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The increasing likelihood of temperatures above
30 to 40 °C in the United Kingdom
Nikolaos Christidis 1✉, Mark McCarthy 1 & Peter A. Stott1

As European heatwaves become more severe, summers in the United Kingdom (UK) are also

getting warmer. The UK record temperature of 38.7 °C set in Cambridge in July 2019

prompts the question of whether exceeding 40 °C is now within reach. Here, we show how

human influence is increasing the likelihood of exceeding 30, 35 and 40 °C locally. We utilise

observations to relate local to UK mean extremes and apply the resulting relationships to

climate model data in a risk-based attribution methodology. We find that temperatures above

35 °C are becoming increasingly common in the southeast, while by 2100 many areas in the

north are likely to exceed 30 °C at least once per decade. Summers which see days above

40 °C somewhere in the UK have a return time of 100-300 years at present, but, without

mitigating greenhouse gas emissions, this can decrease to 3.5 years by 2100.
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Intensification of hot extremes has continued unabated in
recent decades1, posing a threat to human health2,3 and
bringing forth a raft of further socio-economic impacts4,5.

Europe is gearing up for more frequent and intense heatwaves6

and while the UK has not yet borne the brunt of extreme con-
tinental heat, its summer temperatures are decidedly on the
rise7,8. Attribution research provides strong evidence that hot
extremes are becoming more frequent and intense9 under the
influence of human-caused climate change10,11. The UK summer
temperature of 2018 was a joint record, estimated to have become
30 times more likely due to anthropogenic causes12. A year later,
during a severe heatwave in western Europe13, the warmest daily
temperature averaged over the UK reached a new peak (Fig. 1a)
and the highest temperature in the country ever recorded was
registered in Cambridge. These consecutive summer extremes are
exposing the UK’s vulnerability to such weather with ensuing
impacts highlighted in the media, including a mortality spike in
tandem with the 2019 event14,15, and a sharp heatwave-driven fall
in overseas holiday demand that might have contributed to the
collapse of the Thomas Cook travel group16. Therefore, the need
to understand how the likelihood of extremely hot temperatures
is changing under the anthropogenic effect on the climate is
pressing and essential to decision-makers planning the UK’s
adaptation strategy.

To respond to this need, we compute observed and modelled
values of the warmest daily maximum temperature in individual
years (tx01) and estimate how the likelihood of exceeding extreme
thresholds has been changing since 1900 and how it may further
change in the remaining of this century under different emission
scenarios17. We find that the likelihood of extremely warm days
in the UK has been increasing and will continue to do so during
the course of the century with the most extreme temperatures
expected to be observed in the southeast England. The likelihood
of exceeding 40 °C anywhere in the UK in a given year has also
been rapidly increasing, and, without curbing of greenhouse gas

emissions, such extremes could be taking place every few years in
the climate of 2100.

Results
Observed changes in UK tx01 extremes. Limitations arising
from the spatial resolution of climate models and the coverage of
observation stations often prevent attribution studies on local
scales and have kept the focus on extremes over larger, sub-
continental areas18. Although downscaling of model output has
occasionally been employed to investigate local events19, the lack
of reliable observations makes it difficult to evaluate the models.
Here, we take advantage of the recent upgrade of the HadUK-
Grid dataset20 for daily maximum temperature, which now
provides observational data on a high-resolution grid of 1 × 1 km.
The resolution of the dataset enables us to model the relationship
between local and UK mean tx01. This simple downscaling
technique allows us to estimate changes in the likelihood of UK
extreme temperatures locally from model experiments with and
without anthropogenic forcings that provide data on a relatively
coarse resolution.

The HadUK-Grid data cover the entire UK and are available
for the period 1960–present. Annual values of tx01 are calculated
for all the grid boxes, and a map of the trends over the
observational period is illustrated in Fig. 1b. Warming trends
dominate and are most prominent in the southeast, where they
may locally reach 1 °C decade−1. Testing the significance of the
trends with the Mann–Kendall test, indicates they are signifi-
cantly different than zero in most regions, but not in parts of
Scotland where there is a weaker warming and also areas of
cooling. It should be noted that although this is a useful
qualitative assessment, the trend estimates are sensitive to the
start and end dates. The UK’s warmest day in a year is also
estimated (Fig. 1a) after averaging daily maximum temperatures
of each day over the observational area. Year 2019 has the highest

a b

Fig. 1 Warmest daytime temperatures (tx01) in the UK. a Timeseries of the UK mean tx01 from HadUK-Grid observations (black line), and simulations
with 16 CMIP5 models with all climatic forcings (red lines) and natural forings only (blue lines). The observed value in 2019 is marked with a cross.
Simulations of future years follow the RCP 4.5 scenario. The model data were bias-corrected to have the same mean during a reference period as the
observations. b A map of the tx01 trends during 1960–2019 computed with HadUK-Grid data. Circles mark areas (of ~60 × 60 km) where most grid boxes
have trends not significantly different from zero (tested at the 10% level), as determined by a Mann–Kendall test.
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UK mean tx01 value on record, though climate models indicate
that due to internal variability there is a current risk of even
higher temperatures.

Transfer functions for the estimation of local tx01. Even though
climate models can provide reliable estimates of the UK mean
tx01, as discussed later, their spatial resolution is still too coarse to
yield local estimates on a 1-km grid. We therefore derive obser-
vationally based transfer functions to obtain local tx01 values
from the UK mean that we can later apply to model data. A
simple linear fit is applied to all the grid boxes of HadUK-Grid to
model the relationship between the grid-box tx01 and its UK-
mean counterpart. An example for a grid-box in London is shown
in Fig. 2a. We account for the range of values of the response
variable (local tx01) by estimating its confidence bounds for each
percentile21 (orange lines in Fig. 2b) and so end up with a set of
100 possible transfer functions at each grid-box ('Methods').
Moreover, given the limited sample of 60 years, our analysis also
investigates the uncertainty in the transfer functions, by applying
a Monte Carlo bootstrap procedure that resamples the observa-
tional data. This procedure offers alternative transfer functions
(grey lines in Fig. 2c), each with an associated set of 100 variants,
as previously explained. Finally, it is important to establish
whether grid-box temperatures on spatial scales of 1 km can
adequately represent local temperatures. To this end, we compare
station observations across the UK with the HadUK-Grid tem-
perature of the grid-box where each station is located and confirm
a good agreement in all cases (Fig. 2d; Supplementary Note 1 and
Supplementary Fig. 1).

The CMIP5 ensemble. Estimates of the UK mean tx01 are next
obtained from simulations with 16 climate models that partici-
pated in the World Climate Research Programme’s Coupled
Model Intercomparison Project phase 5 (CMIP5)22. The models
provide simulations of the actual climate (all forcings) under the
influence of both natural and anthropogenic forcings, as well as of
a hypothetical natural world without the effect of human influ-
ence. Anthropogenic forcings include historical changes in well-
mixed greenhouse gases, aerosols, ozone and land-use. Natural
forcings include only volcanic aerosol emissions and changes in
the solar irradiance. Data from the following atmosphere–ocean
coupled CMIP5 models are used in the analysis:

ACCESS1-3, bcc-csm1-1, CCSM4, CESM1-CAM5, CNRM-
CM5, CSIRO-Mk3-6-0, CanESM2, GFDL-CM3, GFDL-ESM2M,
HadGEM3-ES, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM,
MIROC-ESM-CHEM, MRI-CGCM3, NorESM1-M.

The all-forcings experiment was also extended to the end of the
twenty-first century with projections that follow the representa-
tive concentration pathway (RCP) scenarios17 RCP 4.5 and
8.5 scenarios. Given the substantial volume of the simulated daily
data, we employ only one simulation per model and per
experiment (r1i1p1), thus placing equal weight on all models.
We apply a simple bias-correction to all the model data to make
sure that the mean tx01 value in the all-forcing simulations
during the base period 1961–1990 agrees with the observed mean
value. For consistency, we re-grid all the models on a common
60-km resolution grid, on which the observations are also
available, and then mask the model data with the observations on
the same grid and compute the UK-mean value. For each model,
we subtract the mean observed from the mean modelled tx01 over

a b

c d

Fig. 2 Transfer functions for the estimation of the local warmest daytime temperature (tx01). An example for a grid-box in London. a Local observations
of tx01 plotted against the UK mean observed values (crosses). A linear fit to the data (red line) represents the transfer function for the grid-box.
b Inclusion of the confidence bounds for the response variable (orange lines) leads to a set of a 100 transfer functions in total. c A bootstrapping procedure
applied to the observed data (crosses) provides alternative transfer functions (grey lines), used to assess the effect of sampling uncertainty. For each of the
grey lines, a set of 100 transfer functions can be obtained as shown in panel b. d Observed tx01 data from a station within the reference grid-box agree well
with the HadUK-Grid data.
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the base period and remove the resulting bias from the tx01
estimates with and without anthropogenic forcings derived from
the same model.

Model evaluation. Evaluation of the models against observations
in attribution analyses is essential, in order to determine whether
they are fit-for-purpose. Here we compare the data of the UK mean
tx01 during 1960–2019 simulated by the all-forcings experiment
with observationally based data from HadUK-Grid. We apply a set
of standard evaluation tests to assess how well the models represent
the trends, variability and distribution of tx01. Results are shown in
Fig. 3. First, we estimate the trends in tx01 over the observational
period and its associated ± 2 standard deviation range computed
with least-square fits (Fig. 3a). The observations indicate a small
positive trend, but its precise value is uncertain because of the effect
of variability. Although some models produce weaker trends than
the observations, the relatively short length of the observational
period prevents a more detailed assessment, and since all models
have a range that overlaps with the one from the observations, they
are all included in the analysis. We next assess the simulated
variability over different timescales with power spectra from
detrended tx01 timeseries (Fig. 3b). The observed spectrum is
found to be within the range of the modelled spectra, albeit towards
the higher end, though again sampling limitations need to be taken
into consideration. The observed and modelled distribution of the
UK mean tx01 in the period 1960–2019 is illustrated in Fig. 3c. The
modelled distribution is constructed with data from all 16 models
and is found to be indistinguishable from the observed distribution,
when a Kolmogorov–Smirnov (KS) test is applied (P-value greater
than 0.1). The shape of the observed distribution (histogram)
indicates that temperatures in upper tail are not well sampled

because of the limited length of the record. This is also reflected in
the quantile–quantile plot of Fig. 3d, which nonetheless still indi-
cates that the models can realistically represent the distribution of
tx01. In conclusion, the simple evaluation tests described here do
not raise concerns about the ability of the multi-model ensemble to
represent the UK tx01, but, on the contrary, indicate it is a suffi-
ciently good dataset for the attribution analysis.

Testing the transfer functions with the CMIP5 models. A main
assumption in our methodology is that the transfer functions we
derive from the observations are not sensitive to the non-
stationarity of the climate to an extent that would weaken our
results. Local and regional temperatures are influenced by both
internal variability and external forcings, and the interplay
between these two factors would be different in different peri-
ods23. Using the CMIP5 models, we test the effect of non-
stationarities and the interplay of variability and external forcings.
First, we establish that the choice of the training period for which
the transfer functions are derived does not compromise the
analysis. We derive a set of three transfer functions from the
models, corresponding to three different scenarios:

1. Strong forcing influence: The transfer functions are derived
from simulations with all forcings for future years
2020–2100, characterised by a strong anthropogenic
influence.

2. Variability influence only: The transfer functions are
derived from simulations with natural forcings only, i.e.,
in the absence of any anthropogenic influence.

3. Mixed response: The transfer functions are derived from
simulations with all forcings for the period 1960–2019, i.e.,

a b

c d

Fig. 3 Model evaluation. a The ±2 standard deviation range of the 1960–2019 trend (°C decade−1) in the UK mean warmest daytime temperature (tx01)
estimated with HadUK-Grid observations (grey band) and CMIP5 model simulations with all forcings (vertical bars). b Power spectra from detrended
timeseries of the UK mean tx01 computed with observations (black line) and model simulations (orange lines). c Normalised distributions of the UK mean
tx01 in period 1960–2019 from observations (blue histogram) and aggregated data from the all-forcing simulations (pink line). The P-value of a
Kolmogorov–Smirnov test that assesses whether the two distributions are significantly different is also shown. d Quantile–quantile (Q–Q) plots for each of
the 16 models, comparing the simulated and the observed UK mean tx01 distributions.
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the same as the observational period used in our main
analysis, for which anthropogenic influence increases
with time.

The transfer functions obtained for four different grid boxes
(in the Southeast London area, Scotland, Central England and
Northern Ireland) are shown in Fig. 4. It is evident that
different training periods yield similar transfer functions. The
largest discrepancies are generally within a degree (in most
cases much smaller) and are eclipsed by uncertainties due to
sampling (Fig. 2c) and internal variability (Fig. 2b), which have
been included in our approach. For example, the uncertainty
range in Fig. 2c spans ~10 °C, and is accounted for by using 100
variants of the transfer function. We repeated the sensitivity
tests over different grid boxes, training periods and with
individual models, and found no indication of a large
uncertainty due to the non-stationary climate that would
adversely affect our results.

We also test whether internal variability may significantly
change in a non-stationary climate over the course of the century.
We use the multi-model ensemble mean of the UK tx01
timeseries as an estimate of the forced response and subtract it
from all the timeseries by individual models. We then compute
the standard deviation in 5-year rolling windows, which provides
the timeseries of the standard deviation shown in Fig. 5. The
models indicate no major change in variability over the period
1900–2100. Finally, as a way of assessing the quality of the of the
simulated UK mean tx01 samples used in the analysis, we
examine how different model combinations might affect the local
tx01 distributions. We find that different samples yield similar
distributions (Supplementary Note 2 and Supplementary Fig. 2)
and conclude that the sample choice does not introduce a
considerable uncertainty.

Attribution on local scales. We adopt a popular risk-based event
attribution framework24, whereby tx01 estimates from the two
multi-model ensembles (with and without human influence) are
used to generate probability distributions for the actual and
natural climate. Local distributions are constructed on the
observational (1 × 1 km) grid by applying the previously derived
transfer functions to the simulated UK mean tx01 and the
uncertainty in the transfer functions is accounted for by the

a b

c d

Fig. 4 Transfer functions derived from the 16 models. Functions computed with simulations with all external forcings and training periods 2020–2100
(strong forcing) and 1960–2019 (mixed response) are shown in black and red, respectively. Functions from simulations with natural forcings only
(variability only) are shown in blue. Each panel corresponds to a different grid-box.

Fig. 5 Timeseries of the standard deviation of the UK mean warmest
daytime temperature (tx01) constructed with each of the 16 models. The
standard deviation was computed in 5-year rolling windows after
subtracting the forced response from model simulations with all forcings.
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bootstrapping procedure. Details on the construction of the local
distributions are given in the ‘Methods’.

Results from our analysis for a grid-box in London are
illustrated in Fig. 6. For this example, the all-forcing simula-
tions were extended to 2100 with the RCP 4.5 scenario. The
cumulative distribution function (CDF) of tx01 shifts to higher
values with time, increasing the likelihood of exceeding 40 °C,
which is near-zero in the natural climate (Fig. 6a). Exceeding
the lower threshold of 30 °C in London is common and occurs
almost every year, even without the anthropogenic effect
(Fig. 6b). However, temperatures above 35 °C are now 2–3
times more likely than in the natural climate (Fig. 6f), and
model projections suggest they will occur at least twice a decade
at the end of the century (Fig. 6c). The likelihood of exceeding
40 °C in the reference location is still extremely low, but is
rapidly increasing, with the return time falling from thousands
of years in the natural world to hundreds, or even tens of years
by 2100 (Fig. 6d). For London, these likelihoods could increase
even further as a consequence of increased urbanisation in
future or from higher rates of local anthropogenic heat
release25, for example from wider adoption of air conditioning
during heatwaves.

Repeating the analysis on all grid boxes, we also produce maps
showing the return time for local exceedances of the three
temperature thresholds (Fig. 7). Given the high spatial resolution
of the plotted fields, certain topographic or coastal effects become
evident on close inspection. Besides the noticeable contrast
between warmer summers in the south and cooler in the north,
the southeast England clearly stands out as the region where high
temperature extremes are most likely to occur. Compared with
the natural world, there are now more areas likely to see
temperatures exceeding 30 or 35 °C, while the 40 °C threshold is
still very rare, even in the southeast. By the end of the century,
most areas in the north of the UK will also be regularly
experiencing days with temperatures at least as warm as 30 °C,
while crossing the 35 °C becomes common in the southeast under
RCP 4.5 and over most of England under RCP 8.5. The highest
threshold of 40 °C is to be exceeded at least once a century in the
London area under RCP 4.5, and several times a century over
most of southeast England under RCP 8.5. The effect of the
uncertainty in the transfer functions has also been assessed
(Supplementary Note 3 and Supplementary Figs. 3 and 4), and
although it may change to some extent the intensity and spread of
the map features in Fig. 7, the main conclusions still hold.

a

b c d

e f g

Fig. 6 Increasing chance of high-threshold exceedance illustrated for a location in London. a Cumulative distribution functions of the local warmest
daytime temperature (tx01) for the natural climate (green line), the present-day climate (pink solid line) and the climate of the late twenty-first century
(pink dashed line). The 30, 35 and 40 °C thresholds are marked by the vertical black lines. Panels b-d show timeseries of the return time (inverse
probability) for the exceedance of the three thresholds with all forcings (in pink). The thickness of the timeseries illustrates the uncertainty in the transfer
functions used in the analysis. The expected range in the natural climate is marked in green. Panels e–g show timeseries of the risk ratio (in blue) for the
three thresholds, measuring the change in the likelihood of exceeding the threshold relative to the natural climate. The thickness of the timeseries
represents the 5–95% uncertainty range. The vertical grey lines in panels b–g mark year 2020 (i.e., the present climate).
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Chances of exceeding extreme thresholds anywhere in the UK.
We finally compute the likelihood of exceeding an extreme
threshold in a given year, not at a specific location, but anywhere
in the UK. The chance of rising above, for example, 40 °C, the
most extreme threshold examined here, might still be very low for
a given location, but has been increasing in most areas under the
influence of warming trends (Fig. 1b). When all grid boxes are
examined together, the likelihood of getting at least one grid-box
that exceeds 40 °C in a specific year is expected to be higher than
a local likelihood. The CMIP5 models provide a large number of
alternative representations for every year. Each representation
may yield a hit, i.e., at least one location where the reference tx01
threshold is exceeded, or not, and the likelihood of exceeding the
threshold anywhere in the UK may thus be determined by the
count of hits ('Methods'). Figure 8 depicts timeseries of the return
time for different threshold exceedances and its expected range in
the natural climate. Rising above 35 °C is estimated to occur once
every 5 years at present and almost every year by the end of the
century (Fig. 8b). Also, the probability of recording 40 °C, or
above, in the UK is now rapidly accelerating and begins to rise
clearly above the range of the natural climate (Fig. 8c). The return
time for the 40 °C threshold is reduced from 100–1000s of years
in the natural climate to 100–300 years in the present climate and
to only about 15 years by 2100 under the medium-emissions
scenario (RCP 4.5) and 3.5 years under the high-emissions sce-
nario (RCP 8.5).

Discussion
Our study demonstrates that human-caused climate change has
set hot-day extremes in the UK on a course towards temperatures

that would be too high to be observed in the natural climate. As
the warming continues, new records are expected in coming
decades, with the most severe extremes likely to occur in the
southeast of the UK. Our attribution analysis derives local infor-
mation from observations rather than regional models and
investigates high-impact extremes that could break out anywhere
in the UK rather than in prescribed locations. There are, of course,
uncertainties in our analysis, some of which we have explored and
tried to address, including uncertainties in the transfer functions
and the limited number of years they are based on, or the limited
number of models employed and their ability to represent the UK
climate. Although the transfer functions make a distinction
between urban and rural locations, large future changes in the
UK’s urban landscape could present a caveat in the analysis,
though this is likely to affect only a small fraction of grid boxes.
Future probability estimates are found to be sensitive to the choice
of the RCP in the model simulations. Here, we estimate the future
likelihood of extremes under both a mid- and high range RCP
scenario. However, if emissions are reduced in line with the Paris
climate agreement, the future probabilities are expected to be
lower. Despite these uncertainties, our analysis still clearly estab-
lishes the nature of already realised and future changes in extreme
temperatures including their spatial characteristics, information
that can help the UK plan its resilience to heat extremes.

Methods
Transfer functions. The local and UK mean tx01 is computed from the obser-
vations for every year in the period 1960–2019. For a given grid-box, we represent
the dependence of the local tx01 on the UK mean with a simple linear model:

tx01 localð Þ ¼ α0 þ α1tx01 UKð Þ:

a b c d

e f g h

i j k l

Fig. 7 The changing likelihood of locally exceeding high thresholds of the warmest daytime temperature (tx01) in the UK. Maps of the return time for
tx01 going above 30 °C (panels a–d), 35 °C (e–h) and 40 °C (i–l) in the natural climate (panels a, e, i), the present climate (b, f, j), and the climate of the
late twenty-first century simulated with the RCP 4.5 (c, g, k) and RCP 8.5 scenarios (d, h, l).
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The linear regression is fitted to the n= 60 observed annual values of tx01
(local) and tx01(UK) and ordinary least squares are used to estimate the
coefficients α0 and α1.

If yiobs and yifit denote the observed and fitted values of tx01(local) in year i, and
SSE the sum of squared errors:

SSE ¼
Xn

i¼1

yobsi � yfiti
� �2

;

then the confidence interval for the response variable and the (1+ p)/2 quantile of
the t(n− 2) distribution is estimated19 as:

± tð1þpÞ=2

ffiffiffiffiffiffiffiffiffi
SSE
n�2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
n
þ xobsi � X
� �2

SXX

s

;

where xiobs denotes the observed value of tx01(UK) in year i, X the mean of the

observed tx01(UK) values and SXX is calculated as:

SXX ¼
Xn

i¼1

xobsi � X
� �2

:

The confidence bounds are represented by very shallow hyperbolas that can be
almost perfectly approximated by straight lines, as done in this study. Using the
best fit to the observed data and the 1st to 99th percentiles for the estimation of the
uncertainty range for the response variable, we end up with a set of 100 transfer
functions per grid-box. Therefore, when we apply the transfer functions to a model
simulated value of tx01(UK), we obtain 100 values that represent the possible range
of the tx01 at the reference location.

Uncertainty in the transfer functions. Although the 60-year long observational
dataset used to derive the transfer functions is deemed large enough to provide
reliable estimates of the linear fits at every grid-box, sampling uncertainty will still
have some effect on the analysis results. This kind of uncertainty is commonly

a

b

c

Fig. 8 The increasing likelihood of exceeding high temperature thresholds anywhere in the UK. Timeseries of the return time for observing temperatures
in the UK above a 30 °C, b 35 °C and c 40 °C with all forcings and future projections following the RCP 4.5 (in pink) and RCP 8.5 (in grey) scenarios. The
thickness of the timeseries illustrates the uncertainty in the transfer functions used in the analysis. The expected range in the natural climate is marked in
green. The vertical grey lines mark year 2020 (i.e., the present climate).
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accounted for by a simple a Monte Carlo bootstrap procedure26 that we also
employ here. The procedure involves random resampling of the 60 annual pairs of
tx01(UK) and tx01(local) and deriving a new set of transfer functions from the
resampled data. Multiple resampling provides multiple sets of transfer functions.
Each set, as explained next, can provide an estimate of the likelihood of the local
tx01 exceeding a certain temperature threshold and by repeating the calculations
with all the bootstrapped sets of transfer functions, we obtain multiple estimates of
the likelihood, which enables us to estimate its uncertainty range.

Estimation of the local tx01 probabilities. For every year of each experiment we
obtain samples of 1600 tx01 values for every grid-box (16 CMIP5 models that
provide estimates of the UK mean tx01 × 100 transfer functions). We further
increase the sample size in the all-forcings experiment to 32,000 by calculating the
probabilities in 20-year rolling windows during the period 1900–2100 (i.e., in time
segments 1900–1919, 1901–1920, …, 2081–2100). We select years 2011–2030 to
represent the present-day climate and 2081–2100 to represent the late twenty-first
century climate. Future probabilities are estimated with both RCP 4.5 and 8.5,
whereas only simulations with RCP 4.5 were used to estimate present-day prob-
abilities. For the natural world, we aggregate all simulated years (1900–2005),
assuming that the natural climate is stationary in the long run, which yields
samples of 169,600 tx01 values (16 models × 100 transfer functions × 106 years) for
every grid-box. The resulting samples provide estimates of the likelihood of
exceeding the pre-selected thresholds of 30, 35 and 40 °C. Given the large sample
sizes, probabilities are computed by a simple count of threshold exceedances. Using
alternative sets of the transfer functions from the bootstrapping procedure
described earlier, we re-calculate the probabilities multiple times and estimate their
5–95% range to account for the uncertainty in the empirical relationships.

Probability of exceeding a threshold anywhere in the UK. The 16 CMIP5
models provide 320 simulated years in consecutive 20-year rolling windows. The
sample increases to 32,000 when we apply the set of 100 transfer functions for each
grid-box to obtain high-resolution annual maps of the tx01. Counting how many of
these 32,000 maps include at least one location where the reference threshold is
exceeded, allows us to the calculate the probability estimate. As before, the prob-
ability is recomputed with alternative sets of the transfer functions to assess their
uncertainty. The natural probabilities are also aggregated to provide the 5–95%
range for the natural climate.

Data availability
The HadUK-Grid temperature data and station temperature data from the Met Office
Integrated Data Archive System (MIDAS) that support the findings of this study are
available from the CEDA Archive, http://archive.ceda.ac.uk. The CMIP5 simulated
temperature data that support the findings of this study are available from the Earth
System Grid Federation (ESGF) Archive, https://esgf.llnl.gov/.

Code availability
IDL code used for the analysis is available upon request.
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