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ABSTRACT

In China, summer precipitation contributes a major part of the total precipitation amount in a year and has

major impacts on society and human life. Whether any changes in summer precipitation are affected by

external forcing on the climate system is an important issue. In this study, an optimal fingerprinting method

was used to compare the observed changes of total, heavy, moderate, and light precipitation in summer

derived from newly homogenized observation data with the simulations from multiple climate models par-

ticipating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results demonstrate that

the anthropogenic forcing signal can be detected and separated from the natural forcing signal in the observed

increase of seasonal accumulated precipitation amount for heavy precipitation in summer in China and

eastern China (EC). The simulated changes in heavy precipitation are generally consistent with observed

change in China but are underestimated in EC. When the changes in precipitation of different intensities are

considered simultaneously, the human influence on simultaneous changes in moderate and light precipitation

can be detected in China and EC in summer. Changes attributable to anthropogenic forcing explain most of

the observed regional changes for all categories of summer precipitation, and natural forcing contributes little.

In the future, with increasing anthropogenic influence, the attribution-constrained projection suggests

that heavy precipitation in summer will increase more than that from the model raw outputs. Society may

therefore face a higher risk of heavy precipitation in the future.

1. Introduction

Over the past few decades, notable changes have been

observed in mean precipitation (Allen and Ingram 2002;

Trenberth et al. 2003, 2007) and some high-impact ex-

treme precipitation events (Westra et al. 2013; Donat

et al. 2016) in the context of global warming. Previous

studies indicate that the atmospheric saturated water

vapor pressure is related to the temperature based on

the Clausius–Clapeyron equation (Trenberth et al. 2003;

Hardwick Jones et al. 2010) while the changes in global

mean precipitation are mainly constrained by energy

balance. The changes in extreme precipitation at the

global scale can be attributed to the human influence

including that due to the emission of greenhouse gases

(Min et al. 2008, 2009; Zhang et al. 2013). Some studies

have shown that anthropogenic signal can be detected in

the observed trends in extreme rainfall in the second
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half of the twentieth century (Zhang et al. 2007; Min

et al. 2011; Ban et al. 2015) and the hydrologic cycle

after the 1980s (Wu et al. 2013). On the basis of these

studies, the Fifth Assessment Report (AR5) of the

Intergovernmental Panel on Climate Change (IPCC)

concluded that ‘‘anthropogenic influences have inten-

sified extreme precipitation globally over the second

half of the twentieth century with medium confidence’’

(Bindoff et al. 2013, p. 870).

Changes and variations in extreme precipitation have

also been observed at regional scale (Qian et al. 2007;

Pall et al. 2011; Christidis and Stott 2015; Sun et al.

2019). In China, many extreme rainfall events and floods

have occurred in recent years during the summer,

causing serious socioeconomic losses (CMA2016, 2017).

Observations also show increases in heavy precipitation

and decreases in light precipitation in the second half of

the twentieth century over eastern China (Zhai et al.

2005; Qian et al. 2007; Fu and Dan 2014; Ma et al. 2015).

However, investigation of the anthropogenic influence

on precipitation in China remains limited. The detection

of precipitation at regional scales continues to be a great

challenge as indicated by the fact that the current studies

could not reach consensus in the human influence on

precipitation in China. Some event attribution studies

have found that anthropogenic-induced effects have

increased the probability and risk of intense precipita-

tion events in southeast China and north of the Yangtze

River (Burke et al. 2016; Li et al. 2018; Sun et al. 2019).

For the long-term changes, the anthropogenic effects on

the annual changes in extreme precipitation in China

were investigated using the percentile-based index (Ma

et al. 2015), probability-based index (Li et al. 2017), and

daily extreme rainfall index (Chen and Sun 2017). A few

studies focused on questions concerning the human influ-

ence on water vapor have shown that with the enhanced

warming, the increased water vapor can lead to more fre-

quent extreme weather and climate events (Zhao et al.

2016; Zhang et al. 2019; Zhang andZhao 2019). Burke and

Stott (2017) split the annual rainfall record in China into

two halves and found that human-induced climate change

led to an overall decrease in monsoon rainfall and an in-

crease in dry days in past decades.While these studies have

explored various aspects of the human influence on pre-

cipitation changes in China, low signal-to-noise ratios

(Zhang et al. 2013) have made it difficult to detect the

anthropogenic signals in the regional and seasonal pre-

cipitation changes up to now. Here, we investigate the

human influence on summer precipitation in China, from

the viewpoint of changes in precipitation amount in dif-

ferent intensity categories, to improve our understanding

of climate model performance and make reasonable pro-

jection of future seasonal precipitation changes.

We use daily precipitation data (Yang and Li 2014) in

China and model outputs from phase 5 of the Climate

Model Intercomparison Project (CMIP5) (Taylor et al.

2012) to classify summer precipitation into three cate-

gories based on the rainfall amount. The precipitation

changes in one category could affect the changes in an-

other category either through changes in frequency or

event magnitude. Based on the Clausius–Clapeyron rela-

tion between water vapor and temperature, (Trenberth

1998; Semenov andBengtsson 2002; Trenberth et al. 2003),

there could be an increase in heavy precipitation and

decrease in light precipitation with the warming, due to

energy budget constraints. Thus we also conduct a joint

three-category detection and attribution analysis, as

well as a detection analysis of precipitation change in

each category, to deal with the covariation and depen-

dence between the three categories. Using the detection

and attribution results, we produce and analyze obser-

vationally constrained future projections of Chinese

summer precipitation. The remainder of this paper is

organized as follows: sections 2 and 3 describe the

data and detection methods, including data process-

ing; section 4 presents the primary results; and the

conclusions of this study and some discussion are

provided in section 5.

2. Data

a. Observational data and precipitation classifications

Daily precipitation collected at 2419 stations across

China was obtained fromChina’s NationalMeteorological

Information Center. All of these data have been quality

controlled and adjusted for homogeneity using the RHtest

software package (Xu et al. 2013; Wang and Feng 2010;

Yang and Li 2014). The data quality and number of sta-

tions in this dataset are stable after 1961 (Fig. S1a in the

online supplemental material) so our analyses are focused

on the period of 1961–2012.

Based on China’s national standard for precipita-

tion classification (CMA 2012) issued by the China

Meteorological Administration, we classify precipita-

tion into three categories based on daily rates: light

precipitation (1–10mmday21), moderate precipitation

(10–25mmday21), andheavyprecipitation (.25mmday21).

We calculate the seasonal precipitation accumulation in

each category. A precipitation ratio was computed by

dividing the number of days with light, moderate, or

heavy precipitation by the total number of rain days,

with data expressed as a percentage. Mean precipitation

intensities were calculated as the mean precipitation

rate over days with light, moderate, heavy, or total

precipitation.
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This classification might impede detection in some

parts of China due to the skewed distribution of pre-

cipitation. Nevertheless, changes in different categories

of precipitation could have important implications on

different sectors of society and ecosystems. The occur-

rence of precipitation with different fixed thresholds

could have great and severe impacts on urban drainage

systems and flood control capacity, as well as agricultural

practices. Also, from the viewpoint of detection and at-

tribution, the anthropogenic influence on heavy precipi-

tation seems to be expected. Precipitation has a skewed

distribution, with a fixed lower bound at zero and a long

unbounded upper tail. If anthropogenic influence acts to

increase precipitation, one would expect the distribution

to stretch out toward the right. Intuitively, one might

expect the most-discernable changes to become evident

in the upper tail (although uncertainty in estimating

change in the upper tail may adversely affect detection).

This thus leads us to investigate the categories in which

anthropogenic influence can be detected and how rea-

sonable the current operational classification of precipi-

tation is from the viewpoint of long-term climate changes.

b. Model simulations

CMIP5 multimodel simulations were used to estimate

the Chinese summer precipitation responses to external

forcing and the internal climate variability of summer

mean precipitation. The three precipitation categories

were computed based on daily data from individual

simulations of different climate models. Details of the

model simulations used in this study are listed in

Table S1 in the online supplemental material (acro-

nym expansions and definitions are available at https://

www.ametsoc.org/PubsAcronymList). We used 68 his-

torical simulations from 21 climate models to represent

the response to combined anthropogenic and natural

forcing (ALL). Becausemost of these simulations ended

in 2005, the RCP8.5 simulated results for 2006–12 were

used to extend the ALL forcing data to 2012. In addi-

tion, 49 RCP4.5 and RCP8.5 simulations from 21models

were used to estimate future changes from 2013–2100.

Additionally, 36 simulations from 11 models driven only

by natural forcing (NAT) and 20 simulations from 6

models driven by greenhouse gas forcing only (GHG)

were used in this research, with all the simulations

ending in 2012. We estimated the anthropogenic (ANT)

response as the difference between the ALL and NAT

responses, assuming that the responses to anthropogenic

and natural forcing combine linearly. To evaluate the

internal climate variability, preindustrial control (CTL)

simulations based on 31 models were used to calcu-

late the three categories of summer precipitation,

with 302 pieces of 52-yr chunks.

3. Methods and data processing

a. Detection methods

We compare the spatiotemporal evolution of summer

precipitation in the observations and model simulations

using a standard optimal fingerprinting technique (Allen

and Stott 2003). This method assumes that observations

Y can be expressed as the sum of scaled fingerprints X

plus the internal climate variability e:Y5 (X2 v)b1 e.

Here, e represents the residual or internal variability in

the observations and v represents noise in the signal(s)

X. The estimated scaling factor b adjusts the signal

estimateX2 v that is produced by the total least squares

algorithm and can be used to scale the response patterns

as well as provide a good match with the observations.

The covariance matrix e can be estimated from CTL

simulations, and the scaling factor b can be estimated

based on the implementation of the optimal fingerprint

method of Ribes and Terray (2013). Detection of a sig-

nal is claimed if the 90% confidence interval of the

corresponding scaling factor lies entirely above zero.

Moreover, scaling factors consistent with 1 suggest good

agreement between the observed values and model

results.

We conduct two regression analyses, a single-signal

and a two-signal analysis, to assess the relative roles

of individual forcing mechanisms in relation to the

observed changes. In the single-signal analysis, the

observations are regressed onto the multimodel mean

responses of single factors. This approach allows us to

assess whether there is evidence that the response of a

specific forcing might be present the observed changes

or whether the observations contain the response to a

specified combination of forcings such as the ALL sig-

nal. In the two-signal analyses, the observed changes are

partitioned between the simulated responses to natural

forcing (NAT), anthropogenic forcing (ANT), and in-

ternal variability. Observations are organized into a

vector Y, and the ALL and NAT responses are also

organized into vectors XALL and XNAT. Assuming that

the ANT forcing response (XANT) can be approximated

by the difference between XALL and XNAT, we obtain

the following expression:

Y5 (X
ALL

2 v1)b
1
1 (X

NAT
2 v2)b

2
1 «

5 (X
ANT

1X
NAT

2 v1)b
1
1 (X

NAT
2 v2)b

2
1 «,

where the noise term e represents the effects of internal

variability. This analysis aims to estimate the scaling

factors associated with the ANT and NAT responses:

bANT 5 b1 and bNAT 5 b1 1 b2. Thus, if the model

provides satisfactory detection results, it may be possi-

ble to estimate the separate contributions of these two
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factors to climate change. All available model simula-

tions for the ALL and NAT forcings are used to com-

pute the response to theANT forcing. Differences in the

collections of models used to estimate the ALL and

NAT signals may affect the estimate of the response to

ANT forcing. Therefore, the same detection analyses

are repeated using the eight models that provide both

ALL and NAT simulations. Similar detection results

(Fig. S2 in the online supplemental material) are ob-

tained when using all available models, irrespective of

whether they provide NAT simulations, suggesting little

influence of the different sets of models. Because de-

tection and attribution assessments largely depend on

model simulations, it is important to evaluate the model

simulation results compared to observations to increase

confidence in the robustness of the attribution results.

We perform a power spectra analysis for themodeled and

observed changes to determine whether the models ad-

equately estimate observed variability. Simultaneously, a

residual consistency test is performed according to the

implementation given by Ribes and Terray (2013).

b. Data processing

Different categories of precipitation were separately

classified for individual stations. The seasonal accumu-

lated precipitation amount was calculated for each cat-

egory based on daily data and then the station anomalies

were calculated by removing the 1961–90 means. These

anomalous values were aggregated to produce gridded

data with a 38 3 38 resolution by averaging all available

observations within each grid cell. Each grid cell has a

minimum of three observing stations (Figs. S1b–d in the

online supplemental material). The gridded results were

subsequently used to calculate the area-weighted re-

gional mean anomalies. Simultaneously, all the model

data were classified into three precipitation categories to

obtain the accumulated precipitation amounts of dif-

ferent categories in summer. Anomalies were calculated

relative to the 1961–90 means and then interpolated to

the same 38 3 38 grid as the observations.

To make the noise covariance matrix full rank, as

needed for optimal detection analyses, 5-yr nonover-

lapping means were used to reduce the temporal di-

mension. Regional means, rather than grid cell series,

were used to further reduce the spatial dimension. Due to

different regional climate feature across China, with

eastern China (EC; east of 1058E) having a typical mon-

soon climate and western China (WC; west of 1058E) an
arid or semiarid climate, we conducted the detection

analyses for all of China as a single region and also divide

it into EC and WC subregions. The model data were

masked based on the availability of the observations prior

to the calculation of the regionalmeans. Ensemblemeans

were first computed for individual model runs and then

averaged over all available models. Linear trends in the

time series of summer precipitation from 1961–2012 were

evaluated based on the regional averages using the

classical least squares regressionmethod. The number of

dimensions was 11 for each regional series, made up of

10 nonoverlapping 5-yr means and one additional 2-yr

mean. This mixture may lead the last point having a

larger variance, which is accounted for in the estimate of

the variance-covariance matrix of internal variability.

Detection analyses were conducted on the three cate-

gories of precipitation, and the data of heavy, moderate,

and light precipitation were then combined into a joint

three-category precipitation series to investigate the

human influence on them simultaneously.

All available data from the within-ensemble difference

of simulations and CTL simulations were used to estimate

the internal variability. The within-ensemble difference

and control run data were split into two equal independent

setswith 213 fifty-two-year chunks of noise data in each set.

We use these two sets for optimization to obtain the best

estimate of the scaling factor b, estimate the uncertainty

range of b, and conduct the residual consistency test. The

large sample of simulated internal variability in this re-

search provides increase confidence in the estimates of the

covariance structure of internal variability.

4. Results

a. Spatial distribution of changes in
summer precipitation

Figure 1 (left column) shows observed linear trends

of summer (June–August) accumulated precipitation

amounts for total, heavy, moderate, and light wet day

precipitation. Increasing trends are observed for total

and heavy precipitation in southeastern China and

northwestern China. There is a drying belt from south-

western China to northeastern China. For moderate

precipitation, regional differences are obvious, espe-

cially significant negative trends are observed in north-

east and southwest regions. For light precipitation, most

parts of the country have experienced decreasing trends,

especially in EC. The increase of total precipitation in

southeastern China is mainly related to the increase of

heavy precipitation in the region while the increase of

total precipitation in northwestern China is mainly due

to increases in light and moderate precipitation.

The model simulated ensemble means of linear trends

in seasonal accumulated precipitation amounts calculated

from individual runs under ALL forcing are exhibited in

the second column of Fig. 1. It is clear that total and heavy

precipitation increases almost everywhere, which is
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roughly consistent with the observations. The models

could not reproduce the decreasing trends of total and

heavy precipitation from southwestern China to north-

eastern China. The responses of total and heavy pre-

cipitation to ALL forcing in northeastern China are

opposite to the observations. For moderate precipita-

tion, the models reproduce the increase of moderate

precipitation in northwestern China and decrease in

northeastern China but fail to reproduce the increase of

precipitation in central part of China. The simulation of

light precipitation in models is better than for other

categories, with models reproducing well the observed

decrease of light precipitation in eastern China and in-

crease of light precipitation in western China. The model

responses to NAT forcing show some different features.

The NAT results exhibit opposite trends to observations

for total, heavy, and light precipitation in EC. Especially

for the total precipitation, large magnitude changes but

with opposite sign to that of observations can be found in

eastern and southwestern China, suggesting that the

modeled response to NAT forcing is opposite to the ob-

served change in total precipitation. Responses of pre-

cipitation in all categories toGHG forcing (right column)

are quite similar to those under ALL forcing, indicating

an important role of GHG forcing in the changes of

summer precipitation in China.

To further understand the characteristics of precipi-

tation amount, Fig. 2 shows the histograms of daily

precipitation frequency and amount derived from ob-

servations andmodel simulations underALL forcing for

the period of 1961–2012. The regional mean histograms

of China, EC, and WC are first estimated at each grid

box and then averaged in the region. Figure 2a shows

that themodels generally reproduce the distribution of light

and moderate precipitation in China, but slightly underes-

timate frequency for precipitation eventsmore intense than

60mmday21. This is also shown in the distribution of

precipitation amount in each bin (Fig. 2b). In contrast,

the models underestimate the frequency and amount for

precipitation events more intense than 20mmday21 in

FIG. 1. Trends in the summer precipitation amount anomalies (mmyr21) for the (a)–(d) total, (e)–(h) heavy, (i)–(l) moderate, and

(m)–(p) light precipitation from 1961 to 2012 as based on (left) observations and the model-simulated responses to the (left center) ALL

forcing, (right center) NAT forcing, and (right) GHG forcing. A grid cell is markedwith an asterisk if the trends are statistically significant

at the 10% level according to the Student’s t test. White grid cells denote that there are no observation in that area.
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EC (Figs. 2c,d) and overestimate them in WC (Figs. 2e,f).

This suggests that the models roughly reproduce the dis-

tributions of daily precipitation frequency and amount in

China but some biases exist in EC and WC. Especially in

WC, the models show poor performance in simulating

most of the precipitation distribution.Wewill mainly focus

on the detection analyses in China and EC hereafter.

b. Regional averaged time series of
summer precipitation

Figures 3 and 4 show the observed andmodel simulated

temporal evolution of summer precipitation from four

categories of precipitation. The trends in the regional

mean precipitation for the period 1961–2012 are shown

in the right column. The observed total and heavy pre-

cipitation are characterized by little change in the early

period and an apparent increase after the late 1980s in

China andEC.The changes in total andheavy precipitation

are larger than those in moderate and light precipitation.

These characteristics are successfully reproduced by the

model simulations underALL forcing. The observed series

mostly fall within the range of ALL simulations, suggesting

models perform well in reproducing these changes. The

response to GHG forcing exhibits similar temporal varia-

tions, but has larger trends than those under ALL forcing

for all categories of precipitation. The trends in the NAT

simulations are not consistent with observations for light

and moderate precipitation (Figs. 3f,h and 4f,h).

FIG. 2. Distribution of daily precipitation (left) frequency and (right) amount (mm) in each bin as a function of

precipitation intensity (bin size is 1mmday21) from observations (black traces; 1961–2012) and model simulations

(red traces indicate the multimodel median, and orange traces indicate results from individual runs) averaged over

(a),(b) China, (c),(d) EC, and (e),(f) WC.
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(a)                                                                (b)

(c)                                                                (d)

(e)                                                                (f)

(g)                                                                (h)

Total

Heavy

Moderate

Light

FIG. 3. (left) Time series of 5-yr mean anomaly values (relative to 1961–90) averaged over all of China for

the (a) total, (c) heavy, (e) moderate, and (g) light precipitation. The solid lines show the observation or

ensemble means of the model simulations, and the shaded areas show the 5%–95% ranges of model simu-

lations. Red, green, and blue denote model simulations under ALL, GHG, and NAT forcings, respectively.

(right) Their respective long-term trends (color bars) and the corresponding 90% confidence intervals (gray

error bars).
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As shown in Fig. 1, the observed precipitation trend

has a similar magnitude to the modeled trend based

on the ALL forcing, but the modeled trend based on

the NAT forcing is much weaker for total and heavy

precipitation and of the opposite sign for moderate and

light precipitation. The GHG results have the same sign

as those of ALL, but with a larger magnitude of changes.

On the subnational scale, the precipitation category

trends in EC have high magnitudes, especially that for

heavy precipitation, which increased by approximately

17mm over the 52-yr period. The modeled trend under

the ALL forcing has the same sign as for the observations

(a)                                                                (b)

(c)                                                                (d)

(e)                                                                (f)

(g)                                                                (h)

Total

Heavy

Moderate

Light

FIG. 4. As in Fig. 3, but for the regional mean averaged over eastern China.
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but has a smaller magnitude. The characteristics of the

modeled trend under the NAT and GHG forcings are

similar to those at the national level in China.

The observed andmultimodel simulated power spectra

of the four categories of precipitation are shown in

Fig. 5 (see Figs. S3–S6 in the online supplemental ma-

terial for the power spectra from simulations by indi-

vidual models). We computed the power spectra based

on the time series for China from 1961–2012 from ob-

servations and separately from each simulation in the

ALL and NAT experiments. The power spectra of the

observations for total, heavy andmoderate precipitation

are found to lie within the range of the power spectra

from the ALL simulations at all the time scales exam-

ined, suggesting that the simulated variability is rea-

sonably consistent with that of the observations. This

supports the use of these model simulations for detec-

tion and attribution analyses. There is some indication

thatmodel simulated variability is greater than observed

for the light precipitation category at the interdecadal

time scale, which should not materially affect the de-

tection and attribution analyses in this study.

c. Detection results

Figure 6 displays the best estimates and their 90%

confidence intervals for the scaling factors from the

single-signal (ALL andGHG) and two-signal (ANT and

NAT) analyses in China and EC. For China as a whole

(CN), the ALL signal is robustly detected in the heavy

and the joint three-category precipitation series, and the

residual consistency test is passed. The scaling factors

for the ALL signal are significantly greater than zero

(at the 5% significance level), and the 90% confi-

dence intervals include 1, indicating that the observed

changes are generally consistent with the simulated

responses to the combined influences of anthropo-

genic and natural forcings simulated by the models.

For the moderate and light precipitation categories,

the ALL signal cannot be detected, as the 90% con-

fidence intervals include zero. In EC, the ALL signal

can also be robustly detected in the heavy and joint

three-category precipitation series but with large un-

certainty ranges for the scaling factors. Additionally, the

model-simulated responses to ALL forcing underesti-

mate the observed changes in both heavy and combined

precipitation, with the scaling factor lying entirely or

mostly above 1. Note that the GHG signal can be de-

tected in one-signal analyses of the total and heavy

precipitation series in CN and EC, as the 90% confi-

dence intervals lie above zero, indicating that the GHG

forcing is of great importance in the changes of summer

precipitation during 1961–2012 in China.

FIG. 5. Power spectral density of the (a) total, (b) heavy, (c) moderate, and (d) light precipitation anomalies in

China from 1961 to 2012 for the observations (black) and model simulations. All model data have the same spatial

coverage as the observations. The 5%–95% ranges of the historical ALL (pink) and historical NAT (blue) mul-

timodel ensemble are shown as shaded areas.
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For the two-signal detection, the 90% confidence in-

tervals of the ANT scaling factors for heavy and joint

three-category precipitation lie above 0 in China and

above 1 in EC. This indicates that the ANT signal can be

detected in heavy and joint three-category precipi-

tation in these two domains when the influence of

NAT is taken into account. Heavy precipitation is under-

estimated in EC, which is consistent with the single-signal

results. For the moderate and light precipitation, the

ANT and NAT signals could not be detected.

The signal-to-noise ratios are also estimated. The

linear trends in precipitation changes are considered as

signals and the signal-to-noise ratios are then estimated

by dividing the linear trends by the standard deviation

during 1961–2012, based on the residual series after re-

moving the trends in the models (Table 1; also see the

online supplemental material). For the total, moderate,

and light precipitation, low signal-to-noise ratios are

found in three regions mainly due to large variability

and small signal. In contrast, for the heavy and joint

three-category precipitation, the signal-to-noise ratios

are larger when compared with the other categories. This

partially explains why the human influence on heavy and

joint three-category precipitation can be detected.

We further quantify the attributable trends from the

ALL and ANT signals to the observed 52-yr changes in

heavy precipitation based on the corresponding scaling

factors calculated from the combined series. The heavy

precipitation averaged in China increased by approxi-

mately 13mm from 1961 to 2012. The best estimates of

the increase attributable to ALL and ANT forcings are

respectively approximately 12mm (with a 90% confidence

interval of 5–19mm) and 11mm (with a 90% confidence

interval of 6–16mm). Similar results can be found in

the EC with high-magnitude variational trends.

d. Observation-constrained future projections

The best estimate and its 90% confidence intervals of

the scaling factor for theALL signal in China are used to

scale the multimodel projections under the RCP4.5 and

RCP8.5 scenarios from 2013 to 2100. The observation-

ally constrained technique based on detection results,

which is generally called the ‘‘ASK’’ technique, has been

used in previous studies (including Allen et al. 2000;

Stott et al. 2006; Stott and Jones 2012; Huntingford 2013;

Jones et al. 2016). Themain idea is that if amodel over- or

underestimates the response of climate system to external

forcing during the historical period, it is assumed that it

will continue to similarly over or underestimate the cli-

mate response in the future. Thus the detection results

can be used to constrain the future projection. Based on

our single- and two-signal detection analyses, the CMIP5

model-simulated underestimate the observed changes in

heavy precipitation in China and EC. The scaled future

projections in heavy precipitation (dashed lines in Fig. 7)

project heavier precipitation than themodels themselves,

especially in EC. Under the RCP8.5 scenario, the best

estimate of the precipitation increase in EC in 2040 is

approximately 29mm (90% confidence interval from 17

to 41mm according to the confidence intervals of the

scaling factor), which is greater than the direct multi-

model mean projection of 24mm. The RCP4.5 results are

quite similar. Given the underestimation of the increasing

trend in heavy precipitation by the CMIP5 models, soci-

ety may therefore face a higher possibility of occurrence

FIG. 6. Best estimates of the scaling factors and their 5%–95%

uncertainty ranges for the 5-yr mean total, heavy, moderate, light,

and combined precipitation in summer as based on single-signal

(ALL and GHG) and two-signal (ANT and NAT) analyses in

(a) China and (b) eastern China.

TABLE 1. Signal-to-noise (S/N) ratios of the total, heavy,moderate, light, and combined precipitation anomalies (the calculationmethod is

shown in detail in the online supplemental material).

Total Heavy Moderate Light Combined

CN EC WC CN EC WC CN EC WC CN EC WC CN EC WC

Signal 10.97 10.46 10.9 11.34 13.52 9.08 2.01 3.16 1.66 1.26 2.6 0.25 7.28 8.84 5.53

Noise 10.61 11.37 10.3 6.38 8.83 7.81 4.37 6.49 4.49 2.99 4.56 3.30 3.82 5.88 5.55

S/N ratio 1.03 0.91 1.06 1.78 1.53 1.16 0.45 0.48 0.37 0.42 0.57 0.08 1.91 1.50 0.99
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of heavy precipitation in the future. For moderate pre-

cipitation, there is no significant trend in the future pro-

jections from the CMIP5 models, and light precipitation

displays an obvious decreasing trend in the future in

China and EC (see Figs. S7 and S8 in the online supple-

mental material).

We also roughly estimate the relation between the

changes of heavy precipitation and the global mean

near-surface temperature (GMST) increase. Based on a

recent study about GMST changes by Hu et al. (2017),

the GMST will reach 1.58C warming relative to prein-

dustrial around 2025 (center year for a 31-yr average)

and reach 4.58C warming relative to preindustrial by

2100 under the RCP8.5 scenario. Correspondingly,

based on the RCP8.5 results the summer heavy precip-

itation averaged in China will increase by approximately

52mm from 2025 (1.58C warming) to 2100 (4.58C
warming), which is approximately 4.1%K21. After

applying the observationally constrained method, the

increase rate is approximately 5.1%K21. If we use the

China annual and summer mean temperature to es-

timate the precipitation changes with temperature,

the rates become lower (Table S2 in the online sup-

plemental material) because of more rapid warming

in China than global average. The scaled change is

also larger than the estimates based on direct pro-

jection from the models. However, since we only use a

fixed threshold of 25mmday21 to define heavy pre-

cipitation, the relation between heavy precipitation

changes in China and temperature increase still needs

further study. All of these results indicate the impor-

tance of model bias adjustment in future projections.

5. Conclusions and discussion

Using an optimal fingerprintingmethod, we compared

the changes in summer precipitation of different inten-

sities based on observations and CMIP5 simulations for

China, EC and WC. We found a substantial increase

in summer heavy precipitation in most parts of China.

The CMIP5 models generally reproduce the observed

increase in heavy precipitation but underestimate

the changes in EC. Detection analyses show that the

anthropogenic signal can be identified for heavy pre-

cipitation in China and EC, whereas the natural signal

cannot be detected. For moderate and light precipita-

tion, external forcings cannot be detected individually.

When the three categories of precipitation are combined

and their changes are considered simultaneously, the

human influence can be detected. The anthropogenic

influence contributes most of the observed changes in

summer precipitation in China.

In addition, CMIP5 models may underestimate the

observed increase in heavy precipitation in China and

EC. Observationally constrained future projections of

summer precipitation are determined in China and

EC by multiplying the multimodel ensemble mean by

the scaling factors, obtained from the detection and

FIG. 7. Changes in heavy precipitation anomalies (relative to 1961–90) for 1961–2100 in (a),(b) China and (c),(d)

eastern China. The future climate is projected on the basis of the multimodel ensemble means for the (right)

RCP4.5 and (left) RCP8.5 scenarios. The dashed lines indicate the best estimates of observation-constrained future

heavy precipitation projections. The shaded areas show the 5%–95% ranges of model simulations.
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attribution analysis. Under different warming scenarios

(RCP4.5 and RCP8.5), the heavy precipitation both

shows a significant increase in the future, and with

somewhat stronger magnitude after being scaled. The

results suggest a possible future that would have in-

creased heavy precipitation and a higher risk of extreme

precipitation than that based on raw multimodel simu-

lations. This finding suggests that diverse adaptive pol-

icies will be needed in China in the future.
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