — vl
~ . u—e
or(u,&,v) :==inf{t : |Eu+r +tv| < r},
lu — el
(with the usual convention inf J = oc0), and
A, ={(u,&,v) €D:0o, < oo}, A, ={(u,&,v) €D:o, < ool

We define the process (Z(t) 1 —00 <t < 00) and (Z (t) : —00 <t < 00) in terms
of (u,&,v) € &,, respectively, (u, &, v) € 1& as follows. Strictly speaking, these are
deficient processes, since u(A,) < 1, and n(A,) < 1.
0On—0o <1 <0,Z1) = Z(t) = te.
oOn0<r<§g,Z(t)=Z:(t) = tu,
oOné& <1 < oo,
ooZ (1) —Z &)+ —8u,
0o Z, (t) is the tra_]ectory of a mechanical particle, with initial position Z, &)
and initial velocity Z, E") =, bouncmg elastically between two infinite-mass
spherical scatterers centred at r| = |, respectively, £u + r +——, and, eventually,
flying indefinitely with constant terminal velocity.

Iu v\’
The trapping time B\r» ErNE R, and escape (terminal) velocity W,, W, € S* of the
process Z,(t), respectively, Z,(t), are
Er =0, W, :==u,

B = supls < 00 : Zr(E +57) # Z,(E+57)), Wy = Z,(E+ ).
(75)

Note that ,8, > 0.
The relation of the middle segment of (71) to Z, and Z, is the following:

(=10, (2P @2+ = 20 (@2) i~z <1 < 61 + 1))
~ (- > 1 (Zo () —E- <t <E+E)),
({ﬁk =0N{T =1} (ZP (2 +1) — Z®O(t0) 1 &2 <t < &1y +€k))

~ (e <G NHE > G (Zo () : —6- <t <E+8&))),
(76)
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where ~ stands for equality in distribution. (Note, that the sequence signatures (€,),> 1
is determined by the sequence of flight times (&,),>1.) So, in order to prove (70) we
have to prove some subtle estimates for the processes Z, amd Z,. The main estimates
are collected in Proposition 3 below.

Proposition 3. There exists a constant C < oo, such that for allr < 1 and s € (0, 00),
the following bounds hold:

m ((u, h,v) €A, : L(—e, W) < s) < Cr min{s, 1}, (77)

u ((u, h,v) € Ar : L(—e, W) < s) < Crmin{s(Jlogs| Vv 1), 1}, (78)

" ((u, hov)ed r 1B > s) < Crminfs~'(logs| v 1), 1}.  (79)

Remarks: The bound (77) is sharp in the sense that a lower bound of the same order can

be proved. In contrast, we think that the upper bound in (78) is not quite sharp. However,

it is sufficient for our purposes so we don’t strive for a better estimate.
The following consequence of Proposition 3 will be used to prove (66).

Corollary 2. There exists a constant C < 0o such that the following bounds hold:

P({f = 1N min |20 =2 (@ )| <s) | ) = Crallogs| v 1. (80)

—2=I=

P({H = 1}N{ min ‘zU‘)(z) — z“‘)(rk)’ <s}|e€) = Crslogs| V1), (81)
1

Tk—3=I=Tk—

P({ =0y Nl =1} { min_|Zz0@) - Z“‘)(rk_a)\ <s}|e
k

Thk—2=I=T
< Crmax{s |logs|?, r |logr|?}, (82)

P =01N{i=1n{  min _|Z0@) - z0@)| <s)|e)

T 3<I<T}_1+f

< Crmax{s |logs|?, r |logr|?}. (83)

Proposition 3 and its Corollary 2 are proved in Sect. 6.5, respectively, 6.6.

6.5. Geometric estimates ctd: Proof of Proposition 3.

6.5.1. Preparations Beside the probability measure u (see (74)) we will also need the
flat Lebesgue measure on D,

A=UNI(S* x LEB(R,) x UNI(S?),

so that

1-h
du(u, h,v) = ‘

e—1

1{0 < h < 1}dA(u, h, v).

For r > 0 we define the dilation map D, : D — D as

Dr(u’ hv U) = (uv rh’ U)’
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and note that
&r = Dr&1 Ar = Dﬂ&].

In the forthcoming steps all events in Kr and A, will be mapped by the inverse dilation
DS 1A= D, -1 into Ay, respectively, Aj. Therefore, in order to simplify notation we will
use A:=Ajand A .= A;.

The dilation D, transforms the measures w as follows. Given an event E C D,

1—h
w(D,E) = / 1{0 < h < 1}dA(u, h, v)
D,E e—1
elfrh
= r/ 140 < h < r~YdA(u, h, v), (84)
E € — 1

and hence, for any event E C D and any 7 < 0o

1—rh e

rA(EN{h <h}) < u(D,E) <
e—1 e—1

rA(E). (85)

The following simple observation is of paramount importance in the forthcoming
arguments:
Proposition 4. In dimension 3 (and more)
A(A) = A(A) < 0. (86)
Proof of Proposition 4. Obviously,
ACA ={u,hv)eD: L(—e,u) <2h7 "},
AcCA ={uhv)eD: L(—u,v) <2h ).
Since, in dimension 3,
){(u, V)€ 2 x 8% L(—e,u) < 2h*1}) -
’{(u, v) € 8% x §2: L(—u,v) < 2h—1}) < Cmin{h~2, 1},

the claim follows by integrating over i € R,. O

Remark: In 2-dimension, the corresponding sets A, A have infinite Lebesgue measure
and, therefore, a similar proof would fail.

Due to (86) in 3-dimensions the following conditional probability measures make
sense

AN A) ~  ACNA)
() =AC|A) = ————, Az () = A |A) = ~,
2 =AC|A) YR 1) =AC|A) 7S
and, moreover, due to (85) and (86), for any event E € D
lim 14(D,E | A,) = A3 (E), lim 2(D, E | &) = 17 (E).
r—0 r—0

In a technical sense, we will only use the upper bound in (85), and (86).
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In view of the upper bound in (85), in order to prove (77), (78) and (79) we need, in
turn,

2 (, h,v) € A Z(—e, D) < 5) < Cminis, 1, (87)
A((u,h,v) € A: Z(—e, W) <) < Cmin{s(logs| v 1), 1}, (88)
A((u,h,v) € A: B >s) < Cminf{s~'(logs| v 1), 1}. (89)

Here, and in the rest of this section, we use the simplified notation w := Wy, W := Wy,

B = B1.

6.5.2. Proof of (87)

Proof. This is straightforward. Recall (75): w(u, h, v) = u. For easing notation let
V= L(—e,u)

and note that for any t € Ry
‘{u €S2 0<v < z}‘ < C min{s, 1},

with some explicit C < oo.
Then,

A, hv) €A L(—e, W) <5) <A ((u,h,v) €A : 9 <)
< ((u,h, MeD: < min{s,2h_l})
=k((u,h,v) eD:(h<2s") N Ss})
+,\((u,h, WeD:{h>2"1yN{® < 2h—1})

< Cs.

6.5.3. Proof of (88) and (89) Figure 3 aides understanding this subsection.
Let a and b be the vectors in R? pointing from the origin to the centre of the spherical
scatterers of radius 1, on which the first, respectively, the second collision occurs:
e—u u—v

a = , b=hu+ ,
le — ul lu — vl

and n the unit vector orthogonal to the plane determined by a and b, pointing so, that
e-n>0:

axb
n:i= ,
la| |b| sin(Z(a, b))

with
1 1

X v

axb=h+

)

—eXuy——e¢ U X v,
lu — vl |le — ul le — u| |lu — v|

(90)

+—
le — ul| |lu — v|
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Fig. 3. Above we show a 3 dimensional example of the geometric labelling used in this section. The Z
trajectory enters with velocity e from beneath the relevant plane (the dotted line represents motion below the
plane). After which the particle remains above the plane

la] = 1, h—1<bl<h+]l, 0 < sin(Z(a, b)) < 1. 1)

Assume there are altogether v > 3 collisions (which occur alternatively, on the first
and second scatterer) before escape. Let wy = e and w;, 1 < j < v, the outgoing
velocity after the j-th scattering. So, w; = u, wy = v, ..., w, = W.

The proof of (88) and (89) relies on the following observations:

(a) The n-projection of the velocity of the moving particle does not decrease. More
precisely, for 1 < j <v,0 < w;_1-n < w; - n. This is due to the choice of the
plane determined by the centres of the two scatterers and the first impact point.

(b) Since e -n > Oand wj -n > 0,forall 1 < j < v we have Z(—e, w;) >
5 =L, wj). B

(c) The trapping time f is certainly not longer than the time the moving particle spends
in the slab {x € R :0<x-n< 1}. Moreover, the scatterers are defocusing, that
is, each time there is a collision the velocity component in the n direction increases.
Therefore, it follows that

B<h+v-n~". (92)

Proof of (88) Without loss of generality we may assume s < 7.
From the arguments (a) and (b) above it follows, in particular, that

Lme ) = L—e,w)) = T = Lnwy) = T = Linwn) = T = Z(n, v),
and hence
A, hov) €A Z(—e, W) <s5) < A((u, h,v) €A s [n-v] <25).  (93)

Note that due to (90) and (91)

1
v-nfz 5 lv-(exul,
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and thus
A, hov)y e A s v-nl <2s) <A (,h,v) e tle-(uxv) <ds). (94

Next, if u and v are i.i.d. UNI (§2)-distributed then

X v
w = u—’ and = |M X U| = sin(l(u, U))
lu x v

are independent and distributed as
w~ UNI(S), 9 ~ Ljo<r<1y(1 — 1)V 2¢dr.
Therefore,

k((u,h,v)e&:le-(uxv)l < 4s)

0 min{2/h,1} 4s
=/ dh/ dw/ A=)V 1dil{le - w| < —)
0 52 0 t

[e'e) min{2/h,1}
= / dh/ (1 — 27124t min{4s, 1}
0 0

< Cmin{s |logs| Vv 1), 1}. 95)

The last step follows from explicit computations which we omit.
Finally, (93), (94) and (95) yield (88). ]

Proof of (89)
We proceed with the bound (92):

k((u,h,v)e&:5>s)5)»((u,h,v)e&:h>%)

~ 2
+k<(u,h,v)eA/:|v~n|<—>. (96)
s
Bounding the first term on the right hand side of (96) is straightforward:

o0
k((u,h, ved h> %) = //2 ’{(u, v) € 82 x 8?1 Z(—u,v) < 2h )| dh
N

o0
<C min{h 2, 1}dh < C min{s~", 1}. 97)
s/2

Concerning the second term on the right hand side of (96), this has exactly been done
in the proof of (88) above, ending in (95)—with the rdle of s and s~ swapped.
(96), (97) and (95) yield (79). |
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6.6. Geometric estimates ctd: Proof of Corollary 2. We start with the following straight-
forward geometric fact.

Lemma 8. Let e, w € S% and x € R3. Then

4s
= L(—e,w)’
(98)

{t'>0: mlg x+tw+le| < s} <

{t'>0:min|x+1'w+re| <s}| =
>0

Proof of Lemma 8. This is elementary 3-dimensional geometry. We omit the details. O

Proof of (80) and (81) On {7 = 1}

min
Tk—2SI=<Tg

zZ® ) - Z<k)(fk—3)‘ > r(l)flin [tug—1 +&—our—2|
<
<t (99)

min |29(0) — 2 ()| = min{min |ge- 11 + e + S| 6
Th—3=1=Tk—1 0=t

The bounds in (80) and (81) follow from applying (98) and (77), bearing in mind that

the distribution density of &;_; and & is bounded. Since these are very similar we will
only prove (80) here.

P({7 = 1} N { min ‘Z(k)(t) - Z(k)(rk_3)‘ <s})
Thk—2=I=Tk

<P({m=1}n {min |fug—1 +§—aue—| < s})
=/ (é e{t: m1n|tu+t e| < s})du(u h,v)

<C/ mln{ D’ Al (u, b, v)

< Crs(|logs| Vv 1).

In the first step we used (99). The second step follows from the representation (76). The
third step relies on (98) and on uniform boundedness of the distribution density of &_
(which is either EX P(1|1) or EX P(1]0), depending on the value of €;_»). Finally, the

last calculation is based on (77). O
Proof of (82)
; &)y _ 7K
kaIznflngrk Zmn -z (rk_3)‘
= min { min _|z®@) - z2® @y, min  |z®@) - Z(k)(tk_3)’
Th—2 <I<Tj—1+p T—1+f<t=<7k

(100)

Here, and in the rest of this proof, E and w denote the trapping time and escape direction
of the recollision sequence:

Bi=max{s < & : ZO(n1 +57) # Z0 (g +5)) =20 (51 + B).
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To bound the first expression on the right hand side of (100) we first observe that by
the triangle inequality

min 200 - 20 @ 3)| = 62 — & — 4 (101)

T2 <t<T4—1+p

Applying the representation and bounds developed in Sects. 6.4, 6.5,

P((e =0}N{=1Nn{ min _

T2 <t<T}_1+B
P({
I

M=01N{T =1} N{&—2 < &1 +4r +5})
(
< C/; (min{h, 1} +4r + s)du(u, h, v)
Ay

20w - 2 ()| < s)

IA

P(é_ < h+4r +s)du(u, h, v)

<Cr’+Crs+Cr?|logr|. (102)

In the first step we used (101). The second step follows from the representation (76).
The third step relies on uniform boundedness of the distribution density of £_ (which is
either EX P(1]1) or EX P(1]|0), depending on the value of €;_>). Finally, the last step
follows from explicit calculation, using (85).

To bound the second term on the right hand side of (100) we proceed as in the proof
of (80) above. First note that

min _[Z0@) = 20 (@3)| = min |20 (5 2) — 20 (g + B)) + 1+ &oui ).
T—1+B=<t<7) 0=t
(103)

Using in turn (103), (76), (98) and uniform boundedness of the distribution density of £_
(which is either EX P(1|1) or EX P(1]|0), depending on the value of €;_>), and finally
(78), we obtain:

P({lx =0} N {7 =1}N  min

T—1+B=<t=t

70 () — Z(k)(rk_3)‘ <)

<Pl =0} N =1}n {min

(70 (w2) = 7 (et + B)) + 15 + &2k 2| < 5))

| P(e_efr: rénn|2,(/§,) + i, +1'e| < sY)duu, h, v)
i <t

S
<c [ min{——— 1)du(u, h, v)
M e,y ik

(o]
§Crs<[ l()gxﬂdx\/l)
< Crs(llogs|> v ). (104)

In the second last line we use (78) and integrate by parts. From (100), (102) and (104)
we obtain (82). |

Proof of (83) We proceed very similarly as in the proof of (82).

min _|Z®@) — 20 ()

T3 <t<t14—1+f
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, min
Tk—3=I=Tk—2

> min { min _[Z®@) — 2P (%)

T2 <t<Tp—1+p

Zz® ) — Z(k)(rk)‘} .
(105)

To bound the first expression on the right hand side of (105) we first observe that by the
triangle inequality

min ~_[Z®@) = 2P ()| = & — 28 — 4r. (106)

T2 <t<T4—1+p

Using in turn (106), (76), (79) and explicit computation based on uniform boundedness
of the distribution density of &. (which is either EX P(1|1) or EX P(1|0), depending
on the value of €;) we write

P(m=0n{m=1N{ min _

T2 <t<Tp—1+B
< P({ = 0} N {7 = 1) N (& < 8r +25)) + P({7k = 0} N {1k = 1} N (& < 4B))
=P(& < 8r+25)u(A,) +E(u((u, h,v) € &, : & < 4B,))

-1
§Cr(r+s)+CrE(min{<§—:) (‘logi—: \/1),1})

<Cr*+Crs+Cr¥logr|®. (107)

70 (1) — Z<k)(rk)’ < s})

The second term on the right hand side of (105) is bounded in a very similar way
as the analogous second term on the right hand side of (100), see (103)-(104). Without
repeating these details we state that

P({ﬁk =0iN{r=1}N{ min Z(k)(t) - Z(k)(tk)) < s}) <Crs |10gs|2.
Thk—3=I=Tf—2
(108)

Eventually, from (105), (107) and (108) we obtain (83). o

6.7. Proof of (66)—concluded. Recall the events A}, a. b € {1, 2,3} from the end of
Sect. 6.3.
The bounds (80), (81), respectively, (82), (83), with s = r, directly imply

P({fi = 1N AY) | €) < Cyr?logr],

~ o~ (k) 2 2 (109)
P({Tx = 3N {M =0} N Ay, | €) < Cyr®[logr|.
It remains to prove
—~ k) 2
P( =130 A% | €) < Cyr?llogr|,
( b2l b=13. (110)

P((fi = )N {fi = 0} N AY) | €) < Cyr? [logr|?,

Since the cases b = 1 and b = 3 are formally identical we will go through the steps
of proof with b = 3 only. In order to do this we first define the necessary occupation
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time measures (Green’s functions). For A C R?, define the following occupation time

measures for the last part of (71)
#Hl<j<y—k:Yr)eAl|easj:1<j<y—k)

Gék) (A) =
Z®(m) € A} | en e = 1))

E(
—E#k+1<j<y:2®@) -
=E(#k+1<j<y:Z20@)—20@) e A} | en (i =1} N 7 = 0}),
Hg(k)(A) —E(|{0<t<fy k- Y(@) eA}| |ek+j I<j=<y- k)

(’{Tk <1<60:2ZW0@1) - z2W() e A}‘ | en i =1)})

=E(

‘{rk <i<6:200) - z® () ¢ A}‘ | €N (i = 1} N (7 = 0}).

Similarly, define the following occupation time measures for the middle part of (71)

1 <3: 20 — 20 (m) e A} Tk | €)

AP @) = E(|tns =t = w200 - 20 @) € A)] T | )
zM(w) € A}-Tc - (1= | €)

#1<j<3:20(q;) —

GO (A) = E#{1 < |
(#
(s =t = % 200 = 20w € A)| T (1 =70 | o).

GH(A):=E
AP (a) = E(|
Using the independence of the middle and last parts in the decomposition (71), similarly

as (28) or (53), following bounds are obtained

P({fi = 13N A [ ) < Cr! /R GO(Bra)HY (dx)

cr! f H® (B, 3,)G® (dx),
3= = (111)

P({ii = 1} N (A = 0} N AY) | €)
<cr! / GO (By 2 )H® (dx) + Cr~! / H® (B, 3)G® (dx)
R3S~ - R3S~ -

Due to (34) of Lemma 3 by direct computations the following upper bounds hold

H® (By3r) < CF(Ix)), (112)

G® (Byar) < CF(Ix)).

where C < oo is an appropriately chosen constant and F : Ry — R

3 3

Fu):=rl{0 <u<rj+ 51{r<u<1)+ —1{1 <u < oo}
u u

On the other hand, from (80), (81), (82), (83) of Corollary 2 follows that
G (Bo) < Crs(llogs| v 1), H® (Bys) < Crs(llogs| v 1),
G®(Bos) = Crmax{s [logs|* . rlogr|*} H® (Bos) < Crmax{s|logs|*, r [logr|*}.
(113)
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Finally, we also have the global bounds

GO R =3E(7k | €) < Cr, HO®R) =E@c- Y & |e) = Cr,

k
GOM®Y) =3E(i-(1—7) | €) <Cr, HP®)=E( -1 —m)- Y. &|e) <Cr
j=k=2

(114)

We will prove the upper bound (110) for the first term on the right hand side of the first
line in (111). The other four terms are done in very similar way.
First we split the integral as

/R GIB o) AW ) = /

|x|<1

GO (B, 2) H® (dx) + f G® (B, 2) H® (dx)
- - x|=1  — -

(115)

and note that due to (112) and (114) the second term on the right hand side is bounded
as

/ G® (B, 2 H® (dx) < Cr*. (116)
x|z — -
To bound the first term on the right hand side of (115) we proceed as follows
1
/ G (B, 1) AW (dx) < C / Fd A (Bo,.)
lx|<1  — B 0 -
1
=CcrPH®(By,) - C f H® (B ) F'(w)du
€ b €

1
< Cr+ Cr4/ u? |logu|du

r

<crt+cr?logrl. (117)

In the first step we have used (112). The second step is an integration by parts. In the
third step we use (113), (114) and the explicit form of the function F. The last step is
explicit integration.

Finally, (115), (116), (117) and identical computations for the second term on the
right hand side of the first line in (111) yield the first inequality in (110). The second
line of (110) for b = 3 is proved in an identical way, which we omit to repeat. The case
b =1 is done in a formally identical way.

Finally, (66) follows from (73), (109) and (110). |

7. Proof of Theorem 2—concluded

As in Sect. 4.3 let w,, = (yn; Gnjrunj):1<j< y,,), n > 1, be a sequence of i.i.d
packs. Denote 6,,, (Y, (¢), Z,(t)) : 0 <t < 6,) the pair of Y and (forward) Z-processes
constructed from them and

Y() =) YO +You(t),  Z@) =) ZO) + Zusn({t}).

k=1 k=1
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Beside these two we now define yet another auxiliary process ¢ — 2 () as follows:
(Zn () : 0 <t < 6,) is the Lorentz exploration process constructed with data from
(Y, (t) : 0 <t <6,) and incoming velocity

uo ifn=1,
DO, ) ifn> 1.

Un,0 =

Finally, from these legs concatenate

Vi

W)=Y 2O+ Ly (1)
k=1

Note that the auxiliary process (2 () : 0 <t < 00) is not identical with the Lorentz
exploration process (X (¢) : 0 <t < 00), constructed withdatafrom (Y (¢) : 0 <t < 00)
and initial incoming velocity u, since the former one does not take into account memory
effects caused by earlier legs. However, based on Propositions 1 and 2 , we will prove
that until time 7 = T (r) = o(r 2 |10gr|’2) the processes t — X (¢),t — 2°(t), and
t — Z(t) coincide with high probability.

For this, we define the (discrete) stopping times

p=min{n 1 Z,(t) # Zy(1),0 =t < 6,}
o :=min{n : max{]l‘;,”, ]an >0} =1},

and note that by construction
inf{r : Z(1) # X (1)} = Ominfp,0)-1-

Lemma9. Let T = T (r) such that lim,_, o, T (r) = 00 and lim,_, o 12 |10gr|2 T(r)=
0. Then

}%P(@min{p’g},l < T) =0. (118)

Lemma 10. Let T = T (r) such that lim,_, oo T(r) = o0 and lim,_, r2T(r) = 0.
Then for any § > 0

lim P( max_[Y (1) — Z(1)| > 3V/T) = 0. (119)
=I=

r—0

Remark: Actually, (119) holds under the much weaker condition lim, _, o, 7 loglog T =
0. This can be achieved by applying the LIL rather than a WLLN type of argument to
bound maxo<;<7 |Y(t) — Z(¢)| in the proof of Lemma 10, below. However, since the
condition of Lemma 9 can not be much relaxed, in the end we would not gain much with
the extra effort.

Proof of Lemma 9.

2E(9)71T
P(Ominip.o)-1 <T) <P(p <2E(6)"'T)+P(c <2E()'T)+P( > 6; <T)

<Cr’llogrP>T +Cr*T + Ce™T, (120)
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where C < oo and ¢ > 0. The first term on the right hand side of (120) is bounded
by union bound and (49) from Proposition 1. Likewise, the second term is bounded
by union bound and (51) of Proposition 2. In bounding the third term we use a large
deviation upper bound for the sum of independent 6 -s.

Finally, (118) readily follows from (120). |

Proof of Lemma 10. Note first that

vT+1
max |Y () — Z(t)| < &,
Jmax Y (1) <>|_Zln,§,
]:

with vz and n; defined in (21), respectively, (24). Hence,

2T
P( max |Y(1) = Z()| > 5¥T) <P( & > 8¥T) +P(vr > 27)
<i< P

<C8 'WTr+e T, (121)

with C < oo and ¢ > 0. The first term on the right hand side of (121) is bounded by
Markov’s inequality and the straightforward bound

E(nj%-j) <Cr.

The bound on the second term follows from a straightforward large deviation estimate
onvyr ~ POI(T).
Finally, (119) readily follows from (121). |

(9) is direct consequence of Lemmas 9 and 10 and this concludes the proof of Theorem 2.
]
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