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Abstract. Many real-world complex networks exhibit a community structure,

in which the modules correspond to actual functional units. Identifying these

communities is a key challenge for scientists. A common approach is to search for

the network partition that maximizes a quality function. Here, we present a detailed

analysis of a recently proposed function, namely modularity density. We show that

it does not incur in the drawbacks suffered by traditional modularity, and that it can

identify networks without ground-truth community structure, deriving its analytical

dependence on link density in generic random graphs. In addition, we show that

modularity density allows an easy comparison between networks of different sizes, and

we also present some limitations that methods based on modularity density may suffer

from. Finally, we introduce an efficient, quadratic community detection algorithm

based on modularity density maximization, validating its accuracy against theoretical

predictions and on a set of benchmark networks.
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1. Introduction

The last two decades have seen an explosion in the study of complex systems, caused

by the increasing relevance for society of such large interconnected structures, and by

an unprecedented availability of data to analyze them. Many of these systems can

be modelled as networks, in which the system elements are represented as nodes,

and their interactions as connections, or edges, linking them [1, 2, 3]. The network

representation of complex systems has been used in the social sciences [4, 5, 6, 7, 8], in

biology [9, 10, 11, 12], and in studies of technological systems [13] and communication

systems [14]. More recent work has focussed on the multilayer nature of complex

networks, introducing a new framework that is particularly useful for the analysis of

large complex data sets [15, 16]. Researchers have applied complex systems techniques

to a wide range of disciplines, identifying and analyzing several defining features of

complex networks, such as the small world property [17, 18, 19, 20], heterogeneous

degree distributions [21, 22], clustering [23, 24], degree-degree correlations [25, 26],

assortativity [27], synchronizability [28], and community structure [29]. Communities

were originally studied in the context of social networks, in which they are formed by

groups of people that share close friendship relations. However, communities of densely

connected modules have been observed in several real-world and model networks of

diverse nature [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42], where, in general,

they are defined as groups of nodes whose internal connections are denser or stronger

than those that link nodes belonging to different groups. In all these cases, the

presence of communities directly influences the behaviour of the system, where there

is often a correspondence between communities and functional units. Ever since the

discovery of community structure in real-world networks, a plethora of techniques

devoted to their detection has been introduced [43, 44, 45, 46, 47, 48, 49, 50, 51].

The challenge is both theoretical, in proposing a good mathematical definition of what

constitutes a community, and computational, in developing good heuristics that can

detect communities in a reasonable time.

A common way of investigating the community structure of networks starts with

the definition of a quality function, which assigns a score to any network partition.

Larger scores correspond to better partitions, and algorithms are created to find the

partition with the largest score. By far, the most common and used of such quality

functions is modularity [52], that works by comparing the number of links inside each

community to the number of links that would be expected if the nodes were connected at

random, without any preference for links within or outside the community. A partition

with a large modularity indicates that the communities have many internal links and few

external ones, when compared to a randomized version of the network. However, despite

its success, modularity also has some shortcomings, decreasing its general usefulness.

In this Article, we study a new quality function, modularity density, that was originally

introduced in [53, 54] and that has been shown to address the limitations of traditional

modularity. We present a detailed analysis of its properties on synthetic networks
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typically used to evaluate quality functions, as well as on random graphs, which are

a commonly used benchmark to test community detection methods. We also present

some limitations that need to be taken into consideration when using methods based

on modularity density. In addition, we describe a new community detection algorithm

based on this metric, whose computational complexity is quadratic in the number of

nodes, and validate it on synthetic and real-world networks, showing that it performs

better that other currently available methods. Also, we argue that the nature of

modularity density allows for a direct quantitative comparison of community structures

across networks of different sizes.

2. Traditional modularity and its limitations

The modularity Q of a network with N nodes and m links is defined as:

Q =
1

2m

∑

ij

(
Aij −

kikj
2m

)
δCiCj

,

where A is the adjacency matrix of the network, ki is the degree of node i, Ci is the

community to which node i is assigned and δij is the Kronecker delta. The first term

accounts for the presence or absence of a link between node i and node j; the second

term, instead, is the expected number of links between node i and node j in a random

network with the same degree sequence as the original one.

A first limitation of modularity is that it is intrinsically dependent on the number

and distribution of edges, rather than on the number of nodes. To see this, denote by

mC and eC the number of internal and external links of community C, respectively.

Moreover, let kC = 2mC + eC be the sum of the degrees of the nodes in community C.

With this notation, it is

Q =
∑

C∈C

[
mC

m
−

(
kC
2m

)2
]
, (1)

where C = {C1, C2, . . . , CP} denotes the set of all communities in the partition. In this

expression, each term in the sum refers to a different community. The first factor of

each term corresponds to the internal density of links in the community, whereas the

second factor encodes the expected density of links in the random network null model.

Now, introduce the positive parameter αC , representing the ratio of external links to

internal ones:

eC = αCmC .

The value of αC is smaller for strong communitites, and higher for weaker ones. Then,

we can write

Q =
∑

C∈C

[
mC

m
−

(
2 + αC

2m

)2

m2
C

]
. (2)
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From this expression, it is clear that a community C gives a positive contribution to Q

only if:

mC <
4m

(αC + 2)2
.

This implies that the condition for a community to give a positive contribution only

depends on the number of edges in the community and on the total number of edges in

the network, but not explicitly on the number of nodes.

A similar result can be obtained considering a network of κ communities

disconnected from each other, along the lines of [43]. Under the assumption that all

groups have the same number of links, we can write

mC =
m

κ
,

eC = 0 ,

kC =
2m

κ
.

Then, from (1), it is

Q = κ

[
1

m

m

κ
−
(

1

2m

2m

κ

)2
]
= 1− 1

κ
. (3)

This shows that modularity converges to 1 with the number of communities κ regardless

of the internal properties of the communities, such as their size, or the number of internal

edges. As long as κ is very large and all communities have the same number of edges m/κ,

a network of disconnected trees has the same modularity of a network of disconnected

cliques. As before, we also see that the number of nodes in each group does not explicitly

contribute to Q, and, as an immediate consequence, a network composed of few cliques

has a smaller modularity than a network composed of many disjoint trees.

In addition to these results, the effectiveness of modularity is not constant for all

edge densities. To determine its dependence on this quantity, we follow [55] and connect

the κ groups in a ring configuration, where each community is linked with exactly one

edge to the next one, and one edge to the previous one in the ring, for a total of κ

inter-community edges. In this scenario, we have

mC =
m

κ
− 1 ,

eC = 2 ,

kC =
2m

κ
.

From (1), it follows that

Q = κ

[
1

κ
− 1

m
−

(
1

2m

2m

κ

)2
]
= 1− κ

m
− 1

κ
.

For constant m, this expression reaches its maximum when κ =
√
m, for which it is

Q = 1− 2√
m

.
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Thus, the highest modularity corresponds to a partition in
√
m modules. Once again,

the number of nodes in the communities does not affect its largest possible value.

This major limitation of modularity is known as the resolution limit, and it indicates

that modularity, as a quality function for community detection, has an intrinsic scale

proportional to
√
m. The number and size of the communities that can be detected via

modularity maximisation are bound to adhere to this limit, posing a serious question

on the significance of results obtained with this method. In fact, in a more general

framework, Fortunato and Barthélemy [55] have shown that, under some circumstances,

the resolution limit can even force pairs of well-defined communities to be merged into

a larger cluster, because this corresponds to a higher modularity.

Finally, it is worth noting that the trivial partition where all the nodes are put

together in one single community, namely the whole network itself, has a modularity

of 0. This can be easily seen from (2), since in this case the sum has only one term,

αC = 0 and mC = m, so

Q =
m

m
− 4m2

4m2
= 0 .

At first, this might seem a desirable property for a quality function, since, intuitively,

the trivial partition should not have a positive modularity. However, this implies that

any partition that achieves a modularity larger than 0 is retained as a valid community

structure. Since community detection algorithms try to maximize modularity, it is often

the case that such a positive value can be found even on Erdős-Rényi random graphs [50].

To stress this point, the trivial partition with Q = 0 can always be considered, but since

one is interested in the maximum value of Q, it is often discarded in favour of a clustering

that achieves any positive value of modularity. This poses a serious limitation to the

ability of modularity-based algorithms to partition random graphs correctly.

Several variants of modularity have been proposed to address the resolution limit.

For instance, multi-resolution methods, such as the one described in [56], introduce an

additional tunable parameter η > 0 in the expression for Q:

Qη =
∑

C∈C

[
mC

m
− η

(
kC
2m

)2
]
.

Larger values of η cause Qη to be larger for partitions with smaller modules, whereas

smaller values favour larger communities. However, this approach suffers from similar

limitations to those presented by the original modularity [57]. In particular, Qη has

two contrasting behaviours: small clusters tend to be merged together, while large

communities tend to be split into subgroups. Networks in which all the communities

are of comparable size are immune to this problem, and one can find a value of η

for which they can all be resolved. However, the existence of an optimal η is not

guaranteed in the general case. In particular, for networks whose community sizes are

heterogeneously distributed, e.g., following a power law, it is not possible to find a value

of η that avoids both problems. The reason for this is that the nature of the resolution

limit is more general than the specific definitions of modularity and its multi-resolution
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extension. Several quality functions for community detection, including the one just

mentioned, can be derived within the general framework of a first principle Potts model

with Hamiltonian

H = −
∑

ij

[aijAij − bij (1−Aij)] δCiCj
,

where aij and bij are non-negative weights. Different choices for the weights result

in different quality functions. However, only those using non-local weights can be

truly free from the resolution limit [58], while all others, including modularity, multi-

resolution modularity and functions based on quantities such as betweenness, shortest

paths, triangles and loops, can never avoid it.

3. Modularity density

Recently, a new quality function called modularity density has been proposed to

overcome the issues outlined above [53, 54]. Given a network partition, modularity

density is defined as

Qds =
∑

C∈C





2m2

C

mnC (nC − 1)
−
[
2mC + eC

2m

2mC

nC (nC − 1)

]2
−

∑

C̃ 6=C

m2
CC̃

2mnCnC̃




 , (4)

where nC is the number of nodes in community C, the internal sum is over all

communities different from C, and mCC̃ is the number of edges between community

C and community C̃. This new metric brings two major improvements over traditional

modularity. First, it contains an explicit penalty for edges connecting nodes in different

communities. This addresses the problem of the splitting of large communities, since

each split introduces external links and is thus penalized. Second, all terms, including

the penalty for inter-community edges, are explicitly weighted by the community sizes.

Therefore, a partition with many edges linking two small communities is penalized

more than one with the same number of edges linking two large ones. Thus, modularity

density introduces local dependencies that are not found in traditional of modularity.

Additionally, it is not related to the Potts model Hamiltonian, thus avoiding the

resolution limit problem. Note that (4) requires nC > 1, which implies that partitions

with communities consisting of an isolated node are not allowed.

To investigate the properties of modularity density in more depth, rewrite the

expression for Qds as

Qds =
∑

C∈C


mC

m
pC −

(
2mC + eC

2m
pC

)2

−
∑

C̃ 6=C

m2
CC̃

2mnCnC̃


 , (5)

where

pC =
2mC

nC (nC − 1)
.

The parameter pC can assume values between 0 and 1, since it is the fraction of possible

internal links actually present in community C. Thus, it measures the connection
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Figure 1. Modularity density increases with number of communities and their edge

density. In networks composed of κ disconnected modules, the modularity density Qκ
ds

depends only on κ and the edge density of the communities p⋆κ. Fixing one of the two

parameters, Qκ
ds

always increases with the other.

density of the community, or, equivalently, the probability that two random nodes

inside C are connected. From (5) it is clear that having many internal edges is not

enough for a community to give a large contribution to modularity density. In fact,

a strong community is one where the density of edges, rather than their number, is

large. This also agrees with the intuitive notion that a community is a group of nodes

that are densely connected amongst each other. Thus, a good partition is one that

is characterized at the same time by a large number of intra-community links and a

high density of edges within the communities. Modularity density achieves this by

accounting for the number of nodes in each group and, in this sense, it has a more

natural dependence on the local properties of the network and of the partition under

consideration than does traditional modularity.

Next, it is instructive to study the behaviour of modularity density in the same

cases described in the previous section. First, consider a network partitioned in just two

communities, C and C̃. The contribution to Qds of community C is:

QC
ds =

mC

m
pC −

(
2mC + eC

2m
pC

)2

−
m2

CC̃

2mnCnC̃

.

Introducing the proportionality constant αC as before, it is

QC
ds =

mC

m

[
pC −

(2 + αC)
2

4m
p2CmC −

α2
CmC

2nC (N − nC)

]
,

where we used nC̃ = N − nC and mCC̃ = eC . Unlike what happens with traditional

modularity, the contribution of a single community depends explicitly on the number of

internal links and on the size of the community itself.
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Consider now again a network composed of κ disjoint communities. Assuming that

each community has the same number of nodes N/κ and the same number of edges m/κ,

the modularity density of such a network is:

Qκ
ds = κ

[
p⋆κ
κ
−

(
p⋆κ
κ

)2
]
= p⋆κ

(
1− p⋆κ

κ

)
, (6)

where

p⋆κ =
2m

N
(
N
κ
− 1

)

is the connection density of the communities. The first major difference between (3)

and (6) is that Qκ
ds depends not only on the number of communities, but also on their

density of edges, unlike traditional modularity, which only depends on κ. Also, for

a fixed value of κ, Qκ
ds increases with p⋆κ (see figure 1). This is remarkable, since it

indicates that the strength of the partition increases as more links are added within

each group, in striking opposition with the behaviour of traditional modularity. We

also note that for a fixed value of p⋆κ, modularity density increases with the number

of communities. Its theoretical maximum is reached in the limiting case of an infinite

number of communities, with the special requirement that they are all cliques. Moreover,

in one more substantial difference with traditional modularity, a network composed of

few cliques in general has a higher modularity density than a network composed of an

infinite number of sparse communities.

Finally, we study the test case of the ring of κ communities each linked by a single

edge to the next community and a single edge to the previous one. As before, it is

mC = m/κ − 1 and eC = 2, In addition, mCC̃ = 1 and nC = N/κ. Introducing the

variables

βκ =
m
κ
− 1

m

and

p⋆κ =
2(m

κ
− 1)

N
κ
(N
κ
− 1)

,

we can write the modularity density as

Qring
ds = κ

[
βκp

⋆
κ −

(
βκ +

1

m

)2

(p⋆κ)
2 − κ2

mN2

]
. (7)

The optimal number of communities is the one that maximizes this expression, or,

equivalently, the one for which its derivative vanishes. Differentiating Qring
ds with respect

to κ, we obtain

∂Qring
ds

∂κ
= κβκ∂κp

⋆
κ − 2

(
βκ +

1

m

)
p⋆κ∂κpκ +

(
βκ +

1

m

)2

(p⋆κ)
2 +

(
βκ −

1

κ

)
pκ −

3κ2

mN2
,

with

∂κp
⋆
κ =

2 (κ2 − 2κN +mN)

N(κ−N)2
.
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This expression does not have a simple general root in terms of κ. Rather, the solutions

depend on the local and global properties of the network. Thus, the number of groups

does not seem to be constrained by an intrinsic scale of order
√
m.

As briefly discussed above, a major drawback of traditional modularity is that

algorithms based on its maximization often find supposedly viable partitions on graphs

with no ground-truth community structure. In such cases, the correct partition is either

the one where all nodes are placed together, or the one with N communities, each

consisting of a single node. In either case, modularity vanishes. Thus, modularity-

maximizing algorithms often suggest spurious community structures simply beause they

have a non-zero modularity. Conversely, from (5) it follows that the one-group partition

has a modularity density

Q1
ds = p (1− p) ,

where p is the network density. Note that this expression is a parabola, whose roots

are p = 0 and p = 1, which are the fully disconnected and fully connected graphs,

respectively. Thus, a partition’s Qds needs not only to be positive, but also to lie above

the parabola for an algorithm based on modularity density maximization to accept it.

We will see that this makes such algorithms not find communities on random graphs,

as should be the case for a reliable community detection method.

4. A modularity density maximisation algorithm

Having discussed the advantages of modularity density as a quality function, we propose

a community detection algorithm based on its maximization. Currently, the only

published modularity density algorithm [54] is based on iterations of two steps, namely

splitting and merging. The algorithm is divisive, starting from a partition where all

the nodes are placed in a single community and then using bisections. Each splitting

is performed using the Fiedler vector of the network, which is the eigenvector of the

graph Laplacian corresponding to the second smallest eigenvalue. The graph Laplacian

L is defined as L = D − A, where D is the diagonal matrix of the node degrees. The

merging steps try to merge pairs of communities together if doing so improves the current

partition. The two steps are repeated until the partition cannot be improved any longer,

and the algorithm is deterministic, meaning that the same initial network always yields

the same partition. Here, we extend and adapt an existing modularity maximisation

algorithm, originally proposed in [50], which achieves the largest published scores of

traditional modularity. Along the lines of the original method, our algorithm consists

of four main steps, which we describe below. Appendix A contains a fully detailed

discussion of the algorithm implementation and its computational complexity.

4.1. Bisection

In this step, we try to bisect the community under consideration (see figure 2A). To do

so, we use the leading eigenvector of the modularity matrix. Despite suffering from the
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A B

C D

Figure 2. Schematic illustration of the algorithm steps. A) Bisection considers

splitting a group of nodes into two separate communities. B) Fine tuning considers

moving each node of a newly bisected group from its current community to the other.

For example, it considers moving the red node to the black community. C) Final tuning

considers moving each node of the network from its current community to any other

existing community. For example, it considers moving the red node to the blue, the

black and the pink communities. D) Agglomeration considers grouping two separate

communities into a single one. For example, it considers grouping the red and blue

nodes of panel C into a single red community.

limitations discussed above, modularity still provides a good initial guess for a partition

that is then refined by the subsequent steps.

4.2. Fine Tuning

After every bisection, the partition can be often improved by using a variant of the

Kernighan-Lin algorithm [59]. We consider moving every node i from the community

into which it was assigned to the other (see figure 2B). Every such move would result in

a change ∆Qi
ds of the quality function, and we perform the move yielding the largest of

such changes ∆maxQ
i
ds. Note that we introduce here a non-deterministic factor: given

a tolerance parameter τacc, we consider all moves achieving a change of modularity

density within the interval [∆maxQ
i
ds − τacc,∆maxQ

i
ds] to be equivalent. If more than

one move falls within the acceptance interval, we randomly choose one to accept. This

stochasticity allows the algorithm to explore the partition space without getting stuck

on a local maximum, since it can accept moves that are not always optimal. Once a
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move has been performed, the corresponding node is flagged as blocked. Then, every

non-blocked node is considered again and the procedure is repeated, until all nodes have

been considered. At the completion of an iteration of this step, a decision tree is formed

where each node of the tree represents a sequence of nodes in the network switching

community, with an associated ∆Qds equal to the sum of all the changes in modularity

density along the branches leading to the tree node. Then, we randomly choose a node

in the decision tree amongst those achieving the largest positive increase in modularity

density within an interval determined by the tolerance parameter τacc, and perform all

the moves corresponding to the chosen node. Finally, the whole step is repeated until

no improvement in Qds can be obtained.

4.3. Final Tuning

A further refinement of a current partition can be achieved by performing an additional

tuning step. In the final tuning, we consider every node i and try to move it to every

other possible community C already present in the partition (see figure 2C). The step is

performed in a similar fashion to the fine tuning, repeatedly considering all the moves

which result in an increase of modularity density in a small interval defined by the

tolerance parameter τacc until all nodes have been moved. As before, we build a decision

tree of partial switches and then perform all the moves up to the level in the tree that

has been selected amongst those yielding the largest increase in Qds. We repeat this

step until no further refinements can be found.

4.4. Agglomeration

A step that merges pairs of communities is fundamental. First of all, unlike both

tuning steps, which are local because they only consider moving one node at a time,

merging communities is a non-local step that allows one to better explore the landscape

of modularity density [50]. For example, merging two entire communities can result

in an increase of the quality function while partial mergers, i.e., moving only some

nodes from one community to the other, could still have a lower score than the starting

partition. Therefore, using only local moves, one could discard those partial mergers

because they temporarily decrease the partition score, thus never achieving the beneficial

complete merging of the two communities. In the case of modularity density, the

agglomeration step is even more important, since no series of local moves could ever

produce the full merging of two communities. This happens because modularity density

does not allow communities of size 1. Thus, even if local steps had succeeded in moving

all nodes except two from one community to another, any further move would be

prohibited because it would result in a single-node community. This makes a global

move essential for our algorithm. In the agglomeration step, we consider pairs of

communities C and C̃ and try to merge them (see figure 2D). Each move results in a

change in modularity density ∆QC,C̃
ds and we randomly choose the move amongst those
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Figure 3. Modularity density for networks of κ disconnected communities. The

predictions of (6) (solid lines) are confirmed by numerical simulations throughout the

range of p⋆κ and for different values of κ. For each κ, we consider groups with 50, 100

and 500 nodes, respectively. Additionally, and as expected, we observe that the value

of modularity density does not depend on the number of nodes in each community,

but only on the number of communities and their internal density. Each point is the

average over 100 network realizations.

in the interval
[
∆maxQ

C,C̃
ds − τacc,∆maxQ

C,C̃
ds

]
, where ∆maxQ

C,C̃
ds is the largest increase in

modularity density achieved by any move. We build a decision tree by progressively

merging pairs of communities, until there is only a single community left. We then look

at the nodes in the tree corresponding to the largest increase in modularity density but,

in difference from the previous steps, if more than one node results in the same increase,

we select the one with the smallest number of communities. The whole step is repeated

until the current partition cannot be improved further.

4.5. Summary

With these four steps, the algorithm can be summarized as:

• Start with a single community containing all nodes.

• Try to bisect the network using the leading eigenvector of the modularity matrix.

• If the bisection was successful, then perform a fine tuning step.

• Iterate the bisection and fine tuning steps on each of the communities in the current

partition, until no further splitting and refinement can be performed.

• Perform the final tuning step.

• Perform the agglomeration step.

• Repeat the sequence of steps until it is no longer possible to find an increase in

modularity density.
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Figure 4. Modularity density for rings of communities. We simulate ring networks

composed by with a varying number of communities κ and compare the theoretical

values of modularity density with the results of our algorithm. In panel (a) we

consider networks of κ fully connected cliques, finding a perfect agreement between

theoretical value (solid line) and simulations (squares). In panel (b), we build networks

with different fixed values of κ and vary their internal density. Note that, differently

from (a), here the groups are not fully connected. The theoretical values (lines) and

simulation results match precisely. In both panels, each point is the average over 100

realizations of the same network.

As described in detail in Appendix A, the worst-case computational complexity of the

full algorithm is O (N2).

5. Validation

To validate our algorithm, we test it on several synthetic and real-world networks. First,

we verify that it reproduces the theoretical predictions on networks of disconnected

communities and on rings of modules, discussed in section 2 and section 3. Then, we

analyze its behaviour on random networks belonging to different ensembles. Finally,

we run it on a set of benchmark networks, comparing the results with the best ones

currently published.

5.1. Disconnected communities and rings

First, we consider networks formed by κ disconnected communities. Equation (6)

indicates that the modularity density of such networks depends only on the connection

probability p⋆κ and on κ itself, but not on the size of each community. We find an

exact agreement between the simulation results and the theoretical prediction for all

the values of κ (figure 3). We also note that the values of modularity density found in

the simulations do not depend on the number of nodes in the communities.

As a second test, we simulate two types of ring networks of communities. We start

by making the communities cliques of 5 fully connected nodes, and vary κ from 3 to 20.

From (7), the expected modularity density of these networks is

Qring
ds = κ

[
βκ −

(
βκ +

1

m

)2

− κ2

25m

]
.
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Figure 5. Modularity density on Erdős-Rényi graphs. We build ensembles of

random networks, with different sizes and different densities, comparing the theoretical

modularity density (solid line) and the one found by our algorithm. Up to finite-size

effects for the smallest and least dense networks, we find a perfect agreement between

theoretical prediction and simulation results, with all the results collapsing on the same

curve. Each point is the average over 1000 realizations of the same network parameters.

The comparison between the modularity density predicted by this expression and the

values obtained in our simulations is shown in figure 4(a). We find a precise agreement

between the two, showing that our algorithm correctly identifies the cliques without

splitting them, and finds the right value of modularity density. Next, we build ring

networks in which we fix κ and vary the community density p⋆κ. Each community

contains 50 nodes, and we vary p⋆κ from 0.2 to 1, performin the test for κ = 10, κ = 15

and κ = 20. The results, in figure 4(b), show a perfect agreement in all cases, again

indicating that our algorithm correctly partitions the networks.

5.2. Random networks

As we argued in the previous sections, a desirable feature of a community detection

algorithm is that it does not propose a complex partition of graphs without ground-

truth community structure. To verify that our algorithm satisfies this requirement, we

test it on Erdős-Rényi random graphs. For graphs in this ensemble, every possible edge

between N nodes exists independently with probability p. Thus, the average number

of edges is 1
2
Np (N − 1). These networks do not have any true community structure,

since all their edges are fully random, and thus they are one of the benchmarks against

which community detection algorithms are often tested. For our simulations, we create

networks with values of p from 0.15 to 0.90 and number of nodes 50, 100, 500 and

1000. The results, in figure 5, show that for all network sizes, the average modularity

density matches almost perfectly the theoretical prediction. Even for small networks,

where finite-size effects are largest, the values lie in close proximity to the theoretical
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Figure 6. Modularity density on random regular graphs. We build ensembles of

random regular networks, with different sizes and degree, comparing the theoretical

modularity density (solid line) and the one found by our algorithm. With the exception

of the sparsest network for each size, we find a good agreement between theoretical

prediction and simulation results, with all the results collapsing on the same curve.

Each point is the average over 100 realizations of the same network parameters.

parabola and we can only observe a small deviation for the smallest networks at low

values of p. Also note that all the results collapse on the theoretical curve, which

does not depend on network size. These results represent a major improvement over

modularity-based algorithms, that typically detect communities even on Erdős-Rényi

networks. In addition, Erdős-Rényi networks are locally tree-like for low enough values

of p, and highly clustered for p close to 1. Thus, the results also indicate that modularity

density is highly effective in detecting when no real communities exist in locally tree-like

graphs, and does not introduce spurious modules even when the clustering increases.

In fact, also the limiting case of fully connected graphs, which corresponds to a link

probability p identically equal to 1, is properly identified by our method.

As a special case of random networks, we also study random regular graphs.

Random regular graphs are random networks where all nodes have the same degree,

but the edges are still randomly placed. Using the algorithm described in Ref. [60],

we create random regular graphs with 100, 500 and 1000 nodes. For each of the three

network sizes, we consider degrees ranging from 4 to 20, 100 and 500, respectively. For

every pair of size and degree, we generate 100 network realizations, on which we run

our community detection algorithm. The results, depicted in figure 6, show a good

agreement between theoretical predictions and simulations. The only exceptions are

three cases that correspond to the sparsest graph of each given size.

These results show one of the major strengths of modularity density. However, it

is well known that most real-world networks are not well represented by Erdős-Rényi

graphs or random regular graphs. Rather, they are characterized by heterogeneous

degree distributions. Thus, to further verify the performance of our algorithm, we test
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Figure 7. Modularity density for LFR networks. We run our algorithm on random

LFR networks without community structure, with N = 500 nodes and varying

parameters. In particular, we let the mean degree 〈k〉 assume the values 15, 25, 35,

44 and 55, and the largest degree kmax be 150, 200 and 250. For each combination of

the parameters, we generate 100 networks and for each we record the edge density p

and the largest modularity density our algorithm finds. The plot shows considerable

agreement between the theoretical modularity density (solid line) and the one found

by the algorithm. The only deviations appear for γ = 2 and low p, and they are

probably due to the breakdown of the LFR model for this limiting value of the degree

distribution exponent.

it on LFR networks [44]. These constitute a set of widely-used benchmark networks,

whose distributions of degrees and community sizes follow a power-law P (k) ∼ k−γ . For

our tests, we fix the network size to N = 500 and vary the other parameters, namely

the exponent γ of the degree distribution, the mean degree 〈k〉 and the largest degree

kmax. Also, we ensure that the networks thus created contain a single community, so

that no actual community structure is present. We run our algorithm on the networks

thus generated and compare its results with the theoretical expectations. The results,

presented in figure 7, show that for γ = 2.5 and γ = 3, the modularity density found

by the algorithm closely follows the predicted value for networks of all densities. We do

observe, however, some deviations from the predicted values at γ = 2. This is probably

due to the fact that, asymptotically, no networks exist with a pure power-law degree

distribution for γ < 2 [22]. Thus, in the limit of γ = 2, and particularly for low densities,

a spurious structure of stars with bridges appears, effectively introducing communities

in the networks.

5.3. Benchmark networks

We now verify the performance of our algorithm on some well known networks, for

which results of the maximum modularity density obtained so far are available. The
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Table 1. Accuracy validation. The comparison between the published results and

the ones obtained with our algorithm on real-world and synthetic benchmark networks

shows that our algorithm always performs better than the current best one. Note that

currently this is the only other algorithm based on modularity density maximisation.

All the already published results are found in [54].

Benchmark Qds Qds,pub p p(1− p)

Karate Club 0.235 0.231 0.139 0.120

Football Club 0.490931 0.4909 0.0935 0.0848

LFR, µ = 0.05 0.5220± 0.0039 0.4979 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.10 0.4638± 0.0033 0.4522 0.0154± 0.0001 0.0152± 0.0001

LFR, µ = 0.15 0.4249± 0.0030 0.4013 0.0157± 0.0002 0.0155± 0.0002

LFR, µ = 0.20 0.3982± 0.0054 0.384 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.25 0.3465± 0.0085 0.3347 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.30 0.2986± 0.0034 0.2619 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.35 0.2546± 0.0101 0.2377 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.40 0.2340± 0.0069 0.199 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.45 0.2029± 0.0064 0.169 0.0156± 0.0001 0.0154± 0.0001

LFR, µ = 0.50 0.1579± 0.0027 0.1385 0.0156± 0.0001 0.0154± 0.0001

first is Zachary’s Karate Club network [61]. This is a friendship network between 34

members of a karate club in a U.S. university during the 1970s and it has become one of

the most standard benchmarks to test community detection algorithms. The interest in

this network lies in the fact that, not long after it was recorded, the club split into two

subgroups due to internal problems between two members, namely the manager and the

coach. Thus, a traditional challenge is to be able to detect these two groups based only

on the friendship data available in the network topology, under the assumption that

the members would decide to follow whichever leader they were more strongly related

to between the coach and the manager. Of the 561 possible edges in the network, only

78 of them are present, making the network fairly sparse, with an effective connection

probability p ≈ 0.139.

A second benchmark network we consider is the American College Football Club

network [29]. Here, the nodes represent different college football clubs and an edge

connects two teams if there has been a regular-season game between them during the

2000 season. This network is known to have a natural community structure because the

teams are divided into different leagues, thus making matches between teams more or

less likely depending on the group they belong to.

Finally, we consider again some LFR benchmark networks, choosing a set of

parameters for which already published results exist. Table 1 presents a comparison

between the results obtained using our algorithm and the best results available in the

literature. Note that currently there is only one other algorithm based on modularity

density. Because of the stochasticity within our method, for each value of the mixing

parameter µ, we create 10 realizations of the network and run the algorithm 100

times on each, reporting the average maximum modularity density found. In all cases
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Figure 8. Modularity density on regular ring lattice graphs. We build regular ring

lattice graphs, with different sizes and degrees, comparing the theoretical modularity

density (solid line) and the one found by our algorithm. The results show that ring

lattices are a limitation of modularity density. In fact, in almost all cases it is possible

to find a network partition with a higher modularity density than the trivial one,

corresponding to the absence of ground-truth communities.

considered, our algorithm finds a partition with higher modularity density than the best

one currently published.

6. Limitations

So far, we have shown that our algorithm identifies the correct value of modularity

density on a range of test networks. However, it is also worth noting that methods

based on modularity density present some limitations in special cases.

To show this, we analyze regular ring lattice networks. These are graphs composed

by a ring of N nodes, each connected to a number of neighbours in each direction. We

consider networks of 100, 500 and 1000 nodes, for which the number of neighbours of

each node varies from 8 to 40, 200 and 500, respectively. The results, depicted in figure 8,

illustrate how the theoretical prediction and the simulated results differ on almost all

cases considered. In fact, with one exception, there is always a set of communities with

a higher value of modularity density than the one corresponding to the trivial partition.

Trees are another special case where modularity density exhibits some shortcomings.

To see this, consider a tree with N nodes. If all the nodes are put in a single community,

the modularity density is given by:

Q
(1)
ds = p(1− p) =

2(N − 2)

N2

If instead one divides the nodes between two different communities of equal size and



Finding network communities using modularity density 19

1 community
2 communities
3 communities
4 communities
5 communities

N
20 60 100

0.05

0.2

0.35

Q
d

s

Figure 9. Modularity density for random trees partitioned into equally sized

communities. The values indicate that trees constitute a limitation to the application

of modularity density, since, for more than 6 nodes, partitions with more than one

community always have larger modularity density than the trivial one.

equal number of internal links, it is

Q
(2)
ds =

4(1 + (N − 4)N)

N2(N − 1)
,

where we used the fact that, for a tree, there can only be one link between the two

communities if they do not consist of disconnected components. It follows that, for

N > 6, Q
(2)
ds > Q

(1)
ds , that is, for trees with more than 6 nodes, a partition in two equally

sized communities always has a larger modularity density than the trivial partition.

More generally, partitions with a larger number of equally sized communities tend to

have a larger score, as can be seen in figure 9.

7. Conclusions

Communities are a fundamental structure that is often present in real-world complex

networks. Thus, the ability to accurately and efficiently detect them is of great

relevance to the analysis of complex data sets. Despite their success, traditional

methods based on modularity have been shown to suffer from limitations. We have

presented a detailed analysis of the properties of modularity density, an alternative

quality function for community detection, showing that it does not suffer from the

drawbacks that affect traditional modularity. In particular, modularity density does

not depend separately on the size of the network or the number of edges, but only

on the combination of these two properties in terms of the density of links within

the communities. As a consequence, it allows a direct quantitative comparison of the

community structure across networks of different sizes and number of edges. At the

light of these considerations, we have introduced a new community detection algorithm

based on modularity density maximization. Investigating its performance on Erdős-
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Rényi and heterogeneous random networks, we showed that it correctly identifies them

as containing no actual communities. Moreover, our algorithm outperforms the other

existing modularity-density-based method on every benchmark network that we tested.

The high level of accuracy it reaches, its low computational complexity, and the ability

to properly identify networks with no ground-truth communities make it a powerful tool

to investigate complex systems and extract meaningful information from the network

representation of large data sets, giving it a broad range of application throughout

the physical sciences. At the same time, we have also identified some limitations of

modularity density that were not previously known. More specifically, we found that

the theoretical maximum of modularity density for ring lattices and pure random trees

does not correspond to the trivial partition, but rather to partitions with more than one

community. We find this particularly intriguing, since Erdős-Rényi graphs are locally

tree-like. Thus, these results seem to suggest a certain relevance of long-distance links for

a correct behaviour of modularity density. Since most real-world networks are not pure

trees or ring lattices, and indeed do feature shortcut links, we believe these limitations do

not affect the suitability of modularity density and methods based on it in the analysis

and modelling of complex systems. We will further investigate these limitations in future

work. Additionally, we will also extend this method to other types of networks, such as

bipartite graphs, which require a redefinition of the concept of community itself.

An implementation of our algorithm is freely available for download at

www.fedebotta.com.
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Appendix A. Implementation details

Here, we provide a detailed description of the implementation of the algorithm presented

above. To describe how the different steps are carried out, first we introduce some

notation. Let P = |C| be the size of the current partition. Then, let M be the

partition adjacency matrix of the network, i.e., the P × P matrix whose elements mCC̃

are the number of links between community C and community C̃. Also, let X be the

community spectra matrix, i.e., the N × P matrix whose elements xiC are the number

of links between node i and nodes in community C. Finally, let S be the P -dimensional

community size vector, whose elements are the sizes of the communities.

Note that our implementation uses three tolerance parameters:

(i) Power method tolerance τpwm. This parameter determines the tolerance for the

floating-point comparisons in the power method.

www.fedebotta.com
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(ii) Bisection tolerance τbs. Since a bisection with the leading eigenvector of the

classical modularity matrix does not guarantee an increase in modularity density,

we introduce a tolerance τbs. After each bisection, we check the difference between

the new and old values of modularity density. A bisection is accepted if modularity

density increases or if it decreases by an amount smaller than τbs (more details are

given in Appendix A.1).

(iii) Acceptance tolerance τacc. This parameter defines the size of the tolerance range

when finding the moves that maximally increase modularity density during tuning

and agglomeration steps.

Appendix A.1. Bisection

The first step in the algorithm attempts to bisect a community (see also figure 2A),

which can be either the whole network or a previously determined community, using the

traditional modularity matrix. To do so, we use the spectral method, which we briefly

review here. The modularity matrix B is defined as

B = Aij −
kikj
2m

,

and the expression for the modularity of a given partition is

Q =
1

2m

∑

ij

BijδCiCj
. (A.1)

Since we are only considering a potential bisection, Ci can only assume two values.

Thus, a partition can be represented by a vector s whose entries si are 1 and −1 if node

i is assigned to the first or the second community resulting from the split, respectively.

Then, substituting the expression

δCiCj
=

1

2
(sisj + 1)

in (A.1), it is

Q =
1

4m

∑

ij

Bijsisj .

The vector s can be expressed in terms of the normalized eigenvectors of B as

s =

N∑

i=1

ϑivi ,

where the ϑ are linear combination coefficients, and vi is the ith eigenvector of the

modularity matrix, corresponding to the eigenvalue λi. substituting in (A.1), we obtain

Q =
1

4m

N∑

i=1

ϑ2
iλi .

If we label the eigenvalues so that λ1 > λ2 > · · · > λN , this expression is maximized

when s is parallel to the leading eigenvector v1. However, s is a vector whose entries
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Figure A1. Schematic illustration of node i moving from community C to

community C̃.

can only be ±1. Thus, we can only choose its elements to make it as parallel to v1

as possible. One way of achieving this is to set si = 1 if v1i > 0 and si = −1 if

v1i < 0. Then, the bisection consists in finding the leading eigenvector of B and, if the

corresponding eigenvalue is positive, dividing the nodes according to this rule. Several

metohds can be used to diagonalize B. Since we only need to find a single eigenvector,

and this step only provides a starting guess, we choose to use the power method, which

offers a good tradeoff between speed and accuracy.

Further consideration must be given to the fact that we are performing a bisection

based on the modularity matrix, whereas our aim is to maximize modularity density.

The potential problem is that a bisection based on modularity might not result in a

larger value of modularity density. To avoid this, we introduce a tolerance parameter

τbs, whose role is to determine the largest possible decrease in modularity density that

we want to accept when bisecting. In other words, if after the bisection the modularity

density of the new partition has decreased by a value larger than τbs, we do not accept

the split, and keep the original partition. We consider only one exception to this rule,

namely the first iteration of the bisection. At the start of the algorithm, all nodes are

placed together and we try to bisect the whole network. At this point, we accept any

bisection in order to allow at least a whole iteration of the whole algorithm. Indeed, if we

didn’t accept that, both the tuning and agglomeration steps could not be executed, thus

leaving the network not partitioned. Note that not partitioning the network could be

the correct answer, but we want to make sure that we have considered other partitions

as well at least once. If not partitioning the network is the best answer, this will be

found by the agglomeration step, that will merge all the communities together.
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Finally, we note that the previous expression for B is correct only when considering

the whole network. When trying to partition a single community C which does not

contain all the nodes, we need to construct an nC × nC sub-modularity matrix BC

whose elements are

BC
ij = Aij −

kikj
2m
− δij

(
kC
i − ki

kC
2m

)
,

where kC
i is the degree of node i within the community C. Using this matrix, we then

perform the bisection step as described above.

In Algorithm 1, we present a detailed description of the implementation of this

step. For each community, the computation of the leading eigenvalue through the power

method requires O (mcnc) steps. Thus, the worst-case complexity of the the bisection

step is O (mN).

Appendix A.2. Tuning Steps

The crucial part of both the fine tuning and final tuning steps is that they try to move

individual nodes to different communities (see also figure 2B and C). Thus, we need to

consider what happens to the current partition and how M , X and S change when we

move a node i from community C to community C̃. Figure A1 provides an intuitive

scheme to illustrate the changes that follow from such a move. In general, both the

number of internal and external links of C will change, since node i is leaving this

community. However, to correctly update the modularity density, we also need to keep

track of the changes in all the specific numbers of links between C and every other

community in the current partition. Similarly, we need to ensure that the internal and

external links of C̃ are updated correctly. Finally, the sizes of the two communities

changes as well as a consequence of the move. Below, we describe how to efficiently

perform these updates.

Appendix A.2.1. Updating the Partition Adjacency Matrix The partition adjacency

matrix M keeps track of the number of edges between each pair of communities, as well

as the internal number of edges of each community in its diagonal elements. Looking

at figure A1, one can see that the following quantities change:

• The number of internal links of the community C that node i is leaving decreases

by the internal degree of node i, which is the number of links it has to other nodes

in C.

• The number of internal links of the community C̃ that node i is moving to increases

by the number of links node i has with other nodes in C̃.

• The number of links between the old and the new community of node i increases by

the number of links between i and its old community, and decreases by the number

of links between i and its new community.
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Algorithm 1

Pseudocode for the bisection step.
1: procedure Bisection Step

2: flag first bisection ← 1 ⊲ flag that this is the first bisection

3: w ← 1 ⊲ w is the community under consideration

4: |S| ← 1 ⊲ Current number of communities

5: while w ≤ |S| do

6: current number of nodes ← S[w] ⊲ S is the community size vector

7: current nodes labels ← find nodes in S[w]

8: B ← construct B ⊲ B is modularity matrix of the current nodes

9: if current number of nodes > 2 then

10: leading λ, leading v ← power method(B)

11: end if

12: if v has at least two negative and two positive components then

13: flag bisection ← 1

14: end if

15: if λ > 0 & flag bisection then

16: bisection(v, current nodes labels, current number of nodes)

17: |S| ← |S|+ 1

18: if old Qds− new Qds > τbs and flag first bisection= 0 then

19: cancel bisection

20: flag[w]← 1

21: flag fine tuning ← 0

22: end if

23: if S[w] > 2 or S[w + 1] > 2] and flag fine tuning then

24: fine tuning(current number of nodes, current nodes labels)

25: end if

26: flag first bisection ← 0

27: else

28: flag[w]← 1 ⊲ Flag w as blocked

29: end if

30: flag fine tuning ← 1

31: if flag[w] then

32: w ← w + 1

33: end if

34: end while

35: end procedure
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• The number of links between the old community C and all the other communities

C̄ /∈
{
C, C̃

}
decreases by the number of links between i and nodes in C̄.

• The number of links between the new community C̃ and all the other communities

C̄ /∈
{
C, C̃

}
increases by the number of links between i and nodes in C̄.

In formulae:

mC → mC − xiC

mC̃ → mC̃ + xiC̃

mCC̃ → mCC̃ + xiC − xiC̃

mCC̄ → mCC̄ − xiC̄ ∀C̄ /∈
{
C, C̃

}

mC̃C̄ → mC̃C̄ + xiC̄ ∀C̄ /∈
{
C, C̃

}
,

where we dropped the repeated index for the diagonal elements of M to keep the notation

consistent.

Appendix A.2.2. Updating the Community Spectra Matrix The rows of the matrix X

are the community spectra of the nodes, containing the numbers of links that each node

forms with nodes in all the individual communities in the current partition. When a

node i changes community, its community spectrum does not change. However, every

neighbour of i will experience a change in the number of connections it has to nodes in

the old and new communities of i. In particular, in moving node i from C to C̃, the

following changes happen:

• Since i is no longer in community C, all the nodes connected to i have one link less

to C.

• Since i is now in community C̃, all the nodes connected to i have one connection

more to C̃.

In formulae:

xlC → xlC − 1 ∀l | Ail = 1

xlC̃ → xlC̃ + 1 ∀l | Ail = 1 .

Appendix A.2.3. Updating the Community Size Vector The updates to this vector are

straightforward:

SC → nC − 1

SC̃ → nC̃ + 1 .

Appendix A.2.4. Change in Modularity Density Since Qds is defined as a sum over all

current communities, we consider the terms in its expression (4) separately, and show

how they change when node i moves from community C to community C̃. We first look
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Algorithm 2

Pseudocode for the fine tuning step.
1: procedure Fine Tuning Step

2: flag increase ← 1 ⊲ Flag if there is an increase in modularity density

3: while flag increase do

4: flag increase ← 0 ⊲ Reset the flag

5: for i1 < current number of nodes do

6: for i2 < current number of nodes do

7: if flag node[i2] = 0 then ⊲ if node i2 is not blocked

8: if xi2,C̃
> 0 then

9: ∆Qds[i2]← change in Qds if i2 changes community

10: end if

11: end if

12: end for

13: max∆Qds ← maximum increase in Qds

14: find all nodes within τacc from max∆Qds

15: node to move ← pick randomly between nodes with max∆Qds

16: flag node[node to move]← 1

17: fine tuning tree[i1]← fine tuning tree[i1 − 1] + max∆Qds

18: end for

19: max∆Qds ← max( fine tuning tree)

20: if max∆Qds > 0 then

21: find all steps within τacc of max∆Qds

22: step in fine tuning tree ← pick randomly step with max∆Qds

23: perform all updates in fine tuning tree until the chosen step

24: flag increase ← 1

25: end if

26: end while

27: end procedure

at what happens to the contributions of a community C̄ different from C and C̃. In this

case, the only changes happen for two terms in the internal sum:

∑

Ĉ 6=C̄

m2
C̄Ĉ

2mnC̄nĈ

→
∑

Ĉ /∈{C,C̃,C̄}

m2
C̄Ĉ

2mnC̄nĈ

+
(mC̄C − xiC̄)

2

2mnC̄ (nC − 1)
+

(
mC̄C̃ + xiC̄

)2

2mnC̄

(
nC̃ + 1

) .

Then, we consider the contribution of community C:

2m2
C

mnC (nC − 1)
→ 2 (mC − xiC)

2

m (nC − 1) (nC − 2)

2mC + eC
2m

2mC

nC (nC − 1)
→

2 (mC − xiC) + eC + xiC −
∑

C̄ 6=C xiC̄

2m

2 (mC − xiC)

(nC − 1) (nC − 2)
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∑

Ĉ 6=C

m2
CĈ

2mnCnĈ

→
∑

Ĉ /∈{C,C̃}

(mCĈ − xiĈ)
2

2m (nC − 1)nĈ

+

(
mCC̃ + xiC − xiC̃

)2

2m (nC − 1)
(
nC̃ + 1

) .

Finally, we consider the contribution of community C̃:

2m2
C̃

mnC̃

(
nC̃ − 1

) → 2
(
mC̃ + xiC̃

)2

m
(
nC̃ + 1

)
nC̃

2mC̃ + eC̃
2m

2mC̃

nC̃

(
nC̃ − 1

) →
2
(
mC̃ + xiC̃

)
+ eC̃ − xiC̃ +

∑
C̄ 6=C̃ xiC̄

2m

2
(
mC̃ + xiC̃

)
(
nC̃ + 1

)
nC̃

∑

Ĉ 6=C̃

m2
C̃Ĉ

2mnC̃nĈ

→
∑

Ĉ /∈{C,C̃}

(
mC̃Ĉ + xiĈ

)2

2m
(
nC̃ + 1

)
nĈ

+

(
mC̃C + xiC − xiC̃

)2

2m
(
nC̃ + 1

)
(nC − 1)

.

In Algorithm 2 and Algorithm 3, we present a detailed description of the

implementation of the tuning steps. The complexity of computing the potential change

in modularity density is O (P ), since we have to consider all the communities to update

the split penalty term. For the fine tuning, this process is repeated N times per node,

yielding a complexity of O (PN2). In the final tuning, instead, all communities are

considered as potential targets, introducing an extra factor of P in the complexity,

which becomes O (P 2N2). Note that these are worst case scenarios, since we typically

do not have to consider all communities for the updates, because each node is only

connected to a subset of them.

Appendix A.3. Agglomeration

The agglomeration step attempts the merger of pairs of communities (see also figure 2D).

If a merger is carried out, a community is obtained whose size is the sum of the sizes

of the original ones. A delicate point is deciding the label of the new community. In

our implementation, we always keep the smaller of the two labels. So, for instance, if

we merge community 1 with community 4, the resulting community will be labelled 1

and community 4 will disappear. We then need to reassign the links of every node

in the network to the new community, and also zero any link to the old community

that disappeared. Below, we describe how to efficiently perform the required updates,

assuming a merger between community C and community C̃ in which the label of the

resulting community is C.

Appendix A.3.1. Updating the Partition Adjacency Matrix The following changes

happen to the partition adjacency matrix:

• The number of internal links of the merged community is the sum of the internal

links of the two original ones plus the number of links between the two.

• All the links of community C̃ vanish, since it has been merged with community C.

• The number of links between the new community and any other community C̄ is

the sum of the number of links between each of the two original communities and C̄.



Finding network communities using modularity density 28

Algorithm 3

Pseudocode for the final tuning step.
1: procedure Final Tuning Step

2: flag increase ← 1 ⊲ Flag if there is an increase in modularity density

3: while flag increase do

4: flag increase ← 0 ⊲ Reset the flag

5: for i1 < N do

6: for i2 < N do

7: if flag node[i2] = 0 then ⊲ if node i2 is not blocked

8: for C̄ < |S| do

9: if xi2,C̄ > 0 then ⊲ if i2 has links to C̄

10: ∆Qds[i2][C̄]← change in Qds if i2 goes to C̄

11: end if

12: end for

13: end if

14: end for

15: max∆Qds ← maximum increase in Qds

16: find all nodes within τacc from max∆Qds

17: node to move ← pick randomly between nodes with max∆Qds

18: flag node[node to move]← 1

19: final tuning tree[i1]← final tuning tree[i1 − 1] + max∆Qds

20: end for

21: max∆Qds ← max( final tuning tree)

22: if max∆Qds > 0 then

23: find all steps within τacc of max∆Qds

24: step in final tuning tree ← pick randomly step with max∆Qds

25: perform all updates in final tuning tree until the chosen step

26: flag increase ← 1

27: end if

28: end while

29: end procedure

In formulae:

mC → mC +mC̃ +mCC̃

mC̃ → 0

mC̃C̄ → 0 ∀C̄ ∈ C
mCC̄ → mCC̄ +mC̃C̄ ∀C̄ /∈

{
C, C̃

}
.

Appendix A.3.2. Updating the Community Spectra Matrix The number of connections

between every node i and the merged community is the sum of the number of links
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Algorithm 4

Pseudocode for the agglomeration step.
1: procedure Agglomeration Step

2: flag increase ← 1 ⊲ Flag if there is an increase in modularity density

3: while flag increase do

4: flag increase ← 0 ⊲ Reset the flag

5: for C̃ < |S| do

6: for C̄ < |S| do

7: if flag community[C̄ ] = 0 then ⊲ if C̄ is not blocked

8: for Ĉ < |S| do

9: if flag community[i3] = 0 & mC̄,Ĉ > 0 then

10: ∆Qds
[C̄][Ĉ]← change in Qds if we merge C̄ and Ĉ

11: end if

12: end for

13: end if

14: end for

15: max∆Qds ← maximum increase in Qds

16: find pairs of communities within τacc from max∆Qds

17: communities to merge ← pick between those with max∆Qds

18: flag community[C̄ |Ĉ]← 1 ⊲ Flag only the one with largest index

19: agglomeration tree[i1]← agglomeration tree[i1 − 1] + max∆Qds

20: end for

21: max∆Qds ← max( agglomeration tree)

22: if max∆Qds > 0 then

23: step in agglomeration tree ← picks step with max∆Qds and smallest

number of communities

24: perform all updates in agglomeration tree until the chosen step

25: flag increase ← 1

26: end if

27: end while

28: end procedure

between i and each of the two original communities, and no node is connected to

community C̃ since it doesn’t exist any more:

xiC → xiC + xiC̃

xiC̃ → 0 .

Appendix A.3.3. Updating the Community Size Vector The changes to the Community

Size Vector are once again straightforward:

SC → nC + nC̃
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Algorithm 5

Pseudocode for the community detection method.
1: procedure Community Detection

2: w ← 1 ⊲ Community under consideration

3: flag repetition ← 1 ⊲ Flag if there is an increase in modularity density

4: while flag repetition do

5: flag repetition ← 0

6: Q̃ds ← Qds

7: Bisection

8: if Current number of communities > 1 then

9: Final Tuning

10: Agglomeration

11: ∆Qds ← Qds − Q̃ds ⊲ Change in Qds

12: if ∆Qds > 0 then

13: w ← 1 ⊲ Restart from the first community

14: flag repetition ← 1 ⊲ Repeat the whole algorithm

15: end if

16: else

17: flag repetition ← 0

18: end if

19: end while

20: end procedure

SC̃ → 0

Appendix A.3.4. Change in Modularity Density As before, we consider the terms in

the definition of modularity density separately, showing how they change for the merger

considered. For the contribution of communities C̄ other than C and C̃, the only changes

happen in two terms in the internal sum:

∑

Ĉ 6=C̄

m2
C̄Ĉ

2mnC̄nĈ

→
∑

Ĉ /∈{C,C̃,C̄}

m2
C̄Ĉ

2mnC̄nĈ

+

(
mC̄C +mC̄C̃

)2

2mnC̄

(
nC + nC̃

) .

Then, we consider the contribution of community C:

2m2
C

mnC (nC − 1)
→ 2

(
mC +mC̃ +mCC̃

)2

m
(
nC + nC̃

) (
nC + nC̃ − 1

)

2mC + eC
2m

2mC

nC (nC − 1)
→ 2

(
mC +mC̃ +mCC̃

)
+ eC + eC̃ − 2mCC̃

2m

× 2
(
mC +mC̃ +mCC̃

)
(
nC + nC̃

) (
nC + nC̃ − 1

)
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∑

C̄ 6=C

m2
CC̄

2mnCnC̄

→
∑

C̄ /∈{C,C̃}

(
mCC̄ +mC̃C̄

)2

2m
(
nC + nC̃

)
nC̄

.

Finally, the contribution of community C̃ entirely vanishes.

In Algorithm 4, we present a detailed description of the implementation of the

agglomeration step. The computational complexity is O (P 4). Analogously to the

tuning steps, this is the worst case scenario. In a typical situation, a community is

only connected to a few others, and thus one does not need to update all the terms in

the partition adjacency matrix.

Appendix A.4. Community Detection Algorithm

Finally, in Algorithm 5 we provide a detailed description of how the steps presented

above are linked together in our community detection algorithm. The overall complexity

of the algorithm is dominated by the final tuning step, which is the most computationally

expensive, with a complexity O (P 2N2). Along the lines of [53, 54], we consider P a

constant, and thus the worst-case complexity reduces to O (N2). To minimize running

times, we take advantage of the independence of the incremental computing steps. Both

the fine tuning and final tuning try to move nodes from one community to a different

one. The calculations of the potential change in modularity density are independent of

each other and thus can be performed in parallel, rather than serially. This task is fairly

straightforward, and our implementation exploits the widely used C library Open MP to

allow an efficient parallelization using multiple threads on each computing node during

the tuning and agglomeration steps.
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