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Highlights 

 

- Periodontal health and disease are characterised by distinct salivary LPS profiles 

- Potent, highly inflammatory LPS isoforms are present in periodontitis patients 

- Salivary LPS molecular signatures remain unchanged following periodontal therapy 
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Abstract 

Objective: Clinical manifestations of Gram-negative bacteria-mediated diseases can be 

influenced by how the host senses their major microbe-associated molecular pattern, the cell 

wall lipopolysaccharide (LPS). Keystone periodontal pathogens can produce a heterogeneous 

population of LPS molecules, with strikingly different host-microbiome interactions and 

immune outcomes.  

Design: Structure-function correlations of salivary LPS extracts in patients with periodontitis 

before and after periodontal treatment and healthy volunteers were analysed by comparing 

its lipid A and carbohydrate chain chemical structure and evaluating its endotoxin activity and 

inflammatory potential. 

Results: Salivary LPS extracts from periodontitis patients were characterised by high m/z lipid 

A mass-spectrometry peaks, corresponding to over-acylated and phosphorylated lipid A ions 

and by a combination of rough and smooth LPS carbohydrate moieties. In contrast, gingival 

health was defined by the predominance of low m/z lipid A peaks, consistent with under-

acylated and hypo-phosphorylated lipid A molecular signatures, with long and intermediate 

carbohydrate chains as determined by silver staining. Total, diseased salivary LPS extracts 

were stronger inducers of the recombinant factor C assay and triggered significantly higher 

levels of TNF-α, IL-8 and IP-10 production in THP-1 cells, compared to almost immunosilent 

healthy samples. Interestingly, salivary LPS architecture, endotoxin activity, and inflammatory 

potential were well conserved after periodontal therapy and showed similarities to diseased 

samples. 

Conclusions: This study sheds new light on molecular pathogenic mechanisms of oral 

dysbiotic communities and indicates that the regulation of LPS chemical structure is an 
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important mechanism that drives oral bacteria-host immune system interactions into either 

a symbiotic or pathogenic relationship. 

 

Keywords: LPS, saliva, periodontitis, lipid A, host-microbiome interactions 

 

Introduction 

Salivary diagnostics in risk assessment and point-of-care patient management is an emerging 

field in periodontology. Gingivitis and periodontitis are preventable conditions and their 

timely treatment leads to reduced rates of tooth loss and improved quality of life (Chapple et 

al., 2015). To date, there is no single biomarker that is specific for periodontal disease and 

therefore there is a significant, unmet clinical need for novel indicators to be used in risk 

assessment, disease prevention and treatment planning. 

The most important risk factor for periodontitis is the accumulation of a dysbiotic dental 

biofilm at and below the gingival margin, which is associated with an inappropriate and 

destructive host inflammatory immune response (Hajishengallis & Lamont, 2012). 

Periodontitis is initiated by a broadly‐based, synergistic and dysbiotic microbial community in 

which keystone pathogens shape and stabilise a disease‐provoking microbiota (Hajishengallis 

& Lamont, 2016). One of the core requirements for a potentially pathogenic community to 

arise involves the capacity of these keystone pathogens to elevate the virulence of the entire 

microbial community through interactive communication with accessory pathogens and 

expression of pro-inflammatory molecules that trigger and maintain a non‐resolving and 

tissue‐destructive host response (Hajishengallis, 2014). In periodontal disease, there are 
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substantial increases in the proportions of obligately anaerobic and proteolytic bacteria, 

many of which are Gram-negative (Naginyte, Do, Meade, Devine, & Marsh, 2019). Defining 

the precise composition of the oral microbiome in health and disease is difficult because the 

mouth is an open system and frequently exposed to exogenous bacteria and environmental 

factors. In functional terms, however, there is considerable redundancy among the oral 

microbiota and an emphasis on functional rather than phylogenetic diversity is required in 

order to fully understand host microbiome interactions (Wade, 2013). While bacteria are 

undoubtedly the principal cause of the initial inflammatory lesion leading to gingivitis, it is the 

host response, not the type of bacteria, which dictates whether disease progresses (Freire & 

Van Dyke, 2013). 

Lipopolysaccharide (LPS) or endotoxin is a major component of the outer membrane of most 

Gram-negative bacteria and one of their most important virulence factors. It acts as an 

extremely strong stimulator of innate immunity in diverse eukaryotic species, ranging from 

insects to humans (Munford, 2008). The chemical architecture of the LPS molecule is strongly 

associated with its biologic activity. LPS consists of a poly- or oligosaccharide region (smooth 

(S) and rough (R) chemotypes respectively) that is anchored in the outer bacterial membrane 

by a specific carbohydrate-lipid moiety termed lipid A (Matsuura, 2013). Natural LPS from the 

bacterial cell wall is composed of a mixture of different molecules that can vary in the length 

and composition of their carbohydrate chain as well as in the chemical structure of their lipid 

A. In mammalian assay systems, maximal endotoxicity is induced by the hexa-acylated and bi-

phosphorylated isoform lipid A structure (Pupo, Lindner, Brade, & Schromm, 2013). 

Lipopolysaccharide provokes innate immune responses through Toll-like receptors (TLRs) and 

activates two main intracellular pathways: a MyD88-dependent pathway that acts via NF-κB 
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to induce proinflammatory cytokines such as TNF-α and IL-8; and a MyD88-independent 

pathway that acts via type I interferons to increase the expression of interferon-inducible 

genes such as IP-10 (Broad, Kirby, Jones, Applied, & Transplantation Research, 2007). Many 

bacterial species carry enzymes that can modify their lipid A structure, either by changing the 

number of acyl chains or phosphate groups, resulting in altered activation of the TLR4/MD2 

complex in innate immune cells. These modified lipid A structures subsequently induce 

differential intracellular signalling pathways and cytokine networks by preferential 

recruitment of the MyD88 or TRIF adaptor molecules (Zariri, Pupo, van Riet, van Putten, & 

van der Ley, 2016). Some members of the under-acylated and hypo-phosphorylated lipid A 

isoforms are even capable of antagonising the effects of strongly stimulatory LPS/lipid A forms 

(Darveau, Arbabi, Garcia, Bainbridge, & Maier, 2002). Differential recognition pathways 

leading to alterations in their inflammatory potential have also been suggested for smooth 

and rough chemotype LPS (Huber et al., 2006).  

LPS has a potential to induce bone loss and excessive osteoclast formation by increasing 

expression of osteoclastogenic transcription factors and osteoclastic genes (Kassem et al., 

2015). Periodontitis patients have increased salivary concentration of LPS, which has been 

implicated as a possible molecular mediator between periodontitis and coronary artery 

disease (Liljestrand et al., 2017).  It has recently been shown that characteristic, high m/z 

ratios, lipid A isoforms are present in subgingival LPS extracts from patients with periodontitis, 

while these molecular signatures are absent from healthy and post-treatment samples 

(Strachan et al., 2018). 

The aim of this study was to analyse the structure-function correlation of salivary LPS extracts 

in patients with periodontitis before and after periodontal treatment and healthy volunteers, 
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by comparing its lipid-A and carbohydrate chain chemical composition and evaluating its 

endotoxin activity and inflammatory potential. 

 
Materials & Methods 

 

Study population and saliva sample collection 

Approval of the study protocol was obtained from the Health Research Authority, UK (NRES 

Committee South West - Cornwall and Plymouth 14/SW/0020). Thirty-two patients (11 

female, 21 male, mean age 46) with moderate to severe periodontitis and 33 systemically and 

periodontally healthy persons (18 female, 15 male, mean age 31) were recruited from 

patients presenting to the Peninsula Dental School, University of Plymouth, UK. 

Periodontitis patients were diagnosed in accordance to the following clinical criteria: probing 

pockets depth (PPD) of 4 mm or more, with bleeding on probing (BOP) and at least 50% 

alveolar bone loss in at least two quadrants (assessed radiographically). Periodontal health 

was defined as PPD ≤ 3 mm and no more than 10% BOP. There were three smokers in the 

healthy group and fourteen in the periodontitis group. Patients with systemic diseases and 

conditions affecting the periodontal tissues as well as the patients with antibiotic or 

periodontal treatment in the previous 6 months were excluded from the study. Periodontitis 

patients underwent conventional, non-surgical periodontal therapy and clinical parameters 

were recorded three months after the completion of the therapy.  

Unstimulated, whole saliva samples were collected into sterile universal tubes by 

expectoration for 5 minutes and not less than 30 minutes after eating, drinking or smoking. 

The samples were stored at -800C until LPS extraction. 
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LPS extraction and lipid A isolation 

LPS from salivary samples was extracted using the LPS extraction kit (iNtRON Biotechnology, 

S.Korea), following the manufacturer’s instructions. Extracted LPS was re-suspended in 500 

µl of LPS-free water and stored at 40C. 50 µl of LPS extracts from each patient were pooled 

together to form three groups of pooled samples: healthy, diseased and post-treatment. Lipid 

A moiety was isolated from LPS extracts by mild hydrolysis as described by Coats et al. (Coats 

et al., 2009). 

 

Lipid A Mass-spectrometry  

Lipid A was desalted with 0.1M ammonium citrate and dissolved in 

methanol/dichloromethane (3:1, v/v). Mass spectrometric analysis of lipid A was performed 

on a 6530 Accurate Mass Quadrupole Time-Of-Flight (Q-TOF) MS system (Agilent 

Technologies, Singapore). Positive and negative ion mass spectra were recorded over the 

range of 1000–2100 m/z. The electrospray ion source (ESI) was operated using the following 

conditions: pressure of nebulizing gas (N2) was 30 psi; temperature and flow rate of drying 

gas (N2) were 300°C and 7 L/min, respectively; temperature and flow rate of sheath gas were 

300°C and 11 L/min, respectively. The capillary voltage was set to 3.5 kV, the nozzle voltage 

to 2 kV, the fragmentor potential to 100 V and the skimmer potential to 65 V. 

 

LPS Silver staining 
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Salivary LPS extracts and P.gingivalis LPS (InvivoGen, ATCC 33277) were treated for 5 min at 

100°C in 0.05 M Tris hydrochloride buffer (pH 6.8), 2% SDS and 0.01% bromophenol blue, and 

fractionated on an SDS-polyacrylamide gel containing 4% and 10% acrylamide in the stacking 

and separating gels, respectively. SDS-PAGE-fractionated LPS preparations were stained by 

the conventional silver staining method (Merck). 

 

Endotoxin activity 

Salivary LPS extracts were diluted 1:100 in endotoxin free water and endotoxin activity was 

measured by an endpoint, fluorescent, recombinant Factor C assay according to 

manufacturer’s instructions (EndoZyme, Hyglos, Germany). 

 

Inflammatory potential of salivary LPS extracts 

THP-1 cells (Human monocytic leukaemia cell line) were purchased from ECACC (European 

Collection of Cell Cultures) and maintained in RPMI 1640 medium (Invitrogen) supplemented 

by 2 mM Glutamine, 10% foetal calf serum, penicillin (100 units/ml) and streptomycin (100 

μg/ml) (Invitrogen). The cells were cultured at 5% CO2 atmosphere at 37o C.  

THP-1 cells were stimulated with 25 µl of salivary LPS extracts per ml of cells (5 x 105) for 4 

hours. Cells were centrifuged at 1000 rpm for 5 minutes and cell-free supernatants were 

collected. Concentrations of IL-8, TNF-α and IP-10 were measured by a multiplex assay (Merck 

Millipore). 
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Statistical Analyses 

All samples, participants and clinical data were anonymised and locked before the codes were 

revealed. In order to analyse differences between examined groups of patients, one-way 

analysis of variance with Tukey post-hoc test was performed, using GraphPad Software, San 

Diego, CA. A p value below 0.05 was considered significant (*<0.05; **<0.01; ***<0.001). All 

experiments were performed at least three times in duplicates. 

 

Results 

Clinical parameters 

The mean O’Leary plaque index in healthy, control participants was 14.68 ± 5.02%, the mean 

probing depth was 1.45 ± 0.45mm and the mean bleeding on probing 2.22 ± 2.76%. Post-

treatment plaque index, BOP and PPD in periodontitis patients were significantly lower 

compared to baseline measurements (56.65% ± 21.52% vs. 33.92% ± 14.20%, 41.47% ± 

18.49% vs. 23.06% ± 13.31% and 5.78 ± 0.61mm vs. 4.47 ± 0.58mm respectively). 

 

 

Mass spectrometric characterisation of salivary lipid A isolates 

The mass spectra of salivary lipid As isolated from healthy individuals displayed the 

predominant ion peaks at low m/z ratios (below 1400), both at positive and negative mode 

analyses, that are consistent with less acylated and under-phosphorylated lipid A isoforms. In 

addition, some minor ion signals between 1400-1800 m/z were detected in the positive mode 
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(Figure 1a and 1b). In contrast to this, diseased lipid A isolates were characterised by 

exclusive, high m/z ion peaks (1600-2000), in the positive mode, likely to correspond to more 

acylated and phosphorylated lipid A isoforms and a range of ion peaks between 1000-2000 

m/z in the negative mode (Figure 1c). Interestingly, the analysis of post-treatment lipid A 

isolates revealed the main, high m/z ion signals similar to diseased samples but which were 

enriched with lower m/z peaks found predominantly in the healthy lipid A isolates (Figure 1d). 

 

LPS silver staining analysis 

Analysis of the LPS carbohydrate profiles by silver staining revealed striking differences in the 

carbohydrate LPS moiety’s architecture between healthy samples on one side and diseased 

and post-treatment samples on the other (Figure 2.). While LPS extracts from healthy 

individuals showed bands corresponding to long and intermediate O-polysaccharide chains, 

LPS extracts from diseased and post-treatment samples were characterised by a bimodular 

distribution, with intense bands corresponding to long polysaccharide O-chains and unique 

for these types of samples, low-molecular weight bands, representing rough-type LPS, 

composed of lipid A and core oligosaccharides only. Some indistinct bands at the levels of 

intermediate O-polysaccharide chains were also detected in post-treatment samples. 

Endotoxin activity of salivary LPS extracts 

Endotoxin activity of salivary LPS extracts was measured for each individual patient using the 

recombinant factor C assay. LPS extracts from periodontitis patients, both before and after 

treatment, showed significantly higher levels of endotoxin activity compared to healthy 

individuals (Figure 3.). Interestingly, endotoxin activities of salivary LPS extracts isolated from 
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periodontitis patients before treatment were segregated in two distinct groups: one in the 

lower range of EU and one within a higher range of endotoxin activity. Although the mean 

endotoxin activities of pre- and post-treatment salivary extracts were similar, majority of 

post-treatment salivary samples exhibited endotoxin activities in the range between these 

two sub-groups. Smoking status did not appear to significantly influence the level of salivary 

endotoxin activity in any of the three groups of patients (data not shown).  

 

Inflammatory potential of salivary LPS extracts 

Inflammatory potential of pooled salivary LPS extracts was assessed in the THP-1 cells model, 

by measuring the production of TNF-α, IL-8 and IP-10 after a 4-hour challenge (Figure 4.). TNF-

α and IP-10 secretions were significantly higher by the THP-1 cells challenged with diseased 

and post-treatment extracts compared to LPS extracts from healthy individuals. IL-8 

production was also higher by the cells treated with diseased and post-treatment LPS extracts 

but reached statistical significance only between healthy and post-treatment samples. In 

addition, post-treatment samples triggered higher production of all three cytokines 

compared to diseased LPS extracts. 

 

Discussion 

We show here for the first time that the lipid A chemical structure of LPS directly extracted 

from saliva is diametrically different between individuals with healthy periodontium and 

patients with periodontitis. Mass-spectrometric analyses of lipid As isolated from 

periodontitis patients revealed the presence of high m/z ratio peaks, likely to correspond to 
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highly immunogenic, hyper-acylated and phosphorylated lipid A isoforms. The healthy 

individuals were almost free from these isoforms and showed the prevalence of low m/z 

peaks, corresponding to under-acylated and hypo-phosphorylated lipid A isoforms, with 

immuno-modulatory properties, likely to contribute to immune homeostasis. Considering 

other human endotoxin- induced diseases, it has been shown that patients infected with 

N.meningitidis  strains, producing under-acylated lipid As, presented significantly less 

frequently with rash and had higher thrombocyte counts, consistent with reduced cytokine 

induction and less activation of tissue-factor mediated coagulopathy (Fransen et al., 2009). 

Similarly, P.aeruginosa strains associated with severe cystic fibrosis lung disease lacked 

deacylated lipid A structures and the ratio of penta- and hexa-acylated lipid A had a profound 

impact on the disease progression (Cigana et al., 2009). Interestingly, our post-treatment 

saliva samples displayed a wide range of m/z peaks in both positive and negative ion mode, 

which appeared as a combination of peaks found in healthy and diseased samples. This could 

be a sign of a transition from diseased to healthy salivary lipid A profile or conversely from a 

healthy one, induced by the periodontal therapy, to the more pathogenic, leading to the 

remission of the disease. The observed changes in lipid A structure could also be the 

consequence of the increased microbial diversity in periodontitis patients and the higher 

prevalence of Gram-negative bacteria. We have already reported that the chemical 

composition of lipid As isolated from post-treatment subgingival plaque samples was similar 

to healthy samples (Strachan et al., 2018), indicating that the salivary lipid A profile is more 

resistant to changes induced by periodontal treatment compared to the subgingival niche. 

Temporal stability of salivary bacterial communities, especially in terms of its membership, 

has already been indicated both in studies with no treatment intervention and up to 2 years 

after periodontal therapeutic protocols (Yamanaka et al., 2012). We could speculate that 
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during the time course of pathogenic and adaptation mechanisms involved in the 

development of periodontitis, there might be a time point after which changes in salivary lipid 

A profile become well established and irreversible. 

Microbiome-derived LPS has the ability to facilitate host tolerance, model host-microbiome 

interactions and influence the outcome of microbiome-linked diseases (d'Hennezel, 

Abubucker, Murphy, & Cullen, 2017). A holistic approach to periodontal care should account 

for our current understanding of the interplay between different microbial, environmental, 

behavioural and genetic risk factors in the aetiology and pathogenesis of periodontitis. As part 

of optimal patient management, precision dental medicine requires ongoing, individual risk 

assessment to evaluate the possibility of future disease development. Emerging evidence 

suggest that clusters of bacteria, rather than individual species, might be of use as diagnostic 

markers for periodontal disease; and that bacterial functions may be a more robust 

discriminant of disease than species (Trombelli, Farina, Silva, & Tatakis, 2018). It is increasingly 

acknowledged that periodontitis is caused by a synergistic and dysbiotic community of 

pathobionts rather than by “select periodontal pathogens” (Jiao, Hasegawa, & Inohara, 2014). 

Therefore, when studying associations between microbes and periodontitis, the focus should 

be on shared virulence factors and microbe-associated molecular patterns (MAMP) such as 

LPS. 

LPS triggers numerous pathophysiological, immunostimulatory effects in mammalian 

organisms and in higher doses can also lead to life-threatening reactions such as the induction 

of septic shock. Cells of the myeloid lineage have been shown to be the principal cellular 

sensors for LPS (Munford, 2016). The lipid A component is the primary immunostimulatory 

centre of LPS. With respect to immunoactivation in mammalian systems, the classical group 
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of strongly agonistic (highly endotoxic) forms of LPS are characterised by a high degree of 

acylation and phosphorylation pattern. In addition, several natural or synthetic lipid A 

structures with lower levels of acylation and phosphorylation have been shown to display 

comparatively low or even no immunostimulatory effect. Some members of the latter are 

even capable of antagonizing the effects of strongly stimulatory lipid A isoforms (Steimle, 

Autenrieth, & Frick, 2016). 

There is strong evidence that aggregates and not monomers of LPS play a decisive role at least 

in the initial stages of immune cell activation and that the length of the saccharide chain is an 

important determinant of the morphology, size distribution and aggregate structure of LPS 

(Richter et al., 2011). Using purified smooth (S) and rough (R) fractions of LPS, it has been 

shown that the R-LPS fraction induces a stronger immune response than the smooth LPS 

fraction (Vedrine et al., 2018) and that the highly glycosylated LPS fraction requires different 

receptors and molecular pathways to induce cell activation (Pupo et al., 2013). The R-LPS 

recruits a larger spectrum of cells in endotoxic reactions than S-LPS since it readily activates 

cells expressing the TLR4/MD-2 receptor complex, while the S-form requires further help of 

the LPS-binding proteins CD14 and LBP, which limits its activating capacity (Huber et al., 2006). 

Our results revealed the predominance of smooth LPS types with long and intermediate 

saccharide chains in saliva of healthy individuals and a mixture of smooth and rough LPS 

chemotypes in both diseased and post-treatment samples, indicating the presence of LPS 

isoforms with increased endotoxin potential in periodontitis patients which remained 

unchanged following periodontal treatment. 

Total LPS produced by the healthy human gut microbiome, characterised by the prevalence 

of underacylated lipid A structural components is non-immunogenic and more importantly 
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inhibits TLR4- dependent cytokine production (d'Hennezel et al., 2017). There are only few 

studies considering salivary endotoxin activity and inflammatory potential with inconclusive 

results. Liukkonen et al. did not find differences in LPS activity in saliva samples from 

periodontitis patients and edentulous individuals and salivary LPS concentrations did not have 

significant associations with any of the tested cytokines (Liukkonen, Gursoy, Pussinen, 

Suominen, & Kononen, 2016). In contrast, Liljestrand et al. (Liljestrand et al., 2017) reported 

a direct association between alveolar bone loss and levels of salivary LPS and a moderate 

correlation with periodontal inflammatory burden. Decreased levels of pro-inflammatory 

cytokines were observed in saliva during the development of experimental gingivitis 

(Belstrom et al., 2017), while increased concentrations of IL-1β, IL-4, IL-6 and IL-17 have been 

detected in saliva of periodontitis patients compared to healthy individuals (Marques et al., 

2016). The main strength of our study is that we compared the chemical structure and 

biological activity of LPS directly extracted from saliva as opposed to extracting LPS from 

bacterial colonies isolated from the oral cavity, since LPS modification is a widespread 

occurrence and bacterial biofilm communities and environmental alterations are associated 

with profound physiological changes that lead to novel properties compared to the properties 

of planktonic bacteria (Chalabaev et al., 2014). 

In our study, salivary endotoxin activity was significantly higher in diseased patients and 

remained high even after periodontal treatment compared to healthy individuals. The two 

sub-groups of diseased patients (one in the lower range of EU/ml and the other in the higher) 

may represent the episodic nature of periodontal disease progression, which is currently 

undetermined at point-of-care. The levels of TNF-α, IL-8 and IP-10, responsible for alveolar 

bone resorption and chemoattraction of inflammatory cells, secreted by THP-1 cells 

challenged with salivary LPS extracts, were significantly higher in diseased patients and 
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correlated well with their endotoxin activity measure by the recombinant factor C assay. Total 

salivary LPS from healthy patients was almost immune-silent and triggered measurable 

production of IP-10 only. These differences could be a combined result of LPS architectural 

modifications and alterations in total amounts of salivary LPS extracts but the influence of LPS 

contaminants, such as lipoproteins, cannot be ignored. Periodontal therapy and decreased 

post-therapy periodontal inflammatory burden had no influence on salivary LPS activity or 

inflammatory potential, the latter being even higher in post-treatment samples.  

In conclusion, characteristic and divergent salivary LPS molecular signatures are present in 

patients with periodontitis compared to healthy individuals, resulting in increased salivary LPS 

activity and inflammatory potential in diseased patients. Moreover, salivary LPS architecture, 

endotoxin activity and inflammatory potential are well conserved after periodontal therapy, 

reflecting the influence of oral bacterial communities other than dental plaque on salivary LPS 

profile and emphasising the potential importance of effective oral mucosal microbiota 

management on long-term periodontal stability.  
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Figures:  

 

Figure 1. Illustrative electrospray ionisation mass spectra of lipid A isolated from a) P. 

gingivalis LPS (InvivoGen); and pooled salivary LPS extracts obtained from b) healthy 
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individuals; c) periodontitis patients; and d) periodontitis patients three months after 

periodontal therapy. 

 

 

Figure 2. SDS-PAGE and silver staining analysis of P. gingivalis LPS (InvivoGen) (lane 1); and 

salivary LPS isolates from healthy individuals (lane 2); periodontitis patients (lane 3) and post-

treatment samples (lane 4). 
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Figure 3. Endotoxin activity of salivary LPS extracts from individuals with healthy 

periodontium and periodontitis patients before and after periodontal treatment. Lines 

represent mean values with SEM. 
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Figure 4. The production of TNF-α, IL-8 and IP-10 by monocytic cell line (THP-1) challenged 

with pooled LPS extracts from healthy, diseased and post-treatment saliva samples for 4 

hours. 

 

 


