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Abstract. Artificial intelligence methods namely artificial neural network, fuzzy 

logic, and neuro-fuzzy have been effectively utilized in different applications like 

business, marketing, control engendering, health care, and social services. To 

demonstrate the usage of fuzzy set theory, artificial neural network, as well as 

neuro-fuzzy in industrial engineering and also for providing a basis for future 

investigation, a literature review of the artificial neural network, fuzzy logic, and 

neuro-fuzzy in industrial engineering is conducted in this paper. 

Keywords: Fuzzy Logic, Artificial Neural Network, Neuro-Fuzzy, Industrial 

Engineering. 

 

1 Introduction 

Industrial engineering is one of the fields that artificial neural network, fuzzy logic, and 

neuro-fuzzy have found an extensive implementation area. Artificial neural networks 

can be considered as the most effective technique over the last few decades that are 

extensively utilized in a wide variety of implementations in different fields [1–6]. Arti-

ficial neural networks have been considered as efficient and versatile tools. They have 

learning ability as well as model-free characteristics. 

Fuzzy systems are appropriate for estimated reasoning, mainly for the system with a 

mathematical design which is hard to obtain [7–11]. Fuzzy set theory can be considered 

as a major problem designing as well as a solution approach. The main contribution of 
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fuzzy logic is its ability to present vague data. Fuzzy logic has been implemented to 

design systems, which are difficult to define accurately. In recent years, successful im-

plementations of fuzzy logic in industrial engineering have been reported. Industrial 

engineers encounter with numerous problems having incomplete as well as uncertain 

information [12–15]. Fuzzy logic theory can be considered as a capable tool for solving 

these kinds of problems. Fuzzy logic presents an effective tool to facilitate investigation 

in industrial engineering when the dynamics of the decision environment restrict the 

accurate evaluation of model parameters. 

Neuro-fuzzy has been used in an extensive range of domains [16–18]. It is the combi-

nation of artificial neural networks and fuzzy logic. The cause of utilizing artificial 

neural networks with fuzzy logic is that artificial neural networks never make a pre-

sumption on the probability distribution functions of data [19]. Generally, the neuro-

fuzzy model explains solutions better than artificial neural networks [20]. 

This paper represents details of the application of artificial neural network, fuzzy logic, 

and neuro-fuzzy in industrial engineering. In this paper, the most recent researches in 

the field of artificial neural network, fuzzy logic, and neuro- fuzzy are covered. Since 

some industries have successfully used these techniques, detailed discussions are sup-

plied to stimulate future investigations. This article remaining sections are organized 

into four Sections. In Section 2 the applications of fuzzy logic in industrial engineering 

are given. In Section 3 the applications of artificial neural network in industrial engi-

neering are given. Section 4 presents the applications of neuro-fuzzy in industrial engi-

neering. Conclusions are included in Section 5. 

 

2  Applications of fuzzy logic in industrial engineering 

Fuzzy logic systems have been effectively applied in different industrial fields like au-

tomobile speed control [21], robot arm control [22], water quality control [23], and 

automatic train operation systems [24]. Fuzzy logic can be utilized for improving the 

efficiency of the system. Even though fuzzy logic is considered as an approach for pre-

senting inaccurate and vague information, in [25] the Universal Approximation Theo-

rem states that the fuzzy logic system can uniformly approximate any nonlinear func-

tion to any degree of preciseness. 

The fuzzy inference system utilizes fuzzy set theory for mapping inputs to outputs. The 

common fuzzy inference system is Mamdani and Sugeno type. Fuzzy inference system 

consists of a fuzzification interface, a rule database, a decision making unit as well as 

defuzzification interface, see Fig. 1. 
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Fig. 1. The flowchart of a fuzzy inference system. 

 

 

Fuzzy logic systems are extremely effective in highly complicated and nonlinear pro-

cesses, and also in the lack of any simple mathematical model. In [26], fuzzy set theory 

is utilized for generating a novel pulse discriminator in electric dis- charge machining 

procedure. In electric discharge machining procedure, cutting efficiency indexes like 

material elimination rate as well as surface harshness are in direct relation with the 

electric discharge machining discharge pulses. 

In [27], the fuzzy logic is utilized for control of the fluid catalytic cracking unit. In that 

paper, the fuzzy logic control as a control method is efficiently applied for improved 

procedure control of fluid catalytic cracking in the refinery process industry. 

3  Applications of artificial neural network in industrial 

engineering 

In contrast with the fuzzy system, the neural network is desirable at predicting. This 

potential originates from the learning ability as well as model-free characteristics. The 

design of the artificial neural network is based on a group of interconnected artificial 

neurons along with linear or nonlinear transfer functions. Neurons are placed in various 

layers such as input layer, hidden layer, as well as output layer. The artificial neural 

network learns the relevance between input and output of the system employing an 

iterative procedure named training. For every input into the neuron, there is a weight. 

Weight is a tune able number that is defined while training the network. A simple model 

of the artificial neural network is shown in Fig. 2. 
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Fig. 2. A simple model of the artificial neural network. 

 

One of the applications of the artificial neural network is in condition monitoring. Ar-

tificial neural network provides a reliable procedure to condition monitoring. Condition 

monitoring can be considered as an effective device in maintenance planning, also it 

can be utilized for avoiding the unpredicted failures. In [28], artificial neural network 

technique is used for experimentally recognizing gears as well as bearings faults related 

to a typical gearbox system. 

The artificial neural network has been used for evaluating vibrations as well as recog-

nizing fault existence. Fault detection is considered as a crucial issue for gas turbine 

owners to move from preventative repair to predictive repair and hence to decrease the 

repair expenses. In [29], artificial neural network technique is used for fault detection 

of an industrial gas turbine. 

4  Applications of neuro-fuzzy in industrial engineering 

Artificial neural network and fuzzy logic are both considered as model-free numerical 

techniques. Each technique uses an uncomplicated algorithmic procedure instead of a 

complex mathematical analysis, and also the parameters are tune- able [30]. These re-

semblances make it possible to combine the two techniques. 

Neuro-fuzzy system is a multi-layer feedforward adaptive network which figures out 

the fundamental elements as well as functions of a standard fuzzy logic system. As 
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fuzzy logic systems are proved to be universal approximators, and since neuro-fuzzy 

systems are isomorphic to standard fuzzy logic systems concerning their functions 

hence neuro-fuzzy systems are likewise universal approximators [31]. For a special 

method in neuro-fuzzy, we can refer to the adaptive neuro-fuzzy inference system 

which is considered as one of the initial integrated hybrid neuro-fuzzy models [32]. 

One of the applications of the neuro-fuzzy system is in polymerization systems. Over 

the last few decades solubility of gases in polymers has been of interest to chemical 

engineers. In [33], a hybrid grid partitioning adaptive neuro-fuzzy inference system is 

utilized to predict carbon dioxide solubility in polymers. 

The major aim of current manufacturing industries is to manufacture low cost, superb 

quality products in less time [34]. The choice of optimal cutting parameters is crucial 

in each machining procedure for increasing the quality of machined productions as well 

as to decrease the machining expenses. In [35], an adaptive neuro-fuzzy inference sys-

tem is introduced to model and predict surface roughness in ball end milling of a die 

material. The algorithm developed in that paper presets the cutting parameters for a 

favorable level of surface roughness. 

 

5 Conclusion 

In this paper, the recent advances of the artificial neural network, fuzzy logic, and 

neuro-fuzzy applications in industrial engineering are provided. The artificial neural 

network, fuzzy logic, and neuro-fuzzy are the three major computational intelligence 

methods. Utilization of these models can be taken into account as a cheap, highly 

effective, and more reliable alternative devices. Therefore, these three methods can pro-

vide more ability to problem resolving than other techniques. 
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