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Abstract—We propose a hidden Markov model approach for
processing seismocardiograms. The seismocardiogram morphol-
ogy is learned using the expectation-maximization algorithm,
and the state of the heart at a given time instant is estimated
by the Viterbi algorithm. From the obtained Viterbi sequence,
it is then straightforward to estimate instantaneous heart rate,
heart rate variability measures, and cardiac time intervals (the
latter requiring a small number of manual annotations). As
is shown in the conducted experimental study, the presented
algorithm outperforms the state-of-the-art in seismocardiogram-
based heart rate and heart rate variability estimation Moreover,
the isovolumic contraction time and the left ventricular ejection
time are estimated with mean absolute errors of about 5 [ms] and
9 [ms], respectively. The proposed algorithm 1) can be applied
to any set of inertial sensors; 2) does not require access to any
additional sensor modalities; 3) does not make any assumptions
on the seismocardiogram morphology; and 4) explicitly models
sensor noise and beat-to-beat variations (both in amplitude and
temporal scaling) in the seismocardiogram morphology. As such,
it is well-suited for low-cost implementations using off-the-shelf
inertial sensors and targeting e.g., at-home medical services.

Index Terms—Seismocardiogram, heart rate variability, car-
diac time intervals, hidden Markov model.

I. INTRODUCTION

Cardiovascular disease is the leading global cause of death,
accounting for about 17 million deaths per year and with
estimated annual costs of $320 billion [1]. The most com-
monly employed modality for assessing cardiac function is
the electrocardiogram (ECG), which is a recording of the
time-dependent voltage measured by electrodes placed on
the body. In each cardiac cycle, the ECG demonstrates a
distinctive waveform whose largest deflections can be found in
the QRS complex. Often, the beat-to-beat interval is estimated
as the time interval between two successive R peaks, the
so called RR-interval. Later, we will also make use of the
term NN-interval, referring to the RR-interval between two
successive beats produced by sinus node depolarizations, i.e.,
excluding intervals affected by ectopic beats [2]. Although
the ECG remains the standard diagnostic tool for cardiovas-
cular disease, there is an increasing interest in alternative
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Fig. 1. Accelerometer and gyroscope measurements along the dorsoventral
and sinistro-dexter axes, respectively.

methods based on e.g., the photoplethysmogram (PPG) [3],
the impedance cardiogram (ICG) [4], the phonocardiogram
(PCG) [5], or the ballistocardiogram (BCG) [6]. In this study,
our primary concern is the seismocardiogram (SCG)1 [8].
Although SCGs traditionally have been recorded using ac-
celerometers, recent studies have also employed gyroscopes
[9], [10]. The vibrations can be studied along the superior-
inferior axis (head-to-foot), the sinistro-dexter axis (left-to-
right), and the dorsoventral axis (back-to-front). Most of the
translational vibrations are concentrated along the dorsoventral
axis, and hence, this has been considered the most important
axis in accelerometer-based SCGs2 [11]. SCGs offer several
advantages over competing sensor modalities. These include
the possibility of utilizing sensors embedded into personal
devices such as smartphones (enabling a variety of at-home
medical services) [12], the non-invasive nature of the method,
and the low development cost of the sensors. The cost of a
mass-produced inertial measurement unit (IMU), comprising
three accelerometers and three gyroscopes, can be expected to
be less than $1 [13]. To conclude, the SCG compares favorably
to the ECG in terms of both availability and cost (but typically
not in terms of accuracy), and can to some extent also be said
to provide a different type of information (mechanical rather
than electrical).

Normally, the data recorded from IMUs fixed to the sternum
will reflect both respiratory motions and cardiac vibrations.

1While some studies use the terms BCG and SCG somewhat interchange-
ably, the general agreement is that the BCG represents recoil forces of the
body to blood ejected by the heart, while the SCG represents local vibrations
caused by the heart’s contractions and relaxations [7].

2On the other hand, the data collected in this study indicates that the
rotational vibrations are primarily concentrated along the superior-inferior and
sinistro-dexter axes.
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This is exemplified in Fig. 1, which shows accelerometer and
gyroscope measurements along the dorsoventral and sinistro-
dexter axes, respectively. The measurements were recorded
over two respiratory cycles. As should be intuitive, the res-
piratory contribution in Fig. 1 (a) bears close resemblance to
a sine wave. Moreover, each heartbeat in Fig. 1 can be seen to
generate a characteristic wave pattern. While several attempts
have been made to map different parts of this pattern to events
in the cardiac cycle, this is still not a fully resolved issue
[11], [14]. However, it should be noted that the characterizing
features of the most important cardiac events in the SCG
waveform (along the dorsoventral axis of the accelerometer
measurements) has been widely agreed upon in the literature
[15]. The morphology of the SCG signal is affected by several
factors, including the sensor placement [11], the heart rate
[12], the state of respiration [16], medical conditions of the
subject [17], the age of the subject [18], and the occurrence
of ectopic events [19]. Generally, SCGs will be more intricate
and have more interpersonal variations than ECGs. As a result,
heartbeat detectors adapted to ECGs tend to be perform poorly
when applied to SCGs [20]. Next, we will discuss three
potential capabilities of seismocardiograms, namely, heart rate
estimation, the assessment of heart rate variability (HRV), and
the estimation of cardiac time intervals.

A. Heart Rate Estimation

One method for estimating heart rate from SCGs is to
detect each heartbeat individually as a sampling instance
around which large signal deflections are concentrated. For this
purpose, different combinations of band-pass filters, wavelet
transforms, and envelope functions have been used [21], [22].
The shortcoming of these methods is that they detect heart-
beats solely based on vibration peaks and their time points,
while discarding any additional information provided by the
recurrent vibration pattern.

An alternative method is to take sliding windows of the
signal and transform them, one by one, to the frequency
domain. The average heart rate over each window is then
estimated as the frequency that maximizes the power spectral
density (PSD) of the corresponding windowed signal. The
window should include at least two heartbeats, with previously
employed window lengths chosen in the interval (20, 30) [s]
[23], [24]. A similar method was used in [25], which attempted
to find local maximums of the autocorrelation function of a
windowed BCG. In [25], the window length was chosen as the
smallest interval that was expected to fit at least two heartbeats.
Unfortunately, these methods are only heuristically motivated,
and it is not clear how their performance is affected when the
vibrational pattern resulting from each heartbeat is stretched
in time (events of this kind has previously been described in
[14] and [26]).

B. Assessment of Heart Rate Variability

Variations in heart rate reflect complex interactions between
the parasympathetic nervous system, which works to decrease
the heart rate, and the sympathetic nervous system, which
works to increase the heart rate. Even though the exact nature

of these interactions remain the subject of active debate,
measures of HRV have found use in a variety of clinical
applications. For example, studies of HRV can be used for
detecting increased mortality risks following a heart attack
[27], for classifying sleep stages [28], and for assessing the risk
of developing hypertension [29]. Common measures of HRV
include time domain features such as standard deviations of
the beat-to-beat interval, and frequency domain features such
as ratios of spectral powers (of the beat-to-beat interval) at low
and high frequencies [30]. Normally, a healthy heart exhibits
a high HRV and utilizes a wide range of heart rates to cope
with the stresses of daily life.

C. Time Interval Estimation

It is often of interest to estimate the time interval between
two events in the cardiac cycle [31]. Cardiac time intervals
have for example been used for the prognosis of patients
recovering from myocardial infarction and for the detection
of hypovolemia [32]. Many of the considered events can be
identified from the SCG. These include the mitral valve closure
(MC), the isovolumic moment (IM), the aortic valve opening
(AO), and the aortic valve closure (AC)3 [15]. Typically,
these events are detected as sampling instances where the
accelerometer signal along the dorsoventral axis attains local
maximums or minimums. Often, the data is preprocessed using
a combination of band-pass filters, wavelet transforms, and en-
velope functions [15], [20], [33]–[36]. Commonly studied time
intervals which can be estimated using only cardiac events
detected from the SCG include the isovolumic contraction time
(IVCT), defined as the time from the MC to the AO, and
the left ventricular ejection time (LVET), defined as the time
from the AO to the AC. Most methods for the identification of
cardiac events from an SCG first detect fiducial points from
an ECG and then make assumptions on the temporal distance
between these fiducial points and specific cardiac events.

D. Contributions

We propose a hidden Markov model (HMM) approach to
SCGs. The idea is to divide the cardiac vibration into a set of
hidden states, which only are allowed to be traversed in a se-
quential manner. This enables the estimation of instantaneous
heart rate, HRV indices, and cardiac time intervals, using
information from the full waveform of cardiac vibrations.
Performance evaluations are carried out using data from 67
subjects. The proposed method is shown to outperform the
current state-of-the-art among envelope and spectral-based
methods for heart rate estimation, while providing highly
accurate estimates of standard HRV measures and cardiac time
intervals.

Reproducible research: The data used in this paper is
available at www.kth.se/profile/jwahlst/ together with a Matlab
implementation of the proposed method.

3The set of cardiac events that can be detected will depend on the considered
modality. For example, the ECG cannot be used to detect the AO.
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II. MODEL AND ESTIMATION FRAMEWORK

The heartbeat vibrations are described using a HMM. Since
the HMM depends on a number of unknown parameters,
we learn these parameters using the Baum-Welch algorithm.
Following this, the most likely sequence of states is found by
the Viterbi algorithm. Last, we estimate the time point of each
individual heartbeat. While similar models have been proposed
for ECGs, these have typically relied on manual annotations
during the training phase [37], [38], and the associated publica-
tions have seldom presented any performance characterizations
of beat-to-beat interval estimates.

A. State-space Model

Consider a stochastic process {xk}Kk=0. At each sampling
instance k, the variable xk is in one of the ”hidden” states
{1, 2, . . . , N + 1}. Here, we make the interpretation

State 1: No vibration due to heartbeats. (1a)

and for n > 0

State n+ 1: The nth step in the wave pattern of
vibrations due to a heartbeat.

(1b)

Formulated in words, the wave pattern seen in the inertial
measurements during a heartbeat is divided into N states. In
addition, we use a dummy state to capture noise in between
the vibrations caused by two heartbeats. For short, we shall
write xk = n as x(n)k for any k and n.

The probabilities of different state transitions are given by
Anm

∆= p(x
(m)
k+1|x

(n)
k ), where p(·|·) denotes a conditional

probability mass function (pmf). In every cardiac cycle, the
Markov chain is expected to traverse each of the N + 1 states
in a sequential manner. Therefore, it is assumed that the HMM
is cyclic, so that Anm = 0 for all n and m except n = m,
n+1 = m, and [n m] = [N+1 1]. By letting Ann be nonzero
for n > 1, we allow for some variability in the time length of
different subpatterns in the SCG waveform.

To separate the cardiac vibrations from the respiratory
motion, we first subtract the mean from each accelerometer
and gyroscope signal, and then high-pass filter the signals
using a Butterworth filter of order three and with a cutoff
frequency of 2 [Hz]. This will not only remove the larger part
of the respiratory contribution, but also part of the cardiac
signal (some spectral overlap is typically present [39]). The
practice of high-pass filtering the raw SCG signal has been
well established in the literature [21]–[23]. The high-pass
filtered inertial measurements are used as input in the HMM,
and are modeled as

yk = h
(
x
(n)
k

)
+ εk. (2)

Here, we could have yk
∆= [(yak)ᵀ (yωk )ᵀ ]ᵀ, where yk includes

both three-dimensional accelerometer measurements yak and
three-dimensional gyroscope measurements yωk . However, the
presented framework can easily be modified to only use a sub-
set of these measurements, e.g., only accelerometer measure-
ments along the dorsoventral axis. For notational convenience,
we define µn

∆= h(x
(n)
k ).
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High-pass filtered accelerometer measurements

Fig. 2. High-pass filtered accelerometer measurements along the dorsoventral
axis. The measurements within the shaded areas are used to initialize µ̂n.

The measurement noise εk is assumed to be normally
distributed and white. If the measurements are taken from a
6-degrees of freedom IMU, the covariance becomes

R ∆=

[
σ2
aI3 03

03 σ2
ω I3

]
(3)

where the parameters σa and σω need to take both sensor noise
and variations in the SCG morphology into account. Here, 0`
and I` denote ` × `-dimensional zero and identity matrices,
respectively.

B. Baum-Welch Algorithm

The expectation-maximization (EM) algorithm is an itera-
tive method for estimating the parameters of a statistical model
that depends on some hidden states. When applied to HMMs,
the algorithm is known as the Baum-Welch algorithm [40].
We use the Baum-Welch algorithm to find an approximation
to the maximum likelihood (ML) estimate

λ̂ = arg max
λ

p(y0, . . . ,yL|λ). (4)

Here, λ ∆= {{πn}, {Anm}, {µn}} collects the model param-
eters, πn

∆= p(x
(n)
0 ) is the initial state probability, and p(·|·)

denotes a conditional probability density function (pdf). For
computational reasons, the Baum-Welch algorithm is only
applied to a subset {yk}Lk=0 of the total set of available
measurements {yk}Kk=0. Note that the measurement covari-
ance matrix R is excluded from λ since both σa and σω are
considered to be known.

Assuming that the sequential parameter estimates are
{λ̂(1), λ̂(2), . . . }, the parameter estimates are updated until

log p(y0, . . . ,yL|λ̂(i+1))− log p(y0, . . . ,yL|λ̂(i))
log p(y0, . . . ,yL|λ̂(i))

< η (5)

where log(·) denotes the natural logarithm. For further details
on the Baum-Welch algorithm, refer to [41] and references
therein.

C. Initialization of the Baum-Welch Algorithm

As noted in [41], there is usually no obvious way of
initializing the Baum-Welch recursions. In this paper, we set
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Fig. 3. Example of a Viterbi sequence {x̂k} over five detected heartbeats.

π̂
(0)
n = 1/(N + 1) for all n, as well as

Â(0)
nm =



0.98, n = 1, m = 1

0.02, n = 2, . . . , N + 1, m = n

0.02, n = 1, m = 2

0.98, n = 2, . . . , N, m = n+ 1

0.98, n = N + 1, m = 1.

(6)

To initialize µ̂n, we attempt to find intervals of length N over
which the signal energy is locally maximized. The initializa-
tion is then made based on the signal values within these
intervals. Hence, assuming that the measurements are taken
from a 6-degrees of freedom IMU, we begin by computing
the normalized energy function

Ek =

∑k+N−1
`1=k

‖yω`1‖2∑L+N−1
k1=0 ‖yωk1

‖2
+

∑k+N−1
`2=k

‖ya`2‖2∑L+N−1
k2=0 ‖yak2

‖2
(7)

where ‖ · ‖ denotes the Euclidean norm. Following
this, we identify all sampling instances where Ek =
max(Ek−δk, . . . , Ek+δk, ). These sampling instances are de-
noted {j1, j2, . . . , jJ}. Here, δk is some chosen positive inte-
ger. Normally, {(j1, j1+N−1), (j2, j2+N−1), . . . , (jJ , jJ+
N − 1)} will be sets of samples over which similar cardiac
vibrations have been recorded. This is illustrated in Fig. 2
which shows high-pass filtered accelerometer measurements
along the dorsoventral axis, with the aforementioned inter-
vals shaded in grey. The measurements are taken from the
same time interval as in Fig. 1. Finally, µ̂n is initialized as
µ̂

(0)
1 = 03,1 and

µ̂(0)
n =

1

J

J∑
l=1

yjl+n−2 (8)

for n = 2, . . . , N + 1. Here, 0`1,`2 denotes the zero matrix of
dimension `1 × `2.

Even if the specified HMM would have been the true un-
derlying model of the studied data, the Baum-Welch algorithm
would not have been guaranteed to converge to the globally
optimal solution, i.e., the maximum likelihood estimate [42].
However, the specified initialization always resulted in param-
eter estimates that agreed with basic intuition.

D. Viterbi Algorithm

Now, assume that the Baum-Welch algorithm has converged
and that the final estimate is λ̂. We then use the Viterbi
algorithm [41] to find the maximum a posteriori (MAP)

Algorithm 1 : Heartbeat detection.
1: Set i = 0 and k = min {k′ : x̂k′ = 1}
2: while N + 1 ∈ {x̂k, . . . , x̂K} do
3: l := k
4: if x̂k > 1 then
5: if x̂k = 2 then
6: i := i+ 1
7: end if
8: while x̂l+1 = x̂k do
9: l := l + 1

10: end while
11: t

(x̂k)
i = (k + l)/(2fs)

12: end if
13: k := l + 1
14: end while

estimate

{x̂k} ∆= arg max
x0,...,xK

p(x0, . . . , xK |y0, . . . ,yK , λ̂) (9)

of the complete sequence of states {xk}Kk=0. Note that
Viterbi sequence always is valid in the sense that
p(x̂0, . . . , x̂K |y0, . . . ,yK , λ̂) > 0 (all its state transitions will
be permissible). Hence, the sequence {x̂k}Kk=0 is guaranteed to
unambiguously indicate when a heartbeat is considered to have
been detected. A typical Viterbi sequence over five heartbeats
is illustrated in Fig. 3. As indicated in Fig. 3, the number of
self-transitions {x̂(n)k , x̂

(n)
k+1} for n > 1 over a single heartbeat

is usually small in comparison to N .

E. Heart Rate Estimation

When the Viterbi sequence {x̂k}Kk=0 has been identified, we
can go on to estimate the beat-to-beat interval. Intuitively, the
beat-to-beat interval is equal to the horizontal distance between
two adjacent tilted stripes in Fig. 3. Based on this observation,
we first compute the average time point t(n)i at which {x̂k}
is in state n during the ith cardiac cycle (only states n > 1
are considered). The computations are shown in Algorithm 1,
where fs denotes the sampling rate. Since the nominal beat-
to-beat interval t(n)i+1 − t

(n)
i may differ depending on which

state n that is considered, the final estimates of the beat-to-
beat intervals are computed by averaging over all states n =
2, . . . , N + 1. Hence, the estimated beat-to-beat interval and
instantaneous heart rate as implied by heartbeats i and i + 1
are

δti
∆= ti+1 − ti (10a)

and

HRi
∆=

1

ti+1 − ti
, (10b)

respectively, where the estimated time point of heartbeat i is

ti
∆=

1

N

N+1∑
n=2

t
(n)
i . (11)

The sequences {δti} and {HRi} can then be used to obtain
estimates of standard HRV indices [2].
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Algorithm 2 : Summary of data inference.
1: High-pass filtering: Subtract the mean from each IMU

signal, and then high-pass filter the signals using a But-
terworth filter of order 3 and with a cutoff frequency of
2 [Hz]. The resulting signal is {yk}Kk=0.

2: Baum-Welch algorithm: Approximate the ML estimate

λ̂ = arg max
λ

p(y0, . . . ,yL|λ)

of the model parameters λ by employing the following
two steps:

a) Compute the initial parameter estimate λ̂(0) as
described in Section II-C.

b) Update the parameter estimate using the Baum-
Welch algorithm until (5) is satisfied.

3: Viterbi algorithm: Find the MAP estimate

{x̂k} ∆= arg max
x0,...,xK

p(x0, . . . , xK |y0, . . . ,yK , λ̂)

of the complete sequence of states {xk}Kk=0 by using the
Viterbi algorithm.

4: Heart rate and cardiac time interval estimation: Estimate
the time point t(n)i of state n during heartbeat i as outlined
in Algorithm 1. Finally, (10) and (11) give the estimated
beat-to-beat interval and instantaneous heart rate, and (12)
gives the estimated cardiac time intervals.

F. Time Interval Estimation

The estimation of cardiac time intervals can be performed in
a manner analogous to that of the heart rate estimation. How-
ever, we first need to identify which states in the HMM that
represent the events of interest. Here, we will assume that this
is done by visual inspection of the estimated SCG waveform
µ̂n. As a practical example, an experienced annotation expert
may decide that the MC can be expected to occur at state
37. Hence, each cardiac event requires one manual annotation
per subject. The cardiac time interval that describes the time
passed between the events e and e′ after the ith heartbeat can
then be estimated as

δtEE
′

i = t
(E′)
i − t(E)

i (12a)

if E′ > E, or as

δtEE
′

i = t
(E′)
i+1 − t

(E)
i (12b)

if E′ < E. Here, E and E′ are the states in the HMM that
have been found to represent e and e′, respectively, while
t
(n)
i is obtained as in Algorithm 1. Since the first state in

the HMM is interpreted as a dummy state representing all
sampling instances where no distinct vibrations occur, we will
in practice assume that E 6= 1 and E′ 6= 1. The full procedure
of going from raw IMU measurements to heart rate or time
interval estimates is summarized in Algorithm 2.

III. EXPERIMENTAL STUDY

We begin this section by describing the two employed data
sets. Then, the design parameters are presented, and the SCG
morphology measured by a 6-degrees of freedom IMU is

TABLE I
DESCRIPTION OF DATA SETS.

Descriptor Data set 1 Data set 2

# of subjects 1 66
Data/subject 5 [h] 1 [min]
Sampling rate (SCG) 500 [Hz] 500 [Hz]
Sampling rate (ECG) 128 [Hz] 2000 [Hz]
Manually annotated No Yes
SCG sensors 6-deg. IMU one-axis acc.

TABLE II
DESIGN PARAMETERS.

Parameter Value
σa 0.1 [m/s2]
σω 0.5 [◦/s]
L 10 000
η 10−2

δk 150

illustrated. Finally, we present the results of the estimation
of heart rate, HRV measures, and cardiac time intervals.

A. Data Sets

Table I describes the studied data sets. All data was recorded
with the subject in supine position. The first data set was
recorded from an inertial array with 32 InvenSense MPU-
9150 IMUs, placed about five centimeters to the left (as seen
from the subject) of the lower sternum midpoint [43]. Details
about the sensor array can be found in [44]. By averaging
the data over the IMUs, the array was made to function as
a single high-sensitive 6-degrees of freedom IMU. ECG data
was recorded from a myPatch 3 Holter monitor. The subject
was a healthy male, aged 26 years. The second data set consists
of accelerometer measurements along the dorsoventral axis
from 66 subjects. For further details on this data set, refer
to the description of the SFU GYM study in [15]. The R
peaks in the ECG data were detected using the Pan-Tompkins
algorithm [45], and the resulting beat-to-beat intervals were
used as ground truth in Sections III-C and III-D.

The benefit of the first data set is that it can be used
to compute a large number of realizations of standard HRV
measures, while complying with the standard convention of
computing the measures using NN-intervals obtained from
five-minute data segments [2]. In addition, data from a 6-
degrees of freedom IMU allows us to study both translational
and rotational SCG morphology in all spatial directions. On
the other hand, the second data set makes it possible to
evaluate the presented algorithm on a diverse set of sub-
jects with differing SCG characteristics. Moreover, it also
includes manual annotations of the MC, IM, AO, and AC
over all recorded data, which were used as ground truth in
the evaluation of the cardiac time interval estimates in Section
III-E. Since the manual annotations used in the training phase
described in Section II-F were made based on parameter
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Fig. 4. Example of estimated and measured SCG morphology using (a)
accelerometers and (b) gyroscopes.

estimates µ̂n obtained from the first L/fs = 20 [s] of data
from each subject, the accuracy of the cardiac time interval
estimates was evaluated on the remaining 40 [s] of data.

B. Design Parameters and the SCG Morphology

The employed design parameters are detailed in Table
II. Further, the number of states was chosen as N =
b0.6fs/HRSc, where b·c denotes the floor function and HRS

is the average heart rate as estimated by the spectral-based
method presented in Appendix B. This means that the Markov
process will be in the first state approximately 40 [%] of the
time. Since the Viterbi sequence is expected to pass through
each of the N + 1 states during each individual cardiac cycle,
there will always exist an upper bound, inversely proportional
to N , on the estimated heart rate. However, a too small N
will increase the risk of overestimating the heart rate.

Fig. 4 illustrates the SCG morphology in a randomly chosen
segment in data set 1. For clarity, the translational vibrations,
measured by the accelerometers, and the rotational vibrations,
measured by the gyroscopes, are displayed separately. The
estimated parameters µ̂an and µ̂ωn are displayed in thick lines.
Here, µ̂n = [(µ̂an)ᵀ (µ̂ωn)ᵀ ]ᵀ. Further, Fig. 4 also shows
the corresponding measurements from 50 heartbeats in thin
lines. In doing this, the state at a given sampling instance was
estimated using the Viterbi algorithm. None of the displayed
measurements were used in the estimation of µn.

C. Heart Rate Estimation

The HMM-based method for heart rate estimation presented
in Section II was evaluated on both data sets. To benchmark
its performance, we also applied previously proposed envelope
and spectral-based methods, described in Appendix A and
Appendix B, respectively, to the same data sets. Data from
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Fig. 5. Bland-Altman and scatter plot for the HMM with average error (the
solid black line in the Bland-Altman plot), 95 [%]-limits of agreement (the
dashed red lines in the Bland-Altman plot), and fitted linear regression line
(the solid black line in the scatter plot). The sample correlation coefficient of
δtHMM and δtECG was 0.999.

the first data set was processed in five-minute segments. In
the second data set, data from each individual subject was
processed independently.

Table III displays error measures of the estimated instan-
taneous heart rate HR and beat-to-beat interval δt for both
data sets. The errors are quantified in terms of their mean
absolute error (MAE) and normalized MAE (nMAE), i.e., the
MAE divided by the time-averaged ECG-derived value of the
variable. In addition, standard deviations of the absolute errors,
with or without normalization, are added to characterize the
error distributions. As can be seen from Table III, the HMM
yields a substantial performance gain over previously proposed
methods. Although the performance seems to be better on the
first data set than on the second, it should be noted that this
primarily is due to a small number of individuals in the second
data set who had irregular SCG waveforms or other anomalies.
To exemplify this, we mention that for 41 of the 66 subjects
in second data set, the HMM resulted in a MAE of the beat-
to-beat interval that was lower than the corresponding MAE
obtained on the first data set (4.28 [ms]). However, one should
also take into account the comparatively low sampling rate
of the ECG in the first data set. Since the detected R peaks
always are chosen among the existing samples, the timing of
an individual detected peak could have an absolute error up to
3.9 [ms] on the first data set (the sampling rate was 128 [Hz]),
even when assuming that the chosen sample is the one that
is closest to the true peak. This uncertainty has most likely
increased the apparent MAEs of the HMM on the first data
set.

To further characterize the beat-to-beat intervals errors we
display Bland-Altman and scatter plots for the HMM applied
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TABLE III
ERRORS OF ESTIMATED BEAT-TO-BEAT INTERVAL AND HEART RATE.

Data set 1 Data set 2
HMM Envelope- Spectral- HMM Envelope- Spectral-

based method based method based method based method
Absolute errors (mean ± standard deviation)
HR [bpm] 0.29± 0.36 1.05± 2.68 4.55± 5.05 0.56± 2.74 5.00± 10.69 7.06± 10.61
δt [ms] 4.28± 6.52 16.64± 33.96 75.06± 76.29 6.10± 31.89 67.30± 146.86 82.17± 110.23

Normalized absolute errors (mean ± standard deviation)
HR [%] 0.46± 0.59 1.69± 4.32 7.32± 8.13 0.78± 3.76 6.86± 14.66 9.69± 14.56
δt [%] 0.44± 0.66 1.69± 3.45 7.63± 7.75 0.71± 3.70 7.82± 17.07 9.55± 12.81

TABLE IV
ERRORS OF ESTIMATED HRV MEASURES.

Data set 1 Data set 2
HMM Envelope- Spectral- HMM Envelope- Spectral-

based method based method based method based method
Absolute errors (mean ± standard deviation)
SDNN [ms] 0.56± 0.27 8.90± 11.54 57.98± 22.75 11.40± 28.54 79.48± 75.88 67.90± 53.72
RMSSD [ms] 2.51± 2.81 20.89± 22.91 107.31± 35.41 16.25± 37.62 136.76± 123.93 115.13± 83.11
pNN50 [%] 0.89± 0.60 5.17± 5.31 20.71± 5.57 1.78± 1.99 135.92± 130.80 175.43± 10.21
VLF · 10−3[(ms)2] 0.01± 0.04 0.04± 0.06 1.38± 1.21 0.11± 0.34 1.41± 2.93 1.16± 2.32
LF · 10−3[(ms)2] 0.03± 0.05 0.14± 0.22 1.91± 1.65 0.60± 2.55 3.71± 6.71 2.63± 3.33
HF · 10−3[(ms)2] 0.10± 0.09 1.13± 1.37 8.67± 4.52 1.27± 3.80 14.64± 18.51 9.75± 10.68
LF/HF 0.19± 0.28 0.28± 0.24 0.93± 0.63 0.57± 2.38 1.20± 3.19 1.20± 3.09

Normalized absolute errors (mean ± standard deviation)
SDNN [%] 0.71± 0.34 11.23± 14.56 73.18± 28.72 17.32± 43.38 120.84± 115.37 103.23± 81.67
RMSSD [%] 3.51± 3.92 29.19± 32.01 149.95± 49.48 24.34± 56.34 204.83± 185.61 172.42± 124.47
pNN50 [%] 4.65± 3.14 27.11± 27.82 108.60± 29.20 14.37± 16.03 109.52± 105.40 141.36± 82.30
VLF [%] 0.47± 2.02 1.68± 2.83 62.94± 55.05 21.61± 64.64 272.03± 564.64 223.92± 447.18
LF [%] 1.41± 2.78 7.52± 11.72 103.43± 89.48 32.11± 137.76 199.80± 361.75 141.63± 179.40
HF [%] 5.12± 4.83 58.02± 70.66 445.83± 233.27 52.00± 155.02 597.80± 756.00 398.30± 435.99
LF/HF [%] 15.32± 22.43 21.82± 18.93 73.11± 49.33 34.96± 146.84 74.04± 197.02 74.13± 190.69

The variables were estimated using five minutes (data set 1) or one minute (data set 2) of data.

to the second data set in Fig. 5. Throughout the paper, we
compute the 95 [%]-limits of agreement in the Bland-Altman
plots by assuming normally distributed errors [46], and fit the
regression lines in the scatter plots using a Huber loss function.
The limits of agreement were ±16 [ms], which is somewhat
better than the corresponding figures of ±20 [ms] reported in
[47]. In accordance with [47], Fig. 5 and associated measures
did not consider any absolute beat-to-beat interval errors that
were larger than 100 [ms] (these were considered to be false
positives or missed beats). To illustrate the heavy-tailed nature
of the beat-to-beat interval errors we visualize the empirical
distribution functions (edfs) of the absolute heart rate errors,
collected from both data sets, in Fig. 6.

It is encouraging to compare the accuracy of the HMM
with results reported in studies using BCG signals. For ex-
ample, the beat-to-beat interval has previously been estimated
with nMAEs in the intervals (0.47, 1.06) [%] [6] (8 subjects;
sampling rate: 200 [Hz]) and (0.49, 3.64) [%] [48] (1 subject;
sampling rate: 200 [Hz]), while another study reported a MAE
of 14.16 [ms] [49] (17 subjects; sampling rate: 128 [Hz]).
Based on previous studies, the HMM also performed well

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Absolute error (HR) [bpm]

ed
f

Heart rate errors

HMM

Envelope-based

Spectral-based

Fig. 6. Empirical distribution functions of the heart rate errors.

in comparison to PPGs. For example, in [50], the PPG-based
estimates of the beat-to-beat interval had a MAE of 6.68 [ms].
The study in [50] excluded false alarms and missed detections,
and was conducted on 10 subjects with a sampling rate of
1 [kHz]). None of the studies reported any documented cardiac
abnormality among the subjects.

Due to disparities in data quality and the absence of
established reporting standards, is often difficult to compare
the accuracies reported in different SCG studies. Many studies
will for example exclude estimates with too large errors when
computing error measures [21], [47], while others only report
errors of time-averaged heart rates [9], [10], [23].
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(a) Bland-Altman plot of HRV measure
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(b) Scatter plot of HRV measure
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Fig. 7. Bland-Altman and scatter plot for the HMM with average errors (the
solid black lines in the Bland-Altman plot), 95 [%]-limits of agreement (the
dashed red and blue lines in the Bland-Altman plot for the first and second
data set, respectively), and fitted linear regression lines (the solid red and blue
lines in the scatter plot for the first and second data set, respectively). The
sample correlation coefficient of SDNNHMM and SDNNECG was 0.999
and 0.657 for estimates using the first and second data set, respectively.

D. HRV Measures

Standard HRV measures were estimated from both data
sets. The studied HRV measures included the standard de-
viation of all NN-intervals (SDNN), the root-mean-squared
differences of successive NN intervals (RMSSD), the ratio
of the number of successive NN-intervals differing by more
than 50 [ms] to the total number of NN-intervals (pNN50),
the PSD of the NN-sequence integrated over the very low
frequency range (0.003, 0.04) [Hz] (VLF), over the low fre-
quency range (0.04, 0.15) [Hz] (LF), over the high frequency
range (0.15, 0.4) [Hz] (HF), and the ratio of LF and HF
(LF/HF) [2]. Since the NN-series are sampled unevenly in
time (once per heartbeat), they were, for the computations of
the spectral measures, resampled to a frequency of 1 [Hz] using
cubic splines [51].

The MAEs and the nMAEs of the considered HRV indices
are presented in Table IV. As could have been expected from
the preceding subsection, the HMM outperforms both the
envelope and the spectral-based method on all accounts. The
accuracy of the estimates is comparable to that of previous
PPG-based estimates in [3], where the reported nMAEs of
SDNN, RMSSD, VLF, LF, HF, and LF/HF were 14 [%],
16 [%], 39 [%], 18 [%], 27 [%], and 30 [%], respectively. The
study in [3] was conducted on 4 subjects, acquired PPG data at
a sampling rate of 21.33 [Hz], and used polynomial interpola-
tion to increase the precision of the detected heartbeats. Bland-
Altman and scatter plots of the SDNN measure estimated
using the HMM are shown in Fig. 7. As can be seen, the
estimates are highly accurate for the great majority of the

studied subjects. The clinical applicability of SCG-based HRV
estimates will be highly dependent on the extent to which
the reliability of individual estimates can be assessed, a topic
which will need to be addressed in future studies

E. Cardiac Time Intervals

Table V shows the MAEs of the estimated time points for
the four cardiac events MC, IM, AO, and AC, and of the
estimated time intervals IVCT and LVET4. Fig. 8 displays
Bland-Altman and scatter plots for the HMM estimates and
the ground truth of the LVET. The estimates were obtained by
applying the method described in Section II-F to the second
data set. As can be seen, the MAE of the time points for the
cardiac events is in the order of 5 [ms]. This can be compared
to MAEs of the IM, AO, and AC at 9 [ms], 9 [ms], and 6 [ms],
respectively, for a previously presented SCG-based method
conducted on 18 subjects with a sampling rate of 1 [kHz]
[52], and MAEs of the MC, AO, and AC at 12 [ms], 17 [ms],
and 9 [ms], respectively, for a PCG-based method conducted
on 60 subjects, (51 of which suffered from congestive heart
failure) with a sampling rate of 10 [kHz] [35]. Similarly, the
MAE of 8.51 [ms] for the LVET estimates compare well to
previously published results. Specifically, [53] reported LVET
MAEs of 29.9 [ms], 14.4 [ms], and 11.5 [ms], when using the
ICG, PCG, and PPG, respectively (17 subjects; PCG sampling
rate: 44.1 [kHz]), while the PCG-based method presented in
[54] resulted in MAEs of 11.39 [ms] and 17.51 [ms] for
populations of 23 healthy subjects and 12 subjects suffering
from different cardiovascular diseases, respectively (sampling
rate: 44.1 [kHz]). However, as a word of caution, we note that
there is some uncertainty both in the manual annotation, and in
the relation between the cardiac events and the SCG waveform
[55].

IV. SUMMARY

We have developed an HMM-based method for processing
SCGs. Each state in the HMM represents a stage in the cardiac
cycle. After estimating the cardiac state at each sampling
instance, the obtained sequence of states can be used to
estimate heart rate, HRV measures, and cardiac time inter-
vals. The proposed algorithm was evaluated on data from 67
subjects. For the estimation of heart rate and HRV measures,
comparisons were made against previously proposed envelope-
based and spectral-based methods. The proposed HMM-based
method demonstrated a superior performance in all respects,
achieving a MAE of the beat-to-beat interval in the order of
5 [ms]. Estimated cardiac time intervals and time points for
cardiac events were benchmarked against manual annotations.
The resulting MAEs were about 5 [ms] for the cardiac events,
and 5 [ms] and 9 [ms] for the IVCT and LVET intervals,
respectively. Continued studies of SCGs were motivated by
favorable comparisons with results reported in studies using
competing sensor modalities.

4To assess the inter-annotation variability of the ground truth, we let an
independent expert annotate the same events on data from two subjects. The
mean absolute differences of the timings obtained from the two annotators
were less than 0.4 [ms] for all events, and hence, they were well below the
typical estimation error.
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TABLE V
ABSOLUTE ERRORS (MEAN ± STANDARD DEVIATION) OF ESTIMATED TIME POINTS FOR CARDIAC EVENTS AND ESTIMATED CARDIAC TIME INTERVALS.

t(E) δt(EE
′)

MC IM AO AC IVCT LVET
Timing/time interval [ms] 5.49± 14.00 4.95± 13.91 5.24± 14.03 5.36± 9.53 5.10± 9.03 8.51± 15.98
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Fig. 8. Bland-Altman and scatter plot for the HMM applied to the second
data set with average error (the solid black line in the Bland-Altman plot),
95 [%]-limits of agreement (the dashed red lines in the Bland-Altman plot),
and fitted linear regression line (the solid black line in the scatter plot). The
sample correlation coefficient of δtAO−AC

HMM and δtAO−AC was 0.846.

V. POSSIBLE EXTENSIONS

Most likely, there are several extensions that can be made
to the presented estimation framework to increase its accuracy
and extend its area of application. Here, we will briefly discuss
non-exponential state duration densities, automated cardiac
time interval estimation, the detection of cardiac arrhythmia,
and beat-to-beat estimation of amplitudes in the SCG wave-
form. The use of non-exponential state duration densities, i.e.,
hidden semi-Markov models (HSMMs) [41], can be expected
to enable a more realistic model of the time spent in state 1.
HSMMs have previously been used for ECG delineation in
[37] and [38]. Moreover, the state duration distributions could
be adjusted to account for the temporal correlation of the beat-
to-beat intervals [56].

The method for estimation of cardiac time intervals outlined
in Section II-F suffers from the fact it requires new manual
annotations for each considered subject. While this may be
acceptable in some applications [57], [58], automated methods
are more likely to achieve widespread recognition [15]. One
way to resolve this issue while still utilizing the proposed
HMM could be to first make manual annotations on SCG
waveforms µ̂n, obtained from a restricted number of subjects,

and then use machine-learning methods to obtain a general
function which takes an estimated waveform as input and
outputs the HMM states associated with the considered cardiac
events. Moreover, it may also be possible to apply rule-based
annotation methods similar to those presented in e.g., [52] and
[59], to µ̂n. Either way, once the desired HMM states have
been found, the time intervals can be estimated as described
by (12).

Cardiac arrhythmia is a generic term for disturbances of
the heart rhythm. The arrhythmias can in many instances be
identified as sequences of heartbeats with unusual timing or
ECG morphology. Often, features from the ECG waveform are
used to classify each heartbeat into one of several arrhythmia
classes [60]. Presumably, similar methods can be used to
detect arrhythmias from SCGs [61], [62]. However, if each
arrhythmia class gives rise to a unique SCG waveform, it may
also be possible to model the occurrence of arrhythmic beats
by using a hierarchical HMM (HHMM) [63]. Naturally, the
top level would include one state for each arrhythmia class,
and an additional resting state [38]. The substates of each state
representing an arrhythmia class could then be modeled as in
Section II. Similar models have previously been used in e.g.,
pedestrian activity classification [64].

Amplitudes and peak-to-peak amplitudes in the SCG wave-
form have been used to estimate cardiac output [12] and
assess myocardial contractility [65]. Commonly, the estimation
of amplitudes utilizes fiducial points detected from an ECG.
However, since each state in the HMM presented in Section
II corresponds to a specific stage in the cardiac cycle, it may
be possible to estimate these amplitudes from measurements at
sampling instances when the Viterbi sequence traverses a given
state. For example, if the AO is determined to correspond to
state ñ, the AO amplitude could be estimated as the average
of the measurements (in the considered directions) recorded
while x̂k = ñ in the considered cardiac cycle. This would
then eliminate the need to record a concurrent ECG.

APPENDIX A

This appendix describes the envelope-based heart rate es-
timation algorithm that was employed in Section III. Similar
algorithms have previously been presented in [21], [22], and
[66].

To begin with, all IMU signals are high-pass filtered using
the same method as in step 1 in Algorithm 2. Following
this, we compute the envelope of each IMU signal [67].
Assuming that the resulting signals are {ýak}Kk=0 and {ýωk }Kk=0,
the normalized energy function is computed as

Ék =
‖ýωk ‖2∑K

k1=0 ‖ýωk1
‖2

+
‖ýak‖2∑K

k2=0 ‖ýak2
‖2
. (13)
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for all k. Now, heartbeats are detected as time instances k
where Ék = max(Ék−δk, . . . , Ék+δk). Finally, false alarms
are removed by iterating through all heartbeats from start to
finish and rejecting any heartbeat occurring less than 0.5 [s]
after the previous heartbeat.

APPENDIX B

This appendix describes the spectral-based heart rate esti-
mation algorithm that was employed in Section III. Similar
algorithms have previously been presented in [9], [10], [23]
and [24].

First, the envelope-based method is used to divide the data
into segments. A segment is considered to start 0.25 [s] before
a heartbeat (as detected by the envelope-based method) and
end 0.5 [s] after the subsequent heartbeat. The data from each
segment is processed independently. To start with, the ac-
celerometer measurements (normalized to have zero mean) are
high-pass filtered using a Butterworth filter of order 1 and with
a cutoff frequency of 0.5 [Hz]. While gyroscopes also could
be used, we will follow [23] and only employ accelerometers.
Following this, the signals are reduced to scalar form by
computing the signal which is the norm of the band-pass
filtered accelerometer signals at each sampling instance. This
has the advantage of creating a signal which is not dependent
on the orientation in which the accelerometer was placed on
the body. Last, the discrete-time Fourier transform of the signal
is computed, and the heart rate is estimated as the frequency
that, among the frequencies giving a local maximum of the
PSD, is closest to the heart rate implied by the envelope-based
method (i.e., the inverse of the estimated beat-to-beat interval
of the two heartbeats).
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