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Abstract—There are two primary sources of sensor measure-
ments for driver behavior profiling within insurance telematics
and fleet management. The first is the on-board diagnostics
system, typically found within most modern cars. The second
is the global navigation satellite system, whose associated re-
ceivers commonly are embedded into smartphones or off-the-
shelf telematics devices. In this study, we present maximum
likelihood and maximum a posteriori estimators for the problem
of fusing speed measurements from these two sources to jointly
estimate a vehicle’s speed and the scale factor of the wheel speed
sensors. In addition, we analyze the performance of the estimators
by use of the Cramér-Rao bound, and discuss the estimation
of model parameters describing measurement errors and vehicle
dynamics. Last, simulations and real-world data are used to show
that the proposed estimators yield a substantial performance gain
compared to when employing only one of the two measurement
sources.

Index Terms—OBD, GNSS, insurance telematics, fleet man-
agement, driver behavior profiling.

I. INTRODUCTION

Driver behavior profiling has received considerable attention
in the literature, and is at the heart of many of today’s
insurance telematics and fleet management programs [1], [2].
These programs have continuously gained in popularity over
the last years, with the smart transportation market predicted
to be worth around $220 billion by 2021 [3]. Although
there are many examples of trials or research studies using
expensive, complex, or logistically demanding sensor setups
[4], most of the major industry players (such as Progressive
insurance, Allstate, Metromile, etc.) still primarily rely on
speed measurements from the on-board diagnostics (OBD)
system, and position and speed measurements from low-cost
global navigation satellite system (GNSS) receivers [5], [6].
These implementations tend to be scalable, easy to deploy,
and easy to understand for the users. An illustration of OBD
and GNSS measurements of speed is provided in Fig. 1.

Some telematics providers have chosen to extract driving
information also from inertial sensors [7]. On the one hand,
incorporating inertial sensors into the sensor setup enables
estimation of the vehicle’s orientation and direct estimation
(not requiring differentiation) of the vehicle’s acceleration
(which can be used to e.g., detect harsh braking events). In
addition, inertial sensors tend to increase the estimation rate
since commonly used inertial sensors can have sampling rates
in the order of 100 [Hz] [8], while GNSS receivers used in
telematics applications typically have an update rate of only
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Sweden (e-mail: isaac.skog@liu.se).

0 1 2 3 4 5 6

90

91

92

93

94

95

96

t [sec]

s
[k
m
/h

]

OBD and GNSS measurements

OBD

GNSS

True speed

Fig. 1. Illustration of OBD and GNSS measurements of speed s as dependent
on time t. Note that all OBD measurements are quantized as multiples of
1 [km/h].

1 [Hz]. On the other hand, making use of inertial sensors
can be challenging for several reasons. When integrating
inertial measurements to estimate for example the vehicle’s
orientation, velocity, or position, errors will accumulate due to
biases and random noise [9]. Moreover, in insurance telematics
programs where inertial measurements are collected from
smartphone-embedded sensors [10], problems often arise due
to the fact that the smartphone is mobile with respect to the
vehicle [11], [12]. The high sampling rate also tends to put
strain on computational resources. Due to the aforementioned
difficulties and the fact that most of the industry still primarily
relies on OBD and GNSS measurements, this study will
exclusively focus on the scenario where inertial sensors are ab-
sent. Furthermore, we note that fusion of measurements from
inertial sensors and GNSS receivers is a mature technology
that has been well-studied in the literature [13].

In this article, we employ OBD and GNSS measurements
of speed to construct estimators of a vehicle’s speed and of
the scale factor of the wheel speed sensors. Specifically, we
demonstrate how to capitalize on the complementary charac-
teristics of the OBD (bounded error when the scale factor is
known) and GNSS (unbiased errors) measurements. Compared
to when using either of these two sensors individually, the
proposed sensor fusion method offers both a higher estimation
rate and an enhanced estimation accuracy. In addition, speed
estimates only based on OBD measurements will become
more accurate once an accurate estimate of the scale factor is
available. Hence, this implies an increased resilience to GNSS
outages or other situations where GNSS measurements are not
available (such as when one relies on GNSS measurements
from a smartphone that during some drives may be discharged
or not located in the car). The proposed method is appropriate
for several sensor setups that are commonly used in current
insurance telematics and fleet management programs. These
setups include OBD dongles with an embedded GNSS tracker,
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Fig. 2. Illustration of the relation between measurements and ML estimates
under the assumption of synchronous measurements.

and OBD dongles connected to GNSS-equipped smartphones.
The speed estimates resulting from the proposed sensor fusion
could e.g., be differentiated to construct acceleration estimates
for the detection of harsh braking or acceleration, be used to
detect speeding, or be used as input in traffic flow models.
While insurance telematics and fleet management are our main
motivations, the mentioned capabilities could also be of use
in e.g., urban planning and general traffic surveillance, where
the aim might be to reduce congestion or detect anomalous
traffic patterns. Additionally, the speed estimates could be used
within accident reconstruction [14], or for detecting the use of
cruise control.

Since the scale factor is slowly time-varying, we also
describe how to test for changes in the scale factor. This
could be used to assess overall tire pressure and detect flat
tires. By maintaining recommended tire inflation pressure, it
is possible to not only improve fuel economy and handling, but
also to reduce tire wear, noise emissions, braking distances,
and rolling resistance. Proper tire inflation has been estimated
to reduce carbon dioxide emissions by about 2.5 % [15]. As
opposed to standard indirect tire-pressure monitoring systems
(TPMSs), the tire-pressure monitor presented here can be used
to detect underinflation also when the four tires are equally
underinflated [16].

II. ESTIMATION

This section presents maximum likelihood (ML) and maxi-
mum a posteriori (MAP) estimators for the problem of using
OBD and GNSS measurements of speed to jointly estimate a
vehicle’s speed and the scale factor of the OBD wheel speed
sensors. We begin by considering the case when the OBD
and GNSS samples can be assumed to be time synchronized,
and then examine the same problem but with asynchronous
samples. While the latter model is more realistic, the former
enables both a simpler estimation algorithm and more straight-
forward Cramér-Rao studies in Section III.

A. Synchronous Samples

For the case with synchronous samples, there exists both
OBD and GNSS measurements at every sampling instance k

where measurements are taken. The measurements obtained at
sampling instance k are modeled according to1

so
k = csk + qk, (1a)
sg
k = sk + εk. (1b)

Here, so and sg denote measurements of speed obtained from
the OBD system and GNSS receiver, respectively. Further, s is
the speed of the vehicle, c is an unknown positive scale factor
arising due to the uncertainty of the wheel radius2 [19], q is
the quantization error of the OBD system, and e is the mea-
surement error of the GNSS receiver. The quantization is made
so that so

k = n · δs for some nonnegative integer n and some
positive quantization interval δs, with qk ∈ [−δs/2, δs/2]. In
practice, we have n = 0, 1, . . . , 255 and δs = 1 [km/h] [20].
Although there are other errors present in OBD measurements
of speed [21] (such as wheel slips, discussed in Section
II-E), the scale factor and quantization errors are typically
dominant. The GNSS measurement error ek is assumed to
be normally distributed and white with variance σ2

g (normally
distributed errors is a common assumption for GNSS position
measurements along a single spatial dimension [22]).

Let us assume that we have made the measurements so ∆=
[so

1 . . . so
N ]ᵀ and sg ∆= [sg

1 . . . sg
N ]ᵀ from the OBD system

and the GNSS receiver, respectively. The ML estimates of the
speeds s ∆= [s1 . . . sN ]ᵀ and the scale factor c are then given
by

{ŝ, ĉ} = arg max
s,c

p(so, sg|s, c) (2)

where p(·|·) denotes a conditional probability density function.
The likelihood function can be factorized as

p(so, sg|s, c) = p(so|s, c)p(sg|s)
=
∏N
k=1 p(s

o
k|sk, c)p(s

g
k|sk).

(3)

Now, noting that p(sg
k|sk) is normally distributed with mean sk

and variance σ2
g , while p(so

k|sk, c) ∝ 1{|csk − so
k| ≤ δs/2}3,

where 1{·} denotes the indicator function, it follows that the
ML estimates in (2) can be found as the solution to the
constrained nonlinear optimization problem

minimize
s,c

N∑
k=1

(sk − sg
k)2

subject to |csk − so
k| ≤ δs/2 for k = 1, . . . , N.

(4)

1It should be noted that the presented model does not explicitly consider
GNSS position measurements. Generally, speed estimates derived from GNSS
position measurements are not sufficiently accurate to be used to improve upon
doppler-based GNSS measurements of speed [17]. As a result, it is sensible
to exclude GNSS position measurements from model (1).

2Although it is typically possible to extract speed measurements from
each of the wheels individually by using the controller area network (CAN)
bus [18], most off-the-shelf telematics devices will extract a scalar speed
measurement from the standardized OBD-II parameter IDs (PIDs). Hence,
the scale factor c is the ”average” scale factor among the wheels that were
used to construct the measurement so.

3Although assuming e.g., qk ∈ (−δs/2, δs/2] and p(so
k|sk, c) ∝

1{−δs/2 ≤ csk − so
k < δs/2} would make the quantization function

deterministic and be somewhat more stringent, we choose, for notational
reasons, to include both boundaries in the permissible parameter set. For
all practical purposes, this will not alter the considered estimation problem.
Further, for notational simplicity, we disregard the case when so

k = 0, which
gives p(so

k|sk, c) ∝ 1{0 ≤ csk − so
k ≤ δs/2}.
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Although (4) is nonconvex, it can be parameterized as the
equivalent one-dimensional unconstrained convex optimization
problem

minimize
d

N∑
k=1

(fk(d)− sg
k)2 (5)

where

fk(d) ∆=


sg
k, |sg

k/d− so
k| ≤ δs/2

(so
k + δs/2)d, sg

k/d− so
k > δs/2

(so
k − δs/2)d, sg

k/d− so
k < −δs/2.

(6)

The problem (5) is readily solved using e.g., Newton’s method,
and the optimal parameters to (4) can then be found as ŝk =
fk(d̂) and ĉ = 1/d̂, where d̂ is the optimal solution to (5). If
there is no d such that |sg

k/d− so
k| ≤ δs/2 for k = 1, . . . , N ,

the optimization function in (5) is strictly convex and the ML
estimates are unique. The solution to the optimization problem
described by (5) and (6) is visualized in Fig. 2. It is easy to
verify that the equivalent optimization problem parameterized
with the optimization variable c = 1/d is not guaranteed to
be convex.

B. Asynchronous Samples

In general, the OBD and GNSS measurements cannot be
assumed to be synchronous. Taking this into account, the
measurement model in (1) is modified according to

so
k = csk + qk, k ∈ O, (7a)
sg
k = sk + εk, k ∈ G. (7b)

Here, O and G denote the sampling instances where there are
OBD and GNSS measurements, respectively. It is assumed
that O∪G = {1, . . . , N}. Further, the measurement errors are
assumed to have the same distributions as in (1).

Now, let us follow the approach of the previous subsection
to find ML estimates of s ∆= [s1 . . . sN ]ᵀ and c from
(7). The ML estimates of {sk : k ∈ O ∩ G} and c are
obtained by applying the method presented for synchronous
samples. Obviously, the resulting optimization problem need
only consider measurements made at sampling instances in
O∩G. If O∩G = ∅, it is not possible to estimate c. Since the
ML estimate of sk for k ∈ O ∩ G (i.e., at sampling instances
where only OBD measurements are available) is obtained as
ŝk = arg maxsk p(s

o
k|sk, ĉ) = arg maxsk 1{|ĉsk − so

k| ≤
δs/2}, there is no ML estimate of sk for k ∈ O ∩ G unless
there is an ML estimate of c. Moreover, even if there exists
an ML estimate of c, there is no unique ML estimate of sk
for k ∈ O ∩ G. Here, A denotes the complement of a set
A. Further, we note that ŝk = arg maxsk p(s

g
k|sk) = sg

k for
any k ∈ O ∩ G. To summarize, by relaxing the assumption
of synchronous measurements, the following issues arise: 1)
if there are no sampling instances with concurrent OBD and
GNSS measurements neither the scale factor, nor the speed
at sampling instances where only OBD measurements are
available, can be estimated by means of ML; 2) there is no
unique ML estimate of the speed at sampling instances where
only OBD measurements are available; and 3) at sampling

instances where only GNSS measurements are available the
ML estimates are no better than the GNSS measurements.

One way to resolve these issues is to introduce a dynamic
model for the vehicle speeds. Here, we use the model

sk+1 = sk + wk (8)

where wk is assumed to be normally distributed and white
with variance ∆tkσ

2
s , and ∆tk denotes the sampling interval

between sampling instances k and k+1. By incorporating this
dynamic model as a prior p(s) on the vehicle speeds, the MAP
estimates of s and c are obtained as

{ŝ, ĉ} = arg max
s,c

p(s, c|so, sg) (9)

where so ∆= {so
k}k∈O and sg ∆= {sg

k}k∈G . The posterior can be
factorized as

p(s, c|so, sg) ∝ p(so, sg|s, c)p(s, c)
= p(so|s, c)p(sg|s)p(s)
=
∏
k∈O p(s

o
k|sk, c)

∏
k∈G p(s

g
k|sk)

·∏N−1
k=1 p(sk+1|sk)

(10)

where we have used the uninformative priors p(c) ∝ 1 and
p(s1) ∝ 1 on the scale factor and the initial speed, respectively.
It now follows that the MAP estimates can be found as the
solution to the constrained nonlinear optimization problem

minimize
s,c

1

σ2
g

∑
k∈G

(sk − sg
k)2 +

1

σ2
s

N−1∑
k=1

1

∆tk
(sk+1 − sk)2

subject to |csk − so
k| ≤ δs/2 for k ∈ O, (11)

which can be solved using e.g., interior-point methods [23].

C. Estimation of Model Parameters

To solve the optimization problem (11), we need the two
model parameters σ2

g and σ2
s . While (11) can be seen to only

depend on the ratio σ2
g/σ

2
s , identifying the parameters σ2

g and
σ2
s will be easier if we estimate the two parameters separately.

Hence, when σ2
g and σ2

s are considered to be unknown, we
will make use of the expectation maximization (EM) algorithm
with θ ∆= [σ2

g σ2
s ]ᵀ as the parameter vector to be estimated,

{s, c} as the missing data, and {sg, so} as the observed data.
Consequently, θ is iteratively estimated according to

σ̂2
g,i+1 =

1

|G|
∑
k∈G

Ep
θ(i)(sk|so,sg)

[
(sk − sg

k)2
]
, (12a)

σ̂2
s,i+1 =

1

N − 1

N−1∑
k=1

1

∆tk
Ep

θ(i)(sk,sk+1|so,sg)

[
(sk+1 − sk)2

]
,

(12b)

where θ(i) ∆= [σ̂2
g,i σ̂

2
s,i ]

ᵀ and Ep[·] is the expectation with
respect to the probability density function p. A derivation
of (12) is given in Appendix A. Since we do not know
pθ(i)(sk|so, sg) or pθ(i)(sk, sk+1|so, sg), we will use the stan-
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dard approximation [24]

Ep
θ(i)(sk|so,sg)

[
(sk − sg

k)2
]
≈ (ŝk − sg

k)2, (13a)

Ep
θ(i)(sk,sk+1|so,sg)

[
(sk+1 − sk)2

]
≈ (ŝk+1 − ŝk)2, (13b)

where ŝk is the MAP estimate of sk given θ(i).

D. Testing for Changes in the Scale Factor

For the purpose of developing a TPMS, let us consider
the setting with synchronous samples described in Section
II-A. The speeds s ∆= {s(1), s(2)} are measured as so ∆=
{so1, so2} and sg ∆= {sg1, sg2}, where s(1) ∆= {sk}k∈S(1) ,
s(2) ∆= {sk}k∈S(2) , so1 ∆= {so

k}k∈S(1) , so2 ∆= {so
k}k∈S(2) , sg1 ∆=

{sg
k}k∈S(1) , and sg2 ∆= {sg

k}k∈S(2) , while S(1) = {1, . . . , N1}
and S(2) = {N1 + 1, . . . , N}. To test whether the scale factor
is different in so1 and so2, let us formulate the null hypothesis

H0 : c(1) = c(2) (14)

where c(1) and c(2) denote the scale factors in so1 and so2,
respectively. The null hypothesis is conveniently tested by
computing the generalized likelihood ratio (GLR) [25]

Λ(so, sg) =

arg max
s,c(1)=c(2)

p(so, sg|s, c(1), c(2))

arg max
s,c(1),c(2)

p(so, sg|s, c(1), c(2)) (15)

and deciding on H0 whenever Λ(so, sg) > η for some chosen
threshold η. The optimal parameters in the numerator are the
ML estimates of s and c(1) = c(2) obtained from so and
sg, while the optimal parameters in the denominator are the
ML estimates of s(1) and c(1) obtained from so1 and sg1, and
the ML estimates of s(2) and c(2) obtained from so2 and sg2.
The generalization to the case with asynchronous samples is
straightforward.

E. Additional Error Sources

We will now briefly discuss two error sources that have
been disregarded in the measurement models (1) and (7).
Firstly, during wheel slips, the speed of the vehicle differs
from the tangential speed of the wheels. As a result, the
OBD measurements will be distorted. The effect is typically
small during smooth driving on a dry surface. However, if
the wheel slips need to be compensated for, one may use that
there is an approximately linear relation between the vehicle’s
acceleration and the ratio of the tangential wheel speed and the
longitudinal speed of the vehicle [26]. Secondly, most low-cost
GNSS receivers only provide speed measurements in the two-
dimensional plane that is tangential to the surface of the earth.
Consequently, the speed measurements obtained from a GNSS
receiver will tend to be lower than the true three-dimensional
speed when travelling along steep inclines. This effect may be
compensated for by using data from a three-dimensional road
map.

III. THE CRAMÉR-RAO BOUND

The Cramér-Rao bound (CRB) will now be used to gain
some insight into the estimation problems discussed in the

preceding section. For brevity and tractability, the analysis will
be focused on the case with synchronous samples investigated
in Section II-A. The CRB can be formulated as [27]

Cov(x̂) � P (16)

and holds for any unbiased estimator x̂ of x ∆= [sᵀ c]ᵀ.
Here, P is the inverse of the Fisher information ma-
trix (FIM), and we have used A � B to denote that
A − B is positive semidefinite. The FIM is defined as
I ∆= Ep(so,sg|x)[(∂x ln p(so, sg|x))ᵀ∂x ln p(so, sg|x)], where
(∂x ln p(so, sg|x))ᵀ is the gradient of the log-likelihood func-
tion (the score function) with respect to x.

As evident from the optimization problem (4), the informa-
tion gained from the OBD measurements can be transformed
into inequality constraints on the ML estimates. Since impos-
ing inequality constraints on parameter estimates do not alter
the FIM [28], it follows that to compute the FIM, one only
needs to consider the GNSS measurements. The resulting FIM
is singular (no Fisher information is gained about the scale
factor) and not very interesting since it merely allows us to
recover the accuracy of the GNSS measurements, which we
obviously can expect to surpass when also OBD measurements
are available. One way to obtain more useful results is by
instead studying the CRB of a closely related problem. This
approach will be considered next.

A. Bounds under Equality Constraints

Let us assume that some of the inequality constraints
originating from the OBD measurements can be transformed
into equality constraints. Thus, we consider the problem of
estimating s and c from p(so, sg|s, c) under the constraints
csk − so

k = γk for k = M + 1, . . . , N . Here, γk ∈
[−δs/2, δs/2] is a constant and M is the number of samples
for which there are no associated equality constraints4. It
is assumed that M < N , i.e., that at least one equality
constraint exists. Since we are adding information to the
original problem, the CRB for this new problem will still be a
lower bound for the original problem. As shown in Appendix
B, the inverse FIM for our new constrained estimation problem
takes the form

P = σ2
g

[
IM 0M,N−M+1

0N−M+1,M ϕϕᵀ/α

]
(17)

where ϕ ∆= [sᵀM+1:N − c]ᵀ, sM+1:N
∆= [sM+1 . . . sN ]ᵀ, and

α ∆=
∑N
k=M+1 s

2
k. Moreover, I` and 0`1,`2 denote the identity

and zero matrices of dimensions ` and `1 × `2, respectively.
Studying the diagonal elements of P we obtain the scalar
CRBs

Var(ŝk) ≥ σ2
g (18a)

4It is important to note that the order of the speed measurements in Section
II-A is ambiguous. Hence, assuming that we add the equality constraints
csk − so

k = γk to N −M randomly chosen sampling instances, it is always
possible to redefine the indices of the measurements so that only the last
N −M speed measurements are subject to equality constraints.
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for k = 1, . . . ,M ,

Var(ŝk) ≥ σ2
g

s2k∑N
k=M+1 s

2
k

(18b)

for k = M + 1, . . . , N , and

Var(ĉ) ≥ σ2
g

c2∑N
k=M+1 s

2
k

. (18c)

Assuming that the CRBs give an indication of the perfor-
mance of the estimator derived in Section II-A, this means
that estimates of sM+1, . . . , sN , and c tend to improve as
the number of equality constraints increases (M becomes
smaller). Relating back to the original problem in Section
II-A, an increasing number equality constraints should be
interpreted as smaller δs since this means that the inequality
constraints become tighter (obviously, δs = 0 implies that
|csk−so

k| ≤ δs/2 is the equality constraint csk−so
k = γk with

γk = 0). Similarly, estimates of c tend to improve at higher
speeds and with smaller scale factors. Naturally, all estimates
can be expected to improve as the noise variance of the GNSS
measurements decrease. The qualitative conclusions drawn
from the CRB studies are validated by means of numerical
simulations in Section IV-A.

B. Comments on the Equality Constraints

We will now further illuminate the relation between the esti-
mation problem considered in Section II-A and the estimation
problem with equality constraints considered in Section III-A.
To begin with, consider the same estimation problem as in Sec-
tion II-A but with an added prior p(c) ∝ 1{clow ≤ c ≤ chigh}
on the scale factor. Then, assuming no prior information on the
speeds s, the MAP estimates of s and c can be computed from
the optimization problem in (4) but with the added constraint
clow ≤ c ≤ chigh. Similarly, one may use the optimization
problem in (5) but with the added constraint 1/chigh ≤ d ≤
1/clow. Since ŝk ∈ [(so

k − δs/2)/chigh, (so
k + δs/2)/clow], it

can easily be seen that if clowsg
k − so

k > δs/2 for some k,
we can replace the inequality constraint |csk − so

k| ≤ δs/2
with the equality constraint csk − so

k = δs/2. Likewise, if
chighsg

k−so
k < −δs/2 for some k, we can replace the inequality

constraint |csk − so
k| ≤ δs/2 with the equality constraint

csk − so
k = −δs/2. To summarize, some of the inequality

constraints in the optimization problem (4) might, under the
assumption that we add constraints (a rectangular prior) on the
scale factor, be replaced by equality constraints of the same
type that was considered in Section III-A. However, which (if
any) constraints that can be reformulated in this way will be
dependent on the obtained measurements, and hence, this is
not a general reformulation of the estimation problem (4) with
an added prior on the scale factor.

IV. EXPERIMENTAL STUDY

To evaluate the estimators, data from inertial sensors and
GNSS receivers were recorded from cars in two different
scenarios: The first data set captured high-speed driving on
a race track and was recorded using a car-mounted Samsung
Galaxy S III. The second data set reflected driving at modest
speeds in a suburban environment and was recorded using a

TABLE I
STUDIED DATA SETS.

Data set 1 2
Environment Race track Suburban
Top speed [km/h] 181.9 42.5
Average speed [km/h] 94.6 33.3

Microstrain 3DM-GX3-35 positioned on the roof of the car.
Both data sets consists of about two minutes of data. Summary
statistics of the data sets are provided in Table I.

The data was fused in a GNSS-aided inertial navigation
system (INS) [19], and speed estimates were extracted by
taking the norm of the three-dimensional velocity estimates.
Hence, both data sets produced two minutes of speed estimates
at 20 [Hz] (the same update rate as the inertial sensors). Next,
we will investigate the performance of the estimators presented
in Section II by simulating measurements from these speed
sequences, which will be treated as ground truth s. In other
words, the ground truth can be considered to be “perfect” in
the sense that the true measurement errors of the collected
real-world data should not be expected to have any impact on
the estimation accuracies resulting from the field study. Since
the measurement errors are simulated, they will not be affected
by wheel slips or steep road inclines (see Section II-E).

Unless otherwise stated, we will simulate the scale factor
c from U(c̄ − 0.02, c̄ + 0.02) with c̄ = 1, where U(a, b)
denotes the uniform distribution over the interval (a, b)5.
Similarly, we will use the default values δs = 1 [km/h] and
σg = 0.2 · 3.6 [km/h] [29]. We wish to emphasize that no
real-world OBD measurements were recorded. Rather, OBD
and GNSS measurements were simulated from a ground truth
speed sequence that was obtained by fusing real-world GNSS
and inertial measurements. Hence, the simulated OBD and
GNSS measurements did not need to be time-synchronized.

A. Experimental Study — Synchronous Samples

Synchronous OBD and GNSS measurements were simu-
lated with a sampling rate of 1 [Hz]. Fig. 3 displays root-mean-
square errors (RMSEs) of the scale factor estimates obtained
from the ML estimator presented in Section II-A. Each marker
in the plots was obtained as the result of 105 simulations. As
can easily be seen, Fig. 3 confirms the qualitative conclusions
drawn from the CRB studies in Section III-A. Specifically, the
estimates improve at higher speeds, at higher OBD resolutions
(lower δs), at lower GNSS error variances, and at lower scale
factors. Moreover, as suggested by the CRB in (18c), the
RMSE can be seen to grow approximately linearly with σg
and c. Note that the CRB presented in Section III-A is not the
CRB for the model in Section II-A (as concluded in Section
III, the FIM for this estimation problem is singular). Hence,
there is no quantitative comparison to be made between the
RMSEs and the derived CRB.

5Scale factor errors in the order of 1 percent can occur due to changes in
pressure, temperature, and load, while tire wear can reduce the scale factor
by up to 3 percent [19].
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Fig. 3. Errors of scale factor estimates based on synchronous measurements.

As indicated by the CRB in (18b), Fig. 4 (a) shows that
the speed estimates improve as the OBD resolution increases,
and that their accuracy is independent of the magnitude of the
speeds. In Figs. 4 (b) and (c), the ML estimator is compared
to the estimators ŝ = so and ŝ = sg, from hereon referred
to as the OBD estimator and GNSS estimator, respectively.
Obviously, the accuracy of the OBD estimator is independent
of σg, while the RMSE of the GNSS estimator is exactly equal
to σg. The RMSE of the OBD estimator is larger on the first
data set since this has higher speeds and thereby produces
larger scale factor errors. The ML estimator improves upon the
accuracy of the individual measurement sources in both cases.
For small GNSS error variances, the OBD measurements do
not add much information to the GNSS measurements and the
RMSE of the ML estimator can be seen to approach σg.

B. Experimental Study — Asynchronous Samples

Asynchronous OBD and GNSS measurements were simu-
lated with sampling intervals of 0.9 [s] and 1 [s], respectively,
with the first OBD and GNSS measurements assumed to
be synchronous6. Each marker in the plots was obtained as
the result of 104 simulations. We will begin by comparing
the MAP estimator presented in Section II-B to the OBD
and GNSS estimators (which only estimate the speed at
the sampling instances with OBD and GNSS measurements,
respectively). To achieve a fair comparison, the prior p(s)

6Mathematically, the OBD and GNSS signals were sampled at the time
points to

k = k ·∆to and tg
k = k ·∆tg + tc, respectively. Here, ∆to = 0.9 [s]

and ∆tg = 1 [s], while tc was chosen so that to
1 = t

g
1.
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Fig. 4. Errors of speed estimates based on synchronous measurements.

was added to the GNSS estimator. In other words, the GNSS
estimator was defined as ŝ = arg max s p(s

g|s)p(s), while the
OBD estimator was defined as ŝ = so. Attempts to incorporate
the prior p(s) into the OBD estimator by defining it according
to ŝ = arg max s p(so|s, c = 1)p(s) did not result in any
performance gain. For clarity, the RMSE of the MAP estimator
has been divided into two parts. These are denoted MAPo and
MAPg, and only account for the errors at sampling instances
with OBD and GNSS measurements, respectively.

Fig. 5 displays the RMSEs when using σs =
1.5 [m/s2/

√
Hz] and σs = 0.25 [m/s2/

√
Hz] on the first and

second data set, respectively. These values of σs are roughly
equal to the dynamic variation (1/(N − 1) ·∑N−1

k=1 (sk+1 −
sk)2/∆tk)1/2 when ∆tk = 1 [s]. In contrast, Fig. 6 shows the
RMSEs that were obtained when σg and σs were estimated
using the EM algorithm described in Section II-C. The EM
recursions were terminated when ‖θ(i+1) − θ(i)‖ < 0.01
or when 10 iterations had been completed. As can be seen
in Figs. 5 and 6, the MAP estimator outperforms the OBD
and GNSS estimators on both data sets; both when fixing
the model parameters and when estimating them using the
EM algorithm. In similarity with the results displayed for
synchronous measurements in Figs. 4 (b) and (c), the RMSE
of MAPg approaches that of the GNSS estimator for small
σg. However, with asynchronous measurements, the MAP and
GNSS estimators perform better on the second data set than on
the first. This is a consequence of the second data set having
lower dynamic variation. Thanks to the prior p(s), the RMSE
of the GNSS estimator is significantly lower than σg in Fig.
5 (b). However, in Fig. 6 (b), the added information from the
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Fig. 5. Errors of speed estimates based on asynchronous measurements.

prior is offset by the uncertainty in the estimates of σg and
σs, and the RMSE is once again in the vicinity of σg. As
illustrated in Figs. 5 (a) and 6 (a), the RMSEs of MAPg and
the GNSS estimator are roughly equal on the first data set. By
comparison, MAPo outperforms the OBD measurements with
a wide margin for all σg.

C. Experimental Study — Hypothesis Testing

To illustrate the performance of the hypothesis testing
described in Section II-D, synchronous measurements were
simulated from both data sets as described in Section IV-A. In
other words, the first and second data sets were associated with
the sets S(1) and S(2), respectively. The true positive rate was
computed as follows. In each simulation, a scale factor c was
generated for the first data set, while the second data set used
the scale factor c+ δc. For a given threshold, the true positive
rate was defined as the percentage of simulations where the
null hypothesis was rejected. To compute the false positive
rate, the simulated scale factor c was used for both data sets.
The false positive rate was then defined as the percentage
of simulations where the null hypothesis was rejected. Fig.
7 displays the receiver operating characteristics (ROC) of the
likelihood ratio for four different values of δc, with each true
and false positive rate computed based on 105 simulations. The
detector can be seen to reach excellent performance already
at δc = 0.01.

V. SUMMARY

This article addressed the problem of fusing OBD and
GNSS measurements of speed to estimate a vehicle’s speed
and the scale factor of the OBD measurements. Under the
assumption of synchronous samples, it was shown that the
ML estimates can be extracted from the solution to a one-
dimensional convex optimization problem. For the case with
asynchronous samples, we analyzed the identifiability of the
likelihood function and argued for the inclusion of a prior on
the vehicle dynamics. Thus, the vehicle speed was modeled as
a random walk with normally distributed steps, and the MAP
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when estimating the model parameters using the EM algorithm.
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estimates were then derived as the solution to a constrained
optimization problem. Further, we derived the EM recursions
for estimating the model parameters that are needed for the
optimization giving the MAP estimates, and described how to
test for changes in the time-varying scale factor.

It was concluded that the FIM for the model with syn-
chronous measurements is singular, and hence, that the CRB
is unavailable. Consequently, we instead considered a similar
model, where some of the inequality constraints originating
from the OBD measurements are transformed into equality
constraints. As expected, the resulting CRB indicated that
the speed estimates will tend to improve at higher OBD
resolutions and at lower GNSS error variances. Similarly,
the scale factor estimates will tend to improve at higher
OBD resolutions, at lower GNSS error variances, at higher
speeds, and at lower scale factors. An experimental study
was conducted by simulating measurements errors from real-
world vehicle dynamics. The experiments aligned well with
the CRB, and the proposed estimators were shown to provide
a significantly better performance than can be achieved by
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either of the sensors individually.
In summary, this paper has derived speed and scale factor

estimators that exploit the complementary features of OBD
and GNSS measurements of speed. The estimators are able to
not only increase the estimation accuracy and the estimation
rate, but also to strengthen the resilience to GNSS outages.
Given the ubiquity of sensor setups utilizing OBD and GNSS
measurements for insurance telematics and fleet management,
the presented sensor fusion scheme can be expected to be
of use in e.g., intelligent speed compliance and the detection
of harsh braking. Further, it has been demonstrated that the
estimation framework enables low-cost testing of changes in
the scale factor. This could e.g., be used to provide tire-
pressure monitoring as a value-added service in current telem-
atics programs.

APPENDIX A

Here, we derive the EM iterations in (12). The expectation
step consists of computing

Q(θ,θ(i)) ∆= Ep
θ(i) (s,c|so,sg)[ln pθ(s, c, so, sg)] (19)

and the maximization step gives the updated estimates as [30]

θ(i+1) = arg max
θ

Q(θ,θ(i)). (20)

Now, note that σ2
g and σ2

s only alter the GNSS measurements
and the prior, respectively, so that

ln pθ(s, c, so, sg) = ln pσ2
g
(sg|s) + ln pσ2

s
(s)

+ ln p(so|s, c).
(21)

Hence, the updated estimates of σ2
g and σ2

s can be obtained
as

σ̂2
g,i+1 = arg max

σ2
g

Ep
θ(i) (s|so,sg)[ln pσ2

g
(sg|s)]

= arg max
σ2

g

∑
k∈G

Ep
θ(i) (sk|so,sg)[ln pσ2

g
(sg
k|sk)]

= arg max
σ2

g

− 1

2σ2
g

∑
k∈G

Ep
θ(i) (sk|so,sg)[(sk − sg

k)2]

− |G|
2

lnσ2
g (22a)

and

σ̂2
s,i+1

= arg max
σ2
s

Ep
θ(i) (s|so,sg)[ln pσ2

s
(s)]

= arg max
σ2
s

N−1∑
k=1

Ep
θ(i) (sk,sk+1|so,sg)[ln pσ2

s
(sk+1|sk)]

= arg max
σ2
s

− 1

2σ2
s

N−1∑
k=1

1

∆tk
Ep

θ(i) (sk,sk+1|so,sg)[(sk+1 − sk)2]

− N − 1

2
lnσ2

s , (22b)

respectively. The EM recursions in (12) now immediately
follow from (22).

APPENDIX B

This appendix will derive the inverse FIM in (17). We begin
by writing the equality constraints from Section III-A as

g(x) = 0N−M,1 (23)

where g(x) ∆= csM+1:N − so
M+1:N −γM+1:N , while so

M+1:N

and γM+1:N are defined in analogy with sM+1:N . Moreover,
the Jacobian of the constraints is

G ∆= ∂xg(x)

=
[
0N−M,M cIN−M sM+1:N

] (24)

and we can construct the matrix

U ∆=

[
IM 0M,1

0N−M+1,M ϕ

]
(25)

whose columns form a basis for the null space of G. Now,
noting that the FIM for the corresponding unconstrained
problem (only considering the GNSS measurements) is

I =
1

σ2
g

[
IN 0N,1
01,N 0

]
, (26)

it follows that the inverse FIM, after including the equality
constraints (23), becomes [31]

P = U(UᵀIU)−1Uᵀ (27)

which gives (17) after straightforward calculations.
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