
Alternative EM Algorithms for
Nonlinear State-space Models
Johan Wahlström?, Joakim Jalden‡, Isaac Skog†, Peter Händel‡
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Abstract—The expectation-maximization algorithm is a com-
monly employed tool for system identification. However, for a
large set of state-space models, the maximization step cannot
be solved analytically. In these situations, a natural remedy
is to make use of the expectation-maximization gradient algo-
rithm, i.e., to replace the maximization step by a single iter-
ation of Newton’s method. We propose alternative expectation-
maximization algorithms that replace the maximization step with
a single iteration of some other well-known optimization method.
These algorithms parallel the expectation-maximization gradient
algorithm while relaxing the assumption of a concave objective
function. The benefit of the proposed expectation-maximization
algorithms is demonstrated with examples based on standard
observation models in tracking and localization.

Index Terms—Expectation-maximization, system identification,
the Gauss-Newton method, Levenberg-Marquardt, trust region.

I. INTRODUCTION

The problem of estimating the parameters of a nonlinear
state-space model has received extensive study in the literature,
and is of importance for applications within e.g., biomedicine
[1], [2], neuroscience [3], and localization [4]. The main chal-
lenge of this problem is that the likelihood function generally
is intractable. Although particle-based solutions have received
plenty of attention [5], [6], they often come with limitations
that require extensive workarounds. For example, standard
particle-based methods for evaluating the likelihood function
tend to be discontinuous in the parameter vector [7]. Similarly,
the option of including the parameter in the state vector of a
particle filter is problematic since the augmented process does
not possess any forgetting property, and hence, the variance
of the particle estimates is bound to diverge. While it is to
some extent possible to bypass this problem by introducing
artificial dynamics for the parameter vector, these methods
require a significant amount of tuning [5]. Moreover, particle-
based methods are generally not suitable for high-dimensional
estimation problems since their performance degrades quickly
with the dimension of the problem [8].

An alternative solution to the parameter identification prob-
lem is provided by the expectation-maximization (EM) al-
gorithm [9]. The idea of the EM algorithm is to decom-
pose an estimation problem into two steps: the expectation
(E) step, which includes finding the posterior distribution
of some hidden states given the current parameter estimate;

and the maximization (M) step, where the parameter estimate
is updated based on the posterior distribution computed in
the E step. For many models, each of these two steps is
more tractable than the original problem [10]. Generally, the
EM algorithm is considered to be more numerically stable
than gradient-based techniques, and tends to be favored by
practitioners whenever it is applicable [5]. If the M step cannot
be solved analytically, a convenient simplification is to perform
an approximate maximization based on a single iteration of
Newton’s method. This is known as the EM gradient algorithm
[11].

In this article, we address the problems that arise when the
EM gradient algorithm is applied to a state-space model that
is not guaranteed to give a concave objective function. Specif-
ically, we propose EM algorithms that replace the standard
M step with a single iteration of an alternative optimization
method. For nonlinear state-space models with additive Gaus-
sian noise, the M step can be reformulated as a stochastic
nonlinear least-squares problem. This can be attacked using
Gauss-Newton type methods. In addition, we explore solutions
based on trust region and damped methods. To summarize,
our main contribution lies in combining the idea of the EM
gradient algorithm with optimization methods that are more
generally applicable than Newton’s method. In this way, we
maintain the simplicity of the EM gradient algorithm while
circumventing problems related to the shape of the objective
function. Two numerical examples are used to benchmark the
proposed algorithms against the EM gradient algorithm and
standard filtering methods.

II. PROBLEM FORMULATION

Consider the state-space model

xk+1 = fθ(xk) +wk, (1a)
yk = hθ(xk) + εk. (1b)

Here, xk ∈ RNx denotes the state variable and yk ∈ RNy
denotes the measurements. The noise processes wk ∈ RNx
and εk ∈ RNy are assumed to be normally distributed and
white with positive definite covariances Q and R, respectively.
Furthermore, θ ∈ RNθ denotes a vector of unknown param-
eters that specifies the transition and measurement functions
fθ(·) and hθ(·), respectively, and the initial state is distributed



according to some distribution p(x0) that is independent of
θ. Throughout the paper, the subindex k is used to denote
quantities at sampling instance k. Nonlinear state-space mod-
els of the type described by (1) are abundant in engineering
and signal processing and have been well-studied in the liter-
ature [12]–[16]. This paper is concerned with the problem of
estimating the parameter vector θ from a set of measurements
y1:N

∆= {yk}Nk=1. The case where Q and R are included in the
parameter vector θ is left for future work (in this formulation,
the maximization problem does not become a nonlinear least-
squares problem when assuming additive Gaussian noise).
Next, we briefly review variations of the EM algorithm and
describe how these can be used to solve the stated problem.
The review will both clarify the relation between the methods
proposed in Section III and state-of-the-art EM algorithms, as
well as provide the necessary background to the EM algorithm.

A. The Expectation-Maximization Algorithm

The EM algorithm attempts to solve the maximum likeli-
hood problem

θ̂ = argmax
θ

pθ(y1:N ) (2)

by writing the likelihood as if the missing data x0:N
∆=

{xk}Nk=0 were available. The log-likelihood of the complete
data is then integrated with respect to the posterior distribution
pθ(i)(x0:N |y1:N ), where θ(i) denotes the current best estimate
of θ. Thus, it is possible to alternate between updating the
parameter estimate by maximizing the expected log-likelihood
of the complete data, and using the new parameter estimate
to update the posterior distribution of the missing data [9].
Formally, the E step consists of computing

Q(θ,θ(i)) ∆= E[ln pθ(x0:N ,y1:N )] (3a)

where we let E[·] denote the expectation with respect to
pθ(i)(x0:N |y1:N ). Similarly, the M step amounts to solving

θ(i+1) = argmax
θ

Q(θ,θ(i)). (3b)

These two steps are then repeated until convergence. As shown
in [9], each iteration of the EM algorithm is guaranteed to
either increase or maintain the likelihood, so that

pθ(i+1)(y1:N ) ≥ pθ(i)(y1:N ). (4)

In the remainder of this section, we describe variations of the
EM algorithm.

B. Extensions of the Expectation-Maximization Algorithm

There are many examples where either the E step or the M
step does not have a closed-form solution [11]. In the former
case, we first note that there are several different smoothers
that can be used to approximate the posterior pθ(i)(x0:N |y1:N )
[13]. Likewise, the expectations in Q(θ,θ(i)) can be ap-
proximated by averaging over samples from the posterior
distribution pθ(i)(x0:N |y1:N ) [17]. This is known as Monte
Carlo EM (MCEM). In applications where maximization is
cheaper than simulation, the algorithm can be made more

efficient by reusing samples from previous iterations, so called
stochastic approximation EM (SAEM) [18].

If there is no closed-form solution to the M step, it can be
replaced by some method for identifying a parameter estimate
θ(i+1) that satisfies

Q(θ(i+1),θ(i)) ≥ Q(θ(i),θ(i)). (5)

The resulting algorithms are known as generalized EM (GEM)
algorithms [9]. An example of a GEM algorithm is the
expectation conditional maximization (ECM) algorithm. The
ECM algorithm replaces the standard M step with a sequence
of conditional maximization steps, each of which maximizes
Q(θ,θ(i)), but with some vector function of θ held fixed [19].
The strength of the ECM algorithm is that the conditional max-
imizations often have analytic solutions or at least are more
simple to implement than the original M step [20]. To ensure
convergence properties similar to those of the EM algorithm,
the constraints are chosen so that the complete maximization
resulting from a sequence of conditional maximization steps
(performed in between two E steps) is over the full parameter
space of θ. This is referred to as the space-filling condition.
Although the ECM algorithm typically converges more slowly
than the EM algorithm in terms of number of iterations, it
can be much faster in total computer time [21, p. 159]. The
following modifications of the ECM algorithm can be used to
improve its convergence properties:

• The multicycle ECM (MCECM) algorithm adds E steps
in between some of the conditional maximization steps
[19]. Hence, each iteration is divided into different cycles,
where each cycle consists of one E step followed by an
ordered set of conditional maximizations.

• The expectation conditional maximization either (ECME)
algorithm replaces Q(θ,θ(i)) with the actual likelihood
function pθ(y1:N ) in some of the maximization steps. In
[22], it was concluded that the ECME is nearly always
faster than the EM and ECM algorithms in terms of
number of iterations. In terms of total computer time,
it can be faster by several orders of magnitude.

• The alternating expectation conditional maximization
(AECM) algorithm allows the set of hidden states and the
constraints to vary within and between iterations [20]. An
iteration of the AECM algorithm is considered to consist
of the minimal number of cycles (starting after the end
of the previous iteration) that are needed to fulfill the
space-filling condition. A table that clarifies how the EM,
ECM, MCECM, and ECME algorithms can be seen as
special cases of the AECM algorithm is provided in [20].
Although an AECM algorithm is not guaranteed to be a
GEM algorithm [19], any iteration of an AECM algorithm
is guaranteed to either increase or maintain the value of
the likelihood function [20].

The drawbacks of the alternative M steps discussed in this
subsection is that they are dependent on user design, and can
require a significant amount of analytical and implementation
effort [23]. Moreover, some of the maximization steps could



still need to be solved numerically, and there are no general
guarantees on the relative performance of these algorithms
and the standard EM algorithm. We conclude this section by
considering a closed-form approximate M step that typically
is more straightforward to implement.

C. The Expectation-Maximization Gradient Algorithm

For nonlinear state-space models with additive Gaussian
noise, the derivatives of the intermediate function Q(θ,θ(i))
are readily available. It is then uncomplicated to apply the
EM gradient algorithm, i.e., to replace the M step in the
EM algorithm with a single iteration of Newton’s method.
Specifically, the EM gradient algorithm makes use of the
second order Taylor expansion [11]

Q(θ,θ(i)) ≈ Q̂(θ,θ(i))
∆= Q(θ(i),θ(i)) + ∂θQ(θ(i),θ(i))(θ − θ(i))

+ 1
2 (θ − θ(i))ᵀ∂2θQ(θ(i),θ(i))(θ − θ(i))

(6)

where ∂θ and ∂2θ denote the Jacobian and Hessian with respect
to θ, respectively. All derivatives are taken with respect to
the first argument in Q(θ,θ(i)). The parameter update is then
defined as

θ(i+1) = argmax
θ

Q̂(θ,θ(i))

= θ(i) − (∂2θQ(θ(i),θ(i)))−1(∂θQ(θ(i),θ(i)))ᵀ.
(7)

The EM gradient algorithm is often favored for computational
reasons since it only requires evaluations at θ = θ(i) and does
not include any line search. At the same time, the EM gradient
algorithm has local properties (convergence rate, monotonicity,
etc.) that are similar to those of the EM algorithm [11]. A
modification of the EM gradient algorithm was proposed in
[24], which incorporated the idea of the ECME algorithm by
replacing the Hessian of the objective function with a nega-
tive definite approximation of the Hessian of the likelihood
function.

The Taylor expansion in (6) is typically performed under
the assumption that the Hessian ∂2θQ(θ(i),θ(i)) is negative
definite [11], [21], [24]. This assumption is not only employed
when studying the convergence properties of Newton’s method
[25], but is also needed to ensure that the parameter updates are
in ascent directions. However, as will be shown in Section IV,
it is easy to find examples of real-world system identification
problems, based on nonlinear state-space models of the type
described in (1), where this assumption does not hold and
where the Newton updates defined by (7) easily lead to
convergence to a local minimum or divergence. Next, we
consider several possible alternatives to the parameter update
in (7). The resulting algorithms inherit the simplicity of the
EM gradient algorithm, while being more suitable to models
where the Hessian ∂2θQ(θ(i),θ(i)) is not guaranteed to be
negative definite.

III. ALTERNATIVE APPROXIMATE M STEPS

This section considers the system identification problem
discussed in Section II, and describes how the single iteration

of Newton’s method that is employed in the EM gradient
algorithm can be replaced by a single iteration of some other
optimization method. We consider approximate M steps based
on the Gauss-Newton algorithm, trust region algorithms, and
damped algorithms. The resulting EM algorithms are compat-
ible with any methods for approximating the expectations and
posteriors that are needed in the E step.

A. The Gauss-Newton Method

The joint distribution of the state variables and the measure-
ments in the model (1) can be decomposed according to

ln pθ(x0:N ,y1:N ) = ln p(x0) +
∑N
k=1 ln pθ(xk|xk−1)

+
∑N
k=1 ln pθ(yk|xk). (8)

This further means that

Q(θ,θ(i)) (9)

=
∑N
k=1 E[Fθ(xk−1,xk)] +

∑N
k=1 E[Hθ(xk,yk)]

with

Fθ(xk−1,xk)
∆= − 1

2 (xk − fθ(xk−1))
ᵀQ−1(xk − fθ(xk−1))

(10a)

and
Hθ(xk,yk)

∆= − 1
2 (yk − hθ(xk))

ᵀR−1(yk − hθ(xk)),
(10b)

where Q and R are the covariance matrices associated with
model (1). Hence, (9) illustrates that the M step in (3b) can
be cast as a stochastic nonlinear least-squares problem. As a
result, the M step can be approximately solved by applying
a single iteration of the Gauss-Newton algorithm. The Gauss-
Newton algorithm can be seen as making the first order Taylor
expansions

fθ(x) ≈ fθ(i)(x) + ∂θfθ(i)(x)(θ − θ(i)), (11a)

hθ(x) ≈ hθ(i)(x) + ∂θhθ(i)(x)(θ − θ(i)), (11b)

in Q(θ,θ(i)), which gives

Q(θ,θ(i)) ≈ Q̃(θ,θ(i)) (12)
∆= Q(θ(i),θ(i)) + ∂θQ(θ(i),θ(i))(θ − θ(i))

+ 1
2 (θ − θ(i))ᵀH(θ(i))(θ − θ(i))

where

H(θ(i))
∆=
∑N
k=1 E[FHθ(i)(xk−1)] +

∑N
k=1 E[HHθ(i)(xk)],

(13)

with

FHθ(i)(xk)
∆= −∂θfθ(i)(xk)

ᵀQ−1∂θfθ(i)(xk), (14a)

HHθ(i)(xk)
∆= −∂θhθ(i)(xk)

ᵀR−1∂θhθ(i)(xk). (14b)

Obviously, (13) and (14) make the assumption that the con-
sidered derivatives and expectations can be interchanged. The



Gauss-Newton update is then defined as

θ(i+1) = argmax
θ

Q̃(θ,θ(i))

= θ(i) −H(θ(i))−1(∂θQ(θ(i),θ(i)))ᵀ.
(15)

One of the main benefits of the Gauss-Newton algorithm is that
H(θ(i)) always is negative semidefinite and typically negative
definite. Since Q and R are assumed to be positive definite,
a sufficient condition for the latter is for example that either
∂θfθ(i)(xk) or ∂θhθ(i)(xk) have full rank. In this case, the
Gauss-Newton update in (15) is always made in an ascent
direction. However, it should be noted that the Gauss-Newton
algorithm normally has linear convergence, as opposed to
the quadratic convergence of the Newton method [26]. The
extension of the parameter update in (15) to the case where
x0 is a Gaussian with mean µθ is straightforward.

When fθ(x) and hθ(x) are linear in the parameter vector θ,
the Gauss-Newton update in (15) is identical to the Newton
update in (7). In this case, the maximization step becomes
a linear least-squares problem that is solved analytically with
one Newton or one Gauss-Newton iteration. Examples of such
linear models include linearized inertial navigation systems
where the parameters are considered to be the biases of the
inertial sensors [27], autoregressive-moving-average (ARMA)
processes [28], and the well-studied training model considered
in [13]. However, in the general nonlinear case, the difference
between the true Hessian employed in the EM gradient algo-
rithm and the approximation used in (15) is

∂2θQ(θ(i),θ(i))−H(θ(i)) (16)

=
∑N
k=1 E[FδHθ(i)(xk−1,xk)] +

∑N
k=1 E[HδHθ(i)(xk,yk)]

where

[FδHθ(i)(xk−1,xk)]n,:
∆= (xk − fθ(i)(xk−1))

ᵀQ−1∂[θ]n∂θfθ(i)(xk−1),
(17a)

[HδHθ(i)(xk,yk)]n,:
∆= (yk − hθ(i)(xk))

ᵀR−1∂[θ]n∂θhθ(i)(xk),
(17b)

for any n = 1, . . . , Nθ, with [A]n,: denoting the nth row
of A and [a]n denoting the nth element of a. Further-
more, note that Epθ(x0:N ,y1:N )[xk − fθ(xk−1)] = 0Nx,1 and
Epθ(x0:N ,y1:N )[yk − hθ(xk)] = 0Ny,1 for any k = 1, . . . , N ,
where θ is the parameter that was used to generate the state
variables and the measurements, and 0`1,`2 denotes a zero
matrix of dimension `1 × `2. As a result, we would expect
that ∂2θQ(θ(i),θ(i)) ≈ H(θ(i)) when θ(i) ≈ θ, the second
derivatives of fθ(xk) and hθ(xk) are sufficiently small, and
N is sufficiently large. In other words, under these condi-
tions, the Hessian ∂2θQ(θ(i),θ(i)) will tend to be negative
definite and the EM gradient algorithm will typically be an
adequate alternative. Further, whenever all second derivatives
of fθ(xk) and hθ(xk) are independent of xk, it holds that
Epθ(y1:N )[∂

2
θQ(θ,θ)−H(θ)] = 0Nθ , where 0` denotes a zero

matrix of dimension `× `.

B. Trust Region Methods

The idea of trust region methods is to constrain the updated
parameter estimate to be in a region where the approximation
of the objective function can be trusted [29]. Applying this
idea to the approximations of Q(θ,θ(i)) defined in (6) and
(12), we obtain

θ(i+1) = argmax
‖θ−θ(i)‖≤d(i)

Q̂(θ,θ(i)) (18a)

and
θ(i+1) = argmax

‖θ−θ(i)‖≤d(i)

Q̃(θ,θ(i)), (18b)

respectively. Here, ‖·‖ denotes the Euclidean norm and d(i) is
known as the radius of the trust region. As discussed in [30],
the solutions to the maximization problems in (18a) and (18b)
can be written as

θ(i+1) (19a)

= θ(i) − (∂2θQ(θ(i),θ(i))− λINθ)−1(∂θQ(θ(i),θ(i)))ᵀ

and
θ(i+1)

= θ(i) − (H(θ(i))− λINθ)−1(∂θQ(θ(i),θ(i)))ᵀ,
(19b)

respectively, for some damping parameter λ ≥ 0. Here, I`
denotes the identity matrix of dimension `. Obviously, if the
constraint is inactive it holds that λ = 0 and we recover the
parameter updates in (7) and (15).

The radius should be continuously updated based on the fit
of the function approximation. For the trust region Newton
step in (18a), we first compute the so-called gain ratio

ρ(θ(i+1),θ(i)) ∆=
Q(θ(i+1),θ(i))−Q(θ(i),θ(i))

Q̂(θ(i+1),θ(i))− Q̂(θ(i),θ(i))
. (20)

The following standard strategy is then applied: If
ρ(θ(i+1),θ(i)) < 0.25, we set d(i+1) = d(i)/2. If
ρ(θ(i+1),θ(i)) > 0.75, we set d(i+1) = max(d(i), 3‖θ(i+1) −
θ(i)‖) [26]. The analogous updates are made for the trust
region Gauss-Newton step in (18b). We emphasize that
Q(θ(i+1),θ(i+1)) is generally not equal to Q(θ(i+1),θ(i)),
and hence, the function values needed to compute the gain
ratio ρ(θ(i+1),θ(i)) cannot be reused in the computation of
ρ(θ(i+2),θ(i+1)) (as would have been the case when perform-
ing multiple trust region iterations with the same objective
function).

C. Damped Methods

Instead of setting a strict limit on the distance ‖θ(i+1) −
θ(i)‖, damped methods add the corresponding penalty term
to the objective function. When replacing the standard M
step with a single iteration of the damped Newton method
or the damped Gauss-Newton method (also known as the the



TABLE I
RELATION BETWEEN METHODS FOR M STEP.

Objective function

Maximization Q̂(θ,θ(i)) (Newton’s method) Q̃(θ,θ(i)) (The Gauss-Newton method)
Standard Section II-C, equation (7) Section III-A, equation (15)
Trust region Section III-B, equation (18a) Section III-B, equation (18b)
Damped Section III-C, equation (21a) Section III-C, equation (21b)

Levenberg-Marquardt algorithm), we obtain

θ(i+1)

= argmax
θ

Q̂(θ,θ(i))− 1
2λ

(i)‖θ − θ(i)‖2 (21a)

= θ(i) − (∂2θQ(θ(i),θ(i))− λ(i)INθ )−1(∂θQ(θ(i),θ(i)))ᵀ,

and

θ(i+1)

= argmax
θ

Q̃(θ,θ(i))− 1
2λ

(i)‖θ − θ(i)‖2

= θ(i) − (H(θ(i))− λ(i)INθ )−1(∂θQ(θ(i),θ(i)))ᵀ,

(21b)

respectively.
Generally, the damping parameter λ(i) should be decreased

as the parameter estimate approaches the solution and more
trust can be put in the approximation of Q(θ(i),θ(i)) [31]. We
will follow the well-established updating scheme proposed in
[32] which makes use of a scaling factor ν(i). Hence, after
obtaining a new parameter estimate θ(i+1) from (21a) or (21b),
we compute the corresponding gain ratio ρ(θ(i+1),θ(i)). There
are then two possible cases. If ρ(θ(i+1),θ(i)) > 0, the new
parameter estimate θ(i+1) is accepted, the damping param-
eter is updated according to λ(i+1) = λ(i) max(1/3, 1 −
(2ρ(θ(i),θ(i+1))− 1)3), and we reinitialize the scaling factor
as νi+1 = 2. If ρ(θ(i+1),θ(i)) ≤ 0, the parameter estimate is
rejected, and we instead set θ(i+1) = θ(i), λ(i+1) = ν(i) ·λ(i),
and ν(i+1) = 2 · ν(i). The initial scale factor is set to
ν(0) = 2. Although equations (19) and (21) demonstrate the
close relation between trust region and damped methods, there
is no simple formula that describes the connection between the
trust region radius and the damping parameter that gives the
same parameter update [26].

Last, we note that while the M steps involving Q̃(θ,θ(i))
are dependent on the assumption of additive Gaussian noise,
which enables the formulation in (9), the M steps based
on Q̂(θ,θ(i)) could be employed also under more general
assumptions on the noise terms (assuming that the expressions
for ∂θQ(θ(i),θ(i)) and ∂2θQ(θ(i),θ(i)) are modified accord-
ingly). The relation between the M step in the EM gradient
algorithm and the five alternative M steps proposed in this
section is summarized in Table I.

IV. EXAMPLES

To evaluate the efficiency of the discussed M steps, this
section considers two models. Both have measurement func-

x0 xk

θ p

r

v

Fig. 1. The bearings-only tracking scenario with the target at xk and the
tracking platforms at the unknown and known positions θ and p, respectively.

tions that are highly nonlinear in the parameter vector, and
hence, they do not permit closed-form solutions to the M step
in the standard EM algorithm. EM algorithms based on the
six different algorithms in Table I are compared with estima-
tors based on extended Kalman filters (EKF) and unscented
Kalman filters (UKF) [33] where the state vector is extended
with the sought parameter vector. Neither the filters nor the
EM algorithms use any a priori knowledge of θ (this can be
incorporated into the EM algorithms as described in [21, p.
26]). We begin by giving some details on the implementation.

A. Implementation Details

In the E step, we chose to approximate the posteri-
ors pθ(i)(xk|y1:N ) and pθ(i)(xk,xk+1|y1:N ) by means of
an extended Kalman smoother [34]. The expectations in
∂θQ(θ(i),θ(i)), ∂2θQ(θ(i),θ(i)), and H(θ(i)) were approxi-
mated by applying the cubature transform [35], and using the
means and covariances given by the smoother. All in all, this
meant that we could perform a complete EM iteration without
the need to resort to Monte Carlo methods.

The EM algorithms were iterated until ‖θ(i+1) − θ(i)‖ <
10−4, at which point the final estimate was θ̂ = θ(i+1). An
EM algorithm was considered to have diverged when reaching
its hundredth iteration or when ‖θ‖ > 103. Runs leading to
divergence were excluded from computations of root-mean-
square errors (RMSEs). Further, the radius and the damping
parameter were initialized as d(0) = 0.2 and λ(0) = 1,
respectively, and each marker in the studied plots was obtained
as the result of 104 simulations of the full sequence of state
vectors and measurements.



B. Bearings-Only Tracking

Consider the setting of a bearings-only tracking problem
where a target is traveling in a known direction in two
dimensions with the mean speed v. The bearing of the target
is measured relative to two stationary tracking platforms
positioned along a line that is parallel to the path of the target
with a perpendicular distance of r. One of the platforms is
known to be located at p as measured along the line, and
the other is located at the unknown position θ. Denoting the
position of the target by x, the transition and measurement
functions can be written as [35]

f(xk) = xk + v, (22a)

hθ(xk) =

[
arctan2(r, xk − p)
arctan2(r, xk − θ)

]
. (22b)

For the simulations, we let r = 1, p = 1, θ = 0, v = 0.5,
Q = (0.1)2, R = σ2

r I2, and N = 15. Further, the initial state
was x0 = 0 with an initial uncertainty of P0 = 0, and the
initial estimate of θ was simulated from a uniform distribution
over (θ−δθ, θ+δθ) where δθ = 7.5. The scenario is illustrated
in Fig. 1.

Fig. 2 (a) now displays the RMSEs obtained when esti-
mating θ from the set of measurements y1:N while varying
σr. Here, the EM algorithms have been abbreviated based on
whether the M step was implemented as a single iteration of
Newton’s method (N), the Gauss-Newton method (GN), the
trust region Newton method (TRN), the trust region Gauss-
Newton method (TRGN), the damped Newton method (DN),
or the damped Gauss-Newton method (DGN). As can be seen
from Fig. 2 (a), neither the EKF nor the UKF can manage
the nonlinearities of the system, while all the EM algorithms
display practically equivalent RMSEs. However, Fig. 2 (b)
reveals that the EM gradient algorithm and the EM algorithm
using damped Newton steps diverge in approximately 70 [%]
of the runs at small measurement errors, and we also see some
divergence when using Gauss-Newton steps. No divergence is
experienced with the EM algorithms employing trust region
methods or the EM algorithm using damped Gauss-Newton
steps.

C. Log-distance Path Loss Model

In our second example, we consider a two-dimensional
localization problem with a receiver positioned at xk, two
transmitters at the known positions p1 and p2, and one
transmitter at the unknown position θ. Further, we assume the
availability of received signal strength (RSS) measurements
that can be modeled according to the log-distance path loss
model. Assuming that the receiver has the mean speed v, the
corresponding transition and measurement functions can be
written as [36], [37]

f(xk) = xk + v, (23a)

hθ(xk) = −c · 10

log10(‖xk − p1‖2)
log10(‖xk − p2‖2)
log10(‖xk − θ‖2)

. (23b)
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Fig. 2. (a) Errors and (b) divergence rates of the system identification
algorithms in the bearings-only tracking scenario.

xk

x0p1

v

p2 θ

Fig. 3. The localization problem using the log-distance path loss model with
a receiver positioned at xk , two transmitters at the known positions p1 and
p2, and one transmitter at the unknown position θ.

For the simulations, we used c = 1/10 · ln 10, p1 = [−1 0]ᵀ,
p2 = [1 0]ᵀ, θ = [2 0]ᵀ, v = [0 0.5]ᵀ, Q = (0.1)2 I2,
R = σ2

r I3, and N = 15. Further, the initial state was x0 =
[0 0]ᵀ with an initial uncertainty of P0 = 02, and the initial
estimate of θ was simulated from a uniform distribution over
([θ]1 − δθ, [θ]1 + δθ)× ([θ]2 − δθ, [θ]2 + δθ) where δθ = 1.
The scenario is illustrated in Fig. 3.

The RMSEs associated with [θ]1 and [θ]2 are displayed in
Figs. 4 (a) and (b), respectively. All the alternative M steps
can be seen to lead to lower RMSEs than the standard EM
gradient algorithm using Newton updates. While the RMSE
is only modestly decreased with damped Newton updates, the
performance gain is substantial with both trust region updates
and Gauss-Newton updates. At the lowest noise levels, the
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Fig. 4. (a), (b) Errors and (c) divergence rates of the system identification
algorithms in the path loss scenario.

best performance is achieved with M steps based on a damped
Gauss-Newton step, which can be seen to give an RMSE that
is about one to two order of magnitudes smaller than that
of the original EM gradient algorithm. The poor performance
of the UKF can be improved by incorporating a prior on θ,
thereby giving RMSEs that are similar to those of the EKF.
However, there was no prior that enabled the UKF to provide
better estimates than the EM algorithms with trust region or
Gauss-Newton steps1. Although there is far less divergence
than in the bearings-only tracking scenario considered earlier,
Fig. 4 (c) shows that some divergence is still experienced with
Newton, damped Newton, and Gauss-Newton updates.

Despite the large RMSEs displayed by the EM algorithms

1Upon closer study of the filter, the high RMSEs of the UKF seem to be
related to inadequate variance estimates. As previously noted in e.g., [38],
there are nonlinear functions for which the Taylor transformation in the EKF
provide better variance estimates than the unscented transform.
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Fig. 5. (a) The distribution of the estimates [θ̂]1 produced by the EM
gradient algorithm in the path loss model scenario with σr = 10−0.5; (b)
The objective function Q(θ,θ) as dependent on [θ]1 with [θ]2 = 0, in a
randomly chosen simulation of the log-distance path loss model.

with Newton and damped Newton updates in Fig. 4 (a),
the estimates provided by these algorithms are in most runs
acceptable. This is illustrated in Fig. 5 (a), which shows the
distribution of the estimates [θ̂]1 produced by the EM gradient
algorithm at σr = 10−0.5. Most of the estimates can be seen
to be concentrated around the true value 2. However, there
are also several estimates concentrated around the values −2
and 0. The reason for this can be understood by studying
Fig. 5 (b), which displays the objective function Q(θ,θ) in a
randomly chosen simulation with the second element of the
parameter vector held fixed at its true value [θ]2 = 0. This
function has local maximums and minimums at approximately
[θ]1 = −2 and [θ]1 = 0, respectively, which explains why
the EM gradient algorithm produced estimates close to these
values. The shape of the plot in Fig. 5 (b) can easily be
explained based on the geometry in Fig. 3.

V. CONCLUSIONS

This paper examined EM algorithms for estimating the
parameters of nonlinear state-space models with additive
Gaussian noise. When the M step cannot be solved by
analytical means, the EM gradient algorithm provides an
approximate solution that is straightforward to implement.
However, the solution is based on a second-order Taylor
expansion that makes the assumption of a negative definite
Hessian. To expand the applicability of the algorithm, five
alternative M steps were derived by following the methodology
of the EM gradient algorithm and applying modifications
based on combinations of the Gauss-Newton method, trust
region methods, and damped methods. The resulting EM
algorithms were benchmarked in an experimental study using
observation models associated with measurements of bearing
and received signal strength. Simulations indicated that the
proposed M steps compare favorably to the standard Newton
step in the EM gradient algorithm both in terms of estimation
accuracy and in terms of convergence properties. The lowest
RMSEs were achieved by the EM algorithms where the M step



employed trust region steps or damped Gauss-Newton steps
(the Levenberg-Marquard method). Given the close connection
between trust region and damped methods, the corresponding
differences in performance can be expected to be associated
with the chosen strategies for updating the trust region radius
and the damping parameter. In summary, the proposed EM
algorithms are attractive alternatives to the EM gradient algo-
rithm when estimating the parameters of nonlinear state-space
models with nonlinearities in the parameter vector. As such,
they have the potential to enable stable and computationally
efficient estimators for applications within e.g., biomedicine
and localization.
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parameter estimation by sigma-point and particle smoothing,” in Proc.
Int. Conf. Inf. Fusion, Salamanca, Spain, Jul. 2014.

[17] G. C. G. Wei and M. A. Tanner, “A Monte Carlo implementation of
the EM algorithm and the poor man’s data augmentation algorithms,”
J. American Statistical Association, vol. 85, no. 411, pp. 699–704, Sep.
1990.

[18] B. Delyon, M. Lavielle, and E. Moulines, “Convergence of a stochastic
approximation version of the EM algorithm,” Ann. Statist., vol. 27, no. 1,
pp. 94–128, Mar. 1999.

[19] X.-L. Meng and D. B. Rubin, “Maximum likelihood estimation via the
ECM algorithm: A general framework,” Biometrika, vol. 80, no. 2, pp.
267–278, Jun. 1993.

[20] X.-L. Meng and D. V. Dyk, “The EM algorithm — an old folk-song
sung to a fast new tune,” Series B — Statistical Methodology, vol. 59,
no. 3, pp. 511–567, Jun. 1997.

[21] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions.
Wiley, 2008.

[22] C. Liu and D. B. Rubin, “The ECME algorithm: A simple extension of
EM and ECM with faster monotone convergence,” Biometrika, vol. 81,
no. 4, pp. 633–648, Dec. 1994.

[23] D. A. van Dyk and X.-L. Meng, “On the orderings and groupings of
conditional maximizations within ECM-type algorithms,” J. Comput.
and Graphical Statistics, vol. 6, no. 2, pp. 202–223, Jun. 1997.

[24] K. Lange, “A quasi-Newton acceleration of the EM algorithm,” Statistica
Sinica, vol. 5, pp. 1–18, 1995.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[26] K. Madsen, H. Nielsen, and O. Tingleff, “Methods for non-linear least
squares problems,” Technical University of Denmark, Tech. Rep., Apr.
2004.

[27] J. Wahlström, I. Skog, and P. Händel, “IMU alignment for smartphone-
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son, “Particle filtering for positioning based on proximity reports,” in
Proc. IEEE Int. Conf. Inf. Fusion, Washington, DC, Jul. 2015, pp. 1046–
1052.

[38] M. Rhudy, Y. Gu, and M. R. Napolitano, “An analytical approach for
comparing linearization methods in EKF and UKF,” Int. J. Advanced
Robot. Syst., vol. 10, no. 4, Apr. 2013.


