
Research Article
Deep Reinforcement Learning for Performance-Aware Adaptive
Resource Allocation in Mobile Edge Computing

Binbin Huang,1 Zhongjin Li ,1 Yunqiu Xu,2 Linxuan Pan,3 Shangguang Wang,4

Haiyang Hu,1 and Victor Chang5

1School of Computer, Hangzhou Dianzi University, Hangzhou, China 310018
2School of Software, University of Technology Sydney, Ultimo, NSW 2007, Australia
3State Key Laboratory for Novel Software Technology, Software Institute, Nanjing University, Nanjing, China
4State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
5School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK

Correspondence should be addressed to Zhongjin Li; lizhongjin@hdu.edu.cn

Received 4 December 2019; Revised 10 February 2020; Accepted 15 June 2020; Published 2 July 2020

Academic Editor: Massimo Condoluci

Copyright © 2020 Binbin Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile edge computing (MEC) enables to provide relatively rich computing resources in close proximity to mobile users, which
enables resource-limited mobile devices to offload workloads to nearby edge servers, and thereby greatly reducing the processing
delay of various mobile applications and the energy consumption of mobile devices. Despite its advantages, when a large
number of mobile users simultaneously offloads their computation tasks to an edge server, due to the limited computation and
communication resources of edge server, inefficiency resource allocation will not make full use of the limited resource and cause
waste of resource, resulting in low system performance (the weighted sum of the number of processed tasks, the number of
punished tasks, and the number of dropped tasks). Therefore, it is a challenging problem to effectively allocate the computing
and communication resources to multiple mobile users. To cope with this problem, we propose a performance-aware resource
allocation (PARA) scheme, the goal of which is to maximize the long-term system performance. More specifically, we first
build the multiuser resource allocation architecture for computing workloads and transmitting result data to mobile devices.
Then, we formulate the multiuser resource allocation problem as a Markova Decision Process (MDP). To achieve this
problem, a performance-aware resource allocation (PARA) scheme based on a deep deterministic policy gradient (DDPG) is
adopted to derive optimal resource allocation policy. Finally, extensive simulation experiments demonstrate the effectiveness of
the PARA scheme.

1. Introduction

In recent years, smart mobile devices have become an indis-
pensable part of people’s lives. With the popularity of smart
mobile devices (e.g., smartwatches, smart glasses, and smart-
phones), various types of mobile applications, such as virtual
reality (VR), augmented reality (AR), and interactive online
gaming [1, 2], are rapidly emerging. In general, these mobile
applications demand considerable resources (e. g., high com-
puting capacity and battery power) for real-time processing
[1, 3, 4]. Unfortunately, due to the limited physical size of
smart mobile devices, they are usually resource-limited to
not efficiently support these applications, which incurs the

conflict between the resource-hungry applications and
resource-limited mobile devices.

To relieve the above conflict, mobile edge computing
(MEC), a novel computing paradigm whose objective is to
bring the computing and storage capacities close to mobile
devices and users, becomes attractive [3] [5]. Therefore,
smart mobile devices can offload some of their mobile appli-
cation workloads via a wireless channel to nearby edge
servers, which significantly augment the capacities of mobile
devices [6]. Despite its advantage, when a large number of
mobile users simultaneously offloads their computation tasks
to an edge server, inefficiency resource allocation will not
make full use of the limited resource and cause waste of

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 2765491, 17 pages
https://doi.org/10.1155/2020/2765491

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Teeside University's Research Repository

https://core.ac.uk/display/327080293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4319-324X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2765491


resource, resulting in low system performance (the weighted
sum of the number of processed tasks, the number of pun-
ished tasks, and the number of dropped tasks). Therefore,
how to allocate computing and communication resources
efficiently to achieve performance optimization for the whole
system is a very critical issue.

Most existing studies mainly focus on efficient resource
allocation for achieving different optimization objectives
(e.g., the total energy consumption and the processing delay)
in MEC [7–12]. Particularly, in [7], an energy-efficient
resource allocation scheme is designed to minimize the
weighted sum energy consumption by optimizing the task
operation sequences in a multiuser MEC system. In [8], an
iterative resource allocation algorithm is proposed to mini-
mize the total mobile devices’ energy consumption and the
total all tasks’ completion time. In [9], the latency minimiza-
tion scheme is proposed to minimize all tasks’ computing
and transmission time in a heterogenous MEC system. In
[10], an ADMM-based algorithm is proposed to maximize
the total network revenue while satisfying the QoS con-
straints. In [11], a sequential solution framework is proposed
to tradeoff the power and latency by optimizing the active
base station set, as well as computation resource allocation.
In [12], an improved branch and bound method is designed
to minimize the total latency of all tasks. Few works have paid
attention to the impact of resource allocation of the edge
server on system performance.

In this paper, we investigate the multiuser resource allo-
cation problem in aMEC system, the goal of which is to max-
imize the long-term performance of the whole system. First,
we establish a novel multiuser resource allocation system
architecture which consists of an edge server and multiple
mobile devices. Then, we construct the computation task
model, task queueing model, and network model, respec-
tively. Next, we formulate the multiuser resource allocation
problem as a Markov Decision Process (MDP) whose state
space mainly includes the number of arrival tasks, the work-
loads in the fond-end queue, the result data size in the back-
end queue, and the transmission rate from the edge server to
multiple mobile devices. According to the system state, an
optimal resource allocation policy needs to be derived, and
its objective is to maximize the long-term weighted sum of
the number of processed tasks, the number of punished
tasks, and the number of dropped tasks. Aiming to this
problem, a deep deterministic policy gradient- (DDPG-)
based performance-aware resource allocation (PARA)
scheme is proposed. Finally, to evaluate the proposed PARA
scheme, extensive experiments are conducted. The experi-
mental results demonstrate that the PARA scheme can
adaptively allocate the limited computational and communi-
cation resources to multiple mobile users and thus maximize
the long-term weighted sum of the number of processed
tasks, the number of punished tasks, and the number of
dropped tasks. In addition, the performance of the PARA
scheme outperforms the other benchmark policies, with
respect to different parameter settings (such as the comput-
ing resource, the communication resource, the task work-
loads, and the result data size). We conclude the main
contributions of this work as follows:

(i) We build a multiuser resource allocation architec-
ture for computing workloads and transmitting
result data to mobile devices, in which a data buffer
consisting of two queues, namely, front-end queue
and back-end queue, are used for each mobile user.
The front-end queue is mainly applied for receiving
the offloaded tasks; the back-end queue is mainly
used for buffering the result data

(ii) We formulate the multiuser resource allocation
problem as a MDP, the goal of which is to maximize
the long-term performance of the whole system.
Specifically, the system performance is the weighted
sum of the number of processed tasks, the number of
timeout tasks, and the number of dropped tasks

(iii) We propose a PARA scheme based on the DDPG
algorithm to solve this formulation. The extensive
experimental results demonstrate that the PARA
scheme can achieve good effectiveness in the long-
term performance of the whole system and outper-
forms the other three comparison algorithms

The remainder of the paper is organized as follows. In
Section 2, the related works are reviewed. In Section 3, the
system model and problem formulation are described. In
Section 4, a multiuser resource allocation problem is formu-
lated. In Section 5, the PARA scheme-based DDPG algo-
rithm is presented. In Section 6, the experimental setup is
elaborated and the experimental results are analyzed. Finally,
in Section 7, this paper is concluded.

2. Related Works

It is very important to efficiently allocate resources to multi-
ple mobile users in the MEC system. In recent years, a lot of
studies have focused on this problem. The main goals of
resource allocation are usually to minimize energy consump-
tion or latency or both two of them. In terms of the optimiza-
tion goals, these studies can be divided into three categories:
(i) energy-efficient resource allocation, (ii) latency-based
resource allocation, and (iii) energy consumption and
latency-based resource allocation.

For energy-efficient resource allocation, [3, 7, 10–12]
have studied some strategies to minimize the energy con-
sumption of mobile devices or the whole system. Specially,
[3] designs a low-complexity algorithm to solve the optimal
task offloading sequence. In [7], an energy-efficient resource
allocation scheme is designed to minimize energy consump-
tion by optimizing the task operation sequences. [10] derives
a threshold-based offloading strategy to minimize the
weighted sum energy consumption. [11] designs an online
task offloading algorithm to minimize the mobile devices’
energy consumption under the execution delay constraint.
In [12], the novel time allocation strategies are derived to
optimize the resource allocation in a multiuser wireless-
powered communication system, the objective of which is
to maximize energy efficiency and throughout. In [13], a
nonorthogonal multiple access-based offloading scheme is
proposed to minimize the total energy consumption. In

2 Wireless Communications and Mobile Computing



[14], a low-complexity algorithm is proposed to jointly opti-
mize the user association, power control, computation capac-
ity allocation, and location planning, the goal of which is to
minimize the total power of both UEs and UAVs under
latency and converge constraints.

For latency-based resource allocation, the objective is to
minimize the execution delay. In particular, in [15], a
software-defined task offloading strategy is proposed to min-
imize the delay by jointly optimizing the task placement and
resource allocation. [16] investigates the multiuser resource
allocation problem and designs the closed-form expressions
to minimize the latency. [17] formulates the task offloading
problem as a stochastic optimization problem in D2D com-
munications. To solve this problem, a Steerable Economic
ExPense Algorithm (SEEP) is proposed to minimize the
expense and latency. In [18], a nonorthogonal multiple
access scheme is proposed to solve the problem of multiuser
task offloading. [19] designs the optimal solution for the
problem of task offloading volume and resource allocation.

For energy consumption and latency-based resource allo-
cation, the objective is to optimize the weighted sum of the
energy consumption and latency. For example, [5] formu-
lates the task offloading problem as aMDP and adopts a deep
reinforcement learning technique to solve this problem. [20]
jointly optimizes the offloading decision and computational
resource allocation. In [21], a computation offloading and
resource allocation scheme is designed to minimize the
weighted sum of delay and energy consumption. [22] formu-
lates the problem of task offloading and resource allocation
as mixed-integer programming and then designs an iterative

search algorithm to solve it. [23] decomposes the problem of
task offloading and uplinks power allocation as two sub-
problems and then adopts a heuristic algorithm combined
with convex optimization to solve it. In [24], the problem
of task offloading and resource allocation is formulated as
a RL-based theme, and a reinforcement learning-based opti-
mization framework is proposed to minimize energy con-
sumptions and latency. [25] formulates the task offloading
problem as a MDP and then designs a decentralized task off-
loading strategy based on deep deterministic policy (DDPG)
to solve it.

However, few works have paid attention to effectively
allocating computing and communication resources to mul-
tiple mobile users in the case of insufficient resources. In
addition, some works fail to take account of the resource allo-
cation for transmitting the result data from an edge server to
mobile users. Therefore, these strategies may not be suitable
for applications with large-scale result data, such as AR,
VR, and multiple media.

To solve this problem, in this paper, we mainly focus on
performance-aware resource allocation, where the joint com-
putation and communication resource can be effectively allo-
cated in a multiuser time-varying MEC environment. We try
to maximize the long-term weighted sum of the number of
processed tasks, the number of punished tasks, and the num-
ber of dropped tasks.

3. System Model

In this section, the system architecture is first presented.
Then, the computation task model, task queueing model,
and network model are presented. For ease of understanding,
the main notations used throughout this paper are given in
Table 1.

3.1. System Architecture. As illustrated in Figure 1, a multi-
user MEC system is comprised of an edge server and a set
of n mobile devices MD= fMD1,⋯, MDi,⋯, MDng. The
edge server can be denoted by a two-tuple eNB = ðC,NcoreÞ,
where C denotes the processor capacity with a single CPU
core and Ncore denotes the number of CPU cores. The edge
server maintains a data buffer Qi with size Li for each MDi.
The data buffer Qi consist of a front-end queue QF

i ðτÞ and
a back-end queue QB

i ðτÞ. The front-end queue QF
i ðτÞ is

mainly used for receiving the offloaded tasks. The back-end
queue QB

i ðτÞ is applied for buffering the result data. A
discrete-time model is adopted for the MEC system, where
the time horizon is logically divided to equal time slots and
the time slot duration is Tslot. The index set of the time slots
can be denoted by τ ∈T = f0, 1,⋯g. At the beginning of
each time slot, the edge server makes an optimal resource
allocation decision. We present the model components and
our problem as follows.

3.2. Computation Task Model. The computation task model
widely used in the existing literature [10, 26] is adopted in
this paper. According to it, a computation task can be charac-
terized by a four-tuple t = ðTstðτÞ,W,D, TmaxÞ, in which Tst
ðτÞ denotes the task t arrives at the edge server at the τth time

Table 1: Major notations.

Symbols Semantics

n The number of mobile devices in MEC

Tslot The time slot duration

W The task workload

D The result data size per unit workload

λi The arrival rate of mobile device MDi

Qi The data buffer for mobile device MDi

Li The size of data buffer Qi

ai τð Þ The number of arrival tasks for MDi in time slot τ

bi τð Þ The number of computed tasks for MDi in time slot τ

hi τð Þ The number of transmitted computation results forMDi

QF
i τð Þ The front-end queue of MDi

QB
i τð Þ The back-end queue of MDi

ri τð Þ The transmission rate of a wireless channel from the
edge server to MDi

C The process capacity with a single CPU core

Ncore The number of CPU cores

pi τð Þ The number of timeout tasks in time slot τ

di τð Þ The number of dropped tasks in time slot τ

R τð Þ The immediate reward in time slot τ

3Wireless Communications and Mobile Computing



slot, W denotes the task workload (GHz∙s), D denotes the
result data size (in MB) per unit workload, and Tmax denotes
the maximum tolerant latency which are required for task
processing, respectively. In addition, we assume that the
computation tasks’ arrival process for the mobile device MD
follows a Poisson distribution with a parameter λ = ðλ1,⋯,
λi,⋯, λnÞ.

3.3. Task Queueing Models. At the tth time slot, each MDi
generate a series of independent and identically distributed
(i.i.d) computation tasks. First, all or part of these computa-
tion tasks are offloaded to the edge server eNB and are buff-
ered in front-end queue QF

i ðτÞ. They can be executed from
the ðτ + 1Þth time slot. The number of tasks arriving at
QF

i ðτÞ can be denoted by aiðτÞ. Let AðτÞ = ða1ðτÞ,⋯, aiðτÞ,
⋯, anðτÞÞ denote the task arrival vector. Since the size of
the data buffer Qi does not exceed Li, the arrival tasks will
be partially dropped when the data buffer has no sufficiently
available space to accommodate them. Let diðτÞ denote the
number of dropped tasks. Then, the edge server allocates
computing resource to execute tasks in the front-end queue
QF

i ðτÞ and buffers the computation results in back-end queue
QB

i ðτÞ. The number of processed tasks by each MDi can be
denoted by biðτÞ. Let BðτÞ = ðb1ðτÞ,⋯, biðτÞ,⋯, bnðτÞÞ
denote the vector of the number of processed tasks. At last,
the edge server allocates communication resources to trans-
mit the computation results to mobile devices. The number
of computation results transmitted from eNB to MDi can
be denoted by hiðτÞ. Let hðτÞ = ðh1ðτÞ,⋯, hiðτÞ,⋯, hnðτÞÞ
denote the vector of the number of transmitted computation
results. Thus, according to the above descriptions, the front-
end queue QF

i ðτÞ and back-end queues QB
i ðτÞ evolve accord-

ing to the following equation:

QF
i τ + 1ð Þ =max QF

i τð Þ − bi τð ÞW, 0
� �

+ ai τð Þ − di τð Þ½ �W,

QB
i τ + 1ð Þ =max QB

i τð Þ − hi τð ÞD, 0� �
+ bi τð ÞD:

ð1Þ

3.4. Network Model. The computation results transmitting
from an edge server to mobile users are performed by a wire-
less channel. Due to the impact of user mobility, the wire-
less channel gain state between them is dynamically
varying across different time slots. Therefore, the efficiency
of computation results transmitting highly depends on the
wireless channel gain state. Let rðτÞ = ðr1ðtÞ,⋯, riðtÞ,⋯,
rnðtÞÞ denote the transmission rate of the wireless channel
(i.e., data transmission capacity) from the edge server to n
mobile users in time slot t. Specially, we can calculate riðtÞ
by Equation (2) [27].

ri tð Þ = B τð Þ log2 1 +ð Þ,∀i ∈N , ð2Þ

where BðτÞ is spectrum bandwidth of the edge server, PeNB
denotes the edge server’s transmission power, σ2 denotes
the Gaussian white noise power, and Gi denotes the chan-
nel gain of MDi. Besides, Gi = αðd0/diÞθ, where α denotes
the path-loss parameter, θ denotes the path-loss exponent,
d0 denotes the reference distance, and di denotes the dis-
tance between MDi and edge server.

4. Performance-Aware Resource Allocation
Problem Formulation

In this section, we formulate the multiuser resource alloca-
tion problem as an infinite discounted continuous state
MDP. We first define the state and action spaces. Then, the
reward function and constraints are defined. At last, the
performance-aware resource allocation problem is formu-
lated in detail.

4.1. State Space.At the beginning of each time slot, the system
state sðτÞ ∈ S can be observed. It mainly consists of the num-
ber of arrival tasks, the workload in the front-end queue and
the result data size in the back-end queue, and the transmis-
sion rate from the edge server to multiple mobile devices. It
can be denoted by

…

�e arrival tasks

Transmit result data
MD1

�e arrival tasks

Transmit result data

Transmit result data

MD2

�e arrival tasks
MDn

… …

�e data buffer Q

MEC

a1(𝜏)
QF

1(𝜏)

QF
2(𝜏)

QF
n(𝜏)

QB
1(𝜏)

QB
2(𝜏)

QB
n(𝜏)

a2(𝜏)

an(𝜏)

b1(𝜏)

b2(𝜏)

bn(𝜏)

h1(𝜏)

h2(𝜏)

hn(𝜏)

Figure 1: The multiuser resource allocation architecture.

4 Wireless Communications and Mobile Computing



s τð Þ =
h
Narl

1 τð Þ,⋯,Narl
i τð Þ,⋯,Narl

n τð Þ,QF
1 τð Þ,⋯,

QF
i τð Þ,⋯,QF

n τð Þ,QB
1 τð Þ,⋯,QB

i τð Þ,⋯,

QB
n τð Þ, r1 τð Þ,⋯, ri τð Þ,⋯, rn τð Þ

i
,

ð3Þ

where Narl
i ðτÞ denotes the number of tasks from a mobile

device MDi at the τ time slot, riðτÞ denotes the transmission
rate between the edge server and the ith mobile device at the τ
time slot, QF

i ðτÞ denotes the remaining workloads in the ith
front-end queue, and QB

i ðτÞ denotes the remaining result
data size in the ith back-end queue at the τ time slot, respec-
tively. According to the transfer equations of the front-end
queue QFðτÞ and back-end queues QBðτÞ, QF

i ðτÞ and QB
i ðτÞ

can be dynamically evolved. At last, riðτÞ can be dynamically
calculated according to the network model.

4.2. Action Space. As we employ the resource share scheme of
time-division multiplexing in this paper, an allocation action
aðτÞ ∈A consists of the time ratio at which different mobile
users use computing and communication resources at each
time slot τ. It can be denoted by

a τð Þ = μ1 τð Þ,⋯, μi τð Þ,⋯, μn τð Þ, η1 τð Þ,⋯, ηi τð Þ,⋯, ηn τð Þ½ �,
ð4Þ

where μiðτÞ denotes the time ratio at which the ith mobile
user occupies computing resource at the τth time slot, ηiðτÞ
denotes the time ratio at which the ith mobile user occupies
a communication resource at the τth time slot. Particularly,
the resource allocation can be elaborately optimized in a con-
tinuous action space, i.e., μiðτÞ ∈ ½0, 1� and ηiðτÞ ∈ ½0, 1�.
Based on the current system state sðτÞ, the action aðτÞ ∈A
can be selected for each time slot τ ∈T .

4.3. Reward Function. Since the resource allocation action is
driven by the reward, the reward function plays an important
role in the deep reinforcement learning algorithms. In this
paper, the immediate reward RðτÞ is the weighted sum of
the number of processed tasks hðτÞ in time slot τ, the number
of punished tasks pðτÞ in time slot τ, and the number of
dropped tasks dðτÞ in time slot τ. The tasks will be punished
due to processing timeout, and the tasks will be dropped due
to insufficient space of data buffer. The immediate reward R
ðτÞ obtained by taking the action aðτÞ ∈ S at current system
state sðτÞ ∈A can be calculated by

R τð Þ = ω1h τð Þ − ω2p τð Þ − ω3d τð Þ, ð5Þ

where hðτÞ =∑n
i=1hiðτÞ, pðτÞ =∑n

i=1piðτÞ, dðτÞ =∑n
i=1diðτÞ,

ω1, ω2, and ω2 are the weighted factors of the number of
processed tasks hiðτÞ, the number of punished tasks piðτÞ,
and the number of dropped tasks diðτÞ, respectively. We fur-
ther derive the hiðτÞ, piðτÞ, and diðτÞ as follows.

If the time ratio at which the computing resource is allo-
cated to MDi is μiðτÞ ∈ ½0, 1� at tth time slot, the amount of

executed computation tasks biðτÞ can be denoted by Equa-
tion (6). The μiðτÞ must meet the constraints (7).

bi τð Þ =min μi τð ÞTslotC
W

, Q
F
i τð Þ
W

� �
, ð6Þ

〠
i∈N

μi τð Þ ≤ 1: ð7Þ

If the time ratio at which the bandwidth resource is allo-
cated to MDi is ηiðτÞ ∈ ½0, 1�, the amount of computation
results transmitted hiðτÞ can be denoted by Equation (8).
The ηiðτÞ must meet the constraints (9).

hi τð Þ =min ηi τð ÞTslotri τð Þ
D

, Q
B
i τð Þ
D

� �
, ð8Þ

〠
i∈N

ηi τð Þ ≤ 1: ð9Þ

Based on the above the description, due to that the max-
imum processing time of each task is set to be Tmax time slots,
the number of punished tasks piðτÞ at τth time slot can be
calculated by Equation (10). Moreover, due to that the data
duffer’s size is Li, the number of dropped tasks diðτÞ at τth
time slot can be calculated by Equation (11).

pi τð Þ =max 〠
τ−Tmax

τ=1
Narl

i τð Þ − 〠
τ

τ=1

hi τð Þ
D

 !
, 0

 !
, τ > 2,

ð10Þ

di τð Þ =max Narl
i τð Þ − Li −QF

i τð Þ −QB
i τð Þ� �

, 0
� 	

: ð11Þ

We can see from Equation (10) that the better the chan-
nel condition, the larger the amount of data transferred and
the lesser the remaining tasks in queues. To maximize the
long-term reward, the optimal resource allocation policy is
needed to derive.

4.4. Problem Formulation. In this paper, we aim to maximize
the long-term reward by adaptively allocating the comput-
ing and communication resources to multiple mobile users.
We formulate the multiuser resource allocation problem
as follows.

Maximum : R τð Þ ð12Þ

Subject to : 〠
i∈N

μi τð ÞT slotC ≤ C, ð13Þ

〠
i∈N

ηi τð ÞTslotB ≤ B, ð14Þ

〠
i∈N

μi τð Þ ≤ 1, ð15Þ

〠
i∈N

ηi τð Þ ≤ 1, ð16Þ

5Wireless Communications and Mobile Computing



where Equation (12) is the objective function of this paper.
Equations (13) and (14) guarantee that the computing and
communication resources that are allocated to n mobile
users cannot exceed to the resource capacity of the edge
server. Equation (15) denotes the time ratio at which the
computing resource is allocated to n mobile users. Equa-
tion (16) denotes the time ratio at which the communica-
tion resource is allocated to n mobile users.

Lacking the prior knowledge of the MEC system, such
as the number of mobile devices n, and statistics of task
arrivals and wireless channel states, a model-free learning
strategy is needed to tackle this kind of stochastic optimiza-
tion problem. Since resource allocation is an optimization
problem on the continuous action space, a performance-
aware resource allocation scheme based on deep determin-
istic policy gradient (DDPG) [28] is proposed to solve this
problem. In the next section, we will introduce the algo-
rithm implementation.

5. Algorithm Implementation

The formulated multiuser resource allocation problem in this
paper is essentially an infinite discounted MDP. Since the
action space of the multiuser resource allocation problem
contains plenty of continuous variables, the critical challenge
to solve this problem is to make a decision in a continuous
action space. Aiming to this problem, a performance-aware
resource allocation (PARA) scheme based on DDPG is pro-
posed. The PARA scheme can be illustrated in Figure 2.

As shown in Figure 2, we can observe that the DDPG
algorithm mainly consists of three function components:
(1) The learned networks: they mainly include an actor net-
work μðsðτÞ ∣ θμÞ and a critic network QðsðτÞ, aðτÞ ∣ θQÞ.
The actor network is used to choose an action aðτÞ according
to the current system state sðτÞ. The critic network is mainly
adopted to estimate the action taken aðτÞ. (2) The target
networks: they are a copy of the actor and critic networks,

μ′ðs = sðτÞ ∣ θμ′Þ and Q′ðsðτÞ, aðτÞ ∣ θQ′ÞÞ, respectively. They
are mainly used to calculate the target value for training the
learned networks. (3) Replay memory: the replay memory
Ω is used to store the transition experience ðsðτÞ, aðτÞ, rðτÞ,
s¯ðτÞÞ which includes current state sðτÞ, action taken aðτÞ,
reward rðτÞ, and next state s¯ðτÞ. The transition experience
from replay memory is randomly chosen to train the learned
networks and the target networks in the direction of mini-
mizing a sequence of the loss functions. The detailed pro-
cesses of DDPG can be illustrated as follows.

The system state sðτÞ is first to feed into the actor network
in the τth time slot. The actor network generates a resource
allocation action aðτÞ for the current system state sðτÞ. Based
on the action aðτÞ, the edge server allocates the computing and
communication resources to multiple mobile users to execute
the task workloads and transmit the computation results to
mobile users. Then, the immediate long-term reward can be
calculated by Equation (4). Next, the resulting system state s¯
ðτ + 1Þ at next time slot ðτ + 1Þ can be observed. At last, the
transition experience (sðτÞ, aðτÞ, RðτÞ, s¯ðτ + 1Þ) is stored into
the experience replay memory Ω.

Action

Computating resources

Communication resources

Actor

…

…

Critic
Value

…

�e target networks�e learned networks

Actor

…

…

Critic
Value

…

Update

Action Reward N-StateState

Replay memory

Update Update Update

UpdateUpdateAction

MD1

MD3
MD2 MDi

MDn

Environment

… …

State

�e number of arrival tasks

�e front-end queue’s state

�e back-end queue’s state

�e transmission rate

O
bservation

Action

Reward

�e number of processed tasks

�e number of punished tasks

�e number of dropped tasks

Rew
ard

Figure 2: The PARA scheme based on the DDP algorithm.

6 Wireless Communications and Mobile Computing



In this training stage, a minibatch of transition experi-
ences ~Ω is randomly sampled from the replay memory Ω to
compute the target action value μ′ðsðτ + 1Þ ∣ θμ′Þ and target

Q value Q′ðsðτ + 1Þ, μ′ðsðτ + 1ÞÞ ∣ θQ′Þ for the next system
state s¯ðτ + 1Þ, respectively. Then, the target Q value for the

system state sðτÞ is updated to be yðτÞ = RðτÞ + γQ′ðsðτ +
1Þ, μ′ðsðτ + 1ÞÞ ∣ θQ′Þ in the target critic network and trans-
mits it to the critic network in the learned networks. After
receiving yi, the critic network in the learned network is
updated by minimizing the loss function L =∑τðyðτÞ −
QðsðτÞ, aðτÞ ∣ θQÞÞ2/N . Based on the θQ, the actor policy in
the learned network is updated using the sampled policy gra-
dient ∇θμI . In this way, after the training of MAX_EPI-
SODES episodes, when the long-term reward converges, the
optimal resource allocation can be gradually learned.

As for the testing stage, the network parameters learned
in the training stage will firstly be loaded. Then, the edge
server will start with an empty data buffer and interact with
a randomly initialized environment. When its observation
of the environment is obtained as the current state, the
action can be selected according to the output of the actor
network. Based on the action taken at the current system
state, the reward can be calculated.

The PARA scheme is described in detail in Algorithm 1.

6. Simulation Experiments

In this section, we perform the simulation experiments to
demonstrate the effectiveness of our proposed PARA
scheme. First, we introduce the experiment parameter setup.
Then, we introduce the experiment design including evalua-
tion metrics and baseline algorithms. At last, we compare
our proposed PARA scheme with the other three peer algo-
rithms under different parameters and analyze the experi-
mental results.

6.1. Experiment Setup.We consider a multiuser MEC system
comprising an edge server and nmobile devices. Each mobile
device can offload computation tasks to the edge server.
When n mobile devices share the limited computing and
communication resource of an edge server simultaneously,
we propose the PARA scheme to solve optimal resource allo-
cation policy. We implement our proposed PARA scheme
and three baseline algorithms on python 3.6 and analyze cor-
responding experimental results. We set the experimental
parameters referring to the literatures [1, 3, 29]. Major

BEGIN
01: Initialize the learned networks Qðs, a ∣ θQÞ and μðs ∣ θμÞ with weights θQ and θμ;

02: Initialize target networks Q′ðs, a ∣ θQ′Þ and μ′ðs ∣ θμ′Þ with weights θQ′
⟵ θQ, θμ ⟵ θμ

′ ;
03: Initialize the experience replay memory Ω with size U , the minibatch ~Ω ⊂Ω with size ~U ;
04: Initialize the task arrival rate λ, the data buffer’s size L, the font-end queueQFðtÞ, the back-end queueQBðtÞ, and the transmission

rate rðτÞ between the edge server and the mobile users.
05: for curr_episode = 1, MAX_EPISODES do
06: Initialize a noise object ounoise to exploration actor;
07: Reset simulation parameters for performance-aware resource allocation environment, and observe an initial system state sðτÞ ∈ S;
08: Initial the long-term reward ep¯reward = 0;
09: for each time slot τ = 1, MAX_EP_STEPS do
10: Select an action aðτÞ = μðsðτÞ ∣ θμÞ + ounoise based on the actor network and exploration noise;
11: Based on the action aðτÞ, the edge server allocates resource to execute workloads and transmits the computation results, and the

immediate reward RðτÞ can be calculated, and then the next state sðτ + 1Þ can be observed;
12: The experience transition (sðτÞ, aðτÞ, rðτÞ, s¯ðτ + 1Þ) is stored into the replay memory;
13: Update the long-term reward ep¯reward + = RðτÞ and system state sðτÞ = s¯ðτ + 1Þ;
14: A minibatch ~U of transition experiences is randomly sampled from replay memory Ω;

15: Compute the target action value μ′ðs¯ðτ + 1Þ ∣ θμ′Þ and the target Q value Q′ðs¯ðτ + 1Þ, μ′ðs¯ðτ + 1ÞÞ ∣ θQ′Þ for the next state s¯
ðτ + 1Þ;

16: Update the target Q value yðτÞ = RðτÞ + γQ′ðs¯ðτ + 1Þ, μ′ðs¯ðτ + 1ÞÞ ∣ θQ′Þ for the current state sðτÞ;
17: Update the critic network QðsðτÞ, aðτÞ ∣ θQÞ by minimizing the loss L:

L = 1/~U〠
τ
ðyðτÞ −QðsðτÞ, aðτÞjθQÞÞ2

18: Update the actor network μðs ∣ θμÞ by using the sampled policy gradient:
∇θμ J ≈ 1/~U〠

τ
∇aðτÞQðsðτÞ, aðτÞjθQÞjs=sðτÞ,a=μðτÞ∇θμμðsðτÞjθμÞjsðτÞ

19: Update the target network:

θQ′ ⟵ TθQ + ð1 − TÞθQ′
θμ′ ⟵ Tθμ + ð1 − TÞθμ′

15: end for
16: end for
END

Algorithm 1: PARA scheme.

7Wireless Communications and Mobile Computing



simulation parameter setting in the following experiments is
listed in Table 2.

Initially, the number of mobile devices is n = 3. We
assume that the tasks’ arrival process of each mobile device
follows a Poisson distribution with mean λ = ð7,⋯, 7,⋯, 7Þ
. Moreover, the workload of each task follows the uniform
distribution in the range ½0:7, 1:1�Gycles. The result data size
per unit workload follows the uniform distribution in the
range ½0:8, 1:2�MB. The processing time for each task cannot
exceed to 2 time slots, which is Tmax = 2. The time slot length
is Tslot = 1 s.

Initially, the processor cores of the edge server are
Ncore = 10. The computational capacity is C = 2:5GHz with
a single CPU core. In our experiments, we will adjust the
computational resources by changing the number of CPU
cores. Actually, the CPU frequency is not directly equal to
the computing capacity, and however, they are propor-
tional to each other. So, we assume that the computational
resource is the CPU frequency, which is usually justified in
practice and also has been used by [30]. The size of data
buffer Qi for mobile user MDi is Li = 40.

For the communication model, the transmission power
of the edge server is PeNB = 40W, and the maximum channel
bandwidth for edge server is B = 100MHz, the additive white
Gaussian noise power is σ2 = −174 dbm/Hz, the path-loss
constant is α = 0:01, the path-loss exponent is θ = 4, and the
reference distance is d0 = 1m [1, 31, 32]. The distance
between the mobile device and edge server is a random num-
ber which has the maximum value dmax = 350m.

The weights for the number of processed tasks, the num-
ber of punished tasks, and the number of dropped tasks are
ω1 = 5, ω2 = 1, and ω2 = 1.

For the actor network in learned networks, there are two
hidden layers, and each hidden layer is consisting of 30 neu-
rons. These two hidden layers’ activation functions are the
Rectified Linear Unit (ReLU). As the value of the action is
in the range of [0,1], the output layer’s activation function
is Tanh function. For the critic network in learned networks,
it also consists of two hidden layers, and the number of neu-
rons for each hidden layer is 30. The capacity of replay mem-
ory is set to be 10000, and the size of minibatch is set to be 64,
and the training interval as 10.

6.2. Simulation Design

6.2.1. Evaluation Metrics

(1) The total reward: the immediate reward is the
weighted sum of the number of immediate processed
tasks hðtÞ, the number of immediate punished tasks
pðtÞ, and the number of immediate dropped tasks d
ðtÞ. Therefore, the total reward can be calculated by
Equation (4). We can use this metric to evaluate the
quality of the resource allocation policy. The higher
the quality of the resource allocation policy, the more
fully the system resources can be utilized, the more
tasks that can be processed, and the lesser tasks that
can be punished and dropped

(2) The total number of processed tasks: the number of
immediate processed tasks can be calculated by
Equation (7). Hence, the total number of processed
tasks can be calculated by accumulating the number
of immediate processed tasks. We can use this metric
to measure how many are the total of processed tasks
in a long time

(3) The total number of punished tasks: the number of
immediate punished tasks can be calculated by Equa-
tion (9). The total number of punished tasks is the
sum of the number of immediate punished tasks.
We can use the metric to measure that the total num-
ber of tasks is punished in the system over a long time

(4) The total number of dropped tasks: the number of
immediate dropped tasks can be calculated by Equa-
tion (10). The total number of dropped tasks can be
calculated by accumulating the number of immediate
dropped tasks. This matric is mainly used to measure
that the total number of tasks is dropped in the sys-
tem over a long time

6.2.2. Baseline Algorithm

(1) PF: this abbreviation stands for the proportional fair,
which means this algorithm allocates the computing
and communication resources according to the cur-
rent lengths of the front-end queue and back-end
queue. In this case, the computing and communica-
tion resources are allocated as follows: μiðtÞ =QF

i ðtÞ/
∑i∈NQ

F
i ðtÞ and ηiðtÞ =QB

i ðtÞ/∑i∈NQ
B
i ðtÞ

(2) AF: this means the average resource allocation. This
algorithm equally allocates the computing and com-
munication resources to n mobile users. Therefore,
computing and communication resource can be allo-
cated as follows: μiðtÞ = 1/n and ηiðtÞ = 1/n

(3) RF: this represents the random resource allocation.
The algorithm randomly allocates computing and
communication resources to n mobile users. At
each time slot, it randomly generates the computing
resource’s allocation rate μiðtÞ ∈ ½0, 1� and the com-
munication resource’s allocation rate ηiðtÞ ∈ ½0, 1�
for each mobile user MDi and normalize them.
Therefore, the computing and communication
resource can be allocated as follows: μiðtÞ = μiðtÞ/
∑i∈NμiðtÞ and ηiðtÞ = ηiðtÞ/∑i∈NηiðtÞ

Table 2: Parameter setting.

Sections λi Ncore W D B n

Section 6.3.1 6, 10½ � 10 1:0 1:0 100 3
Section 6.3.2 7 7, 11½ � 1:0 1:0 100 3
Section 6.3.3 7 10 0:7,1:1½ � 1:0 100 3
Section 6.3.4 7 10 1:0 0:8,1:2½ � 100 3
Section 6.3.5 7 10 1:0 1:0 10, 100½ � 3, 30½ �

8 Wireless Communications and Mobile Computing



6.3. Performance Analysis

6.3.1. Performance Impact of Different Task Arrival Rates. To
examine the performance impact of different task arrival
rates, we vary the task arrival rate λ from 6 to 10 with an
increment of 1. Figure 3(a) plots the long-term reward
obtained by four algorithms under different task arrival rates.
We can observe from Figure 3(a) that the PARA algorithm
outperforms the other three algorithms. In particular, the
long-term reward of the PARA algorithm increases first
and then decreases, while the long-term rewards of the PF
algorithm, AF algorithm, and RF algorithm decrease as the
task arrival rate increase. That is because the PARA algo-
rithm can adaptively allocate computing and communication
resource according to the changing environment, such as the
task arrival, the front-end queue’s workload, the back-end
queue’s data size, and the transmission rate, which can make
full use of the computing and communication resources to
process much more tasks. However, the PF, AF, and RF algo-
rithms fail to perceive the dynamic environment and reason-
ably allocate computing and communication resources. As
the task arrival rate increases, the greater number of tasks
arrives at the edge server, the greater number of tasks is
processed by the PARA algorithm. However, the number
of tasks that the PF, AF, and RF algorithms process increase

first and then hardly changed. Figure 3(b) shows the total
number of processed tasks in each episode. We can observe
from Figure 3(b) that the PARA algorithm is higher than that
of the PF, AF, and RF algorithm. In addition, Figures 3(c) and
3(d) show the total number of dropped tasks and the total
number of punished tasks in each episode, respectively.
We can see from these two figures that the total number
of dropped tasks and the total number of punished tasks
gradually increase with the increasing of the task arrival
rate, and these obtained by the PARA algorithm are lower
than the PF, AF, and RF algorithms. In this context, the
long-term reward of the PF, AF, and RF algorithms gradually
decreases, and that of the PARA algorithm increases first and
then decreases.

6.3.2. Performance Impact of Different Computing Resource.
The computing capacity of the edge server is mainly relative
to the number of CPU cores. To investigate the performance
impact of different computing capacity for the edge server,
we vary the CPU cores from 7 to 11 with an increment of
1. Figure 4(a) plots the long-term rewards of all algorithms.
We can observe from Figure 4(a) that the long-term rewards
of all algorithms increase gradually with the increase of the
CPU cores. This is because, with more computing resource,
the greater number of tasks can be processed, and the fewer

20000

6.0 6.5 7.0 7.5 8.0
Task arrival rate

8.5 9.0 9.5 10.0

30000
40000

�
e t

ot
al

 re
w

ar
d

50000
60000
70000
80000

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(a) The total reward

6.0 6.5 7.0 7.5 8.0
Task arrival rate

8.5 9.0 9.5 10.0

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

18000

�
e n

um
be

r o
f p

ro
ce

ss
ed

 ta
sk

s

19000

20000

21000

22000

(b) The total number of processed tasks

6.0 6.5 7.0 7.5 8.0
Task arrival rate

8.5 9.0 9.5 10.0

10000
20000
30000

�
e t

ot
al

 n
um

be
r o

f t
im

eo
ut

 p
en

al
ty

40000
50000
60000
70000

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(c) The total number of timeout penalty

6.0 6.5 7.0 7.5 8.0
Task arrival rate

8.5 9.0 9.5 10.0

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

0

2000

�
e t

ot
al

 n
um

be
r o

f d
ro

pp
ed

 ta
sk

s
4000

6000

8000

10000

(d) The total number of dropped tasks

Figure 3: Performance impact of different arrival rates.

9Wireless Communications and Mobile Computing



number of tasks are punished and dropped, which leads to a
higher long-term reward. It is noted that the curves of the PF,
AF, and RF algorithms are flat when the number of CPU
cores is equal to or larger than 8, while the curve of the PARA
algorithm is flat when the number of CPU cores is equal to or
larger than 10. This can be explained that the number of
processed tasks reaches the maximum under this computing
and communication capacity. Moreover, the long-term
reward of the PARA algorithm is higher than that of the
PF, AF, and RF algorithms. That is because the PARA algo-
rithm can perceive the environment dynamics and adaptively
allocate computing and communication resources to process
much more tasks.

In Figure 4(b), below the 9 CPU cores, the fewer number
of CPU cores, the lower computing capacity of the edge
server, which leads to the fewer number of processed tasks,
the greater number of timeout tasks and dropped tasks. To
maximize the reward (the weighted sum of the number of
processed tasks, the number of punished tasks, and the num-
ber of dropped tasks) of the PARA algorithm, it can decrease
the penalty of task timeout and the number of dropped tasks.
If it is a priority given to reduce the number of dropped tasks,
it will incur much more penalty of tasks timeout due to the
insufficient computing capacity, resulting in the lower
reward. On the contrary, if it is a priority given to reduce

the number of task timeout, it will drop more tasks, resulting
in a higher reward for the PARA algorithm. The greater
number of dropped tasks, the smaller number of processed
tasks, and therefore, below the 9 CPU cores, the number of
processed tasks for the PARA algorithm is lower than that
for the PF, AF, and RF algorithms. Moreover, as shown in
Figure 4(b), when the number of CPU cores is greater than
or equal to 9, the computing capacity of the edge server is
enough to process the arrival tasks while satisfying the execu-
tion delay constraint and thereby the number of timeout
tasks and dropped tasks decrease and the number of proc-
essed tasks increase.

As shown in Figures 4(c) and 4(d), the total number of
punished tasks and the total number of dropped tasks in each
episode gradually decrease with the increasing number of
CPU cores. Moreover, the total number of punished tasks
and the total number of dropped tasks for the PARA algo-
rithm are lower than that of the PF, AF, and RF algorithms.
The reason is that the PARA algorithm can make full use of
the computing and communication resources to process
much more tasks.

6.3.3. Performance Impact of Different Workloads. To investi-
gate the impact of different task workloads on the long-term
reward, we conduct the experiments with this parameter

7.0 7.5 8.0
CPU cores

8.5 9.0 9.5 10.0 10.5 11.0

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

20000

10000

30000

40000

�
e t

ot
al

 re
w

ar
d

50000

60000

70000

80000

(a) The total reward

7.0 7.5 8.0
CPU cores

8.5 9.0 9.5 10.0 10.5 11.0

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

18000

17000

16000

15000

14000�
e n

um
be

r o
f p

ro
ce

ss
ed

 ta
sk

s

19000

20000

21000

(b) The total number of processed tasks

7.0 7.5 8.0
CPU cores

8.5 9.0 9.5 10.0 10.5 11.0

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

30000

�
e t

ot
al

 n
um

be
r o

f t
im

eo
ut

 p
en

al
ty

40000

50000

60000

70000

(c) The total number of timeout penalty

7.0 7.5 8.0
CPU cores

8.5 9.0 9.5 10.0 10.5 11.0

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

0

2000

1000

�
e t

ot
al

 n
um

be
r o

f d
ro

pp
ed

 ta
sk

s
3000

4000

5000

6000

7000

(d) The total number of dropped tasks

Figure 4: Performance impact of different computing resource.

10 Wireless Communications and Mobile Computing



varying from 0.7 to 1:1GHz∙s with an increment of 0.1. The
related results are plotted in Figure 5. We can see from
Figure 5(a) the long-term rewards of the PARA, PF, and AF
algorithms first increase and then gradually decrease with
the increasing of task workload, while the long-term reward
of the RF algorithm gradually decreases. The reason is that
with the increasing of task workload, the greater number of
tasks is processed by all algorithms. However, when the
workload is equal to or larger than 0.9, the greater number
of tasks is dropped and punished, and thereby, the long-
term rewards gradually decrease. Moreover, the long-term
reward of the PARA algorithm is higher than that of the
PF, AF, and PARA algorithms. That is because the PARA
algorithm can process much more tasks than the PF, AF,
and RF algorithms. At the same time, the PARA algorithm
drops and punishes less tasks than the PF, AF, and RF algo-
rithms, which leads to the higher long-term rewards of the
PARA algorithm.

Figure 5(b) shows that with the increase of task work-
load, the total number of processed tasks in each episode
is gradually increasing and tend to be stable. The reason
is that the larger task workload, the lager the data size of
generated computation result, the greater number of proc-
essed tasks. Moreover, the total number of processed tasks
for the PARA algorithm is higher than that for the PF,

AF, and RF algorithms. That is because the PARA algo-
rithm can make full use of the resource to process much
more tasks. Figures 5(c) and 5(d) show that with the increase
of task workload, the total number of punished tasks and the
total number of dropped tasks gradually increase. The reason
is that with the limited resource of the edge server, the num-
ber of processed tasks gradually increase and tend to be stable
with the increase of task workload, which leads to the num-
ber of punished and dropped tasks gradually increase. In
addition, the total number of punished tasks and the total
number of dropped tasks for the PARA algorithm are lower
than that of the PF, AF, and RF algorithms. The reason is
the same as above.

6.3.4. Performance Impact of Different Result Data Sizes.
Figure 6 illustrates the impact of result data size on the
long-term reward. We discuss about the performance of all
algorithms when the result data size is varied from 0.8 to
1.2 with the increase of 0.1. As observed from Figure 6(a),
the long-term rewards of all algorithms first gradually
increase and then tend to be stable under different result data
sizes. That is because with the limited computing and com-
munication resources, the maximum number of processed
tasks is constant. With the result data sizes gradually
increase, the number of processed tasks first gradually

0.70 0.75 0.80
Task workload
0.85 0.90 0.95 1.00 1.05 1.10

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

30000

40000�
e t

ot
al

 re
w

ar
d

50000

60000

70000

80000

90000

(a) The total reward

0.70 0.75 0.80
Task workload
0.85 0.90 0.95 1.00 1.05 1.10

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

18000

17000

16000

15000�
e n

um
be

r o
f p

ro
ce

ss
ed

 ta
sk

s

19000

20000

21000

(b) The total number of processed tasks

0.70 0.75 0.80
Task workload
0.85 0.90 0.95 1.00 1.05 1.10

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

30000

20000

10000

0

�
e t

ot
al

 n
um

be
r o

f t
im

eo
ut

 p
en

al
ty

40000

50000

60000

70000

(c) The total number of timeout penalty

0.70 0.75 0.80
Task workload
0.85 0.90 0.95 1.00 1.05 1.10

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

0
500

1000
1500
2000
2500
3000
3500
4000

�
e t

ot
al

 n
um

be
r o

f d
ro

pp
ed

 ta
sk

s

(d) The total number of dropped tasks

Figure 5: Performance impact of different workloads.

11Wireless Communications and Mobile Computing



increase and then hardly change, and thereby, the number of
dropped tasks and the number of punished tasks first gradu-
ally decrease and then hardly changed. In particular, the
long-term reward of the PARA algorithm outperforms that
of the PA, AF, and RF algorithms. The reason is that the
PARA algorithm can perceive the environment dynamics
and make full use of the resources to process much more
tasks, and thereby, the long-term reward is higher than that
of the PA, AF, and RF algorithms. As shown in Figure 6(b),
we observe that the number of processed tasks first increases
and then tend to be stable with the increase of the result data
size. Moreover, the total number of processed tasks for the
PARA algorithm is higher than that for the PF, AF, and RF
algorithms. Figures 6(c) and 6(d) show the total number of
punished tasks and the total number of dropped tasks,
respectively. We can see from these two figures that the total
number of dropped tasks and the total number of punished
tasks gradually decrease and tend to stable with the increase
of the result data size, and these obtained by the PARA algo-
rithm are lower than the PF, AF, and RF algorithms. In this
context, the long-term reward of the PARA algorithm is
higher than that of the PF, AF, and RF algorithms.

6.3.5. Performance Impact of Different Bandwidths. To inves-
tigate the impact of bandwidth on the long-term reward, we

conduct the experiments with this parameter varying from
20 to 100 with the increase of 20. The related results are
shown in Figure 7. We can see from Figure 7(a) that as the
bandwidth goes from 20 to 100, the long-term rewards of
all algorithms increase gradually. This is because the larger
bandwidth is, the higher transmission rate for each mobile
device is, which makes the edge server process more tasks
in each time slot, resulting in fewer number of punished
and dropped tasks. Moreover, we can also observe from
Figure 7(a) that the long-term reward of the PARA algorithm
is higher than that of the PF, AF, and RF algorithms. The
main reason is that the PARA algorithm can give an optimal
computing and communication resource allocation scheme
according to the environment dynamic, and hence, the
PARA algorithm can make full use of computing and com-
munication resource to process more tasks in contrast with
the PF, AF, and RF algorithms. Due to that the PARA algo-
rithm can process more tasks, it drops and punishes lesser
tasks, which results in the higher long-term rewards of the
PARA algorithm.

Figure 7(b) shows that the total number of processed
tasks in each episode. We can observe from Figure 4(b) that
the number of processed tasks for all algorithms gradually
increases with the increase of bandwidth, and the number
of processed tasks for the PARA algorithm is higher than that

0.80
Result data sizes

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

30000

40000�
e t

ot
al

 re
w

ar
d

50000

60000

70000

80000

90000

(a) The total reward

0.80
Result data sizes

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

19500

19000

18500

18000

�
e n

um
be

r o
f p

ro
ce

ss
ed

 ta
sk

s

20000

20500

21000

(b) The total number of processed tasks

0.80
Result data sizes

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

30000

20000

�
e t

ot
al

 n
um

be
r o

f t
im

eo
ut

 p
en

al
ty

40000

50000

60000

(c) The total number of timeout penalty

0.80
Result data sizes

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

0

500

1000

1500

2000

2500

3000

�
e t

ot
al

 n
um

be
r o

f d
ro

pp
ed

 ta
sk

s

(d) The total number of dropped tasks

Figure 6: Performance impact of different result data sizes.

12 Wireless Communications and Mobile Computing



for the PF, AF, and RF algorithms. The reason is explained as
above. As shown in Figures 4(c) and 4(d), we can further
observe that with the increase of bandwidth, the number of
punished tasks and the number of dropped tasks in each epi-
sode gradually decrease. That is because the larger the band-
width is, the more tasks are processed, the fewer tasks are
punished and dropped. In addition, the number of punished
tasks and the number of dropped tasks for the PARA algo-
rithm are lower than that of the PF, AF, and RF algorithms.
The reason is that the PARA algorithm can make full use of
the computing and communication resource to process
much more tasks.

6.3.6. Performance Impact of Different Numbers of MDs. For
the purpose of revealing the performance impact of the num-
ber of mobile users, we conduct the experiments with 3, 15,
and 30 mobile users, respectively. The related results are
given in Figure 8.We can observe from Figures 8(a)–8(c) that
the performance of the PARA algorithm outperforms the PF,
AF, and RF algorithms. This is because, under limited com-
puting and communication resources, the PARA algorithm
can perceive the environment dynamics and adaptively allo-
cate computing and communication resources to process
more tasks, to drop and punish less tasks. In addition, we
can observe from Figure 8 that the long-term rewards of all
algorithms increase with the number of mobile users and
the resource of the edge server. The least long-term reward

was obtained by 3 mobile users, a moderate level of long-
term reward was obtained by 15 mobile users, and the most
long-term reward was obtained by the 30 mobile users. The
experiments show that the PARA algorithm can achieve
excellent performance in different scale scenarios.

6.3.7. Analysis of PARA Scheme’s Performance. Figures 9(a)–
9(d) show the learning curves of the PARA scheme over var-
iations of task arrival rate, computing resource, task work-
loads, and result data size, respectively. We can observe
from Figure 9(a) that the long-term rewards of different task
arrival rates gradually increase and then tend to be stable
with the increasing of learning time (i.e., the number of epi-
sodes) from 1 to 500. The result indicates that the proposed
PARA scheme can converge to an optimal policy to maxi-
mize the long-term reward. In addition, the long-term
reward with the task arrival rate 6 is the largest, the task
arrival rate 10 is the lowest, and the task arrival rate 8 is
between 6 and 10. The reason is that with the increasing of
task arrival rate, the number of arrival tasks increases. Due
to the limited resource of the edge server, the greater number
of arrival tasks, the greater number of processed tasks, the
greater number of punished tasks, and the greater number
of dropped tasks. However, the long-term weighted sum of
the number of processed tasks, the number of punished tasks,
and the number of punished tasks decreases.

Bandwidth
20 30 40 50 60 70 80 90 100

�
e t

ot
al

 re
w

ar
d

–20000

–40000

–60000

–80000

0

20000

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(a) The total reward

Bandwidth
20 30 40 50 60 70 80 90 100

16000
14000
12000
10000

8000
6000
4000

�
e n

um
be

r o
f p

ro
ce

ss
ed

 ta
sk

s

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(b) The total number of processed tasks

Bandwidth
20 30 40 50 60 70 80 90 100

50000

60000

70000

80000

90000

�
e t

ot
al

 n
um

be
r o

f t
im

eo
ut

 p
en

al
ty

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(c) The total number of timeout penalty

Bandwidth
20 30 40 50 60 70 80 90 100

16000
18000

14000
12000
10000

8000
6000

�
e t

ot
al

 n
um

be
r o

f d
ro

pp
ed

 ta
sk

s

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(d) The total number of dropped tasks

Figure 7: Performance impact of different bandwidths.

13Wireless Communications and Mobile Computing



As shown in Figure 9(b), with the increasing of the num-
ber of learning episode, the long-term rewards of the differ-
ent number of CPU cores gradually increase and become
stable. It means that the PARA scheme can find the optimal
allocation policy under the different number of CPU cores.
Moreover, the long-term reward of the number of CPU cores
7 is the lowest, the number of CPU cores 11 is the largest, and
the number of CPU cores 9 is between 7 and 11. That is
because the greater number of CPU cores, the greater num-
ber of processed tasks, and the fewer number of punished
tasks, and the fewer number of dropped tasks. Therefore,
the long-term weighted sum increases.

Figure 9(c) shows that the long-term reward of different
workloads first increases and then becomes stable. The
results demonstrate that our proposed PARA scheme can
converge to an optimal policy. In addition, we can observe
from Figure 9(c) that long-term reward first increases and
then reduces with the increasing of workload. Specifically,
the long-term reward of workload 0.9 is the largest, the
long-term reward of workload 1.1 is the lowest, and the
long-term reward of workload 0.7 is between 0.9 and 1.1. It
is because when the workload is less than 0.9, our proposed
PARA scheme can process the greater number of tasks with
the increasing of task workload. However, as the workload

increases further, the number of dropped tasks and the num-
ber of punished tasks increase, and thereby, the long-term
weighted sum decreases.

Figure 9(d) shows that the long-term rewards of different
result data sizes gradually increase and tend to be stable. The
result indicates that the PARA scheme can converge under
different result sizes. Moreover, from Figure 9(d), we can
see that the long-term reward of result data size 1.2 is the
largest, the long-term reward of result data size 0.8 is the low-
est, and the long reward of result data size 1.0 is between 0.8
and 1.2. It is due to that when the result data size increases,
the number of processed tasks first increases. However, when
the transferred result data size reaches the maximum that the
system can process, the number of processed tasks hardly
changes. Therefore, the long-term rewards first increase
and then hardly changed.

7. Conclusions and Future Work

In this paper, we investigate the problem of joint comput-
ing and communication resource allocation in a multiuser
MEC system. Aiming at this problem, we first build a com-
puting and communication resource allocation architecture
for multiple users. Then, we formulate this problem as an

50000

40000

60000

70000

80000

90000

�
e t

ot
al

 re
w

ar
d

Episodes
0 100 200 300 400 500

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(a) The total reward with 3 MDs

–100000

–200000

0

200000

100000

300000

Episodes
0 100 200 300 400 500

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(b) The total reward with 15 MDs

–200000

–400000

0

400000

200000

600000

Episodes
0 200 400 600 800 1000

PARA algorithm
PF algorithm

AF algorithm
RF algorithm

(c) The total reward with 30 MDs

Figure 8: Performance impact of different number of MDs.

14 Wireless Communications and Mobile Computing



infinite discounted continuous state MDP. At last, the
front-end and back-end queues are used for each mobile
user, and a PARA scheme based on DDPG is proposed to
solve the optimal resource allocation policy, the objective
of which is to maximize the long-term weighted sum of
the number of processed tasks, the number of punished
tasks, and the number of dropped tasks. To demonstrate
the effectiveness of our proposed PARA scheme, we con-
duct extensive experiments and compare the PARA scheme
with the other three algorithms, such as the random fair
(RF) algorithm, average fair (AF) algorithm, and propor-
tional fair (PF) algorithm. The experimental results demon-
strate that the PARA scheme is more effective than the RF,
AF, and PF algorithms under the different parameters, such
as the task arrival rate, the computing capacity, the task
workload, the data size of computation result, and the
number of mobile users. Therefore, this work can provide
valued guidelines for the practical multiuser resource allo-
cation in the MEC system. In future work, we will further
investigate the distributed learning approach such as feder-
ated learning which is exploited to decrease the complexity
at one central node.

Data Availability

(1) The experiment data supporting this experiment analysis
are from previously reported studies, which have been cited.
(2) The experiment data used to support the findings of this
study are included within the article. (3) The experiment data
are described in Section 6 in detail.

Conflicts of Interest

The authors declare that there is no conflict of interest.

Acknowledgments

This work was supported by the National Science Founda-
tion of China (Nos. 61802095, 61572162, and 61572251),
the Zhejiang Provincial National Science Foundation of
China (Nos. LQ19F020011 and LQ17F020003), the Zhejiang
Provincial Key Science and Technology Project Foundation
(No. 2018C01012), and the Open Foundation of State key
Laboratory of Networking and Switching Technology

50000
40000
30000
20000
10000

60000
70000
80000
90000

�
e t

ot
al

 re
w

ar
d

Episodes
0 100 200

𝜆i = 6
𝜆i = 8
𝜆i = 10

300 400 500

(a) Learning curves with different task arrival rates

40000

20000

0

–20000

60000

80000

�
e t

ot
al

 re
w

ar
d

Episodes
0 100 200 300 400 500

Ncore = 7
Ncore = 9
Ncore = 11

(b) Learning curves with a different computing resource

40000

20000

0

–20000

60000

80000

�
e t

ot
al

 re
w

ar
d

Episodes
0 100 200

W = 0.7
W = 0.9
W = 1.1

300 400 500

(c) Learning curves with different task workloads

50000

40000

30000

60000

70000

80000

90000

�
e t

ot
al

 re
w

ar
d

Episodes
0 100 200 300 400 500

D = 0.8
D = 1.0
D = 1.2

(d) Learning curves with different result data sizes

Figure 9: Learning curves with different performance parameters.

15Wireless Communications and Mobile Computing



(Beijing University of Posts and Telecommunications) (No.
SKLNST-2019-2-15).

References

[1] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic
joint radio and computational resource management for
multi-user mobile-edge computing systems,” IEEE Transac-
tions on Wireless Communications, vol. 16, no. 9, pp. 5994–
6009, 2017.

[2] H. Tang, C. Li, J. Bai, J. H. Tang, and Y. Luo, “Dynamic
resource allocation strategy for latency-critical and computa-
tion- intensive applications in cloud-edge environment,” Com-
puter Communications, vol. 134, pp. 70–82, 2019.

[3] X. Wang, Y. Cui, Z. Liu, J. Guo, and M. Yang, “Optimal
resource allocation for multi-user {MEC} with arbitrary task
arrival times and deadlines,” in ICC 2019 - 2019 IEEE Interna-
tional Conference on Communications (ICC), pp. 1–6, Shang-
hai, China, 2019.

[4] C. Yi, J. Cai, and Z. Su, “A multi-user mobile computation off-
loading and transmission scheduling mechanism for delay-
sensitive applications,” IEEE Transactions on Mobile Comput-
ing, vol. 19, no. 1, pp. 29–43, 2020.

[5] L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, and X. Wang,
“Multi-user resource control with deep reinforcement learning
in IoT edge computing,” 2019, http://arxiv.org/abs/1906
.07860.

[6] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge
computing: a taxonomy,” in Proceedings of the Sixth Interna-
tional Conference on Advances in Future Internet, pp. 48–55,
Lisbon, Portugal, 2014.

[7] J. Guo, Z. Song, Y. Cui, Z. Liu, and Y. Ji, “Energy-efficient
resource allocation for multi-user mobile edge computing,”
in GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, pp. 1–7, Singapore, 2017.

[8] J. Zhang, X. Hu, Z. Ning et al., “Joint resource allocation for
latency-sensitive services over mobile edge computing net-
works with caching,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4283–4294, 2019.

[9] Z. Yang, C. Pan, J. Hou, and M. Shikh-Bahaei, “Efficient
resource allocation for mobile-edge computing networks with
NOMA: completion time and energy minimization,” IEEE
Transactions on Communications, vol. 67, no. 11, pp. 7771–
7784, 2019.

[10] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,”
IEEE Transactions on Wireless Communications, vol. 16,
no. 3, pp. 1397–1411, 2017.

[11] Y. Mao, J. Zhang, S. H. Song, and K. Ben Letaief, “Power-delay
tradeoff in multi-user mobile-edge computing systems,” in
2016 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6, Washington, DC, USA, 2016.

[12] T. A. Zewde and M. C. Gursoy, “Optimal resource allocation
for energy-harvesting communication networks under statisti-
cal QoS constraints,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 2, pp. 313–326, 2019.

[13] Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei,
“Energy-efficient NOMA-based mobile edge computing off-
loading,” IEEE Communications Letters, vol. 23, no. 2,
pp. 310–313, 2019.

[14] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy effi-
cient resource allocation in UAV-enabled mobile edge comput-
ing networks,” IEEE Transactions onWireless Communications,
vol. 18, no. 9, pp. 4576–4589, 2019.

[15] M. Chen and Y. Hao, “Task offloading for mobile edge com-
puting in software defined ultra-dense network,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 587–
597, 2018.

[16] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for
resource allocation in mobile-edge computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17,
no. 8, pp. 5506–5519, 2018.

[17] J. Feng, L. Zhao, J. Du, X. Chu, and F. R. Yu, “Computation off-
loading and resource allocation in D2D-enabled mobile edge
computing,” in 2018 IEEE International Conference on Com-
munications (ICC), pp. 1–6, Kansas City, MO, 2018.

[18] Y. Wu, L. P. Qian, K. Ni, C. Zhang, and X. Shen, “Delay-min-
imization nonorthogonal multiple access enabled multi-user
mobile edge computation offloading,” IEEE Journal of Selected
Topics in Signal Processing, vol. 13, no. 3, pp. 392–407, 2019.

[19] T. Bai, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan,
“Latency minimization for intelligent reflecting surface aided
mobile edge computing,” 2019, http://arxiv.org/abs/1910
.07990.

[20] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and
resource allocation for computation and communication in
mobile cloud with computing access point,” in IEEE INFO-
COM 2017 - IEEE Conference on Computer Communications,
pp. 1–9, Atlanta, GA, 2017.

[21] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading
and resource allocation in mixed fog/cloud computing systems
with min-max fairness guarantee,” IEEE Transactions on Com-
munications, vol. 66, no. 4, pp. 1594–1608, 2018.

[22] J. Zhang, X. Hu, Z. Ning et al., “Energy-latency tradeoff for
energy-aware offloading in mobile edge computing networks,”
IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2633–2645,
2018.

[23] T. X. Tran and D. Pompili, “Joint task offloading and resource
allocation for multi-server mobile-edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 1,
pp. 856–868, 2019.

[24] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning
based computation offloading and resource allocation for
MEC,” in 2018 IEEE Wireless Communications and Network-
ing Conference (WCNC),, pp. 1–6, Barcelona, Spain, 2018.

[25] Z. Chen and X. Wang, “Decentralized computation offloading
for multi-user mobile edge computing: a deep reinforcement
learning approach,” 2018, http://arxiv.org/abs/1812.07394.

[26] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy
aware offloading for competing users on a shared communica-
tion channel,” IEEE Transactions on Mobile Computing,
vol. 16, no. 1, pp. 87–96, 2017.

[27] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and
computing optimization in wireless powered mobile-edge
computing systems,” IEEE Transactions on Wireless Commu-
nications, vol. 17, no. 3, pp. 1784–1797, 2017.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control
with deep reinforcement learning,” 2015, http://arxiv.org/abs/
1509.02971.

[29] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online
deep reinforcement learning for computation offloading in

16 Wireless Communications and Mobile Computing

http://arxiv.org/abs/1906.07860
http://arxiv.org/abs/1906.07860
http://arxiv.org/abs/1910.07990
http://arxiv.org/abs/1910.07990
http://arxiv.org/abs/1812.07394
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971


blockchain-empowered mobile edge computing,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 8, pp. 8050–8062,
2019.

[30] X. Lyu, W. Ni, H. Tian et al., “Optimal schedule of mobile edge
computing for internet of things using partial information,”
IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2606–2615, 2017.

[31] W. Jiang, G. Feng, S. Qin, and T. S. P. Yum, “Efficient D2D con-
tent caching using multi-agent reinforcement learning,” in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), pp. 511–516, Hono-
lulu, Hawaii, 2018.

[32] B. Huang, Y. Li, Z. Li et al., “Security and cost-aware computa-
tion offloading via deep reinforcement learning in mobile edge
computing,” Wireless Communications and Mobile Comput-
ing, vol. 2019, Article ID 3816237, 20 pages, 2019.

17Wireless Communications and Mobile Computing


	Deep Reinforcement Learning for Performance-Aware Adaptive Resource Allocation in Mobile Edge Computing
	1. Introduction
	2. Related Works
	3. System Model
	3.1. System Architecture
	3.2. Computation Task Model
	3.3. Task Queueing Models
	3.4. Network Model

	4. Performance-Aware Resource Allocation Problem Formulation
	4.1. State Space
	4.2. Action Space
	4.3. Reward Function
	4.4. Problem Formulation

	5. Algorithm Implementation
	6. Simulation Experiments
	6.1. Experiment Setup
	6.2. Simulation Design
	6.2.1. Evaluation Metrics
	6.2.2. Baseline Algorithm

	6.3. Performance Analysis
	6.3.1. Performance Impact of Different Task Arrival Rates
	6.3.2. Performance Impact of Different Computing Resource
	6.3.3. Performance Impact of Different Workloads
	6.3.4. Performance Impact of Different Result Data Sizes
	6.3.5. Performance Impact of Different Bandwidths
	6.3.6. Performance Impact of Different Numbers of MDs
	6.3.7. Analysis of PARA Scheme’s Performance


	7. Conclusions and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments

