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Abstract

Traditionally, codes are designed for an error correcting system to combat noisy transmission

channels and achieve reliable communication. These codes can be used in syndrome coding, but it is

shown in this paper that the best performance is achieved with codes specifically designed for syndrome

coding. In the view of the security of the communication, the best codes are the codes, which have

the highest value of an information secrecy metric, the equivocation rate, for a given code length and

code rate and are well packed codes. A code design technique is described, which produces the best

binary linear codes for the syndrome coding scheme. An efficient recursive method to determine the
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equivocation rate for the Binary Symmetric Channel and any linear binary code is also presented. A

large online database of best equivocation codes for the syndrome coding scheme has been produced

using the code design technique with some examples presented in the paper. The presented results show

that the best equivocation codes produce a higher level of secrecy for the syndrome coding scheme than

almost all best known error correcting codes. Interestingly, it is unveiled that some outstanding best

known error correcting codes are also best equivocation codes.

I. INTRODUCTION

The wiretap channel, which was introduced by Wyner [1], is a physical layer model that

captures the fundamentals of communication security. In this model, a transmitter, Alice, wishes

to send confidential information to a legitimate receiver, Bob, in the presence of an eavesdropper,

Eve. Wyner proposed a syndrome coding scheme to guarantee the security of the communication

for a specific wiretap channel, where the main channel is error-free and the eavesdropper channel

is a binary symmetric channel [2]. Wyner showed that as long as the size of the syndrome space

is chosen to be smaller than the Shannon entropy of the binary symmetric channel, there exist

codes that leak a vanishing proportion of information to the eavesdropper as the code length

approaches infinity. In [3], Bennett strengthens Wyner’s result in the sense that the channels

are more general and the estimate of the number of information bits leaked to Eve is stronger.

Cohen and Zemor [4] also provide a more refined analysis of the information leakage of syndrome

coding for the wiretap channel.

The syndrome coding scheme is an important physical layer scheme to guarantee the secure

communication that has been widely studied for various applications. For example, Cohen and

Zemor [5] studied a generalization of Wyner’s syndrome coding scheme which is applicable

to noisy main and eavesdropper channels, for biometric applications. Reddy et al. [6] studied

low-density parity-check (LDPC) codes for syndrome coding with applications to video coding

systems. Suresh et al. [7] showed that duals of certain LDPC codes, when used in a syndrome

coding scheme, provide strong secrecy over the binary erasure wiretap channel. Salim and Emina

showed that network security can be achieved by using syndrome coding as an additional layer

to a network code [8].

For the syndrome coding scheme, it is important to construct the good codes to guarantee the

security of the communication. Numerous contributions have been made in designing good code
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families such as BCH and Goppa codes [9] or by modifying good codes by concatenation [10],

extension [11]–[14] or shortening [9]. Traditionally, good codes are designed for an error cor-

recting system to combat noisy transmission channels and achieve reliable communication for

different systems [15], [16]. A central property of an error correcting code is the minimum

Hamming distance, 𝑑, which determines the number of independent errors that can be corrected

and the resulting reliability of communication. The main objective in error correcting code design

is to optimise one of the parameters 𝑛, 𝑘 and 𝑑 for given values of the other two [14]. The

covering radius 𝑅𝑐 is usually not considered a design parameter in traditional error correcting

code design, but it is an indicator of codeword packing [9]. Tables of optimum binary codes are

published in an online database by Grassl as Best Known Codes (BKC) in the form of tables

of lower and upper bounds to 𝑑 [17] for different code rates and code lengths up to 256 bits.

With so much research attention historically, improvements to these tables are relatively rare.

Codes designed for error correction can also be used in syndrome coding, but it is shown below

that the best performance is not generally achieved and better codes exist. The information rate

of a syndrome coding scheme using an (𝑛, 𝑘, 𝑑) linear code is 𝑛−𝑘
𝑛

and all possible binary vectors

of length 𝑛 may be transmitted. This is quite different from error correction coding applications

where only codewords are transmitted and the information rate is 𝑘/𝑛. For the syndrome coding,

performance is measured in terms of the level of information theoretic secrecy, the equivocation

rate, 𝑅𝑒 [2]. The best codes have the highest value of equivocation rate for a given code length

and code rate. It is convenient to use the parameter 𝑚 = 𝑛−𝑘, to represent the number of parity

bits of the code. A best code for syndrome coding is represented by the functions: 𝑛(𝑚, 𝑅𝑒) -

the shortest code for a given 𝑅𝑒 and 𝑚 and 𝑅𝑒(𝑛, 𝑚) - the highest equivocation rate for which

a binary (𝑛, 𝑘 = 𝑛 − 𝑚) code exists. In contrast, a best code for error correction is represented

by the function 𝑛(𝑚, 𝑑, 𝑅𝑐) - the longest code for a given 𝑑, 𝑚 and 𝑅𝑐. Based on a list of parity

check matrices of best performing codes for the syndrome coding scheme for given 𝑚 and 𝑛,

a Best Equivocation Codes (BEC) online database has been generated in the form of 𝑛, 𝑚 and

𝑅𝑒(𝑛, 𝑚) [18].

In this paper we restrict the choice of codes to binary, linear codes. We present a numerical

design technique to produce the best codes for the syndrome coding scheme as measured by

the equivocation rate and compare these codes to the best known error correcting codes. The

technique is limited practically to codes having around 35 parity bits, but this is not a major



4

limitation as near 100% secrecy is attainable with code lengths less than 256 bits [18]. The

BKC error correcting code tables list codes less than 256 bits long, which make the comparisons

possible. We also present an efficient recursive method to analyse the secrecy performance of any

linear binary code, which is used in syndrome coding for the Binary Symmetric Channel (BSC).

Finally, we present performance results of some best equivocation codes for the syndrome coding

scheme and compare these to the best known codes. In almost all cases there is a substantial

improvement.

II. PRELIMINARIES: SYNDROME CODING AND THE WIRETAP CHANNEL

The wiretap channel used in the syndrome coding scheme is shown as Figure 1, in which the

main channel is noiseless and the eavesdropper channel is a binary symmetric channel with the

crossover probability of 𝛼. This represents an abstraction of a typical bugging situation where

the legitimate transmitter, Alice, and the legitimate receiver, Bob, employs a robust channel, and

the eavesdropper, Eve, is listening, using a wireless bugging device with limited transmission

power and antenna gain, typically with non line of sight radio propagation conditions so that

she receives the transmissions with errors due to the poor communication channel. The secrecy

capacity of this wiretap channel [1] is:

𝐶𝑠 = −𝛼 ⋅ log2 𝛼 − (1− 𝛼) ⋅ log2(1− 𝛼) (1)

which is the highest transmission rate that can be achieved whilst keeping communications secure

from eavesdropping for this channel.

Figure 1. The wiretap channel model
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Alice wishes to convey a sequence of independent and uniformly distributed 𝑚-bit binary

messages, M(1), . . . , M(p), in which 𝑝 is the block length of the messages, to the legitimate

receiver. This sequence of 𝑚-bit messages, M(1), . . . , M(p), is encoded into a sequence of 𝑛-bit

codewords, V𝑇 (1), . . . , V𝑇 (𝑝). Bob observes the sequence of 𝑛-bit words, V𝑀(1), . . . , V𝑀(𝑝),

where

V𝑀(𝑖) = V𝑇 (𝑖), 𝑖 = 1, . . . , 𝑝 (2)

and Eve observes the sequence of 𝑛-bit words, V𝐸(1), . . . , V𝐸(𝑝), where

V𝐸(𝑖) = V𝑇 (𝑖) + e(𝑖), 𝑖 = 1, . . . , 𝑝 (3)

and e(𝑖) represents a 𝑛-bit error vector arising from the binary symmetric channel. Bob produces

the sequence of original messages, M(1), . . . , M(𝑝), from the main channel output sequence,

V𝑀(1), . . . , V𝑀(𝑝), whereas Eve produces a sequence of estimated messages, �̂�(1), . . . , �̂�(𝑝),

from the eavesdropper channel output sequence, V𝐸(1), . . . , V𝐸(𝑝).

Traditionally, the syndrome coding scheme uses a (𝑛, 𝑘, 2𝑡 + 1) linear block code, which is

capable of correcting 𝑡 errors, defined either by a 𝑘 × 𝑛 generator matrix G or by a 𝑚 × 𝑛

parity check matrix H [20]. It is a property of any linear block code that there exist 2𝑚 distinct

n-bit minimum weight error patterns, in which each pattern 𝑒𝑗 produces a distinct syndrome 𝑆𝑗

of the total 2𝑚 syndromes, based on 𝑆𝑗 = 𝑒𝑗 × H𝑇 , where 0 ≤ 𝑗 ≤ 2𝑚 − 1. These minimum

weight error patterns, 𝑒𝑗 , are the coset leaders of the code and may be represented in a table

of 2𝑚 syndromes,𝑆𝑗, and associated minimum weight error patterns, 𝑒𝑗 . For perfect codes, the

error patterns, 𝑒𝑗 , in the syndrome table are all of the 𝑛-bit binary error vectors with a weight

𝑤 ≤ 𝑡. For non-perfect codes, some of the error patterns in the table are 𝑛-bit binary vectors

with a weight 𝑤 ≤ 𝑡 and the remaining error patterns are 𝑛-bit binary vectors with a weight

𝑤 > 𝑡. Regardless of whether or not the code is perfect, in syndrome coding all 2𝑚 syndromes,

𝑆𝑗 , are used to send messages. In the traditional syndrome coding, it is necessary to store an

error pattern-syndrome look up table, which can be accessed by Alice, Bob and Eve. However,

it is shown below that such a look up table is unnecessary and the parity check matrix of the

code is sufficient.

With some elementary row and column operations ,every parity check matrix can be repre-

sented in a reduced echelon form [9]. In the following it is assumed that the parity check matrix
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of the code is in the reduced echelon form with an identity sub-matrix of 𝑚 parity bits followed

by 𝑘 information bit columns.

The encoding and decoding processes are as follows.

A. Encoder

Alice equates the 𝑚-bit messages to 𝑚-bit syndromes S𝑇 (𝑖) = M (𝑖) and produces 𝑛-bit

vectors V𝑇 (𝑖) from each 𝑚-bit message M(𝑖) at time 𝑖 such that 𝑉𝑇 (𝑖) × H𝑇 = M(𝑖) in three

steps:

∙ Alice generates a random 𝑛-bit codeword C𝑇 (𝑖) from a random, uniformly distributed 𝑘-bit

vector D𝑅 (𝑖):

C𝑇 (𝑖) = D𝑅 (𝑖)× G (4)

∙ Alice forms an 𝑛-bit zero padded message vector,V(𝑖), consisting of the 𝑚-bit message

M(𝑖) followed by 𝑘 0’s.

∙ Alice then generates the transmitted 𝑛-bit vector V𝑇 (𝑖) by adding the 𝑛-bit codeword C𝑇 (𝑖)

to the 𝑛-bit zero padded message vector

V𝑇 (𝑖) = C𝑇 (𝑖) + V(𝑖) (5)

In this way Alice produces 𝑛-bit vectors with the property that 𝑉𝑇 (𝑖)× H𝑇 = M(𝑖).

Proof: The syndrome of V𝑇 (𝑖), S𝑇 (𝑖) satisfies

S𝑇 (𝑖) = V𝑇 (𝑖)× H𝑇

= C𝑇 (𝑖)× H𝑇 + V (𝑖)× H𝑇

= 0 + M(𝑖) (6)

V(𝑖)× H𝑇 produces M(𝑖), which is due to the structure of V(𝑖) and H.

The information rate of the syndrome coding scheme is 𝑅 = 𝑚
𝑛

.

B. Legitimate decoder

Bob calculates the syndromes of the received vectors, V𝑀 (𝑖) to determine the original mes-

sages:

S𝐵𝑜𝑏 (𝑖) = V𝑀 (𝑖)× H𝑇 (7)
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As there are no transmission errors in Bob’s channel V𝑀 (𝑖) = V𝑇 (𝑖) and

S𝐵𝑜𝑏 (𝑖) = M (𝑖) (8)

C. Eavesdropper decoder

Eve computes the syndromes associated with the vectors, V𝐸 (𝑖), as follows:

S𝐸𝑣𝑒 (𝑖) = V𝐸 (𝑖)× H𝑇 = V𝑇 (𝑖)× H𝑇 + 𝑒(𝑖)× H𝑇 = M(𝑖) + 𝑆𝑒(𝑖) (9)

Eve’s estimate of the message is given by:

�̂� (𝑖) = 𝑆𝐸𝑣𝑒 (𝑖) = 𝑀 (𝑖) + 𝑆𝑒 (𝑖) (10)

III. CALCULATION OF THE EQUIVOCATION RATE OF A SYNDROME CODING SCHEME

In syndrome coding scheme, the secrecy is measured by the eavesdropper decoder output

equivocation, which can be calculated as follows:

𝐻(𝑀(𝑖)∣�̂�(𝑖)) = 𝐻(𝑀(𝑖), �̂�(𝑖))− 𝐻(�̂�(𝑖))

= 𝐻(𝑀(𝑖))− 𝐻(�̂�(𝑖)) + 𝐻(�̂�(𝑖)∣𝑀(𝑖))

= 𝐻(𝑀(𝑖))− 𝐻(𝑀(𝑖) + 𝑆𝑒(𝑖)) + 𝐻(𝑀(𝑖) + 𝑆𝑒(𝑖)∣𝑀(𝑖))

= 𝑚 − 𝑚 + 0 + 𝐻(𝑆𝑒(𝑖)∣𝑀(𝑖)) (11)

= 𝐻(𝑆𝑒(𝑖)) (12)

= −
2𝑚−1∑
𝑗=0

𝑝(𝑆𝑗)log2𝑝(𝑆𝑗) (13)

in which, 𝑆𝑗 denotes one of the total 2𝑚 syndromes. The simplifications in equations (11) and

(12) are due to 𝑀(𝑖) being uniformly distributed and independent of 𝑆𝑒(𝑖). The equivocation is

calculated after deriving the probability mass function of the syndromes due to errors from the

BSC, 𝑝(𝑆𝑗) and is a function of the parity check matrix of the code.

A. Packed integer representation of the parity check matrix

Historically many code design methods for linear codes, which have been presented in the

literature, are based on construction of the parity check matrix, H [11]–[13]. In the following,

the best equivocation codes are also constructed from the parity check matrix of the code.
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Any column of a parity check matrix of a (𝑛, 𝑘, 2𝑡 + 1) code, H, can be represented by an

integer, 𝑏𝑖, in the range 0 to 2𝑛−𝑘 − 1, in which 𝑖 is the index of the column and 0 ≤ 𝑖 < 𝑛. The

parity check matrix of a (𝑛, 𝑘, 2𝑡+1) code is defined by 𝑛 integers, referred to as packed integers,

and these integers can be in any order since the corresponding codes will all be equivalent [9].

Any code design of length 𝑛 may be represented by these 𝑛 packed integers. Since any parity

check matrix can be put into reduced echelon form by elementary row and column matrix

operations, the first 𝑚 packed integers are fixed and the code design reduces to the determination

of 𝑛−𝑚 packed integers. Let us start with a general binary, reduced echelon parity check matrix:

H =

⎛
⎜⎜⎜⎜⎜⎝

1 0 ⋅ ⋅ ⋅ 0 𝑎𝑚0 ⋅ ⋅ ⋅ 𝑎(𝑛−1)0

0 1 ⋅ ⋅ ⋅ 0 𝑎𝑚1 ⋅ ⋅ ⋅ 𝑎(𝑛−1)1

...
... ⋅ ⋅ ⋅ ...

... 𝑎𝑖𝑗
...

0 0 ⋅ ⋅ ⋅ 1 𝑎𝑚(𝑚−1) ⋅ ⋅ ⋅ 𝑎(𝑛−1)(𝑚−1)

⎞
⎟⎟⎟⎟⎟⎠

(14)

in which 𝑎𝑖,𝑗 takes a value of 0 or 1 ,𝑖 and 𝑗 denote the index of the rows and the columns

respectively, 0 ≤ 𝑗 ≤ 𝑚 − 1 and 𝑚 ≤ 𝑖 ≤ 𝑛 − 1. Each column may be represented as a packed

integer defined as 𝑏𝑖 =
∑𝑚−1

𝑗=0 𝑎𝑖𝑗 ⋅ 2𝑗 . The systematic packed integer form of the parity check

matrix is [1, 2, ⋅ ⋅ ⋅ , 2𝑚−1, 𝑏𝑚, ⋅ ⋅ ⋅ , 𝑏𝑛−1]. For example, the parity check matrix of the (15,7,5)

BCH code is:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1 1 1 0 0 1 1

0 1 0 0 0 0 0 0 1 1 0 1 1 1 0

0 0 1 0 0 0 0 0 0 1 1 0 1 1 1

0 0 0 1 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

which in packed integer representation is:

H = [1, 2, 4, 8, 16, 32, 64, 128, 27, 47, 117, 202, 166, 71, 149] (16)

B. Analysis on the syndrome probability distribution

Equation (13) shows that it is necessary to get the probability mass function of the syndromes,

𝑝(𝑆𝑗), for the calculation of the equivocation in BSC. There are two ways to evaluate 𝑝(𝑆𝑗), in
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which 0 ≤ 𝑗 ≤ 2𝑚 − 1.

1) Traditional evaluation method of the syndrome probability distribution: There are 2𝑛

possible ways in which error patterns, 𝑒(𝑖), occur in each transmitted 𝑛-bit vector. These error

patterns occur with probability:

𝑝(𝑒(𝑖)) = 𝛼𝑤(𝑖) ⋅ (1− 𝛼)𝑛−𝑤(𝑖) (17)

where 𝑤(𝑖) is the weight of 𝑒(𝑖). Each error pattern results in one of the 2𝑚 syndromes, which

is produced as follows:

𝑆𝑒(𝑖) = 𝑒(𝑖)× H𝑇 (18)

Any error pattern, which is a codeword, has a syndrome equal to zero. As the code is linear,

for each particular syndrome, 𝑆𝑗 , there are 2𝑘 different error patterns, 𝑒(𝑖), that produce the same

syndrome and the probability of each syndrome due to all possible such error patterns is given

by

𝑝(𝑆𝑗) =
2𝑛−1∑
𝑖=0

𝑝(𝑒(𝑖))𝛿(𝑆𝑒(𝑖)− 𝑆𝑗) (19)

where 𝑆𝑗 denotes a specific syndrome vector in all of the 2𝑚 syndromes, 0 ≤ 𝑗 ≤ 2𝑚 − 1, and

𝛿() is the Dirac function. We have

𝐻(𝑆𝑒(𝑖)) = −
2𝑚−1∑
𝑗=0

𝑝(𝑆𝑗) log2 𝑝(𝑆𝑗) (20)

This method for evaluating the equivocation is computationally manageable for short codes

(𝑛 < 40), but for the long codes it is not practical because it involves the evaluation of 2𝑛

error patterns, an exponential function of the code length. However the probability distribution

of the syndromes may be determined recursively and this also provides some insight into code

construction by code extension.

2) Recursive evaluation of the syndrome probability distribution: Let us represent the parity

check matrix of the code in the packed integer format. The packed integers directly correspond

to syndrome values in that a single bit error in a transmitted codeword results in a syndrome

equal to the packed integer of the column corresponding to the bit error position. As the codes

are linear, any combination of bit errors produces a syndrome equal to the modulo 2 sum of the

packed integers corresponding to each column of the parity check matrix in which a bit error

occurs.
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The following theorem shows that the probability mass function of the syndrome, 𝑝(𝑆 𝑗), is a

function of the parity check matrix of the code and the crossover probability of the BSC.

Theorem 1: The probability mass function (pmf) of 𝑆𝑗 for 𝑗 = 0 to 2𝑚 − 1 may be defined

as 𝑝(𝑆𝑗) = 𝛽(𝑗) where 𝛽(𝑗) are coefficients of the probability generating function using the Z

transform, 𝑝𝑧(𝒮) and 𝑝𝑧(𝒮) only depends on the columns of the parity check matrix and 𝛼.

𝑝𝑧(𝒮) =
2𝑚−1∑
𝑗=0

𝛽(𝑗)𝑍𝑗 =
𝑛−1∏
𝑖=0

(
(1− 𝛼) + 𝛼𝑍𝑏𝑖

)
(21)

where 𝑏𝑖 are the packed integer representations of the columns of the parity check matrix and

exponent sums of powers of 𝑍 are modulo 2 sums.

Proof: Any error pattern may be represented as a sum of single bit error events:

𝑒(𝑖) =[𝑒1 𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛]

=[𝑒1 0 ⋅ ⋅ ⋅ 0] + [0 𝑒2 ⋅ ⋅ ⋅ 0] + ⋅ ⋅ ⋅+ [0 0 ⋅ ⋅ ⋅ 𝑒𝑛] (22)

in which each term denotes a single bit error event where 𝑒𝑖 = 1 with probability 𝛼 and 𝑒𝑖 = 0

with probability 1− 𝛼.

The linearity of the syndrome coding scheme means that the syndrome resulting from any

error pattern is the sum of the syndromes for each bit error position:

𝑆𝑒(𝑖) =𝑒(𝑖)× H𝑇 = [𝑒1 𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛]× H𝑇 (23)

=𝑏1𝛿(𝑒
1 − 1)⊕ 𝑏2𝛿(𝑒

2 − 1) ⋅ ⋅ ⋅ ⊕ 𝑏𝑛𝛿(𝑒𝑛 − 1) (24)

in which ⊕ denotes the modulo 2 sum. Since the probabilities of 𝑒1, 𝑒2, ⋅ ⋅ ⋅ ,𝑒𝑛 are independent,

the probability of 𝑆𝑒(𝑖) is the product of the probabilities of 𝑛 separate error events. Adding

together the coefficients of same powers of 𝑍 results in the coefficients, 𝛽𝑗 and reduces the

number of terms from 2𝑛 to 2𝑚.

Theorem 1 gives us some insight into code construction by code extension.

C. Code construction by code extension

There is a well known relationship between the parity check matrix and the minimum Ham-

ming distance of the code from first studies of error correction coding [19]:

Property 1: A linear code has 𝑑 minimum distance if and only if its parity check matrix has

𝑑 linearly dependent columns but no set of 𝑑 − 1 or fewer, linearly dependent columns.
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Based on Property1, any packed integer of the parity check matrix cannot be equal to the

modulo 2 sum of any combination of 𝑑−2 packed integers or fewer integers of the parity check

matrix. This is apparent by observing that the syndrome of a codeword is equal to zero. If any

packed integer of the parity check matrix were equal to the modulo 2 sum of any combination

of 𝑑−2 packed integers or fewer integers then the resulting combination would have a syndrome

equal to zero and therefore be a codeword of weight less than 𝑑, an obvious contradiction.

A corollary of Property1 is that every error pattern of weight less than 𝑡 + 1 = ⌊ 𝑑+1
2
⌋ has a

distinct syndrome. For syndrome coding this means that the syndrome probability mass function

considering only error events with weight less than 𝑡 + 1 will be maximally flat. However as

higher weight error events all the way up to weight 𝑛 can occur, other properties of the code

other than 𝑑 are involved.

The code construction method for obtaining codes with good equivocation is based on the

observation that the syndrome probability mass function of a code extended in length is a function

of the probability mass function of the original code and good equivocation codes produce good

extended codes and this is elaborated below. BKC’s have also been obtained by code extension.

Bouyukliev’s code construction method extends a code by excluding all linear combinations

of up to 𝑑 − 2 columns of the parity check matrix [14] exploiting Property1. The inverting

construction 𝑌1, proposed by Edel adds an additional parity bit and extends a (𝑛, 𝑘, 𝑑) code to

a (𝑛 + 𝑥, 𝑘 + 𝑥 − 1, 𝑑) code, by extending the parity check matrix [11] similar to Bouyukliev.

Theorem 1 gives us some insight into code construction by code extension. If the columns of

the parity check matrix of the shortened code with a length 𝑟 are taken consecutively from 𝑖 = 0

to 𝑟 − 1, in which 𝑖 is the index of the column, and the Z transform the probability generating

function of the shortened code is

𝑝𝑧(𝒮𝑟) =
𝑟−1∏
𝑖=0

(
(1− 𝛼) + 𝛼𝑍𝑏𝑖

)
(25)

then the Z transform of the probability generating function the code of length 𝑟 + 1 is

𝑝𝑧(𝒮𝑟+1) =

𝑟∏
𝑖=0

(
(1− 𝛼) + 𝛼𝑍𝑏𝑖

)
= 𝑝𝑧(𝒮𝑟)((1− 𝛼) + 𝛼𝑍𝑏𝑟) (26)

By denoting the coefficients of the shortened code of length 𝑟, as 𝛽𝑟(𝑖) then

𝑝𝑧(𝒮𝑟) =

2𝑚−1∑
𝑗=0

𝛽𝑟(𝑗)𝑍
𝑗 (27)
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and

𝑝𝑧(𝒮𝑟+1) = (1− 𝛼)
2𝑚−1∑
𝑗=0

𝛽𝑟(𝑗)𝑍
𝑗 + 𝛼

2𝑚−1∑
𝑗=0

𝛽𝑟(𝑗)𝑍
𝑗⊕𝑏𝑖 (28)

which simplifies to

𝑝𝑧(𝒮𝑟+1) = (1− 𝛼)𝑝(𝒮𝑟) + 𝛼

2𝑚−1∑
𝑗=0

𝛽𝑟(𝑗)𝑍
𝑗⊕𝑏𝑖 (29)

It is apparent that the syndrome probability generating function in Z transform of the code of

length 𝑟 + 1 is equal to the syndrome probability generating function in Z transform of the

shortened code of length 𝑟, weighted by 1−𝛼 plus a permuted syndrome probability generating

function in Z transform of the shortened code of length 𝑟, weighted by 𝛼. The permutation arises

from the results of the modulo 2 additions 𝑗 ⊕ 𝑏𝑖. In general, the more uniform the syndrome

pmf of a code is, the more uniform the syndrome pmf of the extended code will be.

This leads to the conclusion that the syndrome pmf of the code may be obtained recursively,

starting with the generating function 𝑝𝑧(𝒮1) determining 𝑝𝑧(𝒮2) then 𝑝𝑧(𝒮3) through to 𝑝𝑧(𝒮𝑛).

It is also apparent that good equivocation codes will also produce good equivocation codes when

extended in length.

IV. CODE DESIGN FOR SYNDROME CODING

We are now in a position to consider code design for a syndrome coding scheme for the

wiretap channel. To construct the best codes for the syndrome coding scheme, we want the

equivocation of the eavesdropper to be as high as possible, i.e. the pmf of the syndromes should

be as uniform as possible. Since the eavesdropper channel is a binary symmetric channel, for

relatively low values of the error probability, 𝛼, the equivocation is dominated by error events

of low weight. We note the following design considerations:

1) For the BSC, low weight error events have higher probabilities, so they dominate the pmf

of the syndrome. If the low weight error events produce distinct syndromes, this helps the

pmf of the syndromes to become more uniform. This has a connection to the minimum

Hamming distance of the code, 𝑑, because error events of weight up to 𝑑−1
2

all have

distinct syndrome sums. Best known codes, which have the highest 𝑑, are likely to give

good performance in the syndrome coding scheme, but are not necessarily the best codes,
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because all error patterns, regardless of weight, contribute towards the syndrome pmf of

the code.

2) With the parity check matrix in reduced echelon form, that is in systematic packed integer

form, the packed integers of any of the information bits cannot have a weight less than

𝑑 − 1; otherwise the codeword formed from that information bit alone will have weight

less than 𝑑, where 𝑑 is the minimum Hamming distance of the code.

3) There is at least one syndrome that is produced by a weight 𝑅𝑐 error event and no lower

weight error event, where 𝑅𝑐 is the covering radius of the code. A good equivocation code

will tend to have low covering radius compared to the minimum Hamming distance, 𝑑.

Perfect codes have low covering radius and are good equivocation codes.

4) A shortened best known code has a bounded covering radius 𝑅𝑐 ≥ (𝑑− 1), because there

exists at least one coset leader of the shortened code of weight 𝑑−1 or greater; otherwise

the extended code formed by adding this coset leader to the generator matrix of the code

will produce a code with minimum Hamming distance less than 𝑑, a contradiction. It is

unlikely that shortened best known codes will be best equivocation codes.

5) If columns of the parity matrix are repeated, a weight 2 error event will produce a zero

syndrome, which makes the pmf of the syndrome non-uniform. To get a good equivocation

code, the parity check matrix should have no repeated integers, unless the code is very

long compared to the number of parity bits.

Following these observations, a code design algorithm has been formulated, that produces best

equivocation codes as follows:

INPUT: 𝐶𝑖𝑛-Set of 𝑙 inequivalent 1 highest equivocation rate (𝑛, 𝑚) codes with parity check

matrices in systematic packed integer form H.

OUTPUT: 𝐶𝑜𝑢𝑡- Set of all extended inequivalent (𝑛 + 1, 𝑚) codes, which are ranked by

equivocation in descending order.

For each code 𝐶 in 𝐶𝑖𝑛, the extension steps are as follows:

1) Preset a status array 𝑎[𝑖] = 1, where 1 ≤ 𝑖 ≤ 2𝑛−𝑘.

2) If 𝑖 is equal to any integer in H, set 𝑎[𝑖] = 0.

1If the codes have different equivocation rates, they are inequivalent codes.
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3) For all 𝑗 such that 𝑎[𝑗] = 1, extend H with one integer, equal to 𝑗, to H = [H, 𝑗]. Eliminate

all equivalent codes and evaluate the equivocation2 for each remaining code.

4) Rank the inequivalent codes by their equivocation in descending order, 𝐶𝑜𝑢𝑡, and select

the first 𝑙 codes. This is termed the best codes subset. These are used as the INPUT for

the next extension round.

For a given 𝑚, all possible (𝑚+1, 1) codes are used as the initial INPUT with the parity check

matrices: [1, 2, ⋅ ⋅ ⋅ , 2𝑚−1, 𝑖], for all 𝑖, 1 ≤ 𝑖 ≤ 2𝑛−𝑘. For each round as 𝑛 is incremented, the best

equivocation codes are obtained, provided that the best codes subset is sufficiently large. The

syndrome probability generating function in Z transform of each (𝑛, 𝑚) code, 𝑝𝑧(𝒮)𝑖𝑛 , is stored

and the syndrome probability generating function in Z transform for each extended (𝑛 + 1, 𝑚)

code, 𝑝𝑧(𝒮)𝑜𝑢𝑡, is determined using equation (29) which makes for a fast algorithm.

Usually, the best extended code will be derived from the highest ranked code from the previous

round but this is not always the case. The size of the best codes subset, 𝑙, needs to be large enough

that no better extended code is missed. For short codes it is possible to store all inequivalent

codes in the best codes subset and it is proven that the highest ranked code is the best (𝑛, 𝑚)

equivocation code.

To estimate the size required of the best codes subset, for a given number of parity bits, 𝑙

is assigned (e.g. 𝑙 = 20000) and the code is extended in length by several bits. For the highest

ranked code of length 𝑛, the ranked position 𝑝𝑛−1 is determined of its parent code of length

𝑛 − 1 from the previous round. Statistics of 𝑝𝑛−1 are collected for each code length and the

subset size 𝑙 is maintained to be greater by a significant margin to the maximum value of 𝑝𝑛−1,

i.e. 𝑙 ≥ max 𝑝𝑛−1. For 𝑚 = 6 and 𝑚 = 7, for all code lengths of 𝑛 ≤ 70, the maximum 𝑝𝑛−1

values are 25 and 275 respectively. It is observed that the greater the length of the code, the

higher the possibility of 𝑝𝑛−1 = 1, i.e. the extended best equivocation code of length 𝑛 produces

the best equivocation code of length 𝑛 + 1.

V. RESULTS

Following the procedure above, the best equivocation codes have been determined for a given

number of parity bits and code length. There are too many codes to present, so we only present

2The equivocation is evaluated for the binary symmetric eavesdropper channel for a given error probability.
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here some representative codes. The codes are listed in an on-line database [18] in packed integer

format. The minimum Hamming distance, covering radius and equivocation rate for a BSC error

probability of 𝛼 = 0.05 are given for each code.

As examples, Table I lists the highest rate codes, in packed integer format, which provide

at least 90% secrecy when used in syndrome coding for a BSC error probability of 𝛼 = 0.05.

Interestingly, in general nearly all of the best equivocation codes do not coincide with the best

known codes. However these best equivocation codes do have a respectable minimum Hamming

distance and covering radius.

With reference to the on-line database [18], there are a few best known codes that are also

best equivocation codes, notably all of the perfect codes. The perfect codes are the repetition

codes, the Hamming codes and the Golay code. The reason for this coincidence is that these

codes have the highest minimum Hamming distance, 𝑑, and are optimally packed codes with the

lowest possible covering radius. It is notable that there is a small number of other best known

codes that are also best equivocation codes and we term these best known codes as well packed

codes. A feature of these well packed codes is that for a given number of parity bits there is

no known longer code with the same minimum Hamming distance, 𝑑. Table II gives the code

parameters of the well packed BKC for various values of 𝑚. We have observed that some of the

shorter well packed BKC coincide with the best equivocation codes for given 𝑚 and given 𝑘.

It is also interesting to note that each well packed BKC of length 𝑛 is followed by a poorly

packed BKC of length 𝑛 + 1. These BKC’s are termed the worst packed BKC’s. It is found

that the corresponding BEC’s have much higher equivocation rates than that of the worst packed

BKC’s.

Figure 2 compares the equivocation rate of best known codes and best equivocation codes

for increasing code rate, for codes with 26 parity bits at different values of 𝛼. It shows that the

BECs have higher equivocation than BKCs not only for 𝛼 = 0.05 but also for other values of 𝛼.

The dashed line gives the secrecy capacity of the channel. It is readily apparent that the BEC’s

outperform the BKC’s particularly in the lower rate region.

As the number of parity bits increase, codes get longer for the same information rate and

the equivocation moves closer to the secrecy capacity limit, 𝐶𝑠, which is applicable to infinite

length codes. This is shown in Figure 3 for 𝑚 = 6 through to 𝑚 = 26.
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Table I

BEST EQUIVOCATION CODES THAT ACHIEVE 90% SECRECY IN SYNDROME CODING FOR 𝛼 = .05

m n d Rc Re packed integer parity check matrix

4 25 2 1 0.906251 1 2 4 8 1 2 3 3 4 5 5 6 6 7 8 9 10 11 11 12 12 13 14 15 15

5 28 3 2 0.907646 1 2 4 8 16 3 5 6 7 9 11 12 13 14 15 17 18 19 20 22 23 24 25 26 27 28 29 30

6 31 4 3 0.908721 1 2 4 8 16 32 7 11 13 14 19 21 22 25 26 28 31 35 37 38 41 42 44 47 49 50 52 56 59 61 62

7 35 3 3 0.907273 1 2 4 8 16 32 64 7 14 25 26 28 31 38 43 51 53 56 62 70 75 83 85 88 93 100 103 104 110 112 118 121 122 124 127

8 38 4 3 0.904458 1 2 4 8 16 32 64 128 26 35 46 61 79 83 86 89 98 101 105 126 131 143 156 166 171 183 185 193 198 200 203 205 223 231 236 243 244 250

9 41 4 3 0.900208 1 2 4 8 16 32 64 128 256 31 45 60 100 113 122 143 153 156 181 191 194 204 214 218 281 291 302 331 332 344 370 383 394 397 403 418 427

440 478 485 488

10 45 4 3 0.904383 1 2 4 8 16 32 64 128 256 512 29 87 109 191 203 221 229 301 344 350 379 409 426 435 467 468 495 501 527 539 596 613 637 661 675 716 755

787 820 858 879 897 969 994 1008

11 48 4 3 0.902358 1 2 4 8 16 32 64 128 256 512 1024 82 95 103 137 170 340 376 415 416 456 486 579 647 734 754 811 829 887 964 977 1079 1082 1227 1239

1302 1370 1420 1505 1546 1596 1710 1828 1863 1929 1938 1975 2041

12 51 4 3 0.900428 1 2 4 8 16 32 64 128 256 512 1024 2048 108 214 225 327 415 460 777 814 862 939 978 998 1059 1116 1206 1450 1606 1663 1677 1845 2243

2355 2456 2554 2951 2964 2985 3119 3414 3467 3582 3731 3802 3812 3819 3907 3928 3950 4049

13 55 6 5 0.905225 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 309 345 618 687 690 981 1207 1236 1374 1380 1653 1897 1962 2373 2414 2472 2639 2748 2760

3306 3794 3924 4315 4735 4746 4807 4828 4887 4944 5278 5496 5520 6225 6612 7263 7273 7411 7449 7588 7848 8007 8137

14 58 5 4 0.902823 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 463 659 1306 1903 2017 2420 2623 2681 2774 3009 3018 3372 3462 3727 3848 4807 4978

5102 5286 5495 5755 6833 7557 7706 8435 9814 10158 10732 10769 10991 11355 11837 12664 12788 13759 13762 13880 15043 15411 15498

15640 15910 16068 16352

16 64 5 4 0.9 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 2026 2174 6623 9685 10416 10555 11116 11896 12221 12999 14403 14586 14926

19995 20228 20788 23508 23688 23953 25340 27319 27881 28822 30545 31261 31842 32143 33695 35079 35300 40115 41850 42821 43146 46587

46930 48617 48950 50224 50393 52924 53375 53724 55136 57952 61511 62572 65419

18 71 6 5 0.903035 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 11955 13936 32282 32999 38800 39250 42924 47840 55393 56951

58478 60921 69584 75429 81270 92272 93719 98994 101001 102495 107633 112602 118747 135116 148158 154496 159264 161706 168209 175488

176485 180456 187783 193685 194276 195402 203311 206292 207540 207680 208910 210560 225118 230979 235516 238390 247552 252600

254562 254936 256876 258694 260096

20 77 8 7 0.900739 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 41772 53076 70933 85654 95837 102185 121984

143743 159055 160966 162356 177792 186954 191057 197822 208965 259410 268572 272682 296292 308553 313067 320896 366336 371328

405616 442424 445952 450779 457021 475870 491392 532261 539043 560237 602893 616832 625083 632370 646431 661559 680024 692328

692902 701447 716691 741146 746583 749617 756858 782531 799616 814830 923790 985856 996729 1044736

22 84 8 7 0.903293 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 14191 111264 120844 135402

156066 193837 297854 309690 330532 338475 430909 567303 682894 714276 780924 869995 905402 923298 982920 1351071 1376188 1380394

1419610 1487155 1551602 1884223 1964241 2073026 2141889 2289013 2314096 2350121 2376601 2501526 2638285 2645293 2687586 2703451

2758616 2779212 2825279 2893319 3047974 3082337 3148814 3167196 3172106 3212496 3244862 3367783 3378339 3595701 3671892 3675563

3727842 3733852 3753502 3954669 3966529 3984378 3994343 4013090

24 90 7 6 0.901784 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 573185

576055 605300 649314 701023 902444 935950 972344 1107341 1216620 1391649 1700311 1849660 2435061 2801845 3274804 3727802 3857484

4410637 4447108 4642815 4754320 4865882 4933529 4981695 5087490 5170378 5176601 5211409 5493873 6813668 6982303 7139876 7894909

7933395 8894748 9354907 9466165 10033669 10290550 10320865 10887849 11095914 11204875 11347996 11485683 11727110 11796941 12233544

12889002 13314240 13707676 14157669 14737865 14795911 14837286 14923311 15030096 15150513 15341837 15855350 15923713 15972347

16494372 16540142 16554318

26 97 8 6 0.904462 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

33554432 1160185 3419307 4492287 9395871 10093907 11068401 11840460 12139956 14534737 14816701 17641732 17992524 18692090 20131180

20858618 22460065 22562674 23680920 23791323 24279912 25579531 26280684 26831716 27845706 28552180 28936460 32368082 32564036

34048695 34254884 35283464 35985048 35986053 36286430 38278580 39088097 40262360 41667867 43800122 44014004 44811375 46058364

46251188 47221140 47347900 47361840 47389686 47437732 47592948 47926580 48559824 49569716 52561368 53663432 54332396 54744803

54780620 55996779 56474461 56772244 57104360 57872920 58140380 58689469 60935573 61409218 62624620 63555923 64592814 65128072

65473972
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Table II

WELL PACKED BKC

m Well packed BKC, (n,k,d)

4 (5,1,5),(8,4,4),(15,11,3)

5 (6,1,6),(16,11,4),(31,26,3)

6 (7,1,7),(8,2,5),(32,26,4)

7 (8,1,8),(9,2,6),(11,4,5),(64,57,4)

8 (9,1,9),(10,2,6),(11,3,5),(128,120,4),(255,247,3)

9 (10,1,10),(11,2,7),(18,9,6),(23,14,5)

10 (11,1,11),(12,2,8),(15,5,7),(24,14,6),(33,23,5)

11 (12,1,12),(16,5,8),(23,12,7),(34,23,6),(47,36,5)

12 (13,1,13),(14,2,9),(24,12,8),(48,36,6),(65,53,5)

13 (14,1,14),(15,2,10),(25,12,8),(27,14,7),(66,53,6),(81,68,5)

14 (15,1,15),(16,2,10),(17,3,9),(28,14,8),(31,17,7),(82,68,6),(128,114,5)

15 (16,1,16),(17,2,11),(18,3,10),(20,5,9),(32,17,8)(37,22,7),(129,114,6),(151,136,5)

16 (17,1,17),(18,2,12),(21,5,10),(23,7,9),(38,22,8),(47,31,7),(152,136,6)

17 (18,1,18),(19,2,12),(20,3,11),(24,7,10),(27,10,9),(48,31,8),(63,46,7)

18 (19,1,19),(20,12,13),(21,3,12),(23,5,11),(28,10,10),(31,13,9),(64,46,8),(68,50,7)

19 (20,1,20),(21,2,14),(24,5,12),(26,7,11),(32,13,10),(35,16,9),(69,50,8),(88,69,7)

20 (21,1,21),(22,2,14),(27,7,12),(31,11,11),(36,16,10),(41,21,9),(89,69,8),(95,75,7)

21 (22,1,22),(23,2,15),(24,3,13),(32,11,12),(33,12,11),(42,21,10),(45,24,9),(96,75,8),(128,107,7)

22 (23,1,23),(24,2,16),(25,3,14),(27,5,13),(34,12,12),(36,14,11),(46,24,10),(49,27,9),(129,107,8),(155,133,7)

23 (24,1,24),(25,2,16),(28,5,14),(29,6,13),(37,14,12),(47,24,11),(50,27,10),(54,31,9),(156,133,8),(162,139,7)

24 (25,1,25),(26,2,17),(27,3,15),(30,6,14),(32,8,13),(48,24,12),(55,31,10),(64,40,9),(163,139,8)

25 (26,1,26),(27,2,18),(28,3,16),(31,6,15),(33,8,14),(34,9,13),(49,24,12),(65,40,10),(72,47,9)

26 (27,1,27),(28,2,18),(32,6,16),(35,9,14),(38,12,13),(50,24,12),(51,25,11),(73,47,10),(77,51,9)

27 (28,1,28),(29,2,19),(33,6,16),(35,8,15),(39,12,14),(40,13,13),(52,25,12),(63,36,11),(78,51,10),(94,67,9)

28 (29,1,29),(30,2,20),(31,3,17),(36,8,16),(37,9,15),(41,13,14),(44,16,13),(64,36,12),(69,41,11),(95,67,10),(128,100,9)

29 (30,1,30),(31,2,20),(32,3,18),(38,9,16),(40,11,15),(45,16,14),(46,17,13),(70,41,12),(71,42,11),(129,100,10),(135,106,9)

30 (31,1,31),(32,2,21),(33,3,18),(34,4,17),(41,11,16),(44,14,15),(47,17,14),(48,18,13),(72,42,12),(136,106,10),(142,112,9)

VI. CONCLUSIONS

We considered the code design problem for syndrome coding from the information theoretic

security view and presented a code construction method for best equivocation codes. In this way,

an online table of constructed BEC’s in packed integer format has been produced. Code examples

have been given of the highest rate BEC’s that achieve 90% secrecy to an eavesdropper using



18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
e

 

 

BKC, m=26,α=0.05

BKC, m=26,α=0.1

BEC, m=26,α=.05

BEC, m=26,α=0.1

C
s
, α=0.05

C
s
,α=0.1

C
s
@α=0.1

C
s
@α=0.05

Figure 2. Comparison of the equivocation rate of best equivocation and best known codes having 26 parity bits

the BSC with an error probability of 0.05. Unlike the traditional case, the presented encoding

method does not require a syndrome look up table. This encoding method also provides a new

interpretation of syndrome coding in which the message is impressed on the parity bits of a

random codeword. In effect the 𝑚 parity bits of an 𝑛-bit random codeword are used to scramble

an 𝑚-bit message necessitating the error free recovery of all 𝑛 bits for an eavesdropper in order

to determine the 𝑚 bit message.

An efficient recurrent method was also presented for the calculation of the probability mass

function of the syndromes of a code from the parity check matrix of the code, which in turn

enables the secrecy achieved by the code, the equivocation rate, to be determined. It was shown

that apart from the perfect codes, the best equivocation codes rarely coincide with the best known

error correcting codes and that usually a best equivocation code will provide greater secrecy than
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Figure 3. Equivocation rate vs. information rate for Best Equivocation Codes as a function of 𝑚

using a best known error correcting code with the same parameters.
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