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1. Introduction

The double-slit experiment famously demonstrates quantum in-
terference effects. An analogous double slit can be made by using 
intense electromagnetic fields to polarise patches of the quantum 
vacuum; the resulting all-optical diffraction grating can be realised 
in space [1,2], time [3–6], and both space and time [7]. If particles 
are scattered off the polarised vacuum, they can exhibit double-
slit-like interference effects.

The analogy with ‘material’ double-slit patterns holds in the 
semiclassical approximation [5,8,9], but exactly solvable models 
show that interference structure can be much richer [7]. In partic-
ular, coherent enhancement of quantum effects can persist despite 
the semiclassical approximation predicting no interference. This 
prompts the question of to what extent interference effects can 
be observed in modern laser-particle collisions. In this paper we 
will take some steps toward answering this question, considering 
interference effects in the photon emission spectrum of electrons 
colliding with laser pulses, known as ‘nonlinear Compton scatter-
ing’ [10–13].

One motivation for studying nonlinear Compton is that ex-
perimental campaigns such as LUXE at DESY [14,15] and E320
at FACET-II [16] are planning to investigate the process us-
ing conventionally-accelerated electron beams collided with high 
power laser pulses, thereby reaching a higher level of preci-
sion than current state-of-the-art experiments employing laser-
wakefield accelerated electrons [17,18]. This precision is vital to 
assess the accuracy of theory and simulation modelling in the 
high-intensity regime; perturbative approaches do not suffice at 
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high intensity, and despite recent successes there remain discrep-
ancies between theory and experimental measurements [17,18].

The important aspect here is precision; laser-matter experi-
ments are currently simulated using particle-in-cell codes based 
on the locally constant field approximation (LCFA, for reviews 
see [11,19]). However, the LCFA is blind to interference effects [20]
because it is, by construction, local, while interference effects orig-
inate from accumulated phases as particles pass through a laser 
pulse. Essentially, the LCFA sums incoherently over contributions 
from different parts of the trajectory [21], completely missing co-
herent quantum effects. Precision experiments such as LUXE and 
E320 will however probe regions where the applicability of the 
LCFA is questionable. An improved understanding of when current 
numerical schemes fail will therefore be indispensable in analysing 
future experimental results [22,23]. Furthermore, as experimental 
precision improves, so must theoretical predictions. In contrast to 
previous investigations, we will show how considerations such as 
detector resolution are central to the measurability of quantum 
interference phenomena [24–27,20,28–31,7]. As we will see, inter-
ference is a precision effect which presents a challenge to theory 
and experiment.

This paper is organised as follows. In Sec. 2 we show how 
interference effects arise in the spectra of photons emitted from 
electrons scattering on a sequence of laser pulses. In Sec. 3 we 
analyse the conditions necessary for the observation of interfer-
ence effects. In Sec. 4 we discuss potential experimental signals, 
accounting for beam polarisation and electron bunch size effects. 
We conclude in Sec. 5.

2. NLC in plane wave background

We consider a simple scenario, in which a high-energy elec-
tron (mass m, absolute charge e) with momentum pμ collides 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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with a laser pulse, scatters, and radiates a photon with momen-
tum lμ . The extension to a bunch of electrons will be given be-
low. The laser is modelled as a plane wave with wavevector kμ =
ω0(1, 0, 0, 1), central frequency ω0. The strength and shape of the 
wave are encoded in the scaled potential aμ = e Aμ(φ), in which 
φ = k · x. The interaction energy is characterised by η = k · p/m2.

The calculation of the photon emission probability and spec-
trum, starting from an S-matrix element with Volkov wavefunc-
tions [32], is well documented in the literature, see for exam-
ple [13] for an introduction. We therefore present just the final 
expression for the differential emission probability, parameterised 
by the three components of the emitted photon momentum: these 
are s := k · l/k · p, the light-front momentum fraction of the pho-
ton, with 0 < s < 1, and �⊥ := (lx, l y)/sm the two, normalised, 
momentum components in the plane perpendicular to the laser 
propagation direction. �⊥ is related to the polar (θ ) and azimuthal 
(ψ ) scattering angles of the photon by

�⊥ = mη

ω0

sin θ

1 + cos θ
(cosψ, sin ψ) . (1)

In terms of s and �⊥ the differential emission probability, summed 
over emitted photon polarisations [33,13], summed (averaged) over 
spins of the scattered (initial) electron [34], is

d3P

ds d2�⊥ = αs
[

g(S I∗ + S∗ I − 2F · F ∗) − |I|2]
(2πη)2(1 − s)

(2)

where g ≡ 1/2 + s2/[4(1 − s)] and the functions I , F μ and S are 
defined as follows. Let the classical kinetic momentum of the elec-
tron in the plane wave background be written

πp(φ) = p − a(φ) + 2p · a(φ) − a2(φ)

2k · p
k . (3)

We then define


γ (φ) = l · πp(φ)

m2η(1 − s)
. (4)

In terms of Eq. (3) and Eq. (4) we have

I =
∫

dφ

[
1 − l · πp(φ)

l · p

]
ei�(φ) , (5a)

F μ = 1

m

∫
dφ aμ(φ)ei�(φ) , (5b)

S = 1

m2

∫
dφ a(φ) · a(φ)ei�(φ) , (5c)

in which the phase �(φ) = ∫ φ

φi
dφ′
γ (φ′), and φi is the initial 

phase at which the pulse turns on. Each of the integrals in Eq. (5), 
which occur in the S-matrix element, extends only over the pulse 
duration [33,35].

2.1. Two-pulse interference

We now choose the potential aμ to describe a sequence of two 
pulses with zero temporal overlap,

aμ(φ) = aμ
1 (φ) + aμ

2 (φ) , (6)

in which a1 (a2) is nonzero only in the range φ1i to φ1 f (φ2i to 
φ2 f ), and there is a phase gap 
 = φ2i − φ1 f between the two 
pulses. Inserting this into Eq. (5), each of the integrals breaks up 
into two contributions, one from each of the pulses, but where, 
crucially, the second contribution comes with an accumulated 
phase � f , i.e.
I = I1 + ei� f I2 , (7)

with I1,2 given by Eq. (5) in terms of a1,2. Exactly analogous ex-
pressions hold for F μ and S . The interference phase itself is

� f =
φ2i∫

φ1i

dφ 
γ (φ) = �1(φ1 f ) + 
 l · p

m2(1 − s)η
. (8)

The first term �1(φ1 f ) depends on a1 and comes from the inter-
action with the first pulse. The second term comes from integrat-
ing over the phase gap between the pulses, and so depends only 
on the separation 
, not on the form of the pulses themselves.1

Inserting Eq. (7) into the differential probability Eq. (2), the inter-
ference phase appears with cross terms between the two pulses, 
e.g.

|I|2 = |I1|2 + |I2|2 + ei� f I∗1 I2 + e−i� f I1 I∗2 , (9)

and similarly for F μ and S . If we drop these terms, i.e. neglect 
interference effects, then the total emission probability reduces to 
an incoherent sum over contributions from each pulse. If, on the 
other hand, we consider two identical pulses such that the contri-
butions from each pulse are equivalent, I1 = I2 and so on, then the 
differential probability becomes

d3 P

ds d2�⊥ = 2
(
1 + cos� f

) d3 P

ds d2�⊥

∣∣∣∣
one pulse

, (10)

with the one-pulse expression exactly as in Eq. (2).
We stress that interference effects are not captured by the LCFA 

widely employed in particle-in-cell codes to approximate QED pro-
cesses and model laser-matter experiments. The LCFA for the prob-
ability depends only on the local value of the field, and thus is 
blind to the accumulated phase which carries the interference ef-
fects. For the case of two identical pulses as above, the LCFA would 
simply return twice the LCFA probability for scattering in a single 
pulse.

3. Interference and resolution

Observe that the interference phase � f is real and depends lin-
early on the pulse separation 
 (at fixed momentum variables). 
This implies that interference effects do not decay with an increase 
of the pulse separation 
; we know, though, that decoherence will 
wash out quantum effects [37,38]. In writing down the probabili-
ties above (and by extension the related emission spectra) we are 
assuming not only no further interaction with the environment, 
but also propagation to infinity and perfect resolution in measuring 
the spectrum. Realistically, though, all measurements are limited in 
their resolution, which we can think of as causing ‘binning’ of the 
data collected, be it e.g. photon energy or an angular distribution, 
and so on. Furthermore, as we sum over/integrate out momenta, 
interference effects are typically washed out due to the summa-
tion over the oscillations of the interference phase. For instance, 
suppose we want to measure the angular photon distribution, as 
a function of �⊥ , at s = sc . This is simply read off from Eq. (2)
or Eq. (10). However, to allow for a finite detector resolution, we 

1 The interference phase is nonzero even if the pulse separation is zero (
 = 0). 
Mathematically, this reflects the fact that we could describe e.g. a full cycle of the 
field as two half-cycles of zero separation. Physically, it reflects the fact that there 
is interference from different parts of a single pulse with itself [36,26,20] – such 
effects are here part of the single pulse spectrum, while our interest is in the effect 
on this spectrum due to interference with a time-delayed second pulse.
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should sum over contributions in some range δs centred at sc . For 
δs � sc and δs � 1 − sc one can check from the form of � f that

sc+δs/2∫
sc−δs/2

ds ei� f ∝ 1



sin

[
�2

⊥ + 1

4η(1 − sc)2

δs

]
, (11)

for 
 → ∞. Hence the inclusion of detector resolution results in 
the expected decay of the interference effect with pulse separation.

To illustrate this discussion we investigate here the extent to 
which interference effects persist in the angular photon spectrum 
at some sc , but with a resolution δs, i.e. we study

sc+δs/2∫
sc−δs/2

ds
d3P

ds d2�⊥ . (12)

We consider the case that our separated pulses have precisely the 
same functional form, so

aμ
1 (φ) = mξε

μ
1 sinφ cos2

(
φ

4σ

)
, (13)

for |φ| < 2πσ and zero otherwise, where εμ
1 = (0,1,0,0) is the 

linear polarisation vector, ξ is the normalised field amplitude, and 
a2(φ) = a1(φ − 4πσ − 
), which gives a phase gap of 
 between 
the two pulses.

The question then arises as to what parameters are needed to 
see interference effects. A natural condition on the phase � f for 
the persistence of interference effects is that the change in � f , 
over some considered parameter interval (in e.g. �⊥ or s), should 
be less than 2π . Although the interference effect is periodic with 
the change in � f , the relative size of the effect compared to the 
incoherent (non-interference) terms decreases as the considered in-
terval increases. The explicit expression for � f in terms of the 
variables �⊥ and s is

s(�2
⊥ + 1)


2η(1 − s)
+ s

η

φ1f∫
φ1i

dφ
1 + (�⊥ + a⊥

1/m)2

2(1 − s)
, (14)

for a head-on collision, from which we infer that for the observa-
tion of interference the two pulses should not be too far apart 
(
 small) and the resolution δs should be small. Furthermore, 
the intensity ∼ a should not be too large and the pulse dura-
tion ∼ φ1f − φ1i should be short. The last two conditions confirm 
that interference effects will be dominant in precisely the regions 
where the LCFA fails. We proceed to consider short and relatively 
weak pulses, and small s.

We therefore consider a one-cycle pulse2 with ξ = 2. The pulse 
separation is chosen to be 
 = 2π , also corresponding to one cy-
cle. In Fig. 1, we present the transverse distributions of the emitted 
photons Eq. (12), from the head-on collision of an 8 GeV electron 
(a typical energy scale for LUXE and E320 experiments [15,16]), 
with the two laser pulses.3 The spectra are obtained by numeri-
cally evaluating Eq. (5) at many points to integrate over the pulse 
and inserting the results into Eq. (2). We consider various en-
ergy resolutions and also compare (in the left hand column) with 

2 We choose such a short pulse simply for demonstration purposes. The effect 
will persist with longer pulses, but a better resolution will be required for their 
detection. We remark that calculations based on the approximation of infinitesimally
short, delta-function pulses, can successfully reproduce experimental interference 
effects in which femtosecond pulses were employed [39].

3 A small angular deviation θi from a head-on collision between the electron and 
the laser will not lead to substantial differences. This is because the key parameter, 
η ∝ 1 + cos θi , changes only slightly as θi is increased from 0.
Fig. 1. Transverse photon distribution Eq. (12) from the head-on collision between 
an 8 GeV electron and a one-cycle optical laser, ω0 = 1.55 eV, at ξ = 2, with (right 
column) and without (left column) interference effects. Upper panels sc = 0.07, 
δs = 0.02; middle panels sc = 0.15, δs = 0.02; lower panels sc = 0.11, δs = 0.1. 
The energy parameter is η = 0.095 and the pulse separation is 
 = 2π .

the spectra which would be obtained without interference, which 
is just the incoherent sum of two single-pulse results [i.e. set 
cos� f = 0 in Eq. (10)]. The upper panels (a) and (b) clearly show 
the modulation of the spectrum introduced by interference when 
one has a resolution δs = 0.02 at small sc = 0.07. As we have 
high-energy electrons which mainly emit forwards, this range may 
be mapped directly to an energy resolution of 160 MeV around a 
central energy of 560 MeV. (Measurement of such photon ener-
gies may be performed e.g. by using a pixelated scintillator [40].) 
We see, in general, that the position of maxima and minima can 
change position when interference is taken into account: instead of 
two symmetric off-centre maxima when interference is neglected 
in (a) we see three maxima when interference is included at the 
centre of image (b) [7]; in the middle panels with δs = 0.02 at 
larger sc = 0.15, interference splits the single central broad max-
imum (c) into a sharp ring structure with a central minimum in 
(d).

However, with a lower δs = 0.1 around sc = 0.11, correspond-
ing to an energy resolution of 800 MeV around a central energy 
of 880 MeV, the interference effect becomes much weaker, as ex-
pected. This is shown in the lower panels; the interference fringes 
in (f) are weak and the result is almost indistinguishable from the 
incoherently doubled single-pulse result in (e).

To explain these features, we plot in Fig. 2 the interference fac-
tor cos� f at the point �⊥ = 0, i.e. at the centre of each of the 
plots in Fig. 1. In the region 0.06 < s < 0.08 the factor cos � f re-
mains close to 1 (dashed red line), which effectively quadruples 
the emission probability relative to the result in a single pulse (co-
herent enhancement), and this is why we find a single peak in 
Fig. 1 (b). Similarly, in the range 0.14 < s < 0.16 (dotted blue line) 
we see that cos� f becomes negative, resulting in the destructive 
interference at the centre of Fig. 1 (d). Finally, if we consider the 
whole range 0.06 < s < 0.16 as in Fig. 1 (f), the positive and nega-
tive parts of the cosine factor cancel and so interference effects are 
smoothed out.
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Fig. 2. Oscillation of the interference factor cos� f at the point �⊥ = 0, as s varies. 
The red/dashed part (0.06 < s < 0.08) and blue/dotted part (0.14 < s < 0.16) lead to 
(respectively) constructive and deconstructive interference as discussed in the text. 
All parameters are same as in Fig. 1.

Fig. 3. Number of photons Eq. (15). Left column: fixed pulse separation 
 = 2π , 
variable angular window r. Right column: r = 2 fixed, variable separation 
. In 
(a) and (b) δs = 0.02, sc = 0.07, while in (c) and (d) δs = 0.1, sc = 0.11. Other 
parameters as in Fig. 1.

4. Experimental signals

4.1. Photon number

Consider measuring the total number of photons impinging on 
some detector with a finite acceptance angle θr and a given energy 
resolution δs. We calculate the number of photons by integrating 
the differential probability Eq. (2) over a range of s and over a 
square portion, length of side r, of the �⊥ plane centred on the 
origin, i.e.

N =
sc+δs/2∫

sc−δs/2

ds

r/2∫
−r/2

d�x

r/2∫
−r/2

d�y d3 P

ds d2�⊥ . (15)

This works because the length of side r corresponds to the polar 
angle of the emitted photon via

θr ≈ 2ω0r

mη
≈ 6.4 × 10−2r mrad , (16)

in which we use the same parameters as in Fig. 1 (η = 0.095, 
ω0 = 1.55eV). We plot N in Fig. 3 for various parameters. The 
number of received photons increases with acceptance angle, i.e. 
with r. Fig. 3 (a) shows that with a high resolution δs = 0.02, this 
number is modulated by interference, relative to twice the single-
pulse result (the incoherent sum), in particular at small acceptance 
r < 2. With a lower energy resolution, though, interference effects 
Fig. 4. Transverse photon distribution Eq. (12) of the emitted photon without (left 
column) and with (right column) interference. Upper panels: the electric fields of 
the 1st and 2nd pulses are polarised in x and y direction respectively. Bottom pan-
els: the electric fields of the pulses are both in x direction, but with opposite sign. 
The red dashed lines are �x = �y in the upper panels and �x = 0 in the bottom 
panels. The other parameters are same as in Fig. 1.

are smoothed out as shown for δs = 0.1 in Fig. 3 (c). In the right 
hand column of Fig. 3, we fix the size of the angular window, r, 
and instead vary the separation 
 between the two pulses. As 

increases the photon number oscillates around the result obtained 
by neglecting interference, and converges to it at a pulse separa-
tion of around 5 laser cycles. This oscillation in the photon number 
relies sensitively on the detector energy resolution: for a poor res-
olution δs = 0.1 as in Fig. 3 (d), the oscillations are washed out at 
smaller 
.

4.2. Polarisation effects

We now consider interference effects which arise when the po-
larisation of the second pulse is different from that of the first. 
We consider two cases; we either rotate the electric field of the 
second pulse to be perpendicular to that of the first, or to be 
anti-parallel to the first. (This second case, which is simply two 
pulses of opposite sign, is standard in the consideration of inter-
ference effects [5].)

Observe that for the example above of two identical pulses po-
larised in the x-direction, the distributions in Fig. 1 were symmet-
ric about �y = 0. For two pulses with orthogonal polarisation (the 
first in the x-direction, as before, the second in the y-direction), 
we would naïvely expect symmetry about the line �x = �y . How-
ever, as shown in Fig. 4 (a) and (b), interference breaks this sym-
metry. This asymmetry can be seen in e.g. Eq. (9), as for perpendic-
ularly polarised pulses we have I1(�x, �y) = I2(�

y, �x), and so the 
combination of interference terms ∼ ei� f I∗1 I2 + e−i� f I1 I∗2 gives

sin� f (I∗1 I2 − I1 I∗2) , (17)

and similarly for Fμ and S .
Fig. 4 (c) and (d) show similar results for the case where the 

second pulse is polarised anti-parallel to the first. Without inter-
ference, the incoherent result Fig. 4 (c) is exactly the same as in 
Fig. 1 (a); there is symmetry about �y = 0 because the fields are 
polarised in x direction, and symmetry about �x = 0 because of 
the chosen field shape in Eq. (13). The symmetry about �x is lost 
in Fig. 4 (d) as the interference terms again pick up an asymme-
try as in Eq. (17). This can be understood as a consequence of the 
field shape – if we exchange sin φ → cosφ in (13), the interference 
fringes would become symmetric about �x = 0. Alternatively, it can 
be understood as due to the causal aspect of scattering in two 
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pulses [7]; note that if we were to swap the signs of the pulses, 
then we would obtain, instead of Fig. 4 (d), its reflection in the line 
�x = 0. This is equivalent to swapping the order of the pulses, since 
the emitting electron propagates from smaller to larger φ [41,42].

4.3. Electron bunch effects

To observe a robust interference effect, we should consider not 
a single electron, but a bunch of electrons. We model this by con-
voluting the differential emission probability with an initial mo-
mentum distribution function for the bunch.

Let this distribution be ρ(p), obeying the normalisation con-
dition: 

∫
d3pρ(p) = 1 (i.e. we divide out the total number of 

electrons in the bunch). We split the total momentum distribu-
tion into a piece L(pz) in the laser propagation direction and 
a piece T (p⊥) in the perpendicular direction, p⊥ := (px, p y), so 
ρ(p) = L(pz) T (p⊥) with

L(pz) = 1√
2πσzm

exp

[
− (pz − p̃z)

2

2σ 2
z m2

]
,

T (p⊥) = 1

πσ 2
⊥m2

exp

[
− p2

⊥
σ 2

⊥m2

]
,

in which p̃z = 〈pz〉 is the average longitudinal momentum. The 
momentum spreads in each direction are 〈(pz − p̃z)

2〉1/2 = σzm
and 〈p2

⊥〉1/2 = σ⊥m.
For an electron bunch, it is convenient to take s to refer to the 

average electron momentum p̃, i.e. s = k · l/k · p̃. In other words s
is scaled by the parameter λ = k · p/k · p̃ and now takes values 
between 0 and λ instead of 0 and 1. The calculations of the func-
tions I, Fμ, S needed for the emission probability are then as in 
Eq. (5), except that s appearing there should be replaced with s/λ. 
We also write η̃p = k · p̃/m2. The differential emission probability 
then takes the form

d3 P

ds d2�⊥ = α

(2πη̃p)2

∫
d3p ρ(p)

s

λ(λ − s)[(
S I∗ + S∗ I − 2F · F ∗)g

( s

λ

)
− |I|2

]
. (18)

With this, we can investigate the possibility of experimentally ob-
serving interference effects in either the photon energy spectrum 
or angular spectrum.

A nonzero transverse momentum p⊥ of the initial electron en-
ters the differential probability Eq. (18) through a linear shift of 
the normalised photon momentum �⊥ , i.e. �⊥ → �⊥λ − p⊥/m. In 
order to observe the interference fringes in, say, Fig. 1 (b), the 
shifts introduced by p⊥ should be smaller than the gaps between 
the interference fringes. From Fig. 1, we can see that the gap be-
tween fringes is much smaller than the transverse spread induced 
by the field, �x ≈ �y ≈ ξ . The average shift due to the bunch, on 
the other hand, can be estimated as being equal to the transverse 
momentum spread σt . This yields the qualitative condition that 
the transverse spread of the beam should obey σt � ξ . Neglect-
ing the longitudinal distribution, so L(pz) = δ(pz − p̃z), and using 
the same parameters as in Fig. 1 (b) ( p̃z = 8 GeV and η̃p = 0.095), 
we find that to reproduce the interference fringes in Fig. 1 (b), 
we would have to reduce the transverse momentum spread in 
the beam to σ⊥ = ξ/20, corresponding to an angular divergence in 
the bunch of � = 2σ⊥m/p̃z ≈ 1.3 × 10−2 mrad, which is orders of 
magnitude smaller than recent experimental results [43,44]. There-
fore, the transverse spread of an electron bunch would seem to 
make it challenging to observe interference in the angular distri-
bution of the emitted photons.
Fig. 5. Oscillation of the photon number N with the change of the pulse separation. 
Dash-dotted lines: single-electron results; Solid lines: results from a electron bunch 
with normalized momentum distribution, see the discussions about the momentum 
distribution in the text. The other parameters are same as in Fig. 1.

However, we will now see that it may be possible to detect 
interference in the photon energy spectrum, which we obtain from 
Eq. (18), by integrating out the transverse degrees of freedom,

dP

ds
= α

(2πη̃p)2

∞∫
s

dλ

λ

∫
d2 p⊥

p0ρ(p)s

λ(λ − s)
(19)

∫
d2�⊥

[(
S I∗ + S∗ I − 2F · F ∗)g

( s

λ

)
− |I|2

]
.

Note that due to the form of I, Fμ, S , the only dependence on 
the transverse electron momentum p⊥ in Eq. (19) lies in the fac-
tor p0ρ(p). We are interested in small-angle collisions, hence the 
dependence of p0 on p⊥ is negligible and the bunch transverse 
distribution can be integrated out: 

∫
d2 p⊥T (p⊥) = 1. Hence the 

photon energy spectrum is determined by the longitudinal mo-
mentum distribution of the bunch.

Multi-GeV electron beams with very narrow energy spread 
and angular divergence are available to experiment [43,44]. We 
take the average momentum in the beam to be p̃μ = (p̃0, 0, 0,

−
√

p̃2
0 − m2) with the energy p̃0 = 8 GeV, and widths σz =

3% p̃0/m and σt = 10−4 p̃0/m corresponding to an energy spread 
of 6% and an angular divergence of � = 0.2 mrad following 
Ref. [44]. In Fig. 5, we show the number N of photons produced, 
in a given energy range, as a function of the pulse separation 
. 
Similar to the single-particle result in which the electron possesses 
a definite momentum p = p̃, there is a pronounced oscillation of 
the photon number even taking into account bunch effects. This 
evanesces with the increase of the pulse separation. With a broad 
longitudinal spread in the bunch, the amplitude of the interference 
oscillations reduces and converges to the incoherently summed re-
sult at a shorter pulse separation than the single-electron result.

5. Discussion and conclusion

We have investigated interference effects in the collision of an 
energetic electron bunch with a sequence of two laser pulses. In-
terference effects are present in both the scattered electron and 
emitted photon spectra, and we have focussed on the latter. The 
potential observation of interference effects depends both on the 
properties of the electron bunch and on the detector resolution in 
the experiment.

Accounting for both, we have seen that interference effects may 
be observed experimentally in the oscillation of the detected num-
ber of photons as a function of varying the pulse separation. This 
would require multi-GeV electron bunches with narrow energy 
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spread, which are available from laser plasma acceleration [44]. For 
higher energy resolution, interference effects persist for longer and 
stronger laser pulses, as well as for larger pulse separations. In fu-
ture work one could incorporate additional interference effects into 
the analysis by considering e.g. coherent emission from bunches of 
particles [45–47].

We finally remark that if the transverse divergence of the elec-
tron bunch could be reduced to be around one order of magnitude 
smaller than the dimensionless laser intensity, so σt � ξ , then 
it would be possible to also observe interference fringes in the 
transverse photon distribution. From Eq. (10), we know that the 
interference fringes appear at the positions where � f = 2nπ , n is 
an arbitrary integer. If we could measure the position of the inter-
ference fringes, we could then infer the intensity of the laser pulse, 
for a given field shape, from Eq. (8).
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