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Key points: 6 

1) The median catchment response time (Tr) computed with the proposed method matches 7 
the median Tr computed with the traditional method. 8 

2) When using the proposed method, the Tr computed using the multi-event time series is 9 
very similar to the median Tr for individual events. 10 

3) The proposed methodology gives robust results for relatively short records and works also 11 
in presence of noise and bias in the time series.12 



Water Resources Research 

 

Abstract 13 

Methodologies to estimate the response time of a catchment to new rainfall inputs based on 14 
rainfall and streamflow observations require the analyst to make a number of uncertain and 15 
subjective steps. Moreover, these methods make the assumption that the water producing the 16 
discharge peak  fell in the last rainfall event, which does not necessary apply to all the 17 
environments and conditions. Hence, here we present a practical, objective, and robust 18 
method to estimate catchment response time (Tr) based on hourly rainfall and streamflow 19 
time series only, which removes most of the sources of uncertainties arising from current 20 
methodologies by restating the conceptual hypothesis and minimizing the user’s choices. The 21 
proposed method, used originally in the field of economics to assess the temporal correlation 22 
between two variables, has been adapted to be used for the first time in the field of 23 
hydrology. The method does not make any assumption about the rainfall-runoff 24 
transformation (no hydrograph separation needed), does not require event selection or 25 
parameter estimation, and it is easily reproducible. The above features make the proposed 26 
method a useful tool even under different hypothesis regarding the hydrograph water age. 27 
The method agrees well with the traditionally used method to estimate Tr from observed 28 
hyetographs and hydrographs (Spearman rank correlation r=0.82). The proposed method 29 
gives robust results for relatively short records, and works in presence of noise and bias in the 30 
time series. 31 

Plain language summary 32 

Methodologies to estimate the time delay of the transformation of rainfall into river discharge 33 
based on rainfall and discharge records require a number of highly subjective and uncertain 34 
steps. Moreover, the assumptions behind these methods have been proven incorrect, at least 35 
in some environments. For this reason, we present a different method which removes those 36 
incorrect assumptions and most of the sources of uncertainties arising from the other 37 
methodologies. Unlike existing methods, the proposed methodology does not make any 38 
assumption about the processes that transform rainfall into river discharge, does not require 39 
event identification or parameter estimation and is easily reproducible. We demonstrate that 40 
the new approach compares well with the traditionally used method and also works for short 41 
and noisy records. 42 

1.Introduction 43 

The need for a new method 44 

The fast response time of a catchment to new rainfall inputs is one of the key time variables 45 
in hydrology (Kibler, 1982; Almeida et al., 2014) and its correct estimation is essential for 46 
hydrological modelling and hydrograph design. Uncertainty in its estimation can cause errors 47 
in estimation of peak discharge rate and timing of flood events (Perdikaris et al., 2018). 48 

McCuen (2009) summarised the estimation procedures for determining this response time 49 
using rainfall and streamflow observations. These methodologies are straightforward in 50 
transferring theoretical knowledge to an estimation procedure, as they estimate a time 51 
parameter using a computational definition. Two of the most commonly used definitions 52 
when applying these methods are (McCuen, 2009): 53 

1. The time from end of rainfall excess to the inflection point in the hydrograph falling limb; 54 
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2.The time from centre of mass of rainfall excess to centre of mass of direct runoff (also 55 
called time lag). 56 

The first definition is the most traditionally used when applying these methods, but it has 57 
been demonstrated to be highly uncertain (McCuen, 2009) as it involves identifying the 58 
precise times of individual features of hyetograph and hydrograph. The second definition, 59 
involving centres of mass, is more robust as averaging accounts for the overall behaviour of 60 
the rainfall excess and direct runoff (McCuen, 2009). However, since it is the most 61 
traditionally applied, in this work we will consider the first definition and will refer to related 62 
estimation procedure as “traditional method”. 63 

Nevertheless, applying any of these definitions to estimate the response of the catchment to 64 
new rainfall input requires the analyst to take a number of highly uncertain and subjective 65 
steps:  66 

• Identification of rainfall-streamflow events: there is no recognized and standardized 67 
methodology in the literature to automate the selection of rainfall-streamflow events 68 
(Norbiato et al., 2009; Merz & Blöschl, 2009; Tarasova et al., 2018; Mei & 69 
Anagnostou, 2015) and the chosen strategy has an impact on rainfall (Dunkerley, 70 
2008) and therefore presumably on streamflow statistics at the event scale. 71 
Furthermore, the type and the number of the storm events taken into account can 72 
affect the response time of a catchment (Grimaldi et al., 2012). 73 

• Separation of the hydrograph into direct runoff and baseflow: many automated 74 
methods for hydrograph separation use recursive one-parameter digital filters (e.g. 75 
Lyne & Hollick, 1979, Nathan & McMathon, 1990), but these methods require the 76 
estimation of a parameter which lacks a physical meaning. Other, more sophisticated 77 
hydrograph separation methods usually involve multiple parameters (e.g. two 78 
parameter filter by Eckhardt, 2005), which makes parameter estimation more 79 
complicated and uncertain.  80 

• Identifying the time of occurrence of hyetograph and hydrograph features: the noise in 81 
the signals can make it difficult to automatically identify these features (e.g. inflection 82 
points in the hydrograph), especially when the temporal resolution of the data is high. 83 

Furthermore, recently, tracer studies (e.g. McDonnell, 1990; Berghuijs & Allen, 2019; Gallart 84 
et al., 2020) have highlighted how in some environments the storm hydrograph mainly 85 
consists of water that fell in previous rainfall events. Thus, for some environments there are 86 
clear conceptual weaknesses in the methods summarized by McCuen (2009) as they are 87 
mainly based on the concept of runoff event made of water falling in the last rainfall event.  88 

To overcome these limitations, we propose a practical, objective, and robust methodology to 89 
directly estimate the fast response of the catchment to new rainfall input using rainfall and 90 
streamflow observations. The resulting estimates are conceptually similar to the ones 91 
produced by the methods summarized by McCuen (2009), but they express the average time 92 
delay between centre of mass of total hyetograph and centre of mass of the corresponding 93 
total hydrograph. In particular, the proposed methodology improves upon the existing 94 
methods with the following advantages: (a) it makes no assumptions on the rainfall-runoff 95 
transformation; (b) there is no need of rainfall-streamflow event selection or hydrograph 96 
separation; (c) it requires no parameter estimation; and (d) it is easily reproduced. 97 
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We will call the time estimated by the traditional method and the proposed method the 98 
“catchment response time” (Tr). The following subsection outlines our reasoning for this. 99 

A Note on Definitions and Terminology 100 

The term “time of concentration” (Tc) is frequently used in quantifying the flow response to 101 
rainfall events, but it is unsuitable to describe the method presented in this paper. Often, this 102 
terminology is stretched to include estimates coming from methods with very different 103 
conceptual hypotheses (Grimaldi et al., 2012), but this can generate confusion and murkiness 104 
around the concept of Tc. 105 

Tc is historically defined as the time after initiation of steady rainfall when storage is no 106 
longer increasing. For example, storage may refer to surface detention storage (e.g. Luce and 107 
Cundy, 1994) or to water stored in an equilibrium flow profile (Henderson and Wooding, 108 
1964). Tc can also be associated with the concept of time to equilibrium (the time from the 109 
start of rainfall to peak response) in the case of dry initial conditions and steady input rainfall 110 
(Eagleson, 1970).  111 

Confusingly, the International Glossary of Hydrology defines Tc as the time for the storm 112 
runoff to flow from the most hydraulically distant point in the catchment to the catchment 113 
outlet (W.M.O., 1974; Johansson, 1984). As pointed by Beven (2020), this definition is in 114 
contradiction with historical one as it assumes that the water moves as individual particles 115 
and not as a wave. Beven (2020) also states that we should abandon the glossary definition 116 
and that the concept of velocity of water particles should be replaced by the wave celerity 117 
concept, given the fact that water moves as a wave.  118 

Being consistent with the historical definition of Tc when using the terminology “time of 119 
concentration” is of paramount importance. In fact, the historical Tc concept is used in 120 
engineering applications, especially for small drainage areas, as critical duration (duration of 121 
the uniform precipitation for which we observe the maximum discharge) (USDA-NRCS, 122 
2010). Calling estimates coming from methods with different conceptual hypotheses “time of 123 
concentration” can generate confusion and potentially could lead to substantial errors in the 124 
engineering applications. 125 

Nonetheless, the assumption of steady rainfall behind the historical definition of Tc might not 126 
apply to the majority of rainfall events in the real world, especially with larger drainage areas. 127 
Hence, the time scale retrieved using methods which follow the historical definition may not 128 
reflect the most typical response time of the catchment. Instead, simultaneous measurements 129 
of catchment rainfall and streamflow provide evidence of the real-world response time.  130 

McCuen (2009) summarised methods for determining a response time for catchments with 131 
rainfall and streamflow observations and he called the resulting time estimates “time of 132 
concentration”. However, the conceptual basis of hyetograph-hydrograph analysis is 133 
inconsistent with the historical definition of Tc, and a different term is needed. For this 134 
reason we instead use the term “catchment response time”, Tr, for the time derived using the 135 
traditional method and the method proposed in this paper.  136 

 137 

 138 
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2.Methodology 139 

2.1. DMCA-based correlation-coefficient methodology 140 

The proposed methodology to directly estimate Tr from rainfall and streamflow observations 141 
is based on the Detrending Moving-average Cross-correlation Analysis (DMCA). This 142 
technique was developed in economics to understand the time scale at which two variables 143 
are most strongly correlated (Kristoufek, 2014; Kristoufek, 2015). To the best of our 144 
knowledge it has not yet been applied in hydrology. The Tr estimate calculated with the 145 
DMCA-based method characterises the time scale of the transformation from a noisy rainfall 146 
input to a smoother streamflow output at the catchment outlet.  147 

The strength of the DMCA-based method is to find the timescale at which two time series are 148 
linked even when they exhibit different frequency spectra and are nonlinearly related. If we 149 
simply used cross correlation by itself, prior smoothing of the rainfall time series would be 150 
required to ensure it had a similar frequency to that of the streamflow series. This smoothing 151 
would alter the structure of the input rainfall signal, ultimately leading to errors when 152 
calculating the timescale of the catchment response.  153 

We adapted the DMCA methodology to extract an average estimate of Tr from rainfall-154 
streamflow time series containing multiple events. Although the hypothesis of quasi-invariant 155 
Tr can be verified only for events with high return periods (Dooge, 1973), an invariant 156 
estimate of Tr for each catchment is often useful to characterise the catchment and that's what 157 
our proposed method does.  158 

In section 2.1.1 we present the analytical formulae and in section 2.1.2 we show the 159 
reasoning behind each step. The DMCA-based method can also be applied at event scale by 160 
using a time series created by concatenating copies of the same event. This requires a few 161 
adjustments which are presented in section 2.1.3.  162 

2.1.1 Step by step guide to DMCA calculations 163 

Here we outline the steps for calculating Tr using mean catchment rainfall and streamflow 164 
time series (typically at hourly time step): 165 

I. Construct the cumulative time series of rainfall Rt and streamflow Qt. The two time 166 
series must have the same length T and the same time step: 167 

                                   𝑅 = ∑ 𝑟        for t=1,2,…,T                                      (Eq.1) 168 

                                       𝑄 = ∑ 𝑞        for t=1,2,…,T                                      (Eq.2) 169 

Where ri and qi are the rainfall and the streamflow records respectively at time t and 170 
Rt and Qt are the cumulative time series for time series of length T. 171 

Then, for a single moving-average window length L (where L is in units of time steps and 172 
must be odd as we are using centred moving average): 173 

II. Calculate the fluctuations of each cumulative time series compared to its centred 174 
moving average (this is the detrending) with window length L, and then compute the 175 
mean squared value of those fluctuations (𝐹 (𝐿) for rainfall and 𝐹 (𝐿) for 176 
streamflow): 177 𝐹 (𝐿) = ∑ (𝑅 − 𝑅 ,  ). ( ). ( )                                 (Eq.3) 178 
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𝐹 (𝐿) = ∑ (𝑄 − 𝑄 , ). ( ). ( )                                  (Eq.4) 179 

Where 𝑅 ,  and 𝑄 ,  are the centred moving averages of the cumulative rainfall and 180 
streamflow respectively with moving average window length L at time t: 181 𝑅 ,  = ∑ 𝑅. ( ). ( )                                                 (Eq.5) 182 𝑄 , = ∑ 𝑄. ( ). ( )                                                 (Eq.6) 183 

III. In the same way, calculate the mean squared value of the bivariate fluctuations: 184 𝐹 , (𝐿) = ∑ (𝑅 − 𝑅 ,  )(𝑄 − 𝑄 , ). ( ). ( )                      (Eq.7) 185 

IV. Finally, the DMCA-based correlation coefficient for a window length L is: 186 𝜌 (𝐿) = , ( )( ) ( )          with −1 ≤ 𝜌 (𝐿) ≤ 1                 (Eq.8) 187 

Tr is estimated as half of Lmin-1, where Lmin is the window length L which gives the minimum 188 
value of the DMCA-based correlation coefficient ρDMCA. We therefore need to test a wide 189 
range of window lengths L, from three hours to several days using a two-hour time step (to 190 
ensure that L is an odd number) so that we are sure to include the window associated to Tr for 191 
the analysed catchment. Python and Matlab functions to estimate Tr using DMCA-based 192 
method are available at https://github.com/giuliagiani/Tr_DMCA, last access 11.09.2020. 193 

Previous application of steps I to IV in economics aimed to understand if two variables were 194 
correlated at short, medium or long time scales. The window length L of maximum absolute 195 
correlation between the two variables provided an estimate of this time scale (Kristoufek, 196 
2015). We instead reinterpret the results to get a numeric estimate of Tr as half the window 197 
length Lmin-1. Therefore, a further novelty of this work is that we are reinterpreting the output 198 
of the DMCA method, as well as applying it in a hydrological context for the first time.  199 

The methodology is a time series analysis technique but does not necessarily require 200 
continuous records for robust Tr estimates. When missing values occur in the time series, the 201 
methodology will automatically estimate Tr using other periods of the record, hence reducing 202 
manual data pre-processing tasks. This is not valid if the data are highly intermittent (e.g. one 203 
hourly timestep missing every day) as, by breaking the time series too many times, the Tr 204 
estimate can be affected. For a robust Tr estimate the time series should include at least one 205 
section with no missing time steps longer than the longest moving average window length L 206 
tested. 207 

2.1.2 Interpretation of DMCA-based methodology 208 

This section explains the reasoning for steps I-IV above, and gives an explanation of how the 209 
window giving the minimum value of cross-correlation is related to Tr. To follow the 210 
explanation of the four steps, we refer to the first column of Figure 1 (Figures 1a-1c), where 211 
we graphically represent the steps for a single window length (L=151). The DMCA-based 212 
method has been applied to rainfall-streamflow time series but for simplicity in Figure 1 we 213 
zoom on an individual event so we can graphically explain in detail the meaning of the steps.  214 

I. A new input will cause a sudden steepening in the cumulative time series (see 215 
comparison between Figures 1a-1b (solid lines)). In particular: 216 
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• For the cumulative rainfall time series, increases in cumulative rain correspond 217 
to new rainfall contributions while flat sections correspond to periods of zero 218 
rainfall (solid green line in Figure 1b).  219 

• For the cumulative streamflow time series, we can observe steeper increases in 220 
cumulative flow for the rising limb (new streamflow contribution) and flatter 221 
increases for recessions (solid grey line in Figure 1b).  222 
 223 

II. The moving average (dashed lines in Figure 1b) of the cumulative time series 224 
intersects the step change in its centre of mass at the window length scale, generating 225 
negative fluctuations (moving average series above cumulative time series) at the 226 
beginning of the contribution and positive fluctuations (moving average series below 227 
cumulative time series) at the end (see comparison between solid and dashed lines in 228 
Figure 1b).  229 
The points where fluctuations change from negative to positive (large dots in Figure 230 
1b) are physically meaningful: they correspond to the centre of mass of the 231 
contribution at the window length scale, which refers to centre of mass of rainfall and 232 
streamflow. For each rainfall-streamflow event the time interval between these two 233 
points can then be interpreted as Tr. One definition of Tr by McCuen (2009) is the 234 
time from the maximum rainfall intensity to the peak of discharge. For multi-peak 235 
events the maximum intensity/peak does not always provide sufficient information, 236 
hence we prefer the use of centres of mass. However, the next steps (III and IV) are 237 
required to estimate Tr, as knowing only the position of the centres of mass for each 238 
event would imply an independent estimate of Tr for each of them. 239 
At this stage for Equations 3 and 4 the sign of the fluctuations is not important as the 240 
fluctuations are squared. These two equations serve only as a measure of the 241 
magnitude of fluctuations, which will be used later to normalise bivariate fluctuations. 242 
 243 

III. Bivariate fluctuations (the product of rainfall and streamflow fluctuations) determine 244 
the sign of the DMCA-based correlation coefficient (Eq.8) as in the numerator (Eq.7) 245 
the sign of rainfall and streamflow fluctuations plays an important role. 246 
If streamflow would react instantaneously to rainfall and keep the same frequency 247 
spectrum, rainfall and streamflow at any time t would have the same fluctuation sign, 248 
i.e. both negative before the centre of mass and positive after it, resulting in positive 249 
bivariate fluctuations. Instead, every time a rainfall contribution occurs, streamflow 250 
responds with a certain delay and the signal is smoothed out. Therefore, when rainfall 251 
fluctuations are already positive because the rainfall centre of mass has passed, 252 
streamflow still shows negative fluctuations (it has not yet reached the streamflow 253 
centre of mass), causing negative bivariate fluctuations. 254 
Fig 1.c shows fluctuations of the individual rainfall and streamflow signals. The red 255 
arrow underlines the time period in which bivariate fluctuations are negative. 256 
 257 

IV. Bivariate fluctuations are then normalized by the product of the rainfall and 258 
streamflow fluctuations so that the correlation does not depend on the magnitude of 259 
the signals. 260 

In Figures 1d-1i we can see the effects of different moving average window lengths, L. 261 
Firstly, we can see that fluctuation amplitudes and durations increase with increasing moving 262 
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average window lengths (Figures 1c, 1f and 1i), as a longer moving average window lengths 263 
tend to smooth out more features of the original time series, generating bigger fluctuations.  264 

Given that bivariate fluctuations are negative when streamflow is first responding, bivariate 265 
fluctuations are maximized, producing a minimum in the DMCA-based correlation 266 
coefficient, when both rainfall positive fluctuations and streamflow negative fluctuations are 267 
covering the whole time span between the two centres of mass (between the two dots). This 268 
happens only when using a moving-average window length which is double the time between 269 
the two centres of mass, i.e. double the Tr (Figure 1e-1f). The factor two in the relationship 270 
between Tr and window length is inherent to the centred moving average process, as to 271 
generate a fluctuation of one sign for a specific duration, the window length has to be twice 272 
as large. Note that the DMCA-based correlation coefficient value does not have a statistical 273 
significance level because it is dependent on how many events occurred and on their 274 
duration. However, when applying different moving-average window lengths to the same two 275 
time series, the value of the DMCA-based correlation coefficient is able to guide us through 276 
the estimation of Tr (Figure 1j). 277 

Shorter window lengths (e.g. L=151, Figure 1c) generate negative bivariate fluctuations for a 278 
time period shorter than the time span between the two centres of mass (red arrow shorter 279 
than the time span between the dots). The DMCA-based correlation coefficient 𝜌  for a 280 
window L of 151 is in fact smaller in absolute terms than the one for a window length of 273 281 
(Figure 1j). Longer window lengths (L=351, Figure 1i), despite covering the entire time span 282 
between the centres of mass (time span between the two dots), also produce a significant 283 
portion of positive fluctuations (blue arrows). These positive fluctuations increase bivariate 284 
fluctuations that, when normalised, result in a smaller in absolute terms value of DMCA-285 
based correlation coefficient (Figure 1j).  286 

In Figure 1f we can see that before the rainfall centre of mass we also have a small portion of 287 
positive bivariate fluctuations, but these are smaller than the loss of negative bivariate 288 
fluctuations using a smaller window (e.g. L=271), so L=273 is the optimum. In this sense, Tr 289 
estimates calculated with the DMCA-based method can suffer from small errors due to the 290 
geometry of the integrated time series, but these are minimal and, when the data resolution is 291 
adequate, smaller than the range of variability of Tr in an individual catchment. 292 

If we think of negative fluctuations as rising limbs and positive fluctuations as recessions, the 293 
moving-average window length associated with Tr is the one which is able to group together 294 
rainfall contributions so that the rainfall “recession” is concurrent with the rising limb of 295 
streamflow (see Figure 1f). It is equivalent to creating two triangular shapes in which the 296 
second half of the rainfall triangle basis overlaps with first half of the streamflow triangle (i.e. 297 
recession of rainfall overlapping with rising limb of streamflow).298 
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 299 

Figure 1: a-i) Graphic representation of steps (I, II, III) of DMCA-based methodology for moving average window lengths L=151, L=273, 300 
L=351. Green lines relate to rainfall, grey lines to streamflow. The red (blue) arrows underline periods of negative (positive) bivariate 301 
fluctuations. j) DMCA-based correlation coefficient variability with L, with circles showing correlation for the three window lengths above.302 
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2.1.3 Event scale application of DMCA-based methodology 303 

The DMCA-based methodology has not been built to work on an event-basis but with a few 304 
adjustments it is also able to produce estimates for individual events. This is of interest for 305 
comparison with existing event-based methods. 306 

If rainfall-runoff events have been selected (see Supporting Information), then for each 307 
individual event we create two time series, one concatenating copies of the rainfall event, the 308 
other concatenating copies of the related streamflow event. By creating these artificial 309 
records we are able to use the method also at the event scale. The copies must be separated 310 
with an array of constant values of the same length for both time series and longer than the 311 
longest window amplitude tested. In this way, any rainfall contribution occurring after the 312 
discharge peak will still be associated with its own copy and not with the following replicated 313 
events.  314 

Rainfall events are separated by an array of zero values, whilst the constant value used to 315 
separate streamflow events is the last value of the streamflow event. However, it is possible 316 
that the beginning and the end of the streamflow event assume different values. When we 317 
concatenate the streamflow copies, this can generate step changes, which can alter the 318 
estimate of the response time. For this reason, when using the DMCA-based method at event 319 
scale, we take into account only those estimates of response time coming from events where 320 
the difference between the streamflow value at the beginning and at the end of the streamflow 321 
event is less than 10% of the magnitude of the peak. 322 

2.2. Traditional method  323 

Among the multiple definitions available in the literature, the one traditionally used to 324 
directly estimate Tr from rainfall and streamflow time series defines Tr as the time from the 325 
end of rainfall excess to the inflection point of the total storm hydrograph (McCuen, 2009). 326 
This definition of course refers to an individual event. Despite its conceptual simplicity, 327 
estimating the end of rainfall excess and the inflection points in the total storm hydrograph 328 
and direct runoff can be very challenging (Grimaldi et al.,2012). 329 

The first step is to estimate the volume of direct runoff by separating the hydrograph into 330 
baseflow and direct runoff using a recursive digital filter (e.g. Lyne & Hollick, 1979; Nathan 331 
& McMahon, 1990): 332 𝑄 (𝑡) =  𝛽𝑄 (𝑡 − 1) + 𝑄(𝑡) − 𝑄(𝑡 − 1)                          (Eq.9) 333 

Where Q(t) and Q(t-1) are total storm streamflow at times t and t-1, Qd(t) and Qd(t-1) are 334 
direct streamflow at times t and t-1 and 𝛽 is the recursive filter parameter. 335 

The filter is applied three times (forward-backward-forward) to minimize the shift in time of 336 
the output caused by the filtering process (Nathan & McMahon, 1990). The parameter 𝛽 is 337 
estimated so that the baseflow hydrograph passes through  the inflection point of the total 338 
storm hydrograph.  339 

Many alternative methods are available for baseflow separation but they all suffer from 340 
significant uncertainties, as they involve parameter estimations which do not have an 341 
independent physical meaning  (e.g. Sloto & Crouse, 1996; Lyne & Hollick, 1979; Furey & 342 
Gupta, 2001; Eckhardt, 2005). Unless experiments with tracers or groundwater measurements 343 
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have been conducted in the examined catchment, the absence of a “true” baseflow makes the 344 
objective evaluation of the different methods impossible (Eckhardt, 2008). 345 

The end of rainfall excess is computed using the Soil Conservation Service Curve Number 346 
(SCS-CN) method (USDA-SCS, 1986; Chow et al., 1988) in which the CN (Curve Number) 347 
is estimated by assuming that the volume of excess rainfall is equal to the volume of direct 348 
runoff. However, this methodology can sometimes lead to unrealistic estimates of Tr: this is 349 
the case when close to the end of a rainfall event rainfall is falling at very low intensity. 350 
Because of the previous rainfall which presumably saturated the soil, this low intensity 351 
rainfall falling just after is considered excess rainfall moving forward in time to the end of the 352 
rainfall excess. This leads to very short Tr estimates, which in some cases can even become 353 
negative (Figure 2). More specifically, when using the traditional method in this paper, a 354 
rainfall event was discarded if the total rainfall in the last three hours of the event was smaller 355 
than three times the average rainfall rate for the whole event, or less. 356 

 357 

Figure 2: Example of an event (catchment ID: 41025) which has been discarded due to the 358 
long tail in the rainfall record (crosses represent end of rainfall excess (top) and inflection 359 
point in the hydrograph (bottom)). 360 

2.3. Lag estimate from Flood Estimation Handbook 361 

In this work we used an estimate of response time retrieved from catchment descriptors to 362 
guide the event selection (see Supporting Information) and to discuss any large difference 363 
between Tr estimates from DMCA-based method and traditional method. Although rainfall 364 
and streamflow records are available, the idea is to calculate an estimate of response time 365 
which is independent from any direct observation from the data, using established methods.  366 

In particular, in the Flood Estimation Handbook (FEH - Snyder, 1938; Houghton-Carr, 2008) 367 
the lag is defined as the time from the centroid of total rainfall to the runoff peak or centroid 368 
of runoff peaks. This definition is similar to the ones adopted by the other methods applied in 369 
this work to describe Tr. However, this is not surprising as McCuen (2009) highlighted that 370 
there is sometimes overlap in the definition of Tr and time lag.  371 

Taking information from the FEH (Houghton-Carr, 2008), we estimate time to peak 𝑇  372 
using catchment descriptors (Equation 10) and then from the time to peak we derive the lag 373 
(𝐿𝐴𝐺) using an empirical formula (Equation 11). These empirical relationships are valid for 374 
UK catchments only: 375 𝑇 = 1.684 𝐷𝑃𝑆𝐵𝐴𝑅 . 𝑃𝑅𝑂𝑃𝑊𝐸𝑇 . 𝐷𝑃𝐿𝐵𝐴𝑅 . (1 + 𝑈𝑅𝐵𝐸𝑋𝑇) .  [h]     (Eq. 10) 376 

𝐿𝐴𝐺 = . .
[h]                                               (Eq. 11) 377 

Where DPSBAR is the Drainage Path Slope [m km-1], PROPWET is the proportion of time 378 
soils are wet [-], DPLBAR characterizes catchment size and configuration [km] and 379 
URBEXT is the urban extent [-]. For all the catchments for which the descriptors were 380 
available, lag estimates are reported in Table S1. 381 

 382 
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3. Study catchments and data 383 

We compare the DMCA-based method with the traditional method in a subset of catchments 384 
from the UK’s National River Flow Archive (NRFA). We use catchments from the UK 385 
Benchmark Network 2 (UKBN2) which have been classified as near-natural (Harrigan et 386 
al.,2018). We will make use of this set of near-natural catchments to test the proposed 387 
methodology without adding more complexity due to human disturbance.  388 

Mean areal hourly rainfall has been derived from the continuous CEH-GEAR1hr dataset for 389 
each catchment (Lewis et al., 2018). Streamflow data at 15-min step were provided by the 390 
Environmental Agency (EA), Natural Resources Wales (NWR) and Scottish Environmental 391 
Protection Agency (SEPA) and then processed to obtain hourly streamflow time series. The 392 
percentage of missing values in the available streamflow records varies from 0 to 60% with a 393 
median value of 0.2%. We did not discard the catchments with higher percentages of missing 394 
values as the other parts of the records were long enough to compute reliable estimates of Tr. 395 

Rainfall and streamflow time series at hourly resolution were available for only 113 out of 396 
146 catchments. Base Flow Index (BFI) is provided for catchments in the UKBN2, and to 397 
guarantee a fast hydrograph response we excluded catchments with very large BFI (> 0.85). 398 
This reduced the catchment study set to 98 of the 146 catchments of UKBN2 (see Figure 3, 399 
all markers), with areas ranging from 8 to 1508 km2. For these catchments, the record length 400 
for which both hourly rainfall and streamflow data are available varies from 17 to 24 years. 401 

Since the traditional method can only be used on an event basis, we need to select individual 402 
rainfall-streamflow events from the continuous time series. To do so, we used the 403 
methodology outlined in Supporting Information which involves the use of catchment 404 
descriptors. Taking information from the UK hydrometric Register (Marsh & Hannaford, 405 
2008) and Flood Estimation Handbook (FEH) (Bayliss, 2008), the descriptors were only 406 
available in 79 of the 98 basins. However only for 76 catchments, it was possible to find a set 407 
of events which were suitable for the application both of DMCA method and traditional 408 
method. Therefore, the evaluation of DMCA method against the traditional method (Sections 409 
4.1 and 4.2 and Figures 4) is further restricted to just these 76 catchments (Figure 3, see 410 
catchments represented with a blue asterisks), while the robustness analysis of DMCA 411 
(Section 4.3 and Figures 6) is performed on the 98 catchments (Figure 3, see all catchments) 412 
as no event selection is needed. 413 

 414 

Figure 3: Locations of the 98 study catchment outlets with their National River Flow Archive 415 
identification number (orange circles show catchments used only for robustness analysis 416 
(Section 4.3), blue asterisks show catchments used both for evaluation (Sections 4.1,4.2) and 417 
robustness analysis (Section 4.3)). 418 

4.Results 419 

4.1. Event-based comparison: does the median value of the Tr distribution with DMCA-420 
based methodology match the median from the traditional method? 421 

As mentioned in the methodology section, both the DMCA-based method at event scale and 422 
the traditional method are unable to provide reliable estimates of Tr for some types of events. 423 
Hence, we introduced a discarding rule for each method. After selecting the rainfall-424 
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streamflow events (see Supporting Information), we compared the two methodologies in each 425 
catchment considering only the events for which both Tr estimates were available. As a 426 
result, in each catchment we produced two Tr sample distributions, one for each method, 427 
based on the same set of events.  428 

The number of events for which Tr estimates are available with both methodologies ranges 429 
from 1 to 183 events with a median value of 21 events across the different catchments. These 430 
numbers come from the intersection of the Tr estimates from the traditional method  (number 431 
of events ranges from 5 to 685 with a median of 63 events) and the estimates from the 432 
DMCA-based methodology at event scale (number of events ranges from 27 to 816 with a 433 
median of 178 events).  434 

In Figure 4a we compare Tr estimates from the DMCA-based method and traditional method 435 
performed on an event basis. Each catchment is represented by a circle showing the median 436 
Tr estimate when using both methodologies across all of the considered events, with the bars 437 
then highlighting the 25th and 75th percentiles. Blue and red colours stand respectively for 438 
sample larger/equal and smaller than 10 events, as small samples of events might lead to less 439 
robust estimate of Tr. 440 

Overall, we can see that the median values (circles in Figure 4a) of the two Tr distributions 441 
derived with two methodologies are mostly on a 1:1 line (Spearman rank correlation equal to 442 
0.82). This indicates that DMCA-based method produces results which are generally similar 443 
to the traditional method.  444 

4.2. When using DMCA-based methodology, does the Tr estimate from the analysis of 445 
the entire time series match the median of the estimates from individual events? 446 

In the previous section we used the DMCA-based methodology for individual events and the 447 
results were compared with the traditional method. However, as mentioned in the 448 
methodology section, the DMCA-based method was originally developed to analyse the 449 
entire time series and not just on an event basis. The aim is to find an average Tr for the 450 
whole record.  451 

Hence, we applied the DMCA method for estimating on both an event basis and across the 452 
entire rainfall and streamflow time series. We compared the Tr estimate from across the 453 
entire time series to the median Tr estimate of the individual events (Figure 4b). We use 454 
color-coding to distinguish those catchments whose median is based on an event sample 455 
smaller or larger than 10 events.  456 

The median value of the Tr distribution using DMCA-based methodology for individual 457 
events compares well with the Tr estimate on the entire time series (Spearman rank 458 
correlation equal to 0.94), showing that the process of event identification is not needed when 459 
using the DMCA-based method. 460 

 461 

Figure 4: a) Median, 25th and 75th percentiles of times of concentration distributions for each 462 
catchment using the traditional method and the DMCA-based method. Capital letters refers to 463 
catchments mentioned in the Section 5.1. b) Comparison of application of DMCA-based 464 
methodology on the entire time series with median of Tr distributions of individual events. In 465 
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both plots catchments in red (blue) highlights catchments where less than (more than or equal 466 
to) 10 independent events were identified. Note logarithmic scales. 467 

4.3. How sensitive is the DMCA-based methodology to the length of the record and to 468 
noise and bias in the time series? 469 

As a first test, we evaluate the robustness of our proposed methodology for shorter records. In 470 
each catchment we break down the original time series in two calendar year sub-dataset and 471 
for each of them we computed the Tr using the DMCA-methodology (e.g. for an original 472 
rainfall-streamflow record from 1990 to 2010, the two-calendar-year sub-datasets are 1999-473 
2000, 2000-2001, …, 2009-2010). In Figure 5a we show with a blue bar the minimum-474 
maximum range of Tr estimates obtained with all the two-year datasets in each of the 98 475 
catchments. The star represents the Tr using the whole available record length, which ranges 476 
from 17 to 24 years in different catchments. We repeated the same procedure for sub-datasets 477 
of 5 and 10 years (Figure 5b and 5c). 478 

The results show that the DMCA-based methodology can produce robust estimates even with 479 
relatively short rainfall-streamflow records. Figure 5a shows that for catchments responding 480 
in less than 10 hours a two-year record of hourly data is already long enough to robustly 481 
estimate Tr, as shown by the minimum and maximum values converging towards the estimate 482 
from analysing the time series as a whole. Catchments responding in 10-20 hours require 483 
longer time series with at least 5 years of hourly data. In catchments where the response time 484 
is greater than 20 hours, at least 10 years of hourly data are needed for robust estimates. 485 
Therefore, according to our DCMA methodology, the record length of hourly data needed for 486 
robust Tr estimation increases with increasing response times of the catchment.  487 
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 488 

Figure 5: Tr estimates using subsets of 2(a), 5(b), 10(c) years (blue bars). The triangle represents the Tr estimate using the entire record.  Where 489 
no bar is visible, the range of estimates was smaller than the width of symbol.490 
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Our second test evaluates the robustness of the methodology when time series are affected by 491 
noise. We add random Gaussian noise to rainfall and streamflow time series with standard 492 
deviations of 5% and 25% of the mean value, respectively green stars and orange circles in 493 
Figure 6a. This means that 98% of the data points increase or decrease their values by 0-10% 494 
of the mean value, when the standard deviation is equal to 5% of the mean, and by 0-50% of 495 
the mean when the standard deviation is 25% of the mean. We then compare Tr estimates 496 
from the perturbed and original time series (respectively green stars/orange circles and black 497 
triangles in Figure 6a), applying the DMCA method across the entire length of each of the 498 
records. 499 

Results show that adding noise to the original streamflow record has a minimal effect on the 500 
Tr estimates computed with the DMCA-based methodology. Only 4 out 98 catchments show 501 
variations in Tr estimate when Gaussian noise with standard deviation of 5% of the mean is 502 
added to the original rainfall and streamflow time series (green stars in Figure 6a). The 503 
average error is less than 1%. When the standard deviation of the Gaussian noise increases to 504 
25% of the mean value, 33 catchments are affected (orange circles in Figure 6a), with an 505 
average error of 10%.  506 

As a further test, we also add bias equal to the mean value to both rainfall and streamflow 507 
time series to represent time series affected by systematic bias. If a time series does not have 508 
any missing values, adding bias does not generate any variation in the Tr estimate. Missing 509 
values in the time series produce discontinuities in the moving averaging process which 510 
might lead to small errors. Adding bias equal to the mean value only affected Tr estimates 511 
from 6 out of 98 catchments, with an average error of less than 2% (Figure 6b).  With this test 512 
we show that if additional bias does not significantly alter the shape of the cumulative time 513 
series (i.e. the bias is systematic), its effect on Tr estimates is minimal. If the bias is non-514 
systematic its magnitude has still to be big enough to move significantly the centres of mass 515 
at window scale to generate any difference in the Tr estimate.516 
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  517 

Figure 6: a) Tr estimates using the original time series (black triangles), and adding Gaussian noise with standard deviation equal to 5% the 518 
mean value (green stars), or with standard deviation equal to 25% the mean value (orange circles). Often the three markers overlap meaning that 519 
there is not difference among the three estimates. b) Tr estimates using the original time series (black triangles), and systematic bias equal to the 520 
mean time series value with standard deviation (magenta circles). 521 
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5.Discussion 522 

5.1. Comparison between the DMCA-based and traditional method. 523 

Event based estimates of Tr from the proposed DCMA methodology are similar to those 524 
found from the traditional method. There are only two catchments which show significant 525 
differences in the median Tr values using the two methodologies (see catchment labelled with 526 
A (NRFA ID: 40011) and B (NRFA ID: 54008) in Figure 4a). From manually inspecting the 527 
events on which the estimates have been produced, the DMCA-based methodology seems to 528 
give more realistic estimates. This is also confirmed by the similarity of the DMCA-based 529 
estimates with the lag estimates computed for those catchments using the FEH guidelines 530 
(Bayliss, 2008; Houghton-Carr, 2008) (see Supporting Information, Table S1). In fact, for 531 
catchment A, the lag estimate according to FEH guidelines  is around 14 hours (19 hours for 532 
DMCA and 2 hours using the traditional method) while for catchment B is around 16 hours 533 
(17 hours for DMCA-based and 6 hours using the traditional method). The similarity between 534 
Tr estimates with DCMA-based method and lag estimates using FEH guidelines suggests 535 
DMCA-based estimates are more likely reliable than that obtained from the traditional 536 
method in these sites. 537 

The reason why the traditional method performs worse in those catchments is related to the 538 
definition upon which the method is built. As pointed out by McCuen (2009), the end of 539 
rainfall excess and the inflection point in the hydrograph are both based on individual 540 
features and uncertainty in their estimates is generally higher than for average values. 541 
Consequently, when the sample is relatively small, this uncertainty can affect the median 542 
value. The DMCA-based methodology has the advantage of computing Tr considering the 543 
centre of mass of rainfall and streamflow at the scale of the moving average window. 544 

When looking at the 25th and 75th percentiles of the distributions we can clearly see that both 545 
methods find variability in the Tr estimate across different events. This is not surprising as 546 
many studies suggested that the response time of a catchment is a function of the excess 547 
rainfall or rainfall intensity (Michailidi et al., 2018; Kjeldsen et al., 2016;  Izzard, 1946; 548 
Morgali & Linsey, 1965; Askew, 1970; Papadakis & Kazan, 1987; Loukas & Quick, 1996). 549 
However, ranges of variability coming from the two methods seem to be visually comparable 550 
for most of the catchments, meaning that not only the median values but also the distributions 551 
are similar. When ranges for the traditional method are wider it is usually because the method 552 
is based on the estimates of extreme features in the hyetograph and hydrograph (e.g. 553 
catchment C (NRFA ID: 11004) in Figure 4a). Because the Tr estimates from DMCA-based 554 
method are based on centres of mass and hence more stable, we suggest that larger ranges in 555 
DMCA-based distribution are instead representative of the actual variability. In fact, unlike 556 
the traditional method which searches for the inflection point within a time window following 557 
the end of the rainfall, the DMCA-based method is free to search for the actual response 558 
having effectively no constraints. The maximum window length tested is set far larger than 559 
the expected time scale and therefore this method could cope also with more “unexpected” 560 
responses (e.g. catchment D (NRFA ID: 37005) in Figure 4a). 561 

One of the main advantages of using the DMCA-based method compared to the traditional 562 
method and the other methods summarized by McCuen (2009) is that it avoids the highly 563 
uncertain hydrograph separation (Eckhardt, 2008). The Tr estimates from the traditional 564 
method and other methods summarized by McCuen (2009) are dependent on the choices 565 
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made at the baseflow separation stage, while the DMCA-based method is more objective as it 566 
does not require any user decision.  567 

Another significant advantage of using the DMCA-based methodology is that it does not 568 
make any assumption about the rainfall-runoff transformation unlike the currently used 569 
methodologies (e.g. the traditional method assumes that the volume of direct runoff is equal 570 
to the volume of excess rainfall in the associated hyetograph). Recent results from tracer 571 
studies (e.g. McDonnell, 1990; Berghuijs & Allen, 2019; Gallart et al., 2020) have also 572 
shown weaknesses about our understanding of rainfall-runoff transformation, so in this sense, 573 
the DMCA-based methodology could be an effective tool to estimate the response of the 574 
catchment even when assuming that the precipitation which is building the hydrograph is not 575 
only the precipitation fallen during the last rainfall event. 576 

5.2. DMCA-based method at event scale and on continuous time series. 577 

Despite the general good agreement between median estimate from individual events and the 578 
estimate using the entire time series, it seems that the median value of the individual events 579 
lead to larger response times compared to the full time series analysis (Figure 4b). The reason 580 
might be that the Tr estimate on full time series gives more weight to bigger floods as they 581 
generate a larger portion of negative bivariate fluctuations. In fact, bigger floods seem to 582 
show smaller Tr, as the median Spearman rank correlation value between magnitude of the 583 
peak and Tr across the 76 catchments is equal to -0.54. This relationship is supported by 584 
many studies which show that the response time of a catchment decreases with increasing 585 
rainfall or effective rainfall intensity (Michailidi et al., 2018; Kjeldsen et al., 2016;  Izzard, 586 
1946; Morgali & Linsey, 1965; Askew, 1970; Papadakis & Kazan, 1987; Loukas and Quick, 587 
1996). As a result, the Tr estimates from DMCA-based method applied to entire time series 588 
cannot be considered an upper limit of the time needed to respond, as intended by the 589 
glossary definition (W.M.O., 1974; Johansson, 1984), but it could be particularly useful for 590 
engineering applications where usually bigger floods are the ones of interest.  591 

It is important to note that by applying the methodology to the time series we avoid the event 592 
selection step, which is not standardized (Merz & Blöschl, 2009; Tarasova et al., 2018; Mei 593 
& Anagnostou, 2015), and is recognized to affect the statistics at the event scale (Dunkerley, 594 
2008). Unlike the traditional method, the DMCA-based methodology applied to the full time 595 
series, not only avoids the baseflow separation but also removes the uncertainty around the 596 
event selection step by processing the entire time series at once. Therefore, the method can be 597 
considered as more objective, since it removes the three biggest sources of uncertainty arising 598 
from the application of the methods summarized by McCuen (2009) listed in the introduction 599 
section (selection of events, baseflow separation, estimate of hyetograph/hydrograph 600 
characteristics).  601 

For the reasons explained in the paragraph above and because the method considers a large 602 
number and types of events though the use of the entire record, the DMCA-based 603 
methodology could be useful for a robust calibration of empirical formulae. Instead, methods 604 
summarized by McCuen (2009), which require an event-by-event procedure, could make 605 
difficult to consider a significant number of events which also show a variety of different 606 
characteristics (Grimaldi et al., 2012; Gericke & Smithers, 2014).  607 
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5.3. Robustness analysis of DMCA-based method. 608 

By breaking down time series in sub-datasets of 2, 5 and 10 years (Figure 5), we find that 609 
catchments with quicker response times require shorter record lengths for reliable Tr 610 
estimate.  The reason might be very simple: when a catchment is slow in responding, over a 611 
given time period we are able to observe fewer events in comparison to catchments with 612 
quicker response times. Although the methodology works on the whole record, the sections 613 
of the records important for the Tr estimate are the ones when the streamflow is responding to 614 
the rainfall. Therefore if you consider an equal record length in catchments which respond 615 
both quickly and slowly to rainfall, in a slow responding catchment these sections are fewer 616 
than in a faster responding one because the slow catchment tends to cumulate more rainfall 617 
over time in a single response. 618 

From this analysis we can conclude that, unless the record is too short compared to the 619 
average response time of the catchment, the DMCA-based method is not sensitive to sample 620 
size effects as minimum-maximum Tr ranges computed with different n-year sub-datasets are 621 
quite narrow. The lengths of the records examined herein can be considered fairly short. 622 
Therefore, the method can probably be successfully applied also in catchments for which 623 
long records are not available. However, the above conclusion could change in different 624 
climates. For example, in arid climates the frequency of the events could be so low that we 625 
might need a very long record for a robust estimate of Tr. Therefore, we can consider the 626 
results about robustness to short record valid for wet climates only and further testing will be 627 
needed in other climatic regions. 628 

Furthermore, we show that the proposed method for estimating Tr is robust to noise (Figure 629 
6a) and systematic bias (Figure 6b) within the time series. This means that we could apply 630 
this methodology even if rain gauge data are not available and we need to make use for 631 
example of radar rainfall estimates. Radar rainfall estimates, due to the process of retrieving 632 
rainfall intensities from a signal, are more susceptible to noise and bias (Fabry, 2015). These 633 
are usually corrected using specific algorithms (e.g. Chumchean et al., 2006) but there might 634 
be still some residual errors. However, with the noise and bias tests we showed that Tr 635 
estimates using the DMCA-based method would be only minimally affected by slightly 636 
inaccurate time series.  637 

Overall, the DMCA-based methodology is demonstrated to be robust with respect to 638 
relatively short records and presence of artificial noise and bias. For the traditional method a 639 
similar analysis could be performed only on an event basis, hence the results would be 640 
strongly affected by the decision made at event selection, separation of the hydrograph and 641 
estimation of features stages. Therefore, it would be difficult to assess the actual impact of 642 
noise and bias because algorithms would require adjustments (e.g. when looking at noisy 643 
time series, we would probably need to apply a strong smoothing function to the streamflow 644 
time series to find the inflection point in the hydrograph).  645 

6.Summary 646 

Current methodologies to estimate Tr from observed hyetograph and hydrograph show 647 
weaknesses in their assumptions and require uncertain and subjective steps. Therefore, we 648 
recommend the use of the DMCA-based methodology to estimate the Tr (Python and Matlab 649 
code available at https://github.com/giuliagiani/Tr_DMCA, last access 11.09.2020). This 650 
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method removes many of the sources of uncertainty which affect the existing methods. The 651 
DMCA method makes no hypothesis about the rainfall-runoff transformation, avoiding also 652 
the uncertain step of hydrograph separation. Furthermore, no selection of rainfall-streamflow 653 
events or any parameter estimation are required.    654 

The proposed methodology produces estimates of response time that match the ones from the 655 
traditional method, showing that the time scale retrieved can be treated as Tr.  When applied 656 
to the entire time series at once (the intended application) the DMCA-based methodology is 657 
easily reproducible as it does not require any user decision. We also show the method is 658 
robust to relatively short record lengths, artificial noise and bias within the time series. It is 659 
important to note that the DMCA method fully relies on the quality of the data and processing 660 
the entire time series at once makes it more difficult to spot anomalous records (although the 661 
influence of an individual event is limited, if we have a sample of many events). Hence, it is 662 
important that data are quality checked, especially for timing errors. Moreover, another 663 
limitation of this method (as many others) is that the proposed method does not provide a 664 
physical explanation of the retrieved time parameter. 665 

In this paper we have shown the application of the DMCA-based methodology to estimate Tr 666 
using hourly time series. This could be particularly useful for a more robust calibration of  667 
empirical formulae and for other engineering applications such as designing hydrographs for 668 
assigned return periods. Note that our method does not conflict with the hypothesis that 669 
hydrographs may incorporate water that fell in previous events. Furthermore, the 670 
methodology can be applied at coarser or finer temporal resolutions as long as the temporal 671 
resolution of the data is high enough to capture the time delay between the two time series 672 
(e.g. no streamflow peak recorded at the same time step of the associated rainfall peak). 673 
However, the coarse temporal resolutions may be less informative. For example, in the same 674 
set of catchments analysed in this work, daily rainfall and streamflow records would have 675 
provided estimates of Tr equal to 1 day for most of the sites, showing that daily data for these 676 
predominantly small catchments contains little information on flood event response times.   677 

We also suggest that this methodology might be useful for other applications than the 678 
estimation of Tr. As long as the temporal resolution of the data is suitable for capturing the 679 
phenomena, the DMCA-based method can be used to estimate the response time of any 680 
variable to a system driver (e.g. response time of the Biochemical Oxygen Demand 681 
concentration in the water when a new rainfall event occurs, or response time of river flow to 682 
a snowmelt event). 683 
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Figure 3.
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Figure 5.
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Figure 6.
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