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Abstract 

Predicting cardiovascular events is an important subject in the developed world as it is a 

major cause of morbidity and mortality. Identifying those at risk of developing cardiovascular 

disease is key as there are treatments available to reduce the risk of future events. The most 

well-known prediction tool is the Framingham Risk Score (FRS), a multivariate 

cardiovascular risk prediction model. The Framingham cohort identified some of the most 

fundamental risk factors that shape modern cardiovascular prevention, however, it is not a 

perfect model. 

 

The imperfect nature of cardiovascular risk prediction based on FRS forms the starting point 

of this research journey. In the search for a better prediction tool, a logical approach would 

be to improve on an existing model, rather than ‘reinventing the wheel’. This philosophy 

underpins this piece of work, which focuses on finding a tool that improves identification of 

subclinical disease. From my clinical practice in radiology, the value of cardiovascular CT 

biomarkers became an obvious area to investigate. Over the course of my research, I 

realised both cardiovascular (CVD) risk prediction models and CVD CT biomarkers have 

evolved over a similar period. The scope of my research demanded my attention to focus on 

FRS as a base model, though there are many other CVD risk prediction models. Similarly, 

there are multiple cardiovascular CT biomarkers that have been proposed. The best studied 

CT biomarker in terms of predicting CVD events is undoubtedly coronary calcium score 

(CACS). Considering the evolving nature of CT technology and the deeper understanding of 

CVD pathophysiology, there are two other up-and-coming biomarkers, namely thoracic 

calcium score (TACS) and coronary artery stenosis, which broaden the scope of 

investigating potentially useful biomarkers. 

 



15 
 

Embedding CT biomarkers within Framingham Risk Score formed the framework 

investigation. Derived from this was a journey of discovery that led me to learn the rapidly 

expanding knowledge of prognosis research. My initial investigation was conducting a 

systematic review and meta-analysis of the incremental value of discussed CT biomarkers. 

This was followed by investigating the reporting standard of the Framingham Model within 

the realm of incremental value added by CT biomarkers. Finally, performing a feasibility 

study to look at whether the coronary arteries can be assessed during routine oncological 

whole-body CT imaging. I would like to illustrate and share my learning in the subsequent 

chapters.  
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Chapter 1 – Introduction 

1.1 Framingham risk score & prediction models in cardiovascular disease 

CVD is common amongst adults and causes significant morbidity and mortality worldwide. 

The absence of risk factors at 50 years of age is associated with a very low lifetime risk for 

CVD and a longer median survival (1) and is the rationale behind implementing intensive 

preventative strategies and modification of daily living. Coronary heart disease (CHD) is the 

most common manifestation of CVD but many individuals with CVD are initially free of CHD 

(2), thus adding to the attraction of having prediction tools. To implement preventative 

measures and targeted therapy, such as lipid lower drugs and lifestyle adjustments, 

identifying those at risk has been keenly advocated. However, it is vitally important that any 

prediction model used in CVD risk prediction is accurate to avoid inappropriate risk 

categorisation, which can lead to either over- or under-treatment. 

 

The original FRS was derived from a mostly Caucasian population and was one of the first 

models to provide an estimation of CVD risk. The FRS used CHD death, non-fatal 

myocardial infarction, stable angina and unstable angina as endpoints. The Wilson 1998 

version incorporated age, gender, systolic blood pressure, total or low-density lipoprotein 

(LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, diabetes mellitus and smoking 

in their multivariate model (3, 4). In general, prediction models are never perfect (5) and 

frequently have methodological weaknesses meaning very few stand the test of time (6). 

The FRS has extensive validation and is one of the exceptions (5), however, it remains 

imperfect and attempts have been made to improve its risk prediction, particularly within the 

“intermediate” category (7). Like other prediction tools, different iterations were developed to 

improve upon earlier versions. The subsequent version (ATP III 2002) excluded diabetes 

and included blood pressure treatment, whilst excluding stable and unstable angina as 

endpoints (8). Apart from CHD, cerebrovascular disease, peripheral artery disease (PVD) 
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and aortic aneurysms account for the remaining cases of CVD. The D’Agostino 2008 version 

was similar to the ATP III 2002 version but considered more outcomes including coronary 

insufficiency or angina, fatal or non-fatal ischaemic or haemorrhagic stroke, transient 

ischaemic attack and heart failure (9). All of the described iteration models have been 

externally validated numerous times in different settings and populations, with most studies 

showing poor calibration. Therefore, there still remains a drive to improve even the most 

validated CVD risk prediction tool. 

 

Clinical guidelines from the National Cholesterol Education Program and the American 

College of Cardiology and American Heart Association (AHA) advise using the ATP III 2002 

model but it is worth noting that most clinical research has utilised the Wilson 1998 model. 

Although Framingham Wilson is not mentioned in the clinical guidelines, it is relevant to 

review this prediction model as many studies in the field of CVD risk prediction have 

externally validated it and used it to either assess the incremental value of new predictors, or 

for comparison with newly developed prediction models (5). FRS was developed on an 

American population who were asymptomatic at time of joining the original Wilson 1998 

model inception. It is important to note that there are subsequent studies that implement 

FRS on a mixture of symptomatic and asymptomatic populations, which is not the original 

intended population of the model. There are many other versions and variations of FRS. This 

research explicitly did not set out to review all existing CVD risk prediction models. Owing to 

the nature of the literature and included studies, the research focus was on the Wilson 1998, 

ATP 2002 and D’Agostino 2008 versions. Other competing prediction models such as the 

SCORE (10) QRISK (11) models, which have been developed using European populations, 

have not been considered because sensible conclusions can only be drawn when a single, 

rather than multiple, model is evaluated at the outset. 
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1.2 Evaluation of multivariable risk prediction model & standard of reporting prediction model 

in cardiovascular risk prediction 

Development and reporting of prediction models is generally poor in the medical and 

specialty literature (6, 12). The TRIPOD statement aims to improve the reporting of 

multivariable prediction, which can be applied to CVD risk prediction models (13). The initial 

development of new prediction studies should always include quantification of predictive 

performance of the developed model, in particular discrimination and calibration. 

Discrimination is seen as how good the model is at identifying higher risk individuals who go 

on to develop the outcome of interest and can be quantified with summary estimates, such 

as sensitivity, specificity and the area under the receiver operating characteristics curve 

(AUC). Predictive performance can be further quantified in terms of calibration, which look at 

whether the proportion classified as high risk indeed went on to develop the outcome of 

interest. Calibration can be quantified using Hosmer-Lemeshow ‘goodness-of-fit” test. When 

the predictive performances are available, methods such as bootstrapping are applied. This 

is known as internal validation which is a necessary part of the development. Other issues 

arising at this stage, such as overfitting, optimism and miscalibration can be addressed. After 

a model is developed, it is important to evaluate the predictive performance in another 

population other than the one used for model development. This is known as external 

validation. 

 

Damen et al summarised the current landscape of the CVD prediction literature 

comprehensively (5), examining 363 prediction models in the CVD literature. Overall, there 

were plenty of CVD risk prediction models for the general population but also a lot of 

methodological concerns. Apart from the well-known models (FRS, SCORE and QRISK), the 

competing models lack external validation leaving healthcare professionals uncertain of their 

value. The lack of power in some of the included studies is concerning. Furthermore, the 
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number of events in those studies is frequently less than 10 per variable (14, 15). 

Heterogeneous and selective reporting of the basic information regarding the prediction 

model was another issue, with disparities between studies making direct comparison difficult. 

The CVD outcomes were heterogeneous with more than 40 different definitions for fatal or 

non-fatal CHD and international classification codes being specified in less than a quarter of 

the studies. Most studies had a prediction horizon of 5 or 10 years, but there was marked 

variation (between 2 and 45 years), making comparison difficult. When the follow-up period 

does not match the prediction horizon, there is a risk of extrapolation, which has not been 

explored (5). Lastly, there is also a lack of indicators of the model’s predictive performance. 

A mere 39% of included studies reported a measure of discrimination, 32% reported 

calibration and 27% reported both. Even when there were indicators, there was often 

insufficient information to allow calculation of individual model performance. 

 

1.3 Imaging biomarkers: Computed tomographic biomarkers 

Numerous imaging and biochemical markers have been investigated aiming to improve upon 

the FRS model (16). This is in keeping with increasing interest in novel biomarkers in the 

field of CVD risk prediction (17). In search of a surrogate biomarker that detects subclinical 

disease, CACS has been investigated for more than three decades (18) with some 

proposing screening with CT in the general population (19). TACS is considered a relative of 

CACS, whereby the Agatston method (20) is applied to the thoracic aorta (21). Computed 

tomographic coronary angiography (CTCA) has established itself in the acute chest pain 

setting and is now being investigated as a tool of reclassifying cardiac risk based on luminal 

stenosis (and other characteristics) in the CONFIRM cohort (22). These imaging biomarkers 

generate substantial interest and may add incremental value to traditional Framingham risk 

factors. 
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The idea of using CACS as a biomarker was first documented in 1979 (23). CACS is a semi-

automated method used to quantify the level of coronary calcium. The calcium indicates the 

result of inflammatory changes within the vessel wall of the coronary arteries as a result of 

atherosclerosis. Since then, the Agatston method has become the most cited method 

regarding the quantification of CACS (20). The Multi-Ethnic Study of Atherosclerosis (MESA) 

cohort recruited participants of Black, Hispanic and Chinese descent which specifically 

tackled the concern that FRS was primarily applicable to Caucasians (7). The MESA study 

also investigated whether other subclinical parameters predicted CVD, such as CACS and 

carotid intimal-medial wall thickness (cIMT) (7). Improvements in CHD risk prediction with 

other subclinical risk markers including cIMT, ankle-brachial index and pulse wave velocity 

were promising in other studies (8-12). Kavousi et al showed that CACS had the best 

independent risk prediction and best discriminatory ability when compared with 11 other 

measures of atherosclerosis, including both imaging characteristics and biomarkers (13). 

Studies have demonstrated the link between the risk of future CHD and mortality with CACS 

(14-19). To quantify atherosclerosis elsewhere, some have proposed investigating the 

quantity of thoracic aortic calcium (TAC), leading to the development of thoracic aorta 

calcium score (TACS). There is some evidence to suggest that there is correlation between 

TAC and coronary risk factors (20). One main criticism of CACS is that it can potentially miss 

non-calcified plaques, which can progress and cause myocardial infarction. Invasive 

coronary angiography (ICA) is the gold standard investigation for the evaluation of the 

coronary arteries and in many centres forms the basis for any subsequent intervention. 

Coronary revascularisation is performed based on semi-quantitative measures of luminal 

diameter narrowing of the artery visualised at the time of ICA. Multiple retrospective and 

prospective studies have demonstrated that CTCA has high sensitivity and specificity for the 

non-invasive detection of stenosis when compared with ICA (22-27). More recently, the 

PROMISE and SCOT-HEART studies focused on looking at the longer-term benefits of 

CTCA (28, 29). A systematic review supported the use of 64-slice CT to rule out significant 
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CAD but highlighted that more research is required, including identification of radiation 

burden on repetitive users (30).  

 

1.4 Coronary artery disease screening using calcium score 

There are some arguments for screening using CACS. CACS can detect calcification of the 

coronary arteries in people who are asymptomatic, many of whom would be classed as low 

risk when assessed by CVD risk prediction models. CACS have often been analysed 

categorically, most commonly as 0 (none), 1–99 (mild), 100–400 (moderate), and >400 

(severe) (24) but can also be analysed as continuous data on a logarithmic scale with a 

higher CACS indicating higher risk. The idea is that the more extensive the calcification and 

the higher the CAC score, the greater the risk. Although coronary calcium is indicative of 

CHD in asymptomatic people, traditional risk factors class these patients as low risk. This 

forms the basis of “up classification” of low risk individuals using CACS. Treatment with 

statins can reduce that risk. Meta-analysis suggested that on average statins reduce 27% of 

fatal and non-fatal CHD outcomes and that there was no real harm, even when used among 

low risk individuals (25). 

 

However, there are many unfavourable arguments against screening using CACS. Most 

importantly, CT will miss many of the most dangerous patches of arterial disease because 

they are not calcified. It would also depend on how much better CACS was than a CVD 

prediction model such as FRS, which remains an area of debate. Other uncertainties include 

the threshold of CACS that would trigger onward investigation and treatment, as well as 

whether it is cost effective. Another consideration is that it is unlikely that a low CACS score 

would prompt stopping of statins amongst those classed as high-risk individuals based on 

traditional risk factors. There is still a lack of definitive evidence that statins reduce events in 
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those with raised CACS (26). Whilst CACS appears attractive and the use of radiation is 

probably justified, there was insufficient evidence to support screening (27).  

 

1.5 The notion of assessing incremental value 

A new biomarker or diagnostic test very rarely replaces an existing test in its entirety. A 

notable exception applies to the screening test (28, 29). The diagnostic potential of a test or 

biomarker is conditional on the information obtained from patient history, physical 

examination and previous tests (30). It is important that a new test or biomarker adds 

information or value to the existing algorithm. To establish incremental value, head-to-head 

comparison between the model with new predictors and the reference baseline model 

(without the new predictors) is the recommended approach, but this may not happen in 

reality. There is evidence that claims better performance for markers when they are added to 

poorer performing reference models (31). A large number of novel biomarkers have been 

identified in the field of imaging and other areas of biomedical research, such as genomics 

and proteomics (32). These can potentially help improve prediction, diagnostic testing, 

prognosis, treatment choice and prevention (32, 33). The challenge for clinicians and 

medical research is to critically appraise the existing and new markers or tests (34). 

Unfortunately, both experts and lay people do not always understand the methodology of 

conducting prognostic research (33). A potential biomarker should be developed in a phased 

approach, as previously suggested (17, 35, 36). 

 

In short, assessing the overall incremental value is the initial step and is commonly achieved 

by establishing the discriminatory ability of a new test in addition to existing prediction model. 

AUC is an often-used effect estimate to indicate the discriminative ability of a test of interest. 

The ROC curve is a plot of the sensitivity (true positive rate) against 1 minus specificity (false 

positive rate) for consecutive cut-offs for the probability of the outcome of interest, such as 
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the development of CVD. One of the limitations of AUC is that a threshold must be set, for 

example a threshold is required for continuous outcomes. AUC can be interpreted as the 

probability that one factor favours the development of a specific outcome. Useless 

predictions such as a flipping a coin result in an AUC of 0.5, whilst a perfect prediction has 

an AUC value of 1. The next step is to establish the potential improvement in predictive 

performance after adding a novel test to an existing predictive model. The change in area 

under the receiver operating curve (Δ AUC) quantifies a novel test’s added value (37-39). 

 

Modern statistical methods include net reclassification index (NRI) and integrated 

discrimination index (IDI) which are alternatives to Δ AUC because the size effect of Δ AUC 

is often disappointingly small. Even a large Δ AUC is not sufficient evidence of clinical 

usefulness (40). Reclassification can be demonstrated using a table showing the ‘upward’ or 

‘downward’ movement within a population. An ‘upward’ movement in categories means 

subjects are upgraded to a higher risk group, which means reclassifying upwards. A 

‘downward’ movement indicates subjects are downgraded to a lower risk group, meaning 

reclassifying down. The overall improvement in reclassification can be quantified as a single 

effect estimate, known as NRI. One issue of NRI is that CVD risk categories often involve 3 

groups, therefore the weighted version of NRI is not as straightforward (41). Another option 

is to calculate the integrated discrimination improvement (IDI), which considers 

improvements among multiple categories. It is important to note that there is ongoing debate 

regarding the nature of these measures (42, 43). 

 

Calculation and reporting of AUC is a fundamental step in establishing the discriminatory 

ability of a test, followed by estimating the Δ AUC to quantify incremental value to existing 

model. The idea of reporting all of the reclassification measures alongside each other has 

been proposed (44). There are issues of multiple testing leading to a positive finding of 
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reclassification by chance. Calibration is often not reported and is essential for an informed 

decision regarding adoption of the new marker or test. Measures dealing with discrimination 

are regarded as early-stage research. Decision-analytic measure, such as net benefit, may 

be a better alternative statistical method (45). Currently, there is no consensus on what is 

the single best measure but transparent reporting is key (46).Ultimately, the proof of the 

advantages of adopting a potential biomarker should come from randomised comparison 

studies to quantify whether the use of the maker improves decision marking and patient 

relevant outcomes (34).  

 

1.6 Incremental value of biomarkers in addition to Framingham Risk Score 

Numerous cardiovascular risk prediction models have been developed between 1967 and 

2013 (5). Of these models, only 132 models have been externally validated. To synthesise 

qualitative and quantitative data, a choice needs to be made to minimise the known 

heterogeneity in the field of cardiovascular risk prediction. The most effective way is to limit 

the investigation to a specific baseline model. FRS is the most validated model for all the 

cardiovascular risk prediction tools (5). The Wilson 1998 iteration is the most validated study 

(by 89 studies) (3), followed by the Anderson 1991 version (validated by 73 studies) (47), the 

D’Agostino 2008 version (validated by 44 studies) (9), ATP III 2002 version (validated by 31 

studies) (8) and lastly the updated Anderson 1991 version (validated by 30 studies) (48). 

Given the evidence of validation, FRS has been chosen as the base model for the research 

process.  

 

As outlined above, multiple studies have demonstrated the predictive ability of CACS in 

stratifying cardiovascular risk. Attempts have been made to incorporate CACS into routine 

clinical practice (49). The ability of CACS to reclassify individuals in the decision of initiating 

statin treatment is still not completely convincing (50). TACS is a less described biomarker 
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but probably shares similar pathophysiology to CACS. In the setting of chest pain, the 

diagnostic test accuracy of CTCA is comparable to ICA (the gold standard) (51-56). There is 

growing interest in utilising CTCA in general cardiovascular risk prediction. The CONFIRM 

registry is an ongoing multicentre cohort to investigate precisely that. Given the 

shortcomings of CACS outlined above (21), CTCA should theoretically complement CACS. 

A systematic review and meta-analysis of the incremental value of CACS, TACS and CTCA 

in addition to FRS is therefore a logical approach to gather the available evidence. In 

addition, methodological issues identified may help guide the design of any future trials. 

 

1.7 Opportunistic assessment of the coronary arteries 

Among a variety of subclinical indicators of cardiovascular disease, CACS is currently the 

strongest predictor of cardiovascular events independent of traditional risk factors (13). As 

discussed, the absence of coronary calcium does not preclude the rupture of non-calcified 

plaque. CTCA complements CACS because it identifies plaques of different composition and 

allows the assessment of luminal stenosis. Both CACS and CTCA can only be acquired if 

the set-up of the CT scan is configured at the outset. However, this information is not 

routinely obtained when a patient is having a CT scan.  

 

Helical scanning of the thorax has been standard practice since the advent of spiral 

scanning technology allowing rapid acquisition of volumetric data. In contrast, ECG gating in 

the thorax has been exclusively performed for CTCA. Traditionally retrospective helical 

scanning has been performed with ECG gating to allow multiphase analysis of different parts 

of the cardiac cycle (57). However, ECG gated helical scans are of high dose compared to 

non-gated helical scans due to the requirement for low pitch scanning. More recently, there 

has been a move from helical to axial scanning due to the dose savings that can be 

achieved (58). Further radiation dose reductions can also be achieved by reducing the 
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amount of tube on time during the cardiac cycle. The majority of coronary artery segments 

can be evaluated on a single portion of the cardiac cycle (which is heart rate dependent) (59, 

60). The combination of these techniques has resulted in radiation levels 80% less than 

helical scanning of the heart and less than non-ECG gated studies of the thorax (61). It is, 

therefore, possible that ECG gated studies of the thorax may result in diagnostic images of 

the coronary arteries at no additional cost regarding radiation dose or contrast administration. 

Such information could be particularly useful in patients where malignancy is suspected or 

patients undergoing CT of the thorax as part of the staging process before major surgery.  

 

Non-ECG gated helical scanning of the thorax is the established technique for the staging of 

cancer patients. However, a step-and-shoot ECG gated technique can be adopted with 

potential advantages for pulmonary imaging. Accurate measurement of lung nodules is 

influenced by cardiac related motion artefact and disproportionally affects various parts of 

the lungs (62). Similarly, peripheral pulmonary arteries move considerably with cardiac 

motion. Previous work using retrospective scanning found improvement in image quality 

when compared to non-gated studies in the context of pulmonary angiography studies (63, 

64). Boehm et al argued that adopting gating did not improve the diagnostic test accuracy 

and that routine ECG gating was not justified (65). In contrast, others found improvement in 

image quality with the use of gating (66-68). To clarify the usefulness of gating for pulmonary 

imaging, we performed a prospective study of patients undergoing follow-up oncology 

scanning where the patients received both a gated and non-gated study of the thorax. The 

scans were then evaluated for cardiac related motion artefacts within the lungs and radiation 

dose. We also evaluated the coronary arteries to see how many coronary artery segments 

had diagnostic image quality.  
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1.8 Research questions 

Previous cohort studies have investigated the value of CT biomarkers in addition to FRS. 

There has been no formal comparison of quantitative synthesis that compares the predictive 

performance of FRS and CT biomarkers between relevant cohort studies. Systematic 

reviews and potentially quantitative synthesis would be informative in the evaluation of the 

potential incremental value of CT biomarkers in addition to FRS across different populations. 

This would help in the implementation of a more accurate model that could positive affect 

clinical practice. In order to formally compare different cohort studies, prognostic information 

of the baseline FRS models and aggregate data from included cohort studies were collected 

or estimated. The aim was to conduct a systematic review in order to summarise and 

compare the overall predictive performance of different FRS models and the additional 

predictive performance provided by CT biomarkers in CVD risk prediction. 

 

During the process of conducting the systematic review as proposed above, it became 

apparent that data synthesis was very difficult due to the variation in reporting practice. 

There was also a sense of optimism within the literature where most of the cohort studied 

claimed either improved discrimination or reclassification with additional CT biomarkers. To 

complicate matters further, the most popular effect estimates in reclassification, NRI, 

generated as much controversy as its popularity. These issues together presented an 

opportunity to investigate these matters further by comparing aggregate data between 

adequate and inadequate reporting practice. 

 

Although the incremental value of CT biomarkers is yet to be established by the proposed 

systematic review, it is already technically possible to obtain information on the coronary 

arteries with slight modification of existing whole-body CT scanning. Oncology patients are 

often not asymptomatic but are at risk of cardiotoxicity related to chemoradiotherapy. They 
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are a vulnerable group where more subclinical information provided by CT biomarkers may 

be helpful in predicting treatment related CVD events. Given some of the described 

limitations of CACS and recent advances on CTCA, a slight modification of existing CT 

scanning techniques allows for opportunistic assessment of coronary arteries in oncology 

patients who are under surveillance after cancer treatments. Accordingly, a feasibility study 

to look at the technical aspects of assessing the coronary arteries by ECG-gating was 

conducted. 
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Chapter 2 Outcome measures 

2.1 Outcome measures in prognostic studies in general 

Prognostic studies look at subjects from a population at risk of developing a particular 

outcome within a specific period. The outcome of a study should ideally be objective, where 

the subjects either experienced or did not experience the outcome, and it should be well 

defined at the beginning. Reliable methods should be used to verify outcome measures, 

such as a death certificate and medical records. It is important to note the number of 

observed and expected events as these can then be used to calculate the 

observed:expected ratio, providing a rough indication of the overall model calibration. 

Calibration is an important aspect of predictive model performance in addition to 

discrimination, but is often overlooked. 

 

Apart from the ideally stringent definition, it is important to realise that there is an additional 

dimension of time in prognostic outcomes. The period of interest where an outcome can 

potentially develop can be broadly seen as short term or long term. Of note, the Wilson 1998 

model looked at the 10-year CVD risk whereas not all the subsequent validation cohorts 

used a matching prediction horizon. The variation in chosen prediction horizon is an 

important factor to consider when doing quantitative analysis. Prognostic prediction 

examines a longitudinal relationship whereas diagnostic prediction is mostly interested in a 

cross-sectional relationship. To determine whether an outcome of interest develops over 

time is a crucial in prognostic studies. To address changes in risk over time, survival or 

Kaplan Meier curves are used to incorporate the time element, rather than using odds ratio, 

relative risk or percentage. The follow-up period should be long enough to detect the 

outcome measures. Excluding those who are lost to follow up would underestimate the 

outcome of interest. 
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It is important that subjects included in a prognosis study all have similar risk profile so that 

meaningful conclusions can be drawn about the observed and expected outcomes. Within 

studies that adopt various FRS models, the included cohort studies in the systematic review 

are expected to incorporate a mixture of symptomatic and asymptomatic participants at 

recruitment. Even though all the studies used comparable outcomes, it is important to regard 

them differently as the stage of disease will clearly influence prognosis and analysis by 

disease stage may be necessary. There are different strata of risk with FRS models. For 

example, asymptomatic low risk individuals would clearly be different from asymptomatic 

high-risk subjects. 

 

2.2 Cardiovascular outcomes in prediction model studies & systematic review 

Most models in the cardiovascular prediction model literature define outcomes broadly 

based on two approaches. The first approach defines the outcome as either fatal or non-fatal 

CHD, for example cardiac death or ST segment elevation MI. The second approach involves 

the above definition in combination with other outcomes of CVD, as described in the first 

chapter, for example strokes or initiation of statin therapy. The evolvement of various 

cardiovascular outcome definitions and the different FRS iterations are linked. This is 

because some variables are better understood over time (for example during or after 

external validation), and there is further evidence to support or refute any adjustment of 

existing prediction models (69, 70). Methods of updating models include adjustment of the 

model’s intercept for differences in outcome occurrences between the development and 

validation data sets, adjustment of the weights of specific predictors and addition, deletion or 

modification of predictors (34). For example, diabetes was removed from the base model of 

Wilson 1998 FRS during the development of ATP III 2002. The evidence considered at the 

time regarded Type 2 diabetes as CHD risk equivalent. People with Type 2 diabetes have a 

high 10-year risk for both fatal and non-fatal CHD and relatively poor long-term survival after 
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CHD (5). There is evidence that the definition of cardiovascular outcomes, in reality, is very 

heterogeneous with over 70 different definitions of CHD and a lack of use of internationally 

agreed outcome definition, for example the International Classification of Disease definitions 

(5). The heterogeneity of the outcome definition makes direct comparison difficult and leads 

to different estimated predictor size effects and model performances. The TRIPOD 

statement aims to improve the reporting of multivariable prediction models in development or 

being validated, with specific reference made to more stringent and clear reporting of 

outcomes and its definition (13). For this review, the primary outcome definition includes 

cardiac death and non-fatal MI. The diagnosis of an MI was based on a combination of 

symptoms, electrocardiographic signs, levels of creatinine kinase or troponin T or I, autopsy 

findings of nonfatal acute MI and coronary death (71). Secondary outcomes include all-

cause mortality, major cerebrovascular events, surgical or non-surgical coronary 

revascularisation, angiographically defined new-onset peripheral vascular disease, 

hospitalisation for cardiac disease and the initiation of medical therapy for cardiac disease. 

Further adaptations of these may be required at the evidence synthesis stage.  

 

2.3 Composite cardiovascular endpoints in systematic review 

Composite CVD endpoints can be useful in the evaluation of infrequent outcomes and 

represent a broader range of the beneficial effects of an intervention (72, 73). The main 

rationale for considering a composite primary outcome is sample size (74). Composite 

endpoints may involve surrogate outcomes, clinical outcomes or a combination of both. 

However, clearer reporting of the construct of composite CVD outcomes, in which individual 

outcomes were selected for inclusion, should be mandatory (75). An effect estimate 

conditional on composite outcomes is different from a single outcome. There is evidence that 

the inclusion of each additional endpoint to the composite was associated with fewer 

participants (75). This is consistent with the argument that the smaller the sample size, the 
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more endpoints are included in the composite outcome to inflate the number of events. The 

choice of composite endpoints in cardiovascular trials can be made based on statistical 

testing (76). A qualitative approach to selecting single or composite CVD outcomes can be 

based on the prevalence of a target disease (74). The following case of heart failure 

illustrates that. The prevalence of heart failure positively correlates with left ventricular 

function. In a population that has just experienced an acute MI, for example in the 

Eplererone Post-Acute MI Heart Failure Efficacy and Survival Study, most of the participants 

were expected to experience CVD outcomes (77). The use of all-cause mortality instead of 

composite CVD endpoints would not be expected to result in a significant loss of sensitivity. 

In contrast, in a study of participants with baseline stable disease (preserved left ventricular 

function), a smaller proportion is expected to die from CVD causes. In this situation, the use 

of an all-cause mortality outcome may result in a loss of power for an intervention aimed at 

preventing CVD, for example in the Candesartan in Heart Failure Assessment of Reduction 

Mortality-Preserved Trial (78). Another alternative to a single outcome and single combined 

endpoint include co-primary outcomes, global index and hierarchical scoring or ranking 

where each will have respective advantages and disadvantages (74). The widespread use of 

composite cardiovascular outcome is expected to be a major source of heterogeneity.  

 

2.4 Surrogate endpoints in the feasibility study 

Surrogate outcomes can be used as substitutes for ‘hard’ or so-called patient relevant 

outcomes. These outcomes are pragmatic as they occur more quickly and therefore shorten 

the duration and resource expenses. Furthermore, surrogate markers can be used as 

markers to indicate the benefit of the intervention in the absence of ‘hard’ outcomes (79-81). 

It is essential that any marker used as a surrogate outcome must have an unambiguous 

association with subsequent patient-relevant outcomes and that there is sound 

pathophysiology underpinning them (34). As a proof of concept study, objective and 
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subjective image quality was chosen as an outcome to assess the technical adequacy of the 

proposed technique. Ideally, a diagnostic test accuracy design is better with ICA being the 

reference standard. However, this is very unlikely to be approved by the ethics committee, 

especially as the participants are asymptomatic. In the setting of chest pain, the diagnostic 

test accuracy of CTCA and ICA are comparable so hopefully this design will suffice.  
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Chapter 3 - Methods of the systematic review & meta-analysis 

3.1 Searches, the screening process & the inclusion/ exclusion criteria 

The systematic review is reported in line with Preferred Reporting Items for Systematic 

(PRISMA) (82). The protocol was registered on the international database of prospectively 

registered systematic reviews in health and social care (Centre for Reviews and 

Dissemination, University of York) (PROSPERO) (2015:CRD42015023795) (83). MEDLINE 

(OVID interface, indexed and non-indexed, 1946 onwards), EMBASE (OVID interface, 1974 

onwards), Web of Science (Thomson Reuters interface) and the Cochrane Central Register 

of Controlled Trials (Wiley interface) were searched in July 2015 with assistance from an 

information specialist. The syntaxes were adapted appropriately for each database. 

Appendix 1 contains the search strategy used for MEDLINE. In addition, the bibliographies 

of all included studies were searched, and a snowballing technique was used. Snowballing 

involves looking at every reference within an included full text publication, in order to look for 

potential further studies eligible for inclusion. The searching process stopped when marked 

duplication within the pool of studies emerged. Authors of abstracts included in the title and 

abstract screening stage were contacted for full text publications. Grey literature and PhD 

theses were searched using the key words described above on search engines including 

EThOs and Open Grey (84, 85). Only full text publications were included. No language 

restrictions were applied. An update search was carried out in September 2017. 

 

During the publication process, there was additional development of the screening process, 

data extraction and critical appraisal to include an additional independent assessor and a 

judicator in the event of disagreement. 
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Inclusion and exclusion criteria are displayed according to the characteristics based on the 

population, investigation, comparator, outcomes and setting (PICOS) format as follows: 

1. Population (P) 

a. Participants of a cohort study who agreed to have their CVD risk evaluated 

using ‘novel’ CT biomarkers. 

b. Potential cohort studies can either be an independent cohort or part of an 

ongoing named cohort. If there are multiple publications from the same 

named cohort, only the publication with the longest average follow-up is 

incorporated into meta-analysis. 

c. The baseline risk of these participants was recorded in the format of FRS risk 

factors or risk score. 

2. Investigation (I) 

a. Cross-sectional or diagnostic test accuracy studies are excluded. 

b. Both prospective and retrospective cohort studies that specifically examined 

Agatston Score/ CACS, TACS or CTCA, alone or in combination, as new 

predictors in addition to FRS, are included. 

c. Included cohort studies must report at least one summary statistic (indicating 

incremental value) or provide enough information which allows calculation of 

at least one summary estimate of the predictors of interest. 

d. Summary statistics (indicating incremental value) includes hazard ratio (HR), 

the difference in area under the curve (Δ AUC) (86, 87), c-statistic, category-

based NRI (88, 89) or another recognised reclassification measure in the 

literature. 

e. Cohort studies that do not display any summary statistics are excluded. 

3. Comparator (C) 

a. Cohort studies that compare the predictors of interest with the FRS model are 

included. In addition, the incremental value of the predictors of interest 
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beyond the FRS model needs to be demonstrated. Study design that focuses 

solely on head-to-head comparison between predictors of interest and the 

FRS model is excluded. 

b. Cohort studies that compare the predictors of interest with other CVD risk 

prediction model are excluded. 

4. Outcome (O) 

a. All-cause mortality, composite cardiac event, incident hypertension and new 

treatment relating to onset of cardiac symptoms during the study are included. 

b. These outcomes should be obtained from a reliable source, such as death 

certificate or hospital records. 

5. Setting (S) 

a. At recruitment of cohort studies, participants can either be asymptomatic, 

symptomatic or a combination of both. The definition of symptoms is broad, 

which includes both baseline CHD and/ or CVD. 

b. The aim of an included cohort study should be CVD risk evaluation. Cohort 

studies looking primarily at the evaluation of chest pain or CHD are excluded. 

 

Title and abstract, followed by full-text screening were performed against the above criteria. 

The original Framingham cohort was constructed as an asymptomatic cohort at baseline. 

For the purpose of this review, it was initially felt that studies were included regardless of 

whether patients had CVD symptoms at baseline in order to capture the variability within the 

literature. The rationale behind this is because the definition of being “symptomatic” among 

cohort studies is heterogeneous and difficult to assess at the screening stage. Owing to a 

wide range of symptoms, such as chest pain or having CVD at baseline, the exact nature of 

baseline ‘symptoms’ will be separated into different strata subsequently. Cohort studies 

which set out to evaluate chest pain, rather than CVD risk prediction were excluded. The 

limitations to this approach will be discussed in the summary chapter. 
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3.2 Data extraction & bias assessment 

The CHARMS checklist was used (90). Publications were classified according to the 

Framingham models whenever possible as defined by Wilson 1998, ATP III 2002 and 

D’Agnostino 2008 (91-93). Information on imaging parameters, patient demographics and 

relevant prognostic information was extracted. Original 95% CIs, standard errors (SE), 

standard deviations (SD) or p-values of summary estimates of interest were extracted. (94, 

95). If the Kaplan-Meier survival curve was available, this was noted to enable HR estimation. 

Study quality was rated using the Quality In Prognosis Studies (QUIPS) tool (96). The 

included studies were assessed in various aspects, such as study participation, attribution, 

measurement of prognostic factor, outcome measure and confounding factors. 

 

3.3 Estimating missing hazard ratios from Kaplan-Meier Curves 

Logistic regression is a statistically less powerful method than survival analysis and therefore 

emphasis was placed on obtaining HRs from survival analysis among the included studies. 

HRs were not reported even when Kaplan-Meier Curve was available. A method applicable 

to restricted mean survival time was used to extract HRs from Kaplan-Meier Curves (97). In 

brief, this method required manual tracking of each of the Kaplan-Meier Curves to generate 

outputs. These were subsequently input into STATA version 14.0 (StataCorp, College 

Station, Texas) to generate an estimated hazard ratio and their respective 95% confidence 

intervals (95% CIs). The essential information that enables this estimation method includes 

the number at risk at the start point of survival analysis and the choice of desired reference 

group. 
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3.4 Estimating confidence intervals of area under the receiver operating curve 

The 95% CIs of Δ AUC were often missing but the relevant P-values were reported. CIs are 

considered more informative than P-values for significance tests (98, 99). Altman et al 

demonstrated CIs can be obtained when only the aggregate size effect and the P-value are 

reported (100). Δ AUC was considered as a mean difference and therefore the proposed 

method in this context is applicable. Most of the missing 95% CIs of Δ AUC have been 

extracted using this method. When the relevant P-values were not available, the 95% CIs 

from the SD were estimated according to the Cochrane Handbook (101). For studies where 

95% CIs or SE were not reported, a correlation coefficient (r) of 0.3 between FRS and 

CACS/ CTCA was used to allow estimation of the 95% CIs for Δ AUC based on data from 

(102). 

 

3.5 The calculation of net reclassification index using reclassification table 

Some studies reported NRI but not with the 95% CIs. The reported NRIs were often the 

overall NRI, without the relevant components, specifically event and non-event NRIs. When 

a reclassification table is available, the 95% CIs and their components can be calculated. 

The individual components of NRI can be displayed as percentages or proportions. However, 

the overall NRI is unitless as it is not a proportion, but the sum of two proportions. This is 

important and it is frequently displayed and interpreted wrongly in the literature. The 

information required to calculate the overall and sub-components of NRI is shown in the 

formula below: 

 

Calculation of event NRI: 

Probability of up event = (Up events/ Total events) 
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Probability of down event = (Down events/ Total events) 

Event NRI = Probability of up event – Probability of down event 

Event SE = √ [(Probability of up-event – Probability of down-event)/ Total number of events] 

Event NRI upper/ lower 95% CIs = Event NRI +/- (1.96 x Event NRI SE) 

 

Calculation of non-event NRI: 

Probability of up non-event = (Up non-events/ Total non-events) 

Probability of non-event = (Down non-events/ Total non-events) 

Non-event NRI = Probability of up non-event – Probability of down non-event 

Non-event SE = √ (Probability of up-event – Probability of down-event)/ Total number of 

events) 

Non-event NRI upper/ lower 95% CIs = Non-event NRI +/- (1.96 x Non-event NRI SE) 

 

Calculation of overall NRI: 

Overall NRI = Event NRI + Non-event NRI 

Overall NRI SE =√ [(SE of event NRI) 2 + (SE of non-event NRI) 2] 

Overall NRI upper/ lower 95% CIs = Overall NRI +/- (1.96 x Overall NRI SE) 
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3.6 Evidence synthesis 

There were multiple studies with multiple summary estimates and missing data. As a result, 

there were many potential groups eligible for meta-analysis. This led to the development of 

specific strategies to efficiently identify meaningful clinical groups qualitatively. According to 

the pre-defined systematic review protocol, the overall aim was to minimise both clinical and 

statistical heterogeneity. For each size effect that indicates incremental value, the 

overarching strategy was to minimise heterogeneity by matching the outcomes, FRS 

iterations, cut-point, baseline risk, symptoms and adjustment. For reclassification and 

discrimination measures, the prediction horizon of studies was matched. 

 

3.7 Meta-analysis 

Statistical pooling of relevant prognostic or time-to-event summary statistics was attempted. 

A weighted average of any relevant summary statistics across subgroups within a study was 

obtained (101). Statistical heterogeneity was assessed using the I2 statistic (103). Pooling 

was attempted provided there was at most moderate statistical (I2 ≤ 50%) and clinical 

heterogeneity. A random-effects meta-analysis model was used for pooling individual study 

estimates and the overall estimates were expressed as pooled summary statistics with 95% 

CIs (104). All statistical testing was two-sided and p<0.05 was considered statistically 

significant. In the secondary analysis, the effect size of the adjusted and unadjusted 

summary statistics used in the meta-analysis was compared. For example, comparison 

between adjusted and unadjusted hazard ratios. Meta-analyses were carried out using 

STATA version 14.0 (StataCorp, College Station, Texas).  
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3.8 Unplanned methodology work 

During data extraction, considerable variation across studies was encountered, making 

direct comparison with different populations difficult. For example, the number of risk 

categories, iterations of FRS and thresholds in cardiovascular outcomes were all different. 

Although methodology work was not initially planned, the described differences prompted 

further investigation to examine the potential impact of this observed variation. In addition, 

there was also a variation of reporting practice when it came to summary statistics related to 

prognosis. The comparison of good and poor reporting practice was also evaluated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

Chapter 4 – Results & discussion of the systematic review & meta-analysis 

Section 1: Search results, calculations & evidence synthesis 

4.1 Literature search results 

A total of 801 unique hits were screened, with 35 studies encompassing 206,663 patients (7, 

16, 18, 21, 22, 102, 105-133) meeting the inclusion criteria (Figure 1). Appendix 2 shows the 

studies that investigated CACS or TACS and their individual inclusion and exclusion criteria. 

Appendix 3 shows the studies that investigated CTCA and the relevant criteria. To obtain 

unpublished publications, authors of conference abstracts were contacted up to a maximum 

of 3 times and a log was kept. Thirty-three authors from unpublished studies who might have 

additional full publications were identified. One conference abstract was associated with a 

full publication but did not fit the inclusion criteria. Fifteen authors were associated with 

relevant observational cohorts, for example MESA, and full publications were identified 

during the full-text search. We contacted 11 authors who might have additional full 

publications and received 4 replies which yielded 1 full publication (110) that was included. 

Six authors’ emails could not be identified. 
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Figure 1. PRISMA-P flow chart 

 

4.2 Assessment of bias within the included studies 

Using the QUIPS bias assessment tool (96), the included studies were predominantly at low 

risk of bias concerning study participation, measurement of CACS/ CTCA/ TACS, outcome 

measure and confounding factors. There was low to moderate risk of bias for statistical 

analysis as several studies selectively reported results and/ were not clear about the process 

Titles & abstracts identified n = 1304 

Unique items to screen n = 801 

Accepted full text publication n = 25 

Duplicates removed n = 503 

Conference abstract n = 33 Full text publication n = 37 

Items excluded at title and 

abstract screening n = 731 

Retrieved full text publication from 

conference abstract n = 1 

 

Accepted publication after 

full text screening n = 24 

  

Retrieved publication from citation 

chasing and snowballing n = 10 

Accepted full text publication n = 35 
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of model building. Most studies were at high risk of attrition bias because there was a 

notable amount of missing data and the number of participants lost to follow-up was not 

accounted for. Figure 2 shows the overall quality assessment using the QUIPS bias 

assessment tool.  

 

Figure 2. QUIPS bias assessment tool 

 

4.3 Demographics of included cohort studies 

Calcium & thoracic calcium score: Included studies’ demographics 

Thirty-one studies encompassing 165,861 patients met our inclusion criteria. The CONFIRM 

cohort had 2 studies (124, 132), the DHS cohort had 1 study (122), the EISNER cohort had 

2 studies (21, 121), the HNR cohort had 5 studies (7, 112, 117, 118, 127), the MESA cohort 

had 5 studies (16, 109, 113, 115, 116, 119, 123, 126), the Rotterdam cohort had 2 studies 

(16, 109), the St Francis Heart cohort had 1 study (123) and there were 13 independent 

studies (18, 102, 105-108, 110, 111, 114, 120, 125, 131, 133). The clinical classification 

means that the meta-analysis of time-to-event measures was conducted according to the 

categorical or logarithmic classification of CACS/TACS. 
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Table 1 shows the demographic information of the included studies. The studies were 

conducted worldwide, predominantly using a prospective design. A total of 165,861 

participants (men = 97085, 56%) either with or without symptoms at enrolment were 

evaluated with either CACS or TACS. None of the participants were known to have 

cardiovascular disease. The Wilson 1998 and Adult Treatment Panel III 2002 were the most 

popular models used. A variety of risk thresholds have been used with most studies adopting 

3 or 4 cardiovascular risk categories. 

 

Computed tomographic coronary angiogram: Included studies’ demographics 

There were 9 included studies of which the CONFIRM cohort had 4 studies (22, 124, 128, 

132) and the remaining 5 were independent studies. The clinical classification means that 

the meta-analysis of the time-to-event measure was conducted according to the number of 

vessels that had obstructive coronary disease. Unspecified obstructive coronary disease 

was classed as 1-vessel disease. The included studies were conducted in North America, 

Europe and Asia from 2003 and 2010. Information regarding scanning parameters of CTCA 

and image quality was inadequate. Although there were a variety of CT scanners used, most 

were 64-slice multi-detector scanners. 

 

A total of 60,687 participants (men = 33,193, 57%) either with or without symptoms at 

enrolment were evaluated with CTCA. No participants were known to have cardiovascular 

disease. The most commonly used FRS was Framingham/ Wilson 1998 (3). The included 

studies that solely had symptomatic participants had the highest crude mortality rate. Table 2 

shows the other characteristics of the included studies.  
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4.4 Technology 

In the period investigated, there was a transition from electron beam CT to multi-detector 

technology. All the studies used the Agatston method to measure both CACS and TACS 

(113). In addition, all 31 included studies reported CACS however only 3 studies reported 

TACS. A variety of CT scanners were used conducting CTCA using 64-slice multi-detector 

scanners (see information in subsequent chapters). All studies used the Agatston method to 

measure both CACS & TACS (113). Retrospective ECG-gating yielded the highest radiation 

dose. Information regarding scanning parameters of CACS can be found in Table 3. The 

mean body mass index (BMI) was between 24 and 29.1. 
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Studies N Cohort Prospective Symptoms Age, 
years 

Framingham Risk 
Score 

Lost-to-
follow-up, % 

Follow Up, 
months 

 

Horizon, 
years 

 

Men, 
% 

Event 
Rate, % 

 
 

Agarwal et al, 2013 
 
 

1443 DHS Yes No 61.4 n/a 22.2 88 7.4 45.9 0.1 

Ahmadi et al, 2011 
  

730 Independent No No 61.0 2002 n/a 48 10 87.1 7.3 

Arad et al, 2005 
  

4903 St Francis 
Heart 

Yes No 59.0 ?2002 5.9 51.6^^ 10 65.0 2.6 

Budoff et al, 2007 
  

25253 Independent Yes No 56.0 2002 0.0 81.6 10 54.1 2.0 

Chang et al, 2015 
  

988 Independent Yes Yes 57.5 2002 4.3 82.8^ 10 75.3 11.2 

Cho et al, 2012 
  

7590 CONFIRM Yes No 58.0 1998 35.8 24 2.5 60.9 1.5 

Cho et al, 2015 
  

3217 CONFIRM Yes No 57.0 1998 n/a 24^ 2.5 63.1 1.8 

Elias-Smale et al, 
2010 
  

2040 Rotterdam Yes No 69.6 1998 0.6 110.4^ 10 42.6 6.7 

Elias-Smale et al, 
2011  

2196 HNR Yes No 69.2 2002 2.0 42^ 5 45.2 5.1 

Erbel et al, 2010 
  

4487 HNR Yes No 59.3 or 
62.9 

1998 & 2002 8.0 61,2, 60^ 10 47.3 2.3 

Forouzandeh et al, 
2013 
  

760 Independent No Yes 54.4 1998 + BMI n/a 39.6^ n/a 40.8 5.9 

Gibson et al, 2014 
  

6814 MESA Yes No 61.9 or 
67.9 

Framingham 
Stroke Risk Score 

0.5 114 n/a 47.2 3.5  
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Greenland et al, 
2004 
  

1031 Independent Yes No 65.7 2002 0.2 75.9 10 90.1 8.2 

Hadamitzky et al, 
2010 
  

451 Independent No No 58.7 1998 5.1 27.5^ n/a 74.1 2.2 

Han et al, 2015 
  

34386 Independent No No 53.8 2002 36.4 57.6^ 10 77.1 0.9 

Hermann et al, 2013 
  

4180 HNR Yes No 59.2 1998 n/a 94.9^^^ n/a 47.1 2.2 

Kavousi et al, 2012 
  

5933 Rotterdam Yes No 69.1 1998 0.3 81.6^ 10 40.5 5.8 

Lau et al, 2012 
  

151 Independent Yes No 60.9 1998** 0.0 61 10 40.4 11.3 

Matsushita et al, 
2015  

6562 MESA Yes No 62.0 2008 0.1 100.8^ n/a 48.0 9.9 

Mohlenkamp et al, 
2011  

2238 HNR No No 56.6 1998 13.6 61.2^ 5 30.8 2.8 

Mohlenkamp et al, 
2011  

4338 HNR Yes No 59.2 or 
62.8 

1998 8.6 60^ 10 46.5 2.3 

Park et al, 2013 
  

7071 Independent No No 53.0 1998 26.7 48^ n/a 60.5 1.3 

Polonsky et al, 2010 
  

5931 MESA Yes No 62.0 2002 0.9 69.6^ 5 46.4 3.6 

Raggi et al, 2001 
  

676 Independent Yes No 52 or 
55 

n/a n/a 32 n/a 50.9 4.4 

Raggi et al, 2004 
  

10377 Independent Yes No 52 or 
55 

2002 n/a 60 5 59.6 2.4 
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Table 1. The characteristics of the 31 included studies 

 

 

 

 

 

 

Studies 
  

N Cohort Prospective Symptoms Age, 
year 

Male
 % 

FRS 
type 

Low 
% 

Medium 
% 

High
% 

FU, 
months 

Event 
% 

CT Dose 
mSv 

CMR
% 

Cho 2012 (Asia, Europe &  7590 CONFIRM Yes No 58 60.9 1998 48 33 19 24 1.5 MDCT n/a 7.60 

Rana et al, 2012 
  

1286 EISNER Yes No 58.6 2008 0.5 49.2 4 52.8 2.7 

Valenti et al, 2015 
  

9715 Independent Yes No 53.4 1998 & 2002 n/a 175.2 10 59.3 9.6 

Versteylen et al, 
2013 
  

1556 Independent Unknown Yes 60.0 2008 19.9 26 n/a 57.7 1.8 

Wong et al, 2009 
  

2483 EISNER* Yes No 55.7 2002 7.2 52.8^ 10 61.6 0.7, 1.8 
or 2.0 

Yeboah et al, 2012 
  

1330 MESA Yes No 63.8 2002 n/a 90 7.5 for 
NRI 

66.7 7.1 or 9.2 

Yeboah et al, 2014 
  

5745 MESA Yes No 62.1 1998 n/a 90^ 10 46.1 4.4, 5.6 
or 6.0 

Follow-up period is expressed as the mean of the population unless otherwise specified. ^ = median; ^^ = as total; ^^^ = unclear whether the results represent median or 
mean;  
* = This is consisted of a mixture of EISNER and a separate independent cohort ** = calibrated for the Chinese population 
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North America) 
  

64 

Cho 2015 (Asia, Europe &  
North America) 
  

3217 CONFIRM Yes No 57 63.1 1998 n/a n/a n/a 24 1.8 MDCT 
64 

*10.1 9.01 

Chow 2010 (North America) 
 
  

2172 n/a Yes Both 58 52.6 2002 8 64 28 16 2.9 MDCT 
64 

14.9 22.0
4 

Chow 2011 (Asia, Europe & 
North America) 
  

14064 CONFIRM Yes Yes 57 50.9 2002 + 
LVEF 

24 58 18 22.5 1.9 MDCT 
64 

10.7 10.3
5 

Hadamitzky 2010 (Europe) 
 
  

451 n/a No No 59 74.1 1998 33 56 11 27.5 2.2 MDCT 
16/64 

7.9/5.7 9.68 

Hadamitzky 2013 (Asia,  
Europe & North America) 
  

21902 CONFIRM No Yes 57/58 53.0 1998 & 
2002 

51 32 17 27.6/18 1.8/1.2 MDCT 
64 

n/a 11.8
8 

Lin 2011 (North America) 
 
  

2664 n/a Yes Both 53 42.1 Modified 
FRS 

Median 
= 11 

n/a n/a 37.2 2.2 MDCT 
64 

3-18 6.74 

Park 2013 (Asia) 
 
  

7071 n/a No No 53 60.5 1998 42 53 5 48 1.3 MDCT 
64 

12.5-
13 

3.14 

Versteylen 2013 (Europe) 
 
  

1556 n/a n/a Yes 60 57.7 2008 Median 
= 26 

n/a n/a 26 19.8 MDCT 
64 

5.7 8.11 

Abbreviations: CACS = calcium score; CMR = crude mortality rate expressed in 1000 patients years; FRS = Framingham Risk Score; FU = follow-up; MDCT = multi-detector CT; n/a = not available; 
LVEF = left ventricular ejection fraction. *Conversion factor = 0.014 
 

Table 2. The design and participant characteristics of the 9 included studies 



51 
 

Studies, 

Year 

CT Machine & Manufacturer Scanner 

Type 

Dose 

(mSv) 

Agarwal et 

al, 2013 

GE HiSpeed Lx with Smart Score Cardiac scan package Single slice n/a 

Ahmadi et al, 

2011 

Siemens Definition dual-source 64-slice scanner MDCT n/a 

Arad et al, 

2005 

GE Imatron C-150 XP EBCT n/a 

Budoff et al, 

2007 

GE Imatron C-150 XP EBCT 0.6 

Chang et al, 

2015 

GE Imatron C-150 EBCT n/a 

Cho et al, 

2012 

64-slice CT  MDCT n/a 

Cho et al, 

2015 

64-slice CT with single or dual source MDCT *10.1 

Elias-Smale 

et al, 2010 

GE Imatron C-150 EBCT n/a 

Elias-Smale 

et al, 2011 

SOMATOM Sensation 16-slice or 64-slice CT EBCT 2.1 

Erbel et al, 

2010 

GE Imatron C-100 or C-150 EBCT n/a 

Forouzandeh 

et al, 2013 

Philips Prededence 16-slice MDCT n/a 

Gibson et al, 

2014 

GE Imatron C150, Volume Zoom 4-detector row CT system, 

LightSpeed 4-detector row CT systems (LightSpeed QXi & 

LightSpeed Plus) 

EBCT/MDCT 0.5-6.5 

Greenland et 

al, 2004 

n/a n/a n/a 
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Hadamitzky 

et al, 2010 

Siemens Somatom Sensation 16-slice system, 64-slice singe 

& dual-source system 

MDCT n/a 

Han et al, 

2015 

Philips Brillaince 256 iCT, Philips Brilliance 40 channel MDCT, 

Siemens 16-slice Sensation or GE 64-slice Lightspeed 

MDCT n/a 

Hermann et 

al, 2013 

GE C-150 Imatron EBCT n/a 

Kavousi et 

al, 2012 

GE Imatron C-150, Simens Somatom Sensation 16 or 64 EBCT n/a 

Lau et al, 

2012 

GE Lightspeed 64 MDCT n/a 

Matsushita 

et al, 2015 

Same as Gibson 2014 MDCT 0.5-6.5 

Mohlenkamp 

et al, 2011 

GE Imatron C-150 EBCT/MDCT n/a 

Mohlenkamp 

et al, 2011 

GE Imatron C-150 EBCT n/a 

Park et al, 

2013 

Philips Brilliance 64 EBCT 12.5-13 

Polonsky et 

al, 2010 

n/a EBCT/MDCT n/a 

Raggi et al, 

2001 

GE Imatron C-100  EBCT n/a 

Raggi et al, 

2004 

GE Imatron C-100 or C-150 EBCT n/a 

Rana et al, 

2012 

GE Imatron or Siemens MDCT EBCT 1-2 

Valenti et al, 

2015 

C-100 or C-150 Ultrafast Imatron EBCT 1 

Versteylen et Philips Brilliance 64 & Siemens Definition First generation MDCT 5.7 
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al, 2013 dual-source 

Wong et al, 

2009 

GE C-150XP or Siemens 4-slice Somatom Volume Zoon EBCT/MDCT n/a 

Yeboah et al, 

2012 

n/a EBCT/MDCT n/a 

Yeboah et al, 

2014 

n/a EBCT/MDCT n/a 

*Conversion factor = 0.014. Abbreviations: CT = computed tomography; EBCT = electron beam CT;  

GE = General Electric; MDCT = multi-detector CT; mSv = millisieverts; n/a = not available 

Table 3. The vendor and technology of the scanners to determine CACS 
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4.5 Reported outcomes & thresholds in Framingham Risk Score 

To meaningfully summarise the results, the outcomes were divided into 4 categories: stroke 

events; all-cause mortality; composite cardiac events including and excluding all-cause 

mortality (Table 4). This classification deviated from the original protocol due to the 

abundance of composite cardiovascular outcomes. Further analysis was conducted 

regarding the use of these outcomes. Appendix 2 and 3 illustrate the definition of endpoints 

(as well as inclusion and exclusion criteria) used within the studies. 

 

Predictor Outcome Number of 

studies 

CACS All-cause mortality only 5 

 
Composite cardiac events only (excluding all-cause mortality) 16 

 
Composite cardiac events (including all-cause mortality) 5 

 
Stroke events only 2 

TACS Composite cardiac events only (excluding all-cause mortality) 3 

CTCA All-cause mortality only 3 

 
Composite cardiac events only (excluding all-cause mortality) 3 

 
Composite cardiac events (including all-cause mortality) 3 

Table 4. The reported outcomes of the 35 included studies 

 

Most participants had estimated low or intermediate baseline risk, but the choice of cut-off 

was variable. All studies used 2 or 3 cut-offs for categorisation of cardiovascular risk but 

definitions differed (Table 5). The presence of at least 2 cut-offs for cardiovascular risk 

estimation meaning a straightforward correlation between category based NRIs and Δ AUCs 

was not possible.  
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Study, Year Cut-offs 

Agarwal et al, 2013 <7, 7-<20 & >20 

Ahmadi et al, 2011 <10, 10-20 & >20 

Arad et al, 2005 <10, 10-20 & >20 

Budoff et al, 2007 n/a 

Chang et al, 2015 <6, 6-20 & >20 

Cho et al, 2012 <10, 10-15, 16-20 & >20 

Cho et al, 2015 <10, 10-15, 16-20 & >20 

Chow et al, 2010 <10, 10-20 & >20 

Chow et al, 2011 <10, 10-20 & >20 

Elias-Smale et al, 2010 <10, 10-20 & >20 

Elias-Smale et al, 2011 <5, 5-10 & >10 

Erbel et al, 2010 <6, <10, 6-20, 10-20 & >20 

Forouzandeh et al, 2013 n/a 

Gibson et al, 2014 n/a 

Greenland et al, 2004 <9, 10-15, 16-20 & >21 

Hadamitzky et al, 2010 <6, 6-20 & >20 

Hadamitzky et al, 201 <10, 10-20 & >20 

Han et al, 2015 <10, 10-15, 15-20 & >20 

Hermann et al, 2013 <10, 10-20 & >20 

Kavousi et al, 2012 <10, 10-20 & >20 

Lau et al, 2012 n/a 

Lin et al, 2011 <1.4, 1.4-1.8, >1.8 

Matsushita et al, 2015 n/a 

Mohlenkamp et al, 2011 <3, 3-10 & >10 

Mohlenkamp et al, 2011 <10, 10-20 & >20 

Park et al, 2013 <5, 5-15 & >15 

Polonsky et al, 2010 <3, 3-10 & >10 

Raggi et al, 2001 n/a 
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Raggi et al, 2004 <0.6, 0.6-2 & >2 

Rana et al, 2012 <2.4, 2.4-8 & >8 

Valenti et al, 2015 <10, 10-20 & >20 

Versteylen et al, 2013 n/a 

Wong et al, 2009 n/a 

Yeboah et al, 2012 <5, 5-20 & >20 

Yeboah et al, 2014 <5, 5-20 & >20 

Table 5. Thresholds used for Framingham Risk Score 

 

4.6 Modelling methods, prediction horizons, validation & calibration 

Two-thirds of the included studies applied the traditional Cox proportional hazard model. 

Two studies used the stratified or stepwise Cox proportional hazard model (105, 106) whilst 

2 studies used the Weibull hazard model (109, 112). Three studies adopted logistic 

regression (120, 122, 123) and 4 studies did not specify the model used (7, 116, 125, 132). 

The majority of studies predicted outcomes for 10 years. Other studies used a mixture of 

unspecified and specified time frames and some did not specify the time frame. Of note, 

some studies’ prediction horizons correlate with their maximum follow-up period. Only one-

third of the included studies reported information about validation and calibration (7, 22, 105, 

109, 112, 113, 116-120, 124, 128, 130-132) (see Table 6). 

 

Investigation Year Author Model Information  Note 

CACS 2011 Ahmadi Bootstrapping internal validation Unspecified N 

CACS 2012 Cho Bootstrapping internal validation Unspecified N 

CACS 2010 Elias-Smale Bootstrapping internal validation N = 150 

CACS 2011 Elias-Smale Bootstrapping internal validation N = 150 

CACS 2010 Erbel Calibration with Hosmer- X2 = 15.5, p = 
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Table 6. Information regarding validation and calibration 

 

 

 

 

Lemeshaw test 0.05 

CACS 2015 Matsushita Calibration with modified Hosmer-

Lemeshaw test 

X2 = <18, no p-

value 

CACS 2011 Mohlenkamp Calibration with Hosmer-

Lemeshaw test 

X2 = 1.3, p = 0.74 

CACS 2011 Mohlenkamp Calibration with Hosmer-

Lemeshaw test 

X2 = 7.1, p = 0.53 

CACS 2010 Polonsky Calibration with Hosmer-

Lemeshaw test 

X2 = 9.15, p = 

0.24 

CACS 2001 Raggi Calibration with Hosmer-

Lemeshaw test 

Not specified 

CACS 2014 Yeboah Calibration with Hosmer-

Lemeshaw test 

X2 = 8.42, p = 

0.42 

TACS 2011 Elias-Smale Bootstrapping internal validation N = 150 

CTCA 2015 Cho Bootstrapping internal validation Unspecified N 

CTCA 2011 Chow Overfitting considered Unspecified 

CTCA 2013 Hadamitzky Internal & external validation Internal = splitting 

test samples; 

external = 

external data set 

CTCA 2010 Chow Overfitting considered Sensitivity 

analysis 

CTCA 2013 Park Bootstrapping internal validation N = 1000 
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4.7 Estimation of size effect: Hazard ratio, area under the operating curve & net 

reclassification index 

Estimating missing hazard ratios from Kaplan Meier curve 

Five studies were included for meta-analysis after assessment of conceptual, clinical and 

statistical heterogeneity but had missing HRs (106, 108, 110, 111, 131). Using the described 

method in Chapter 3, the source of Kaplan-Meier Curves in the relevant publication and the 

reference group used is shown below: 

• Using Figure 1a from Budoff 2007 (106), the following HRs and respective 95% CIs 

were extracted: 

o Reference group: CACS = 0, HR = 1 

o Estimated group 1: CACS = 1-10, HR = 2.26, (95% CIs 1.58 to 3.24) 

o Estimated group 2: CACS = 11-100, HR = 2.14 (95% CIs 1.86 to 2.47) 

o Estimated group 3: CACS = 101-299, HR = 1.86 (95% CIs 1.69 to 2.06) 

o Estimated group 4: CACS = 300-399, HR = 1.84 (95% CIs 1.69 to 2.00) 

o Estimated group 5: CACS = 400-699, HR = 1.68 (95% CIs 1.56 to 1.82) 

o Estimated group 6: CACS = 700-999, HR = 1.69 (95% CIs 1.56 to 1.72) 

o Estimated group 7: CACS = >1000, HR = 1.37 (95% CIs 1.29 to 1.46) 

• Using Figure 1c from Chang 2015 (108), the following HRs and respective 95% CI 

were extracted: 

o Reference group: CACS = 0, HR = 1 

o Estimated group 1: CACS = 11-100, HR = 1.505 (95% CIs 0.682 to 3.319) 

o Estimated group 2: CACS = 101-400, HR = 1.440 (95% CIs 1.012 to 2.048) 

o Estimated group 3: CACS = >400, HR = 1.751 (95% CIs 1.408 to 2.177) 

• Using Figure 4a from Foronzandeh 2013 (110), the following HRs and respective 95% 

CI were extracted: 

o Reference group: CACS = 0, HR = 1 
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o Estimated group 1: CACS = 11-100, HR = 6.12 (95% CIs 2.15 to 17.36) 

o Estimated group 2: CACS = 101-400, HR = 3.92 (95% CIs 2.31 to 6.65) 

o Estimated group 3: CACS = >400, HR = 2.99 (95% CIs 2.14 to 4.16) 

• Using Figure 2 from Hadamitzky 2010 (111), the following HRs and respective 95% 

CIs were extracted: 

o Reference group: Non-obstructive CAD, HR = 1 

o Estimated group 1: Obstructive CAD, HR = 23.45 (95% CIs 2.89 to 190.60) 

 

As discussed, the choice of reference group influences the estimated HRs as illustrated 

below: 

• Using Figure 3 from Park 2013 (131), the following HRs and respective 95% CI were 

extracted: 

o Reference group 1: degree of epicardial stenosis = 0%, HR = 1 

o Reference group 2: degree of epicardial stenosis = 1-49%, HR = 1 

o Estimated group 1 (using reference group 1): degree of epicardial stenosis 1-

49%, HR = 2.83 (95% CIs 1.47 to 5.43) 

o Estimated group 2 (using reference group 1): degree of epicardial stenosis = 

50-69% or left main stem stenosis 1-49%, HR = 3.24 (95% CIs 2.28 to 4.63) 

o Estimated group 2 (using reference group 2): degree of epicardial stenosis = 

50-69% or left main stem stenosis 1-49%, HR = 2.03 (95% CIs 1.47 to 2.79) 

o Estimated group 3 (using reference group 1): degree of epicardial 

stenosis >/= 70% or left main stem stenosis >/= 50%, HR = 3.05 (95% CIs 

2.47 to 3.76) 

o Estimated group 3 (using reference group 2): degree of epicardial 

stenosis >/= 70% or left main stem stenosis >/= 50%, HR = 1.69 (95% CIs 

1.43 to 2.00) 
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Comparison of adjusted & unadjusted hazard ratios 

Most reported HRs were not adjusted and therefore these results should be interpreted 

cautiously as overestimation is a concern. Two studies provided both adjusted and 

unadjusted HR. The pooled HR concerning the number of vessels with obstructive disease 

reduced after adjustment for FRS variables (124, 129). The following illustrates the 

difference: 

• Subgroup 1: One-vessel disease 

o Unadjusted HR = 2.48 (95% CIs 1.30 to 3.66) 

o Adjusted HR = 1.42 (95% CIs 0.73 to 2.12) 

• Subgroup 2: Two-vessel disease 

o Unadjusted HR = 4.16 (95% CIs 2.07 to 6.25) 

o Adjusted HR = 2.10 (95% CIs 0.98 to 3.22) 

• Subgroup 3: Three-vessel disease 

o Unadjusted HR = 8.04 (95% CIs 4.06 to 12.07) 

o Adjusted HR = 2.91 (95% CIs 1.55 to 5.47) 

 

Estimating confidence intervals of area under the receiver operating curve 

Selective reporting of Δ AUC is prevalent; only 7 publications provided 95% CIs of Δ AUC 

(16, 102, 116, 127, 130, 132, 133). In addition to the description in the method section, four 

publications (102, 123-125) required estimation from a method that derives AUCs from the 

same population (94). In one publication (123) it was unclear whether the stated values 

represent SE or SD and the method described in (94) was used.  
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Weighted average 

Cut points between studies were not comparable and therefore aggregate data was sought 

to enable meaningful comparison across studies. A weighted average of HRs or Δ AUC and 

their respective 95% CIs across subgroups within a study were obtained according to the 

Cochrane Handbook (101). This method used the number of participants and the SD of each 

subgroup. The 3 publications below required this method: 

• Cho 2015 (132), effect estimate = Δ AUC 

o Subgroup 1: CACS 0-10, n=1818, Δ AUC = 0.07 (95% CIs -0.02 to 0.17, SD 

2.07) 

o Subgroup 2: CACS 11-100, n=574, Δ AUC = 0.05 (95% CIs -0.05 to 0.14, SD 

1.16) 

o Subgroup 3: CACS 101-400, n=472, Δ AUC = 0.13 (95% CIs 0.03 to 0.23, SD 

1.11) 

o Subgroup 4: CACS 401-1000, n=217, Δ AUC = 0.17 (95% CIs -0.03 to 0.37, 

SD 1.50) 

o Subgroup 5: CACS >1000, n=136, Δ AUC = 0.23 (95% CIs 0.05 to 0.40, SD 

1.04) 

o Weighted average: All CACS, n=3217, Δ AUC = 0.09 (95% CIs 0.03 to 0.15, 

SD 1.74) 

• Raggi 2004 (107), effect estimate = Δ AUC 

o Subgroup 1: Men, n = 6186, Δ AUC = 0.07 (95% CIs 0.03 to 0.10, SD 1.32) 

o Subgroup 2: Women, n = 4191, Δ AUC = 0.05 (95% CIs 0.03 to 0.07, SD 0.79) 

o Weighted average: Men & women, n=10377, Δ AUC = 0.06 (95% CIs 0.04 to 

0.08, SD 1.14) 

• Budoff 2007 (106), effect estimate = HR 

o Subgroup 1: CACS 1-10 n=3567, HR = 2.26 (95% CIs 1.58 to 3.24, SD 25.29) 
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o Subgroup 2: CACS 11-100, n=5032, HR = 2.14 (95% CIs 1.86 to 2.47, SD 

11.04) 

o Weighted average: CACS 1-100, n=8599, HR = 2.19 (95% CIs 1.46 to 2.92, 

SD 34.5) 

o Subgroup 3: CACS 101-299, n=2616, HR = 1.86 (95% CIs 1.69 to 2.06, SD 

4.83) 

o Subgroup 4: CACS 300-399, n=561, HR = 1.89 (95% CIs 1.69 to 2.00, SD 

1.87) 

o Weighted average: CACS 101-399, n=3177, HR = 1.87 (95% CIs 1.71 to 2.02, 

SD 4.45) 

o Subgroup 5: CACS 400-699, n=955, HR = 1.68 (95% CIs 1.56 to 1.82, SD 

2.05) 

o Subgroup 6: CACS 700-999, n=514, HR = 1.69 (95% CIs 1.56 to 1.72, SD 

0.93) 

o Subgroup 7: CACS >1000, n=964, HR = 1.37 (95% CIs 1.29 to 1.46, SD 1.35) 

o Weighted average: CACS >400, n=2433, HR = 1.56 (95% CIs 1.50 to 1.62, 

SD 1.60) 

 

The calculation of net reclassification index using reclassification table 

NRI was not recorded for TACS. Of the studies reporting CTCA only 1 recorded continuous 

NRI therefore pooling was not possible. For CACS, 11 of 31 studies reported NRIs but none 

shared the same baseline characteristics or outcomes so again pooling was not possible. 

However, 9 of 29 studies provided detailed reclassification tables (21-24, 27, 31, 33, 47, 48) 

that enabled the calculation of categorical NRIs 
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Each formula produces 3 main outputs, event NRI, non-event NRI and the overall NRI. 

Three of the 9 studies shared the same prediction horizon (5 years). They also had similar 

risk thresholds and subgroups, outlined below: 

- Elias-Smale 2011; cut-point 1= FRS at 10%, cut-point 2 = FRS at 20%; subgroup 1 = 

FRS <5%, subgroup 2 = FRS 5-10%, subgroup 3 = FRS >10%, subgroup 4 = all 

subjects 

- Mohlenkamp 2011; cut-point 1 = FRS at 3%, cut-point 2 = FRS at 10%; subgroup 1 = 

FRS <3%, subgroup 2 = FRS 3-10%, subgroup 3 = FRS > 10%, subgroup 4 = all 

subjects 

- Polonsky 2010 is exactly the same as Mohlenkamp 2011.  

 

Calculations were made for each of the 3 studies described above. Each contained 4 

subgroups. As a result, there were 12 outputs for each study and in total 36 outputs for 3 

studies. An example of the calculation of individual NRI components and overall NRI is as 

illustrated below: 

 

Elias-Smale 2011 (overall group as one of the 4 subgroups) 

Event NRI = (17/110) – (6/110) = 0.12 

Event SE = 0.04 

Event NRI 95% lower CI = 0.02 

Event NRI 95% upper CI = 0.15 

 

Non-event NRI = (138/2039) – (104/2039) = -0.02 
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Non-event SE = 0.01 

Event NRI 95% lower CI = -0.03 

Event NRI 95% upper CI = 0.00 

 

Overall NRI = 0.08 

Overall NRI SE = 0.04 

Overall NRI 95% lower CI = -0.00 

Overall NRI 95% upper Cl = 0.17 

 

4.8 Evidence synthesis 

As previously discussed in Chapter 3, there were many potential groups eligible for meta-

analysis. This led to the development of specific strategies to efficiently identify meaningful 

clinical groups. There were 2 stages of evidence synthesis, including the early (see Figure 3 

& 4) and late stage. The process was conducted qualitatively. Appendix 4 provides an 

example. For both CACS and CTCA, the measures that indicate association were organised 

according to the clinical and their respective classifications. Specifically, CACS was 

organised according to widely agreed categorical cut-points (100 and 400) and continuously 

as logarithmic scale; CTCA was organised according to widely accepted categorical cut-

points: 1-vessel, 2-vessls and 3-vessels diseases. There was one main difference between 

the early and late stages of evidence synthesis. In the late stage, the qualitative matching 

process was relaxed. The early strategy of evidence synthesis was robust but led to too 

many subgroups in CACS (see Figure 5) due to the self-imposed stringent qualitative 

matching process. The presence of multiple subgroups led to the limited conclusion and 

therefore the strategy was revised. Both all-cause mortality and composite cardiac outcomes 
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were treated the same. For CTCA, the concerning size effect was considered to be 1 vessel 

disease when it is not specified. The matching of symptoms and baseline risk was also 

relaxed. The difference between symptomatic and asymptomatic participants was explored 

further within in the sensitivity analysis.  
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Figure 3. Early strategy of evidence synthesis - CTCA 

Included studies n = 35; CTCA n = 10 

Effect sizes indicating incremental value:  

 

Hazard ratios n = 8 

Difference in AUCs n = 6 

Categorical net reclassification index n = 0 

Continuous net reclassification index n = 1 

Likelihood ratio n = 1 

Difference in global chi-square n = 1 

 

Pooling difference in AUCs matching 

population characteristics resulting in no 

statistical heterogeneity: 

 

Outcome = composite cardiac. 

 

Strategy: Baseline risk = low; symptoms = 

majority asymptomatic; Framingham = 

1998 or 2002; prediction horizon = 

assuming majority 10 years. Included Cho 

2015, Hadamitzky 2010, Chow 2010, Park 

2013 (n = 4). 

 

Pooling hazard ratios matching population 

characteristics resulting in minimal 

heterogeneity:  

 

Outcomes: Strategies 1 & 2 = composite cardiac; 

3-6 = all-cause mortality.  

 

Strategy 1: Cut point = 50-69% stenosis; baseline 

risk = low; symptoms = mixture. Included: Chow 

2011 & Park 2013 (n = 2). 

 

Strategy 2: Cut point = >70%; baseline risk = 

low; symptoms = mixture. Unadjusted, included: 

Chow 2011 & Park 2013 (n = 2). 

 

*Strategy 3: Cut point = non-obstructive disease; 

baseline risk = low; symptoms = mixture. 

Adjusted, included: Cho 2012 & Chow 2011 (n = 

2). 

 

Strategy 4: Cut point = 1-vessel disease; baseline 

risk = low; symptoms = mixture. Unadjusted, 

included: Cho 2012 & Lin 2011. Adjusted, 

included: Cho 2012 & Lin 2011 (n = 2). 

 

Strategy 5: Cut point = 2-vessel disease; baseline 

risk = low; symptoms = mixture. Unadjusted, 

included: Cho 2012 & Lin 2011. Adjusted, 

included: Cho 2012 & Lin 2011 (n = 2). 

 

Strategy 6: Cut point = 3-vessel disease; baseline 

risk = low; symptoms = mixture. Unadjusted, 

included: Cho 2012 & Lin 2011. Adjusted, 

included: Cho 2012 & Lin 2011 (n = 2). 

 

*Significant heterogeneity despite matching 

population characteristics. 

Other information: 

• Adjusted estimated preferred over 

unadjusted in strategies 4-6 (n = 2). 

Other information: 

• Cho 2015 estimate was combined 

as a single mean across subgroups 

(n = 1). 

• Chow 2011 not included as the 

outcome was defined as all-cause 
mortality (n = 1). 
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Figure 4. Early strategy of evidence synthesis - CACS 

Included studies n = 35; CACS n = 29 

Effect sizes indicating incremental value:  

 

Hazard ratio n = 22 

Difference in AUCs n = 27 

Categorical net reclassification index n = 11 

Continuous net reclassification index n = 2 

Likelihood chi-square n = 2 

Likelihood ratio n = 2 

Difference in global chi-square n = 2 

Integrated discrimination index n = 7 

 

Pooling categorical-NRIs matching population 

characteristics resulting in the lowest statistical 

heterogeneity: 

 

Outcome = composite cardiac. 

 

Strategy: Cut points = 2; subgroups = 

equivalent; prediction horizon = 5; event rate = 

3.6-5.1%. Included: Elias-Smale 2011, 

Mohlenkamp 2011 & Polonsky 2010 (n = 3). 

 

*Pooling hazard ratios matching population 

characteristics resulting in low statistical 

heterogeneity:  

 

Outcome: Strategy 1 = composite cardiac; 2 = 

stroke; 3 & 4 = all-cause mortality. 

 

Strategy 1: Cut point = log (CACS+1); baseline 

risk = low to intermediate; symptoms = 

mixture. Adjusted, included: Chang 2015 & 

Yeboah 2014 (n = 2).  

 

Strategy 2: Outcome = stroke; cut point = log 

(CACS+1); baseline risk = low; symptoms = 

asymptomatic. Unadjusted, included: Gibson 

2014 & Hermann 2013 (n = 2). 

 

Strategy 3: Cut point = 1-100; baseline risk = 

low to intermediate; symptoms = 

asymptomatic. Unadjusted, included: Budoff 

2007, Cho 2012, Han 2015, Mohlenkamp 2011 

& Valenti 2015 (n = 5).  

 

Strategy 4: Cut point = >400; baseline risk = 

low to intermediate; symptoms = 

asymptomatic. Adjusted, included: Cho 2012, 

Han 2015 & Mohlenkamp 2011 (n = 3). 

*Pooling difference in AUCs matching 

population characteristics resulting in low 

statistical heterogeneity: 

 

Outcome: Strategies 1-4 = composite 

cardiac; 5 = stroke. 

 

Strategy 1: FRS = 1998; prediction horizon 

= 10 years; symptom = asymptomatic. 

Included: Elias-Smale 2010, Erbel 2010, 

Cho 2012 & Lau 2012 (n = 4). 

 

Strategy 2: FRS = 2002; prediction horizon 

= 10 years; symptom = asymptomatic. 

Included: Erbel 2010 & Arad 2005 (n = 2). 

 

Strategy 3: FRS = 1998 & 2008; prediction 

horizon = 10 years; symptoms = mixed. 

Included Chang 2015 & Versteylen 2013 (n 

= 2). 

 

Strategy 4: FRS = 1998 & 2002; prediction 

horizon = 5 years; symptoms = 

asymptomatic. Included Mohlenkamp 2011 

& Polonsky 2010 (n = 2).  

 

Strategy 5: FRS = 1998 & modified for 

stroke; prediction horizon = 10 years; 

symptoms = asymptomatic. Included 

Hermann 2013 & Gibson 2014 (n = 2).  

 

*Other strategies matching population 

characteristics but still produce significant 

statistical heterogeneity not exhaustively listed.  
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Figure 5. Initial evidence synthesis for CACS 
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Section 2: Meta-analysis & discussion 

4.9 Thoracic calcium score: Association 

Three studies described limited information about TACS (21, 112, 113). TACS was 

associated with both coronary and cardiovascular events (unadjusted HR 1.18, 95% CI 1.13-

1.23, I2 = 0%, n = 2; unadjusted HR 1.17, 95% CI 1.10 to 1.24, I2 = 31.9%, n = 2) (21, 113).  

 

4.10 Coronary calcium score: Association, discrimination & reclassification 

Ten studies described the association of CACS with different outcomes (18, 21, 106, 108, 

113, 118, 124, 126, 127, 133) (see Figure 6). One study had symptoms at baseline (108). 

For the outcome all-cause mortality, CACS predicted events in CACS subgroups 1-100 

(adjusted HR 2.09, 95% CI 1.81-2.36, I2 = 0%, n = 5) (18, 106, 118, 124, 133) and >400 

(unadjusted HR 2.48, 95% CI 1.56-3.39, I2 = 4.6%, n = 3) (118, 124, 133). CACS also 

predicted composite cardiac events (adjusted HR 1.29, 95% CI 1.24-1.35, I2 = 0%, n = 2) 

and stroke events (adjusted HR 1.14, 95% CI 1.07-1.20, I2 = 0%, n = 2).  
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Figure 6. Association between cardiovascular events & CACS 

 

Fifteen studies reported that CACS added discrimination in addition to the Framingham Risk 

Score (7, 102, 105, 106, 108, 109, 117-119, 123-127, 134) (see Figure 7). Two studies had 

symptoms at baseline (108, 125). Baseline AUC ranges from 0.59-0.72 across all FRS 

iterations. Using FRS 1998 as a baseline risk model, CACS added discrimination 

(unadjusted Δ AUC = 0.05, 95% CI 0.03-0.06, I2 = 5.7%, n = 5). Similarly, adopting FRS 

2002 as a baseline risk model, CACS also added discrimination (unadjusted Δ AUC = 0.09, 

95% CI 0.06-0.13, I2 = 63.1%, n = 8). Sensitivity analysis showed a difference in added 

discrimination between symptomatic (unadjusted Δ AUC = 0.07, 95% CI 0.09-0.12, I2 = 0%, 

n = 2) and asymptomatic (unadjusted Δ AUC = 0.11, 95% CI 0.06-0.16, I2 = 73.6%, n = 6) 
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participants. In subgroup analysis, a shorter prediction horizon of 5 years (rather than 10 

years) (unadjusted Δ AUC = 0.05, 95% CI 0.02-0.07, I2 = 0%, n = 2) and the use of the 

outcome cerebrovascular disease (unadjusted Δ AUC = 0.03, 95% CI 0.01-0.06, I2 = 0%, n = 

2) also demonstrated added discrimination. 

 

Figure 7. Incremental discrimination of CACS in addition to FRS 

 

Eleven of 31 studies reported NRIs but none shared the same baseline characteristics or 

outcomes and pooling was not done. However, 9 of the 29 studies provided detailed 

reclassification tables (16, 112, 117, 119, 121, 122, 124, 128, 135) that enabled calculation 

of NRIs. Three of those 9 studies shared similar characteristics which enabled pooling of 

category-based event, non-event and combined NRI (112, 117, 119) (see Figure 8). 
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Statistical pooling showed that CACS had a differing impact on different components of NRI 

within the overall risk category (category -based event NRI = 0.22, 95% CI 0.15-0.28, I2 = 

0%, n = 3; non-event NRI = 0, 95% CI -0.03-0.03, I2 = 89%, n = 3; combined NRI = 0.22, 95% 

CI 0.16-0.28, I2 = 0%) (112, 117, 119). The comparison of unadjusted and adjusted NRIs 

(using Kaplan-Meier event rate) was made (136). NRIs in 1 study showed a difference 

ranging from 0.022 to 0.035 (119). 

 

 

Figure 8. The category-based NRI (A) Event NRI. (B) Non-event NRI. (C) Combined NRI. 
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Incremental values displayed as IDI or rIDI (7, 108, 116-119, 121, 127) and continuous NRI 

(127, 132, 135) did not enable statistical pooling. 

 

4.11 Computed tomographic coronary angiogram: Association & discrimination 

During a mean follow-up of 2.9 years (range 1.3-4.0 years, 124,680 patient years) there 

were 1238 composite cardiac events reported. The overall pooled incident composite 

cardiac event rate was 1.41 per 1000 patient years. Most studies reported the overall events 

but not according to a patient with no coronary disease or obstructive coronary disease. 

Pooling of crude mortality ratios was not done due to heterogeneity. CTCA demonstrated 

incremental prognostic value in addition to FRS in terms of association and discrimination 

but no relevant measures of overall performance, reclassification or clinical usefulness were 

seen. 

 

Obstructive coronary disease (luminal stenosis > 50%) detected on CTCA and the number 

of vessels with obstructive disease was associated with cardiac events and/ or 

cardiovascular comorbidities as indicated by time-to-event measures (Figure 9). There was 

evidence that individuals with 1-vessel obstructive disease compared to no coronary artery 

disease had a higher hazard for cardiac events or cardiovascular comorbidities (HR 1.75, 95% 

CI 1.42 to 2.07, I2=0%, n=4). Two of the included studies did not specify whether the 

summary estimates were unadjusted or adjusted (130, 131). Sensitivity analyses showed 

that studies (124, 129) that explicitly adjusted for FRS risk factors resulted in a lower hazard 

ratio for cardiac events or cardiovascular comorbidities (HR 1.42, 95% CI 0.73 to 2.12, 

I2=0%, n=2), compared to studies (130, 131) that did not explicitly state adjustment (HR 2.01, 

95% CI 0.76 to 3.26, I2=15%, n=2). Individuals with 2-vessel obstructive disease compared 

to no coronary artery disease had a higher hazard for cardiac events and/ or cardiovascular 

comorbidities (HR 2.10, 95% CI 0.98 to 3.21, I2=0%, n=2). Individuals with 3-vessel 
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obstructive disease compared to no coronary artery disease had a higher hazard for cardiac 

events or cardiovascular comorbidities (HR 3.32 95% CI 1.55 to 5.08, I2=0%, n=3). In the 3-

vessel disease category, sensitivity analysis showed that studies that explicitly adjusted for 

FRS risk factors led to small changes (HR 3.22, 95% CI 1.44 to 5.01, I2=0%, n=2). Overall, 

3-vessel obstructive coronary disease was the most hazardous compared to no coronary 

disease.  

 

There was evidence for the added prognostic value of CTCA in predicting composite cardiac 

events (Δ AUC = 0.07, 95% CI 0.04 to 0.09, I2 = 0%, n = 4) (Figure 10) (111, 130-132). 

Subgroup analysis including only asymptomatic participants still showed incremental value 

(Δ AUC = 0.06, 95% CI 0.04 to 0.08, I2 = 0%, n = 3) (111, 131, 132). CTCA showed added 

prognostic value when both coronary calcium score and FRS were utilised (Δ AUC = 0.04, 

95% CI 0.01 to 0.07, I2 = 6.8%, n = 2) (111, 124). Two studies from the CONFIRM cohort 

recorded summary estimates apart from HR and Δ AUC. 

 

A 2012 publication (124) recorded categorical NRI = 0.43, 95% CI 0.25-0.64 and likelihood 

ratio = 1128.35, p<0.001. A 2015 publication (132) recorded continuous NRI and likelihood 

ratios according to calcium score subgroups (results not shown here). 
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Figure 9. Association between obstructive coronary disease & cardiovascular disease 
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Figure 10. The added discrimination of computed tomographic coronary angiogram in 

predicting composite cardiac events in addition to Framingham Risk Score 

 

4.12 Discussion 

This review provides more information about the discriminatory abilities of adding CACS and 

CTCA to the well-documented Framingham multivariate model. However, the magnitude of 

the improved reclassification above FRS as a baseline model deserves further scrutiny. 

There is no available data on the incremental value of TACS. Regarding prediction, there 

was evidence that the higher the CACS, the higher the risk of CVD (27). The results showed 

an overlap between CACS categories. The number of vessels with obstructive coronary 

disease detected on CTCA positively correlated with the occurrence of endpoints. The 

survival data was independent of invasive coronary angiography. 
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Based on Δ AUCs, there was some evidence that the addition of CACS or CTCA modestly 

improved discrimination when compared to FRS alone. This small improvement should not 

be discounted; accepted risk factors, such as smoking, have only marginal impact on AUC 

but are capable of more accurate reclassification (38). Of the studies that demonstrated 

incremental value to FRS, there was often a lack of statistical significance but the general 

direction indicated added explanatory power (88, 89). The performance of baseline FRS had 

an impact on the amount of extra discrimination with the addition of CACS or CTCA (see 

Figure 10), which is known in the literature (31, 137). Overall, the magnitude of improvement 

in Δ AUC is currently difficult to relate to clinical practice. There was relatively more 

prognostic evidence here associated with CACS compared to CTCA, though the prime focus 

was not head-to-head comparison. For the purpose of CVD risk stratification in 

asymptomatic patients, there is an argument to initially risk stratify based solely on CACS 

and not perform CTCA. CACS has become routine clinical practice when patients are 

investigated for chest pain. This was not available at the time when these studies were 

conducted. With the widespread routine documentation of FRS risk factors and the 

increasing availability of calcium score, using the calcium score as an adjunct is a realistic 

possibility. Based on the added value demonstrated, there may be a role for CACS in 

existing clinical pathways. Clinical scenarios are more straightforward when FRS and CACS 

correlate. When both are low, patients can be assumed to be low risk. When both are high, 

patients can be assumed to be high risk. While there is an overlap between FRS risk factors 

and CACS, discrepancy between the two can be problematic. Clinicians will probably be left 

wondering whether to leave the patient alone, attempt to serially monitor CACS, empirically 

treat or refer patients for onward investigation. 

 

It was difficult to draw firm conclusions based on direct comparisons of category-based NRIs 

because they have been derived from different populations (138). All of the included studies 

used at least 2 cut-offs for cardiovascular risk estimation meaning a straightforward 
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correlation between category-based NRIs and Δ AUCs was not possible. Overall, the 

combined category-based NRIs of CACS suggested net improvement of reclassification. 

From our meta-analysis, the combined NRIs were predominantly driven by event NRIs. This 

illustrates the potential inflation of the ability of CACS to reclassify events whilst downplaying 

its inability to reclassify non-events. In addition, the impact of non-event NRIs was diluted as 

unweighted combined NRIs did not take prevalence into account. The results suggest that 

when CACS-led strategy is applied to a cohort of participants, it will correctly identify those 

who experience events. However, this comes at a cost of classifying individuals as higher 

risk who will not actually experience any event. 

 

The available evidence needs to be cautiously interpreted as the methodology is 

complicated. Clinicians should be aware that reclassification measures depend on 

demographic factors. The pooling of the Δ AUC may be insensitive to detect (small) 

improvements in the performance of FRS when a new marker is added. This is because 

FRS already included important predictors. Careful consideration of costs and benefits, test 

trade-offs and calibrations are required to make decisions on meaningful changes in AUC 

(38, 139). Similarly, the key to interpreting NRI depends on reporting transparency. A 

detailed reclassification table would promote interpretation of the individual components of 

NRI. To fundamentally address these issues, the ideal study to determine whether CACS or 

CTCA and FRS together are better than FRS alone would be a randomised controlled trial. If 

a person is classified as high risk based on FRS or develops chest pain, it would not be 

ethical to not actively manage the person with onward treatment or investigation. It is also 

important to remember that FRS was developed within an asymptomatic population. Future 

studies would probably continue to be of an observational cohort design and likely 

conducted within an asymptomatic population. The effect of treatment during the inception of 

any future cohort should be considered, which is not currently the case. The current lack of 

reporting on calibration and validation of the models reflects previous studies (5). Focus 
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should be shifted towards external validation, rather than remaining at the stage of model 

development.  
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Chapter 5 - Use of association, discrimination and reclassification to improve 

prediction: An update using studies reporting calcium score and computed 

tomographic coronary angiogram in addition to Framingham Risk Score 

 

5.1 Link with the systematic review 

Amongst CACS, there was a variety of baseline AUC ranges (0.59-0.72) across all FRS 

iterations. Variation in patient demographics may explain this. The baseline performance 

impacts on the incremental value as that is the starting point from which any additional 

benefit is measured. To examine the variable baseline performance further, the included 

studies from Chapter 3 were scrutinised to look for any particular reporting practice that may 

bias the magnitude of incremental value measure. The results from Chapter 3 were analysed 

using a binary classification – adequate or inadequate reporting practice. The main findings 

are below.  

 

5.2 Methods, data extraction & analysis 

The methods (including the screening process and study selection) were the same as in the 

previously described systematic review. Please refer to Chapter 2 for details. The data 

extraction and analysis were different and have been outlined below. 

 

The first author, journal, publication year, outcome assessed, population evaluated and their 

inferences on whether the additional predictor improves prediction beyond the FRS were 

recorded. Publications were classified whenever possible as defined by Framingham/ Wilson 

1998, Framingham/ Adult Treatment Panel III (ATP) 2002 and Framingham/ D’Agnostino 

2008 (91-93). Original 95% CI, SE, SD or P-values of summary estimates of interest were 
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extracted (94, 95). If the Kaplan-Meier survival curve was available, any missing hazard ratio 

was estimated (140). Specifically, the standard of reporting effect sizes that signalled 

incremental prognostic value was evaluated. The use of composite and the components of 

composite outcomes were examined due to their impact on cardiovascular trials (141). The 

outcomes were divided into groups of importance and it was noted as to whether CHD was 

assessed. The correlation between these groups and the effect sizes was explored. The 

choice of optimal cut points/ thresholds were also examined, particularly in relation to size 

effects that indicate association (142).  

 

Various methods of quantifying the incremental prognostic value of an additional test have 

been described (44). This review focussed on the reporting characteristics of multivariable 

regression, calibration, discrimination and reclassification (31). For the documentation of 

multivariable regression, adequacy was determined based on the availability of information 

on whether an additional predictor was significant at p<0.05 level or the use of tests that 

penalise the inclusion of an additional predictor. For discrimination, the documentation of the 

baseline area under the receiver operating curve (AUC) of FRS and the difference in AUC (Δ 

AUC) as a result of an additional predictor of interest was assessed. The adequacy of 

reporting baseline AUC relies on accurate documentation of the FRS as originally published 

(31). In brief, the calculation of FRS could be threatened by the addition, deletion or 

modification of the original FRS items. Other aspects include whether CHD was measured 

and whether the measured population was similar to the original FRS population. For 

reclassification, all publications were searched for NRI calculation or results. The type of NRI 

was verified. Established categories (e.g. <10%, 10-20%, >20%), or any justified use of 

categories as appropriate to relevant data set, were considered. The recommendation for 

reporting reclassification was taken from (138). 
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For studies where the 95% CI or standard errors were not reported, a correlation coefficient 

of 0.3 between FRS and CACS/ CTCA was used to allow estimation of the 95% CI for Δ 

AUC based on data from (102). Numbers were displayed as exact numbers, median or 

percentages. The alteration of the risk factors used to calculate FRS was assessed based 

on previously published items (31) with modifications. The items were scored ordinally as 

either yes, no or unclear. FRS model of the 1998 iteration was scored against 18 items. FRS 

model of the 2002 and 2008 iterations were scored against 15 items (3 diabetes related 

items discounted). The summation of the individual item score indicates the overall level of 

alteration which was dichotomised into a binary variable: minor and major alterations. The 

threshold for dichotomisation was based on the median number of items altered among the 

included studies. The summary of NRIs and AUCs were displayed as medians and 

interquartile ranges. NRIs and AUCs were subsequently split into two groups depending on 

the practice of reporting being either adequate or inadequate, or as equivalent binary groups. 

The aspects of reporting were based on previously published work on AUC (31) and NRI 

(138) with adaptations. The respective groups were then compared using the Wilcoxon sign 

rank test at significance level p<0.05. Specifically, we were looking for any particular practice 

of reporting AUC or NRI that lead to excessive claims of an additional predictor. All statistical 

analysis was carried out using STATA version 14.0 (StataCorp, College Station, Texas). 
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5.3 Results 

Included studies 

The reviewers (kappa 0.593) had moderate agreement at the screening stage and good 

agreement (kappa 0.818) at the full-text review stage. Eight-hundred and one unique hits 

were screened, leading to 35 studies encompassing 206,663 patients (men = 118,114, 

55.1%) (7, 16, 18, 21, 22, 102, 105-133). All publications concluded that at least 1 imaging 

biomarker indicated either independent association with composite endpoints, improved 

discrimination or classification beyond traditional risk factors. However, there were 

reservations about TACS (21, 113) and some argued against the reclassification properties 

of CACS and CTCA (117, 124).  

 

The types and calculation of Framingham Risk Score 

Eleven studies (31.4%) adopted FRS 1998 (16, 102, 109, 111, 113, 117, 118, 124, 127, 131, 

132), 13 studies (37.1%) adopted FRS 2002 (21, 105-108, 112, 114, 115, 119, 123, 128, 

130, 133) and 3 studies adopted FRS 2008 (116, 121, 125). Three studies used both FRS 

1998 and 2002 (7, 18, 22). Some studies made fundamental changes to the baseline FRS 

model, including the addition of body mass index (110) or left ventricular ejection fraction 

(128), adaptation for stroke (126), unspecified modification (129) and calibration for a 

different ethnic group (102). Two studies did not specify the iteration of FRS used (120, 122). 

According to previously published criteria (31) additions, deletions and modifications of risk 

factors are shown in Table 7. Six studies (17.1%) did not provide any mean estimate or a 

breakdown of different categories of FRS (106, 116, 120, 123, 132, 143). Twenty studies 

(57.1%) used categorical FRS estimates (7, 18, 22, 105, 109, 111-114, 117-119, 121, 122, 

124, 128, 130-133, 144); eight studies (22.9%) used continuous FRS mean estimates (21, 

102, 110, 115, 125-127, 129); and one study had documented both categorical and 
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continuous FRS estimates (108). Four studies excluded participants from the calculation 

based on certain FRS components (102, 115, 123, 134). 

 
No. of Studies (n = 35) 

Ordinal outcomes 

Items of Alteration (n = 18) Yes No Unclear 

Addition 
   

Item 1. Antihypertensive 16 15 4 

Item 2. Weight related measures, e.g. BMI 0 35 0 

Item 3. Race/ ethnic groups 2 33 0 

Item 4. Triglycerides 2 33 0 

Item 5. Alcohol 0 35 0 

Item 6. Previous cardiovascular disease 1 34 0 

Item 7. Others (family history, PVD & stroke) 5 30 0 

Deletion 
   

Item 8. Diastolic blood pressure 9 21 5 

Item 9. ^Diabetes 0 19 0 

Item 10. HDL cholesterol 4 28 3 

Modification 
   

Blood pressure 
   

Item 11. Systolic blood pressure 3 23 9 

Item 12. History of hypertension/ self-reported hypertension 7 23 5 

Item 13. Other blood pressure definition modification 3 31 1 

Lipid levels 
   

Item 14. History of hyperlipidaemia/ self-reported hyperlipidaemia 14 14 7 

Diabetes 
   

Item 15. ^Fasting glucose >126 mg/dL or 7.8 mmol/L 0 19 0 

Item 16. ^Self-reported diabetes/ use diabetic medication 3 10 6 

Smoking 
   

Item 17. Pack years of smoking 0 34 1 

Item 18. Use of ex-smoker category  11 23 1 

Abbreviations: BMI = body mass index; HDL = high density lipoprotein; PVD = peripheral vascular disease 

^13 studies used FRS 2002 and 3 studies used FRS 2008 and diabetes related items were discounted. 

Table 7. Alteration of the risk factors used for the calculation of Framingham Risk Score in 

35 eligible studies compared to the Framingham Risk Score 1998, 2002 and 2008 
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The median number of items altered was 3. Using that as the threshold, twelve studies 

(34.3%) had major alterations (7, 18, 102, 106-109, 111, 116, 124, 132, 133) and 23 studies 

(65.7%) had minor alterations (16, 21, 22, 105, 110, 112-115, 117-123, 125-131). Five of 23 

studies that had minor alterations did not have any components of FRS altered (114, 120, 

121, 125, 131). Of those 5 studies, two studies did not provide any information about the 

components of FRS (121, 125) and were given the benefit of the doubt, however, findings 

should be interpreted with caution. Sensitivity analysis was conducted using more stringent 

criteria (if “unclear” was classed as alteration). This increased the median number of items 

altered to 4. 

 

Outcomes, thresholds and reporting of association 

Nine studies (25.7%) did not examine CHD as an outcome (18, 22, 106, 107, 122, 126, 127, 

129, 133). All studies used composite outcomes and the most frequently used outcome was 

all-cause mortality. In total, there were 61 composite outcomes with 115 components 

classified according to their importance (141). Forty eight were classified as death (41.7%), 

five were critical (4.3%), thirty nine were major (33.9%), thirteen were moderate (11.3%) and 

ten were minor (8.7%). Analysis using a meta-analytical approach or comparison of medians 

was not suitable for demonstrating trends.  

Odds ratio, relative risk, c-index and hazard ratio were used to indicate association of the 

imaging biomarker with outcomes. There was selective reporting of subgroups and p-values 

among the reported subgroups (Table 8). Chapter 4 displays the details regarding the 

thresholds for different types of investigation. There were 29 studies that recorded CACS as 

the investigation of choice in addition to FRS. Various different categories and cut points 

were used for different effect sizes, including hazard (n=23) and odds ratios (n=3) and 

relative risk (n=3). Some were comparable with other studies whilst others were not.  
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Reference groups, n Subgroups, n Reported subgroups, n (%) Missing p-value, n (%) 

All effect sizes 92 381 328 (86) 85 (26) 

OR 4 27 27 (100) 9(33) 

RR 8 37 37(100) 18(49) 

C-index 0 22 22(100) 0(0) 

HR 80 295 242(82) 58(24) 

Abbreviations: OR = odds ratio; RR = relative risk; C-index = index of concordance; HR = hazard ratio 

Table 8. Selective reporting of association 

 

Appendix 5 shows all the different thresholds and subgroups of CACS, TACS and CTCA.  

Comparison of different categories of CACS was not possible in some instances when the 

categories were fundamentally different, for example continuous data could not compared 

with categorical. For categorical data, CACS was most commonly subdivided into groups 

including 0, 1-99, 100-399 and >400. The cut-points often varied by a CACS of 1 amongst 

publications. Other subgroups included >0, 400-699, 700-999, >100. A CACS of zero was 

often used as the reference group but other reference groups were used: CACS <40; CACS 

<10. The reference group was not specified in some included studies. Transformation of 

CACS into a logarithmic scale was encountered. Analysis according to deciles, quartiles, 

baseline FRS risk categories and disease status was also encountered. Of the 29 studies 

that reported CACS, 10 studies did not report the pre-specified groups and 8 studies did not 

report p-values relevant to the size effects. Of the 10 studies that did not report the pre-

specified groups, 3 provided a Kaplan-Meier curve that enabled estimation of hazard ratio 

(106, 108, 110). 

 

Nine studies recorded CTCA in addition to FRS and 3 studies reported both CTCA and 

CACS (124, 131, 132). Of the 9 studies that reported CTCA, 2 only reported incremental 

values that were not association (125, 132). Various different categories and cut points were 
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used for different effect sizes, including hazard (n=5) and odds ratios (n=1), and c-index 

(n=2). The reference group was unclear in 3 studies. When the reference group was 

specified, no CAD or 0% stenosis was used as the reference group in 3 groups and non-

obstructive diseases was used in 2 groups. The use of reference group affects the effect 

size of hazard ratio. One study did not report p-values relevant to hazard ratio. Two studies 

did not report pre-specified groups. Two studies reported all the pre-specified groups but 

extra information (hazard ratio) was extracted from the Kaplan Meier curve (111, 131). 

 

Three studies recorded TACS in addition to FRS (21, 112, 113). None of them had 

overlapping groups. There was selective reporting however, there were too few studies to 

infer anything.  

 

Intended population for Framingham Risk Score 

Four studies (11.4%) had an exclusively Caucasian population (16, 21, 117, 118). Eleven 

studies (31.4%) had greater than 10% non-Caucasian population (106, 113-116, 119, 122, 

123, 126, 131, 133). Twenty two studies (62.9%) did not record ethnicity as a variable (7, 18, 

22, 105, 107-112, 117, 118, 120, 121, 123-125, 127-130, 132). Five studies (14.3%) had 

documented CHD at baseline (110, 122, 128, 130, 132). Considering all of the above 

information, only 4 studies (11.4%) were identified as similar to the original Framingham 

population (16, 21, 117, 118). Sensitivity analysis was performed, which considered all 

unreported ethnicity to have a less than 10% non-Caucasian population, increasing the 

number of studies to only twenty (57.1%) similar to the original Framingham population (7, 

16, 18, 21, 22, 105, 107-109, 111, 112, 117, 118, 120, 121, 123-125, 127, 129). 
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Documentation of regression, discrimination & AUC analysis 

Of the 35 studies, the majority appropriately reported multivariable regression (74.3%). 

Thirty-three studies reported AUC estimates for both FRS alone and the FRS with additional 

CT biomarkers with data on 76 such pairings. Appropriate documentation of AUC was not 

common practice (36.4%). The method used to compare ROC curves were not always 

described (39.4%). Only eight studies reported calibration (22.9%) (7, 113, 116-120, 133). 

Table 9 shows the reporting of regression and discrimination. The AUC of FRS alone ranged 

from 0.53 to 0.77 (median = 0.68). The Δ AUC ranged from -0.07 to 0.24 (median = 0.06). 

There was strong inverse correlation between the Δ AUC and the baseline FRS AUC 

(Spearman correlation coefficient, -0.46, p<0.0001). When the baseline FRS AUC performed 

well, the Δ AUC was relatively lower with the addition of a CT biomarker (see Figure 11).  

 

Figure 11. The correlation between the difference in AUC & baseline FRS AUC 
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Part 1. Documentation of multivariable regression (n = 35) No. (%) 

a. Information on whether additional predictor is significant at <.05 level 24 68.6 

b. Results of a test that penalises for the inclusion of additional predictor 8 22.9 

Appropriate documentation (1a or 1b) 26 74.3 

Part 2. Documentation of AUC in ROC analysis (n = 33) 
  

a. Described method used to compare ROC curves 13 39.4 

b. Presented the AUC values with and without the additional predictor 31 93.9 

c. Presented CIs of AUC values with and without additional predictor 9 27.3 

d. Presented p-value for comparison 26 78.8 

f. Availability or enable calculation of Δ AUC CIs 30 90.9 

Appropriate documentation 1 (2a and 2b and [2c or 2d]) 11 33.3 

Appropriate documentation 2 (2a and 2b and [2c or [2d or 2f]) 12 36.4 

Part 3. Documentation of calibration (n = 35) 
  

Documentation of Hosmer-Lemeshaw test (n = 7) or Schoenfeld residuals (n = 1) 8 22.9 

Part 4. Documentation of reclassification analysis (n = 35) 
  

Report using table or text 
  

Not reported 19 54.3 

Partial 5 14.3 

Complete 11 31.4 

Standard of reporting of reclassification analysis (n = 16) 
  

a. Use of standard categories of risk 11 68.8 

b. Justified use of other categories of risk 15 93.8 

c. Reported the number of patients changing categories 9 56.3 

Appropriate documentation ([4a or 4b] and 4c) 9 56.3 

Inadequate 7 43.8 

Part 5. Documentation of NRI (n = 23) 
  

Type of NRIs 
  

Continuous/ category-free NRI 4 17.4 

Categorical NRI 16 69.6 

Reported both continuous & categorical NRIs 1 4.3 

Reported relative NRI 1 4.3 

Unclear  3 13.0 

Standard of reporting of categorical NRI (n = 16) 
  

a. Report censor handling 5 31.3 

b. No extrapolation 7 43.8 

c. Categorical NRI reference available 14 87.5 

d. Justification of risk categories 14 87.5 
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Table 9. Documentation of multivariable regression, calibration, discrimination & 

reclassification 

 

Table 10 shows the median AUC values and the Δ AUC when the data was classified 

according to features of design and analysis (31). The baseline FRS AUC performs better 

with minor alterations compared with those with major alterations of the Framingham model 

(p = 0.0006). The improvement in AUC was greater in those with major alterations of the 

Framingham model (p = 0.015). Other factors that significantly affected the performance of 

AUC include the exploration of data analysis, reporting of calibration and validation, 

multivariable and AUC documentation (all p<0.05). The types of incremental value reported 

were associated with a difference in AUC performance, but only significant when a threshold 

of 2 was chosen. In the sample population, measurement of CHD as an outcome or whether 

the population was similar to the original Framingham cohort did not significantly alter the 

AUC performance. Although reclassification analysis did not significantly affect AUC 

performance, there was a difference between inadequate reporting and those that did not 

report (p <0.0443).  

 

 

 

e. Report NRI components 5 31.3 

f. Availability of reclassification table showing event and non-event 8 50.0 

g. Reclassification table enables the calculation of NRI components 7 43.8 

h. Combined NRI reported as a sum not a percentage 8 50.0 

i. The proportion of correctly reclassified subjects available 7 43.8 

j. Reported NRI not used to construct strong summary 5 31.3 

Adequate reporting of categorical NRI (>5 items listed 5a-j)^ 11 68.8 

^The threshold is the median number of items reported in a skewed sample.  
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No

. 

AUC FRS 

(median) 

IQR P-value No

. 

AUC FRS + CT 

(median) 

IQR P-

value 

No

. 

Δ AUC 

(median) 

IQR P- 

value 

1. Alteration of Framingham model 
            

Major 31 0.64 0.62-

0.68 

 
31 0.74 0.71-

0.77 

 
30 0.07 0.05-

0.15 

 

Minor 42 0.7 0.64-

0.74 

0.0006 45 0.76 0.68-

0.79 

0.7271 46 0.05 0.02-

0.09 

0.015 

2. Coronary heart disease measured 
            

Yes 58 0.68 0.62-

0.72 

 
61 0.75 0.71-

0.78 

 
61 0.06 0.04-

0.11 

 

No 15 0.66 0.64-

0.68 

0.5208 15 0.72 0.68-

0.75 

0.2452 15 0.05 0.04-

0.08 

0.5393 

3. Explore analysis model 
            

Yes 13 0.75 0.72-

0.76 

 
16 0.77 0.71-

0.80 

 
16 0.05 0.03-

0.06 

 

No 60 0.65 0.62-

0.71 

<0.000

1 

60 0.74 0.71-

0.78 

0.4559 60 0.07 0.04-

0.13 

0.0274 

4. Population as intended for Framingham 
            

Yes 45 0.68 0.64-

0.72 

 
48 0.75 0.71-

0.77 

 
48 0.06 0.04-

0.11 

 

No 28 0.64 0.63-

0.71 

0.1841 28 0.74 0.68-

0.78 

0.5901 28 0.05 0.04-

0.12 

0.8546 

5. Calibration reporting 
            

Yes 19 0.69 0.64-
 

19 0.74 0.67-
 

19 0.04 0.01-
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0.72 0.77 0.06 

No 54 0.67 0.62-

0.72 

0.1427 57 0.75 0.71-

0.78 

0.1465 57 0.07 0.05-

0.12 

0.0007 

6. Validation reporting 
            

Yes 22 0.65 0.62-

0.70 

 
22 0.74 0.71-

0.76 

 
22 0.08 0.05-

0.13 

 

No 51 0.68 0.36-

0.74 

0.0433 54 0.76 0.68-

0.78 

0.7267 54 0.06 0.04-

0.09 

0.1231 

7. Multivariable documentation 
            

Adequate 52 0.64 0.62-

0.71 

 
52 0.74 0.71-

0.78 

 
52 0.07 0.04-

0.13 

 

Inadequate 21 0.72 0.68-

0.75 

0.003 24 0.76 0.69-

0.78 

0.6588 24 0.05 0.03-

0.08 

0.1002 

8. AUC documentation 
            

Adequate 28 0.72 0.64-

0.75 

 
28 0.77 0.69-

0.80 

 
28 0.05 0.01-

0.08 

 

Inadequate 45 0.66 0.62-

0.70 

0.0018 48 0.74 0.71-

0.77 

0.3431 48 0.07 0.05-

0.13 

0.016 

9. Reclassification analysis documentation 

1 

            

Adequate (reference) 14 0.69 0.62-

0.72 

 
17 0.76 0.74-

0.78 

 
17 0.06 0.05-

0.11 

 

Inadequate or not reported 59 0.67 0.63-

0.72 

0.3924 59 0.74 0.70-

0.74 

0.2539 59 0.06 0.03-

0.11 

0.2032 
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Inadequate 17 0.64 0.63-

0.67 

0.095 17 0.73 0.70-

0.76 

0.1678 17 0.07 0.05-

0.11 

0.9035 

Not reported 42 0.68 0.63-

0.72 

0.7189 42 0.74 0.71-

0.78 

0.3885 42 0.05 0.02-

0.11 

0.0772 

10. Reclassification analysis 

documentation 2 

            

Inadequate 17 0.64 0.63-

0.67 

 
17 0.73 0.70-

0.76 

 
17 0.07 0.05-

0.11 

 

Not reported 42 0.68 0.63-

0.72 

0.0443 42 0.74 0.71-

0.78 

0.6452 42 0.05 0.02-

0.11 

0.0877 

11. Types of incremental value threshold  
            

>2 40 0.68 0.63-

0.72 

 
43 0.74 0.68-

0.76 

 
43 0.05 0.03-

0.08 

 

<2 33 0.67 0.62-

0.75 

0.731 33 0.77 0.73-

0.83 

0.0013 33 0.08 0.05-

0.15 

0.0034 

12. Types of incremental value threshold 2 
            

>3 12 0.72 0.69-

0.74 

 
12 0.76 0.74-

0.78 

 
12 0.05 0.04-

0.07 

 

<3 61 0.66 0.62-

0.71 

0.0158 64 0.74 0.69-

0.78 

0.2884 64 0.06 0.04-

0.11 

0.192 

*AUC = area under the operating curve; ΔAUC = difference in AUC; CT = CT biomarkers; FRS = Framingham model; IQR = interquartile range 

P-values generated using Wilcoxan ranksum test.  

Table 10. Median AUC values and ΔAUC according to different aspects of design and analysis 
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Documentation of reclassification & NRI analysis 

Twenty three studies reported NRI estimates and all have at least 2 cut-offs, with those that 

had 3 cut-offs making up the biggest NRIs (124, 132). The number of thresholds influenced 

the value of NRI (145). The most commonly used type of NRI was categorical NRI (69.6%). 

The studies that reported calibration were the same as those documented in the last section. 

Table 11 shows the reporting of reclassification analysis and NRI. Complete reporting of 

reclassification analysis using a reclassification table or text was not common practice 

(31.4%). When reclassification analysis was done, only half was considered appropriate 

(56.3%). The actual number of patients being up or down classified to a different risk group 

was not documented. In conjunction with the documentation of NRI, the proportion of 

subjects being correctly reclassified was not always available (43.8%). Most studies 

subjectively drew strong conclusions from the NRI calculated (68.7%). The individual 

components of events and non-events and also their respective NRI components were not 

always available (at least 43.8%). Fifteen studies reported categorical NRI with 46 data 

points. The values of categorical combined NRIs ranged from -0.083 to 0.785 (median, 

0.249). None of the aspects of reporting (138) was significantly related to the difference in 

the values of categorical combined NRIs (Table 5). 
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No. NRI 

(median) 

IQR P-value 

1. Reporting of censor handling 
    

Yes 13 0.18 0.14-

0.43 

 

No 33 0.26 0.19-

0.35 

0.4869 

2. No extrapolation 
    

Yes 20 0.28 0.14-

0.49 

 

No 26 0.23 0.16-

0.34 

0.4186 

3. Category NRI reference* 
    

Quoted 38 0.25 0.18-

0.39 

 

Not quoted 8 0.18 0.00-

0.38 

0.1922 

4. Justification of NRI categories* 
    

Yes 40 0.25 0.15-

0.41 

 

No 6 0.21 0.18-

0.29 

0.7691 

5. Reporting NRI components 
    

Yes 22 0.24 0.13-

0.34 

 

No 24 0.28 0.19-

0.48 

0.1907 

6. Reclassification table showing the number of events and non-events     

Yes 32 0.27 0.18-

0.37 

 

No 14 0.21 0.14-

0.43 

0.3396 

7. The availability of reclassification table with sufficient information to enable 

the calculation of event and non-event NRI 

   
 

Yes 30 0.25 0.18-

0.35 

 

No 16 0.23 0.14- 0.9265 
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0.48 

8. Describing the combined NRI as sum not a percentage 
  

Yes 25 0.28 0.14-

0.47 

 

No 21 0.22 0.18-

0.30 

0.256 

9. Provide any indication of the proportion of correctly reclassified    
 

Yes 15 0.35 0.14-

0.53 

 

No 31 0.23 0.16-

0.34 

0.0916 

10. Strong conclusion based on the reporting of NRI    
 

No 20 0.29 0.19-

0.48 

No 

Yes 26 0.23 0.13-

0.34 

0.08 

11. NRI adequate documented 
    

Adequate 39 0.25 0.14-

0.39 

 

Inadequate 7 0.24 0.20-

0.49 

0.7949 

12. Types of incremental value 
    

>3 18 0.28 0.2-0.44 
 

<3 28 0.23 0.13-

0.37 

0.2464 

Abbreviations: IQR = interquartile range; NRI = net reclassification index 

P-values generated using Wilcoxon ranksum test.  

*One group has less then 10 studies and therefore the comparison is limited. 

Table 11. Median NRI values according to different aspects of design and analysis 
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5.4 Discussion  

The majority of studies claimed improved discrimination and reclassification of the outlined 

CT biomarkers over the established Framingham model. For association, hazard ratio was 

the most commonly used size effect but the variation in reporting practice hindered evidence 

synthesis. Although all studies used similar baseline model for AUC analysis, the 

performance of FRS varied. There was a clear negative correlation between improved 

discrimination and baseline performance of FRS. In contrast, despite the poor reporting, 

there was no difference in the magnitude of categorical NRI between adequate and 

inadequate reporting practice.  

 

Selective reporting of association is well known and remains an issue here (146). We found 

that non-standardisation of thresholds and reference groups across studies prohibited future 

meta-analysis. The following is an example to substantiate this claim; Chow et al used non-

obstructive coronary disease as the reference group for 3 different composite outcomes 

(130). The same author then used no coronary artery disease as the reference group in the 

CONFIRM cohort (128). Does this matter? In (131), we estimated hazard ratio using Kaplan-

Meier curve (140). When non-obstructive coronary disease was the reference group, the 

estimated association of obstructive disease with composite outcome was smaller (HR = 

2.03, 95% CI 1.47 – 2.79), compared to when no coronary disease/ normal was the 

reference, the estimated association was bigger (HR = 3.24, 95% CI 2.28 – 4.63) (131). This 

adds to the known issues on publication bias (147). 

 

NRI records the change in a person’s predicted risk from one category to another category 

after the introduction of an additional test (148). However, it was only meaningful when 

information about risk thresholds was available. The change in predicted risk could be 

correct or incorrect. In this population, the concept that the subject could be wrongly 
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reclassified with an additional test was not clearly outlined. The combined NRI could have 

been driven by predominantly event NRI, leading to overestimation. This could, however, 

have been clarified by reporting the components of NRI but this was not standard practice 

despite its recommendation (149). Another recommendation was the regular reporting of 

calibration derived from concern about miscalibration (39, 150, 151), with graphical plot 

being the best assessment (152). Calibration, however, was regularly overlooked. To 

counteract the issues with missing data, we have used solutions such as Weibull 

extrapolation (16, 109, 112) and adjustment of risk cut-offs by the ratio of actual follow up. 

These strategies translate to the fact that a significant proportion of the included studies 

used non-standardised risk categories but almost all managed to justify. A more definitive 

solution would be a move towards decision curve analysis (153). Only 1 study provided 

information to allow adjustment using Kaplan-Meier estimates (119). This is on a background 

of insufficient reporting on the handling of censoring. This adjustment should receive more 

attention especially when censoring happened early on during follow-up (136). There is 

currently no consensus on what is a large enough NRI. Overall, considering the uncertainty 

in NRI (149) and the small values of NRI, strong conclusions should not be drawn from the 

use of NRI alone. Given the popularity of NRI in cardiovascular research (39), a framework 

of reporting NRI should be followed, for example in (138).  

 

This investigation indicates that the previously raised issues about establishing incremental 

value of any predictor beyond the Framingham model persists 10 years on (31). 

Discrimination, as measured by AUC analysis, is an established method of measuring 

incremental value (154). It was reported in almost all the studies but adequate 

documentation was not common practice. Reporting of calibration, validation and AUC 

documentation all influenced the values of AUCs and inadequate reporting practices were 

associated with inflated estimates. It is evident from the linguistic spin from the included 

articles that there is ongoing hype regarding the utilisation of additional CT biomarkers in 
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CVD risk prediction. However, big improvement in AUC was predominantly seen in cases 

where Framingham models performed badly. Questions have been raised as to whether this 

perceived poor performance is due to illegitimate alterations of this extensively tested 

Framingham models. As eluded to in (31), this phenomenon is similar to when a new drug is 

only effective when compared to an ineffective comparator drug (155). 

 

There are other complex issues that need to be considered here. There is an assumption 

that any positive incremental value effect estimate equates to clinical benefit and perhaps 

different effect estimates relate to one another. Neither a small increase in AUC after 

addition of a predictive marker, nor an effect estimate that indicates very strong association 

(e.g. HR >10) between a predictive marker and an outcome, equate to definitive incremental 

value (139). In fact, it is not possible to decide which one is more informative. A gain in 

discrimination or a strong association does not meaningfully translate to better clinical 

performance. These uncertainties can potentially be solved by a decision analytic approach 

(139). Even when there is a single well-designed cohort study, there are issues regarding 

compatibility of the design with existing literature, such as incompatible cut offs in risk 

categories and prediction horizon (156). Finally, none of these perceived improvements in 

AUCs has been formally evaluated in a systematic review or meta-analysis. Overall, one 

should be cautious regarding any claim of importance of a new predictor as risk assessment 

with traditional CVD risk factors, as outlined in the Framingham model, works well despite its 

imperfections. It is simple, cheap and easily understood by both patients and clinicians, and 

it leads to logical treatment strategies (157). 

 

Limitations 

Our investigations on AUC (31) and NRI (149) were not empirical and can only serve as an 

update in a different population. The assessment on thresholds was minimal compared with 
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previous investigations (149). The harm of imaging using CT (radiation burden) was not 

explored; the focus was solely on the potential benefit. Studies that indicated association or 

only had a reclassification table were excluded because we focused on studies that had at 

least 1 summary estimate that indicated incremental value. The impact of using multiple 

incremental value measures was not been fully investigated. We were unable to assess 

publication bias as articles that showed no or worsening predictions were not published. 

 

5.5 Summary 

Association on its own is insufficient to substantiate incremental value (37) and large values 

are infrequent in biomarker research (34). AUC analysis is seen as a good starting point and 

reclassification should follow rather than replace AUC analysis (154). However, AUC 

analysis is not without its flaws (34). Transparent reporting of NRI should be compulsory, for 

example by using a reclassification table (138), and the reader should be aware of the 

controversies surrounding NRI (42, 43). The co-existence of a lack of increase in AUC and a 

positive NRI should alarm readers (158). In general, the reporting in prognosis studies needs 

to be more robust (159-162). Data should be made available to allow individual patient data 

meta-analysis. 

 

Inconsistent thresholds, reference groups and selective reporting prohibit future evidence 

synthesis of association. Inadequate documentation of discrimination, calibration and 

validation were widespread. The variable baseline performance and other aspects of 

reporting discrimination inflate potential incremental values. Reporting of reclassification is 

also insufficient but a significant difference between adequate and inadequate reporting 

practice was not identified.  
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Chapter 6 Feasibility study 

6.1 Abstract 

Objective: To evaluate the image quality of thorax computed tomographic (CT) imaging by 

using prospectively electrocardiogram (ECG) gated technique.  

 

Methods: This prospective study included 80 patients who were having follow-up. Patients 

received 2 successive CTs which were assessed for artefacts on a 4-point scale by two 

blinded radiologists. The image quality of the coronary arteries was also assessed using a 

15-segment model. 

 

Results: ECG-gating resulted in an improvement in subjective image quality (ungated versus 

gated mean scores, 4.23 versus 4.93 respectively, p < 0.001) with reduced motion artefact, 

especially of the heart borders (ungated vs gated mean scores, 3.31 vs 3.94 respectively, p 

< 0.001). Step artefact did not affect the diagnostic acceptability (3.79, SD 0.5). Diagnostic 

images of the coronary arteries were obtained in 84.5% of patients. The degree of diagnostic 

segments was heart rate dependent (<60 bpm = 100%; >60-<70 bpm = 87.9%, 95% CI 

83.6-91.4%; >70-<80 bpm = 86.3%, 95% CI 82.0-90.0%; >80-<90 bpm = 73.8%, 95% CI 

67.0%-79.9%, >90 bpm = 68.2%, 95% CI 58.6-76.7%). 

 

Conclusion:   

Prospectively ECG-gated CT thorax provides excellent image quality of the lungs with the 

addition of coronary evaluation. The heart rate threshold for a diagnostic scan is 85 bpm 

without beta blockers. 
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6.2 Background & introduction 

At Plymouth Hospitals NHS Trust, there is a cardiac enabled research scanner which is 

optimised for cardiac CT but is also used to perform routine CT scanning, predominantly for 

oncology. Taking into account the locality of the work, the findings of the systematic review 

and the risk of exposure to ionising radiation, a primary study was carried out to look at the 

technical feasibility of obtaining information about the coronary arteries during a routine 

follow-up CT scan for cancer staging. 

 

CT scanning is central to the diagnosis and management of cancer and scanning of the 

thorax is standard practice for most cancers. Even though the heart is inevitably scanned as 

part of the staging process, information about it is limited due to movement blur. However, it 

is known that elderly patients who have had a newly diagnosed cancer have a high 

prevalence of coronary disease (163). In addition, men with testicular cancer have an 

elevated risk of cardiac events among long-term survivors (164) and breast cancer patients 

have a high prevalence of cardiac disease if they receive radiotherapy (165). There are also 

cancer drugs that have been associated with myocardial ischaemia and thromboembolic 

events, including thalidomide, docetaxel, fluorouracil, paclitaxel and cisplatin (166). From a 

wider perspective, there seems to be a temporal relationship between the development of 

cancer and coronary events. There is a significant increase in coronary events in the 2 years 

before a cancer diagnosis (167) and it is known that most cancers are associated with an 

increased risk of coronary disease during the first six months after diagnosis (168). Coronary 

disease and cancer share common risk factors, such as smoking, and there is a moderately 

increased risk of tobacco-related cancers among survivors of myocardial infarction (169). 

 

Computed tomographic coronary angiography (CTCA) is a variation in CT scanning where 

information regarding the heart rate is obtained via ECG monitoring and scanning of the 
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patient is performed at times of relative cardiostasis (170). Major technical advances have 

been made in the technique and it is now the investigation of choice in all patients with chest 

pain of recent onset (171). Its use has been shown to be associated with better patient 

outcomes (172) and gives important prognostic information both in symptomatic and 

asymptomatic individuals (171). In contrast to oncology scans, which are normally performed 

with a helical acquisition, CTCA is typically performed with an axial technique to reduce 

radiation dose and improve image quality. In addition, patients usually undergo heart rate 

control (typically with the use of intravenous beta-blockade) to improve image quality (173). 

However, adopting CTCA techniques could improve the image quality of staging studies in 

other specific ways. Cardiac-related motion artefact can be minimised with gating leading to 

more accurate measurement of lung nodules (62). Similarly, peripheral pulmonary arteries 

move considerably with cardiac motion which could be reduced by gating (63, 64). In 

addition, by modification of CTCA technique, information could be obtained about the heart 

for “free” (that is without any additional radiation burden, or procedural time or cost) at the 

time of staging as part of the oncology scan, which could be potentially useful for oncology 

patients. 

 

To assess the feasibility and the usefulness of ECG gating in the oncology setting, a 

prospective study of patients undergoing follow-up oncology scanning, where the patients 

received both a gated and non-gated study of the thorax, was performed. The scans were 

then evaluated for cardiac-related motion artefact within the lungs and radiation dose. We 

also evaluated the coronary arteries to see how many coronary artery segments had 

acceptable image quality. 
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6.3 Materials & methods 

This prospective single centre study was performed with regional ethics committee approval 

in 80 patients who provided signed informed consent. The study period occurred between 

April and October 2015. The participants were consecutively recruited until the sample size 

had been reached. If the patient declined to take part in the study, the information related to 

their group was not recorded. 

 

Inclusion criteria was: patients undergoing routine follow-up for malignancy requiring CT 

thorax abdomen and pelvis scan; age 40 years of age or greater at the time of scan; able to 

provide informed written consent; able to hold their breath for at least 10 seconds; in sinus 

rhythm; able to follow verbal commands; able to lie supine for the scan. Participants were 

excluded if their estimated Glomerular Filtration Rate was less than 30, had a known 

contrast reaction or if pregnancy could not be excluded. 

 

Patient demographic details (weight, height, and body mass index [BMI]), malignancy status 

and cardiovascular history were taken at the time of consenting and also from medical 

records. 

 

Imaging protocol 

All exams were performed with a 64-row CT scanner (Discovery 750 HD, GE Healthcare) 

with and without iodine contrast agent. Participants first had a modified standard of care CT 

thorax helical scan (number 1, non-contrast), followed by the research gated step-and-shoot 

CT thorax (number 2, contrast) (Table 12). The modification was necessary to minimise 

contrast burden. 
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Technique No. 1 = STD No. 2 = Research contrast CT chest 

Contrast Type Non-contrast Optiray 350 

Volume (ml) NA  100-120 

Flow Rate (ml/ sec) NA 5.5 to 6.5 ml/ min (according to kVp) 

Start Location Lung Apices Lung Apices Above 
diaphragm 

End Location Below 
diaphragm 

Below 
diaphragm 

Iliac Crest 

Respiration Inspiratory Inspiratory Inspiratory 

Scan Start Delay (sec) NA  Smart prep +40 seconds 

Scan Type Helical full Cine Helical full 

Helical Collimation (mm) 40 40 40 

Coverage per rotation 
(mm) 

40 40 31.74 

Rotation Time (sec) 0.5 0.35 0.5 

Image slice width (scan) 1.25 0.625 1.25 

ASiR 30% 30% 30% 

Noise index 39.68 NA 31.74 

Pitch Factor 1.375:1 ECG linked 1.375:1 

Speed (mm/ rotation) 55 ECG linked 55 

KV 120 80 -120 
(according to 
BMI) 

120 

mA 100 – 750 250 – 420 
(according to 
BMI) 

100-750 

Automated mA Yes  NA Yes  

DFOV  Large body  Cardiac large  Large body  

Reconstruction Algorithm Standard Standard  Standard  

Abbreviations: AsiR = adaptive statistical iterative reconstruction; DFOV = display 
field of field;  

ECG = electrocardiogram; KVp = peak kilovoltage; NA = not applicable; min = 
minute; mm = millimetre; 

mA = tube current; ml = millilitre; sec = seconds; STD = standard of care 

Table 12. The chest CT protocols of standard of care and research scans 

 

The research study had varied tube current and peak voltage settings according to BMI as 

standard practice for CTCA (174). Diastolic trigger (75% of the R-R interval) was used if the 

heart rate was less than 65 bpm and systolic trigger was used otherwise (45% of R-R 

interval). No oral or IV beta-blocker was given. A bolus of 125 ml iodinate IV contrast 
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(ioversol; Optiray 350, Tyco Health Care UK, Gosport, UK) was injected at 5.5 ml/s. A bolus-

tracking method (Smartprep, GE Healthcare) was used to time the scan trigger whilst 

imaging at the level of the pulmonary artery bifurcation with a region of interest in the 

ascending aorta. This was followed by a 50 ml saline bolus "chaser", injected between 4.5 

and 5.5 ml/s via a dual pump injector (Tyco Health Care UK). The standard of care CT 

abdomen and pelvis scan was subsequently acquired using the same volume of contrast 

immediately after the two successive CT thorax at the appropriate timings, adhering to the 

departmental protocol. 

 

Assessment of Subjective Image Quality 

Images were evaluated using the PACS workstation (Centricity, GE Healthcare). For image 

quality score, if the reviewers differed by only 1 after their separate reading sessions, a 

mean score of the two reviewers was obtained and used for statistical analysis. A greater 

difference in score was treated as a discrepancy and a consensus was sought. 

 

Two series of images (standard of care, taken as a reference, and gated study) were 

randomly and anonymously presented to two chest radiologists (V.R. and C.R., with 7 and 

25 years of experience respectively). Anonymisation was achieved by removing annotations 

and images were displayed in a standard lung window/ level (1600/−400) to blind the 

presence of contrast to reviewers. The order of the two series of images was chosen 

randomly. Calibration was carried out using 10 separate random cases where the reviewers 

discussed the scoring. A total of 160 images (80 patients who each underwent two types of 

examinations) were interpreted.  
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Subjective scoring was carried out in the upper, lingula/ middle and lower lobes. These are 

representative areas of the entire lungs which were chosen based on an image quality study 

(61). For individual segments of the lungs, a 4-point Likert scale was used and the reviewers 

subjectively scored motion artefact (including edge blurring artefact and double-line artefact) 

in each lobe on the axial images and stair-step artefact was scored on the sagittal images 

(only for research scans). We devised a scale based on the one described by Shuman et al 

and added modifications relating each score to diagnostic confidence (61). Blurring of the 

edges of bronchovascular structures was defined as indistinctness of the interface with the 

adjacent lung. Double line artefact was defined as parallel duplication of a single linear 

structure. Stair-step artefact was defined as an abrupt linear structure extending across the 

image on sagittal images (scored by C.L.P and T.P, radiology residents), which was only 

scored on the research axial scans. The described artefacts were subjectively scored as “1 = 

severe and uninterpretable”, “2 = moderate and significant impact on diagnostic confidence”, 

“3 = minor and mild impact on diagnostic confidence” and “4 = none”. 

 

All gated CT thorax images were reviewed for coronary artery image quality by two level 3 

BSCCT certified cardiac imagers (C.R and G.M.H, both with 12 years of experience). All 

gated CT thorax raw data was reconstructed to a 20 cm field-of-view using standard 

reconstruction for evaluation. The reviewers were blinded to patient demographic details and 

clinical information. Segments of the three main coronary arteries and their major side 

branches down to a minimum diameter of 1.5 mm were defined according to the 15-segment 

American Heart Association model (AHA) (175) (Figure 12). The AHA model was used, 

instead of the 18-segment Society of Cardiovascular Computed Tomography model as it has 

been used in many observational cohort studies in the past. Segments smaller than 1.5 mm 

were defined as absent. Coronary artery segment image quality was scored on a 4-point 

Likert scale similar to scales used by previous authors investigating coronary artery image 

quality in cardiac CT (176, 177). Image quality was classified for each segment as being “1 = 
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non-diagnostic” (lack of vessel wall definition due to marked motion artefact, poor vessel 

opacification, prominent structural discontinuity, or blurring related to high image noise 

preventing evaluation), “2 = poor” (moderate motion artefact or noise-related blurring, fair 

vessel opacification, or minimal structural discontinuity), “3 = moderate” (minor motion 

artefact or noise-related blurring, good vessel opacification, and no structural discontinuity) 

or “4 = good” (absence of motion artefact and noise-related blurring, excellent vessel 

opacification, and no structural discontinuity).  

 

Figure12. AHA 15-segment model adopted from (175). 

 

Quantitative Analysis 

Researchers measured CT attenuation and image noise by placing circular region of 

interests (ROIs) in a homogenous anatomical area on axial planes using the functions on 

ADW Workstation and AW Server (GE Healthcare) on 1.25 mm slice thickness (for lungs). 

Image noise was taken as the SD in an ROI. Three contiguous ROIs were used for any 

anatomical area. The CT attenuation and image noise of the three ROIs was recorded to 

estimate mean values. All scans were loaded at the same time and attention was paid to 
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placing ROIs at similar locations for both scans. There was no homogenous area for the lung 

parenchyma. A method of simply displaying the CT attenuation and image noise was 

adapted from the literature (178). ROIs measuring at least 10 by 10 mm were placed in the 

pectoralis minor, pectoralis major, paraspinal muscle, sub-axillary fat and also in the air 

anterior to the participants (Figure 13). For the coronary arteries, the analysis method was 

modified from the previously described technique (179). Three contiguous ROIs were placed 

in the right lobe of the liver, ascending aorta at the origin of the left main stem and at the 

interventricular septum. ROIs measuring at least 14 by 14 mm were used in the liver and 

ROIs measuring at least 5 by 5 mm were used in the ascending aorta. In the event of partial 

hepatectomy, the remaining liver was used instead. 
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Figure 13. Representative example of where anatomical areas were chosen for quantitative 

analysis. Area 1 & 2 = anterior thoracic wall subcutaneous fat; area 3 & 4 = paraspinal 

muscles; area 5 & 6 sub-axillary fat. Adapted from (178) and performed at Plymouth 

Hospitals NHS Trust. 

 

Radiation Dose 

The research scan used prescribed tube potential and current based on BMI and previous 

work (180-183). There was no automatic tube current modulation employed and therefore 

the radiation dose the scanner delivers for a given BMI is known. The dose–length product 

(DLP) displayed by the CT scanner for both the modified standard of care and gated thorax 

scan was recorded. A conversion factor of 0.014 was used for the calculation of effective 

dose (184).  

 

Statistical analysis 

We conducted statistical analysis using STATA version 14.0 (StataCorp, College Station, 

Texas). A p-value of <0.05 was considered statistically significant. Bonferroni correction was 

used for multiple comparisons. In this non-inferiority study the sample size of 80 was based 

on 95% agreement in lung image quality being acceptable between the research and 

standard of care CT thorax, and the lower limit of non-inferiority between the two tests was 

90%. Variables were presented as numbers and percentages or means and SD. The 

subjective and quantitative assessments of image quality were compared by using Wilcoxon 

signed rank test and paired t-test as appropriate. Cohen’s kappa and proportion of 

concordant cases was used to assess inter-observer variability (<0.2 negligible; 0.2-0.4, 

weak; 0.4-0.6, moderate; 0.6-0.8, good; and >0.8, substantial) (185). Image quality scores of 

3 and 4 were assumed to be acceptable. A linear weighted kappa was used to reflect that.  
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6.4 Results 

We included 80 participants, the mean age was 63.9 years +/- 10.3 (range 43.1-92.2 years). 

There were 33 men (41%; mean age 67.1 years +/- 10.4 & range 43.1-92.2 years) and 47 

women (59%; mean age 61.2 years +/- 9.7 & range 46.5-84.2 years). Patients with a wide 

range of body types were included in our investigation and patients’ weights ranged from 45 

to 114 kg (mean weight 78.2 kg +/- 15.2) with calculated BMIs ranging from 18.4 to 35.5 

kg/m2 (mean, BMI 27.5 kg/m2 +/- 4.1). A wide range of primary malignancies were present, 

with colorectal and anal cancers being the most common type (31.3%). Most participants 

had no previous coronary events, investigations or interventions. Other cardiovascular risk 

factors are shown in Table 13.  

Characteristic Results 

No. of men^ 33 (41) 

Mean age (y)* 63.9 +/- 10.3 (43.1-92.2) 

Weight (kg)* 78.2 +/- 15.2 (45.4-114.0) 

Height (cm)* 168.1 +/- 10.4 (147.3-
190.5) 

Mean BMI (kg/m2)* 27.5 +/- 4.1 (18.4-35.5) 

No. of patients with BMI </= 18.5: thin/ malnutrition^ 1 (1.3) 

No. of patients with BMI >18.5 - </=24.9: normal^ 17 (21.3) 

No. of patients with BMI >24.9 - </= 29.9: overweight^ 39 (48.8) 

No. of patients with BMI >29.9 - </= 34.9: moderately 
obese^ 

21 (26.3) 

No. of patients with BMI >34.9: severely obese^ 2 (2.5) 

Primary malignancy types^ 
 

Gynaecological cancers 11 (13.8) 

Colorectal & anal cancers 25 (31.3) 

Urinary tract cancers 15 (18.8) 

Upper gastrointestinal tract, liver & pancreatic cancers 8 (10) 

Neuroendocrine cancers 3 (3.8) 

Lung cancers 2 (2.5) 

Lymphomas 3 (3.8) 

Breast cancers 7 (8.8) 

Two or more primary cancers 4 (5) 

Unknown primary cancer & others 2 (2.5) 

Baseline macroscopic metastasis based on previous 
imaging^ 

 

Yes 43 (53.8) 
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No 37 (46.3) 

Progression of disease on standard of care scan^ 
 

Yes 21 (26.3) 

No 59 (73.8) 

Lung nodules > 4mm on standard of care scan^ 
 

Yes 31 (38.8) 

No 49 (61.3) 

History of documented history of hypertension in primary care/ on at least one 
antihypertensives^ 

Yes 20 (25) 

No 60 (75) 

History of smoking^ 
 

Never smoked 40 (50.0) 

Current smoker 11 (13.8) 

Ex-smoker 29 (36.3) 

History of diabetes mellitus^ 
 

Yes 5 (6.3) 

No 75 (93.4) 

Family history of premature cardiac death^ 
 

Yes 4 (5) 

No 76 (95) 

History of previous myocardial infarction^ 
 

Yes 4 (5) 

No 76 (95) 

Presence of coronary stent or coronary arterial bypass 
graft^ 

 

Yes 4 (5) 

No 76 (95) 

Previous CTCA or invasive coronary angiogram^ 
 

Yes 9 (11.3) 

No 71 (88.8) 

*Data are of the mean +/- SD; data in parentheses are the range 

^Data in parentheses are the percentages 

Table 13. Baseline characteristics of the population (n=80). 

Objectively, there was a slight difference between the standard of care and the research 

study due to the presence of contrast in the research study (Table 14). A total of 480 lobes 

of lungs (the presence of 2 artefacts in the upper, middle/ lingula and lower lobes) were 

subjectively scored to assess the lung image quality. Figure 14 shows the difference in 

image quality score between the two techniques.  
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No. 1 = STD No.2 = Research Mean Difference 95% CI P value 

Average HU 
     

Pectoralis major muscles 34.81 +/- 14.73 40.88 +/- 17.12 *-6.04 *-3.66 to -8.48 <0.001 

Pectoralis minor muscles 32.63+/-10.73 42.53 +/- 14.4 *-9.9 *-12.7 to -7.11 <0.001 

Paraspinal muscles 17.02 +/- 15.88 30.94 +/-14.62 *-13.91 *-17.16 to -10.66 <0.001 

Sub-axillary fat *-105.57+/-14.09 *-104.47 +/- 15.53 *-1.1 *-3.12 to -0.92 2.810 

Air anterior to the chest wall *-999.13 +/- 5.83 *-997.40 +/- 6.61 *-1.73 *-2.60 to -0.87 0.001 

Image noise 
     

Pectoralis major muscles 22.49 +/- 7.66 38.27 +/- 9.81 *-15.78 *-18.81 to -12.76 <0.001 

Pectoralis minor muscles 22.12 +/- 5.97 36.99 +/- 8.31 *-14.87 *-16.72 to -13.02 <0.001 

Paraspinal muscles 35.3 +/- 7.71 54.08 +/- 11.42 *-18.78 *-21.4 to -16.2 <0.001 

Sub-axillary fat 20.42 +/- 15.71 31.48 +/- 7.52 *-11.06 *-14.69 to -7.43 <0.001 

Air anterior to the chest wall *-0.19 +/- 113.73 15.69 +/- 7.73 *-15.88 *-41.07 to -9.32 2.135 

Dosimetry 
     

Scan range (mm) 280.47 +/- 24.42 272.52 +/- 36.75 7.95 1.56-14.34 0.015 

DLP  (mGy.cm) 297.98 +/- 134.98 154.46 +/-60.71 143.53 121.04-166.02 <0.001 

CTDIVol  (mGy) **8.63 +/- 3.88 5.64 +/- 2.1 2.95 2.34-3.56 <0.001 
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Effective dose ICRP 103 

criteria 

8.05 +/- 3.64 4.17 +/- 1.64 3.88 3.27-4.48 <0.001 

Abbreviations: CI = confidence interval; HU = Housefield unit; STD = standard of care; DLP = dose length product; 

 CTDIVol = CT dose index. ^Paired t-test used to estimate the 95% confidence intervals and p values. 

*Bonferroni correction is used for multiple comparisons. **There is apparent 23% deviation in scanner reported to calculated 

CTDIVol is a result of an additional and unaccounted 6cm over scan for the helical model for the stated protocol 

Table 14. Objective difference and dosimetry of standard of acre and research CT (n = 80). 
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Figure 14. Comparison between standard of care and gated scans: The difference in 

subjective score between chest CTs. 

Image quality was equivalent in the research CT thorax compared to the standard of care 

across all categories. The maximum subjective difference in image quality was observed in 

the middle lobe (STD = 3.27+/-0.73; Research = 3.93+/-0.26, p<0.001) and heart border 

(STD = 3.31+/-0.70; Research = 3.94+/-0.23, p<0.001). Agreement between assessors 

improved with the research gated study. Step artefact in the research gated study did not 

significantly affect the acceptability (3.79+/-0.5), where 2.50% had severe or moderate, 21.3% 

had minor and 76.3% had no artefacts. There was moderate inter-observer agreement for 

the lung image quality assessment of both the research and standard of care CT thorax 

(weighted kappa for overall image quality 0.59 and 0.52 respectively). The proportion of 

concordant cases improved with the gated technique. The following demonstrate the image 

quality between the standard of care and research scans (Figure 15, 16, 17).  
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Figure 15. 71 year old man, BMI 30.3, received regular CT surveillance for prostate cancer, 

classed as never smoked. Images displayed in lung windows. (a) The standard of care scan 

showed edge blurring artefact affecting diagnostic confidence in the middle lobe. (b) The 

equivalent research scan showed no edge blurring artefact. The DLP of the standard of care 

scan was 515.7 mGy-cm compared to the DLP of the research scan was 270.3 mGy-cm.  

 

Figure 16. 48 year old woman, BMI 34.9, received regular CT surveillance for endometrial 

cancer, classed as ex-smoker. Images displayed in lung windows. (a) The standard of care 

scan showed edge blurring artefact in the upper lobes. (b) The equivalent research scan 
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showed no edge blurring artefact. The DLP of the standard of care scan was 452.2 mGy-cm 

compared to the DLP of the research scan was 180.2 mGy-cm. 

 

 

Figure 17. 65 year old male, BMI 33.4, received regular CT surveillance for renal cancer, 

classed as ex-smoker. Images displayed in lung windows. (a) The standard of care scan 

showed double line artefact in the heart border affecting diagnostic confidence. (b) The 

equivalent research scan showed minor double line artefact. The DLP of the standard of 

care scan was 611.9 mGy-cm compared to the DLP of the research scan was 240.3 mGy-

cm. 

 

Additional information regarding the coronary arteries was gained in the process of adopting 

the gated technique. In terms of coronary artery image quality, 5 of a total of 80 cases (75 

coronary segments) were excluded from the analysis due to poor contrast timing during 

acquisition and were classed as non-diagnostic. These occurred early on during the study. A 

potential of 1125 coronary segments were subjectively evaluated for their image qualities. 

Eighty coronary segments (7.1%) were not evaluable as they were classed as absent. The 

overall impression score, independent of the individual segments, was 3.3+/-0.83 with good 
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agreement (kappa 0.62); the average image quality of the coronary arteries as a function of 

the individual segments was 3.43+/-0.68 with moderate agreement (kappa 0.51). Using a 

heart rate of 85 as a threshold, the proportion of acceptable coronary segments dropped off 

considerably above that (Table 15). There were 3 participants with coronary stents and 2 

participants had coronary artery bypass grafts (including LIMA, LAD, RCA & diagonal grafts) 

(see an example in Figure 18). All these cases all had acceptable quality images and were 

satisfactorily evaluated (see another example in Figure 19). 

Heart 
Rate 

Participant Potential 
Diagnostic 
Segments 

Not 
Present 
Segments 

Actual No. 
of 
Diagnostic 
Segments 

Proportion 
of 
Diagnostic 
Segments 

Lower 
95% 
CI 

Upper 
95% 
CI 

</=60 10 150 2 148 100.0% n/a n/a 

>60-
</=70 

21 315 26 254 87.9% 83.6% 91.4% 

>70-
</=80 

22 330 23 265 86.3% 82.0% 90.0% 

>80-
</=85 

9 135 12 102 82.9% 75.1% 89.1% 

>85-
</=90 

5 75 7 39 57.4% 44.8% 69.3% 

>90-
</=110 

8 120 10 75 68.2% 58.6% 76.7% 

Total 75 1125 80 883 84.5% 82.2% 86.6% 

Percentage of diagnostic segments displayed as mean and 95% confidence intervals. 
Abbreviations: n/a = not applicable; CI = confidence intervals 
Table 15. The correlation between heart rate and the number of diagnostic coronary 

segments. 
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Figure 18. 81 year old man, BMI 31.8, received regular CT surveillance for rectal cancer, 

classed as ex-smoker and was in sinus rhythm (acquisition heart rate 41-44 bpm). A 

prospectively gated axial CT scan with diastolic triggering allowed evaluation of the LIMA 

(left image), venous to diagonal (middle image) and venous to right coronary artery grafts 

(right image). The DLP of the axial scan was 240.3 mGy-cm compared to the DLP of the 

helical scan was 465.7 mGy-cm.  

 

Figure 19. 58 year old woman, BMI 27.1, received regular CT surveillance for vulvar cancer, 

had previous coronary investigations. (A) A prospectively gated axial CT scan with diastolic 

triggering (acquisition heart rate 58-62 bpm) had good image quality that enabled 

reconstruction with volume rendering of the coronary tree and stents within the left anterior 

descending and right coronary artery. (B & C) Curved multiplane reformat images allowed 

further scrutiny of the right coronary stent. 
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Figure 20. The correlation between body mass index and dose length product in both the 

helical (ungated) and axial (ECG gated) scans. 

 

For the research CT thorax, the mean DLP was 152.9 mGy-cm +/- 63 and the effective dose 

was 2.2 mSv +/- 0.8. For the standard of care CT thorax, the mean DLP was 298.0 mGy-cm 

+/- 135.0 and the effective dose was 4.2 mSv +/- 1.9. Figure 20 displays the correlation 

between BMI and DLP.  

 

6.5 Discussion  

This study was performed to see whether ECG gating of the thorax with 64-slice CT would 

allow simultaneous assessment of the coronary arteries. For this to be feasible, it was 

important that there was no detriment in the image quality of the lungs. The image quality in 
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the parts of the lungs susceptible to movement blur improved with the prospectively gated 

studies when compared to the matched ungated studies (net improvement, p<0.001). These 

results echoed previous findings where cardiac related motion artefact improved with ECG 

gating (61, 66-68, 186). One potential disadvantage of axial scanning is artefact due to the 

prolonged breath hold (6-8 seconds for a typical helical scan versus 12 seconds for the 

same coverage with ECG gating). This concern was not realised, however. ECG gating 

technique with 64 slice CT has no detriment on the image quality of the lungs.  

 

CT scanning of the chest is performed routinely as part of the staging process for the 

majority of patients with cancer. Our study shows that minimal modification of existing 

techniques makes visualisation of the coronaries possible at no extra cost or additional 

radiation exposure. Whilst this is currently not a routine practice, our study demonstrates that 

coronary evaluation before and during cancer treatment is possible in the majority of patients 

with heart rate less than 85 and during a routine appointment (see Table 14).  

 

Our study has shown that imaging of the coronary arteries at the time of oncology follow-up 

is feasible and has multiple potential uses. Dedicated CTCA has proven itself to be a 

powerful prognostic tool. Prognostic information indicated by the presence/ severity of 

calcific atheroma burden, plaque characteristics and luminal stenosis is now available on 

CTCA (187). Patients without risk factors and without obstructive disease on CTCA show 

low-rate all-cause mortality at 5-years (188). In contrast, both all-cause and cardiac-related 

mortality increase with increasing atheromatous burden and luminal coronary narrowing (125, 

187, 189). Therefore, consideration should be given as to whether full chest gated CT with 

additional coronary information is useful in the oncology setting. With prospective ECG 

gating, risk stratification of cardiovascular events in those at risk can be achieved before or 

during cancer treatment with no radiation penalty whilst maintaining image quality. Also, the 
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use of this technique would allow investigation as to whether coronary artery disease is an 

independent risk factor for prognosis in a variety of common cancers (190).  

 

This additional information may be useful in perioperative/ peri-treatment risk assessment 

(102, 105, 111, 115, 128, 130). Perioperative cardiac events are a leading cause of death in 

the 234 million major surgical procedures performed worldwide annually (191, 192). 

Providing information about perioperative risk helps identify patients who could benefit from 

receiving more intensive treatment of their cardiac condition, or choosing a less invasive 

surgical procedure (193). Clinical risk indices are the common method of assessment (194-

196) but they underestimate the risk of major perioperative complications (197). CTCA, 

however, allows identification of obstructive and non-obstructive coronary artery disease and, 

compared to the Revised Cardiac Risk Index, can appropriately improve risk estimation 

amongst patients who will experience perioperative cardiovascular events (198). 

 

There are limitations to this study. This is a single-centre study with a relatively small number 

of patients. Currently, the number of expert readers in CTCA is small and reproducibility 

could be an issue. The pulmonary vessels were not assessed as the evaluation of lungs and 

coronary vessels was our objective. Whole chest coronary and pulmonary angiography can 

be achieved with a small adjustment of contrast delivery timing. Venous thromboembolism is 

another important cause of mortality and morbidity, especially in those with metastatic 

disease. We were unable to match the noise indices of the research and standard of care 

investigation without affecting imaging quality locally. The perceived dose reduction as 

indicated by a drop in DLP observed using the research protocol is probably exaggerated as 

the noise index of the standard of care scan is high relative to the research scan. We have 

only included patients with sinus rhythm and able to breath hold, and therefore the image 

quality may be worst in a more general population. 
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Conclusion 

Prospectively ECG gated axial CT thorax resulted in equivalent image quality compared to 

standard ungated CT. Simultaneous whole body staging and coronary imaging is possible 

both before and during cancer treatment, without an additional time of acquisition or 

radiation burden. This technique could become a useful investigation in patients with cancer. 

 

6.6 Learning experience 

Conducting this primary study has been a valuable experience with many lessons learnt. It 

was with regret that the ethics committee at the time denied the usage of routine intravenous 

beta-blockers despite it becoming routine practice during CTCA acquisition. The reason for 

rejection was due to the perceived invasive nature of intravenous administration of beta-

blockade. The desire to use beta blockers was so strong that we returned to the ethics 

committee a second time, however this request was still denied. The line of enquiry of the 

study was innovative, however, it did not fit with any study design and hence it is difficult to 

prove its worthiness. Image quality is a relatively weak outcome and the coronary findings 

from the research scan cannot be verified due to the design of the study. In addition, there 

were fundamental methodological flaws in attempting to evaluate the potential of incidental 

coronary assessment on routine CT whilst investigating lung image quality. 

 

A better proof of concept study would be a diagnostic test accuracy study comparing the 

proposed new test with an existing test in the pre-operative setting. For example, the 

coronary findings from the research scan can be an index test compared to the maximum 

amount of oxygen an individual can consume (VO2 max) in cardiopulmonary exercise 

tolerance test as a reference test. Cardiopulmonary exercise test is the gold standard test for 

the evaluation of aerobic exercise in the pre-operative setting. In fact, this is a subsequent 
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study that was carried out in the same institution, albeit with a cohort design. However, a 

cohort design allows for incorporation of more powerful patient outcomes, rather than 

surrogate markers, such as image quality. 
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Chapter 7 – Conclusion 

7.1 Summary of secondary research 

Firstly, it is crucial to reflect on the existing tool in CVD risk prediction in asymptomatic 

individuals. The Framingham model and its iterations (Wilson 1998, ATP III 2002 and 

D’Agostino 2008) has been extensively validated and has a wealth of evidence to support it 

(5). However, when applied to subsequent populations, the evidence is sometimes 

misrepresented. The main issue is variation in implementation of these models, which has 

been highlighted in the methodology review section and also investigated previously (31). 

More transparency on key information, including thresholds used for baseline risk categories, 

the number of thresholds and prediction horizon, is required. Much emphasis has been 

placed on how an additional test can clarify the uncertainty for those within an intermediate 

risk group. Due to the large variation in thresholds used to define risk categories, it is not 

possible to meaningfully compare those labelled intermediate risk between different 

populations. This makes interpretation of any additional testing difficult, regardless of 

whether it adds or lacks of incremental value. A lesser known problem is the model building 

process of any FRS model during the investigation of incremental value. There is evidence 

that when the baseline model does not perform well (a low AUC initially), which can be due 

to alteration of the baseline model, the incremental value (as indicated by Δ AUC), will be 

falsely elevated. There should be more transparency during a multivariate model building 

process to ensure that it is built for its intended use/ implementation. 

 

Almost thirty decades of research has led to an abundance of technical and observational 

information about CACS. During this period, a transition of technology from electron beam 

CT to multidetector technology has taken place. CACS is, however, consistently measured 

by the Agatston method. The concern regarding the different configurations of scanners and 

variability was not substantiated (199). However, the consensus is that standardisation of 
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calcium score measurements is paramount, especially when serial scoring is considered. 

Using FRS as a baseline model to investigate incremental value of CACS, there have been 

multiple cohorts that looked into this potential, particularly MESA, St Francis Heart, ESINER, 

HNR, Rotterdam, DHS and CONFIRM. In general, an association between all-cause 

mortality and development of CVD events has been observed. Despite the belief that higher 

CACS indicates a higher risk of developing an event, this piece of work showed an overlap 

between CACS subgroups. For example, the HR of developing all-cause mortality 

overlapped between CACS score of 1-100 and >400. CACS yielded additional discrimination 

in both the FRS 1998 and 2002 groups, with small improved discrimination as indicated by 

an increase in AUC. In contrast, the reclassification ability of CACS was mixed. In addition, 

there are ongoing controversies surrounding the nature of NRI and the reporting standard of 

NRI remains a concern. 

 

A relative lack of information is available to describe the incremental value of TACS in 

addition to FRS. There were only 3 studies that described an association between TACS 

and CVD events. When compared with CACS, there is only a relatively minor association 

between TACS and the development of CVD events. The results adjusted for FRS risk 

factors were not available within the included studies. One might surmise that the 

association is unlikely to be significant after adjusting for FRS risk factors. Unless there is 

further convincing evidence, TACS is unlikely to be a useful biomarker in CVD risk prediction 

and resources should be focused elsewhere. 

 

Approximately 15 years of research has led to plenty of technical information on CTCA, but 

observational data is currently limited. Imaging of coronary vessels was not widely available 

before the advent of MDCT prior to 2005. CTCA as a research tool has emerged to become 

a routine examination for predominantly low risk chest pain. This is due to comparable 
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diagnostic test accuracy between CTCA and ICA. However, there is little data on CVD 

prediction. Regarding incremental values, the largest cohort derives from CONFIRM which 

dwarfs the other small independent cohorts. The longest published follow-up is currently 5 

years with results for longer follow-up still pending. The available data for meta-analysis is 

up to 2.5 years with promising results indicating association between obstructive coronary 

disease and development of CVD events. To slightly confuse matters, this association differs 

depending on whether the reference group is no coronary disease or non-obstructive 

coronary disease. Based on a relatively short prediction horizon, CTCA initially yielded a 

small amount of additional discrimination in addition to FRS, however longer term follow-up 

is required to draw more definitive conclusions.  

 

Conducting a systematic review and meta-analysis on the topic of incremental value of CT 

biomarkers in addition to FRS has been challenging. At the early stages of the review 

process, guidance within the literature was limited, which led to a trial and error approach. 

The meta-analysis of the included studies was mainly hindered by the availability of 

aggregate data. The main limitation of the review was missing data. The required data was 

often either not available, selectively reported or crucial information related to the aggregate 

date, such confidence interval, was not provided. These limit how different strata and 

subgroups could be constructed. Other key information that determined the allocation of 

subgroups, including prediction horizon and the iteration of the FRS model, was missing. 

Finally, there was ongoing debate as to how these cohort studies were conducted and 

whether meta-analysis summarising incremental value should be attempted. 

  

Going forward, one way to solve the issues outlined above would be individual participant 

data meta-analysis. However, this relies on the research community contributing the 

necessary data to allow this. If this is done, it would enable a much bigger sample of data 
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and could also potentially eliminate the issue of different publications using different 

thresholds to analyse their data, which makes subsequent meta-analysis using aggregate 

data difficult. Association on its own is insufficient to substantiate incremental value (37). The 

variable baseline performance and other aspects of reporting discrimination inflate potential 

incremental values. AUC analysis remains a good starting point for the investigation of 

incremental values. Reclassification should follow rather than replace AUC analysis (154). 

Reporting of reclassification is also insufficient but significant differences between adequate 

and inadequate reporting practices have not been identified. More rigorous reporting within 

prognostic cohort studies is desperately needed. There remains no current consensus as to 

what is the single best measure, however transparent reporting is key (46). From a wider 

perspective, reporting in prognosis studies needs to be more robust (159-162). 

 

All of the included studies were at prediction model development stage but clinical decision 

making cannot not be based on a model in development. A few of the included studies 

looked at internal validation however external validation should be the immediate focus. In 

short, external validation assesses the calibration of the model in development and corrects 

any optimism. External validation would require a different population to the one that the 

prediction model development was based on. A lot more resources would be required to set 

up new studies. Alternatively, different cohorts with similar characteristics can share 

information and externally validate one another, which may be a cheaper and more time 

efficient alternative. 

 

There is little cost-effectiveness information available. One argument for CACS screening is 

that the cost of conducting a CT scan to establish CACS is $400, whereas the cost of statin 

therapy is $1000. However, the patent on statins has since expired and generic statins are 

significantly cheaper. Subsequently, the Prospective Army Coronary Calcium project 
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recruited young volunteers (aged between 40 and 50) from the United States army and 

evaluated the cost effectiveness of screening young asymptomatic individuals using CACS 

(200). It estimated adding CACS to FRS was associated with $11,500 to over $1,000,000 

per QALY gained. The calculation was based on relative risk reduction provided the CACS 

information was used to decide on initiating primary prevention, such as statins. Even among 

healthy individuals, the huge range indicates the uncertain benefit. Comparing CACS 

screening, current practice, guidelines and statins for all individuals, the Rotterdam study 

found that the improvement of QALY was the most beneficial in the intermediate CHD risk 

group in men but not in women (201). In another population, there was no difference in the 

long term cardiac events between different racial groups (202, 203). Clearly, not the entire 

population is going to benefit from the use of additional CT biomarkers. Considering the 

described variation in clinical and cost effectiveness, one solution is to ask the general public 

to decide. There is currently no published patient public involvement work in the field of 

cardiovascular prediction (5). 

 

Radiation dose is seldom an outcome in cardiovascular prediction research. The assumption 

is often that an extra test will impact positively. The improvement of CT technology means 

that the radiation burden generated by additional CT scans has been reduced. According to 

simulation studies, sixty-four slice CTCA is unlikely to increase the number of cancers as 

estimated using lifetime attributable risk (204). Although the radiation of one scan is small, 

repeat scanning in young people will lead to cumulative radiation exposure. The starting age 

of CT scanning is a concern. Progression of CAS is not linked with risk factors and there is 

not currently sufficient evidence to support the use of CACS as a biomarker for treatment 

efficacy (205). Serial and repeated interval scans are therefore not justified. Other concerns 

include the lack of evaluation of the economic and psychosocial consequences associated 

with incidental findings on cardiac CT. One study reported that incidental findings on cardiac 

CT are common but not often clinically significant (206). There is also the associated cost of 

downstream testing regarding clarification of incidental findings.  
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Finally, it is difficult to translate any of incremental value summary estimate into definite 

improvement in clinical performance. More than just a positive incremental value measure is 

required to prove any CT biomarker is useful in clinical practice. Outcomes of individuals in a 

high CACS group were evaluated in the St. Francis Heart Study randomised controlled trial 

of atorvastatin and vitamins C and E versus placebo (207). Importantly, there was no 

significant difference in the occurrence of cardiac events between the treatment and placebo 

group and there was no change of CACS. Screening for abdominal aortic aneurysm was 

only implemented after trials showed improved outcomes (208). No other randomised 

controlled trials demonstrating clinical benefit of treating a positive CACS or CTCA have 

been identified. The issue with carrying out such a trial is that the event rate among 

asymptomatic participants is very low, substantially increasing the cost and duration of such 

a trial. Until such evidence is available, the incremental value of CT biomarkers will be 

challenging to interpret as better identification of coronary disease needs to be paired with a 

treatment that improves outcome.  

 

7.2 Summary of primary research 

The feasibility study has been carried out to investigate whether it is technically possible to 

assess coronary arteries in patients having follow-up whole body CT scans for cancer 

staging. These patients were asymptomatic and did not coronary angiography to assess the 

coronary arteries. Although it is technically possible to opportunistically examine the 

coronary arteries, the study has several shortcomings as discussed in the learning 

experience section of Chapter 6. The take home message is that coronary evaluation is 

technically possible during routine oncology CT, however the clinical benefit is not proven. 

Most importantly, there is currently no evidence that incidental coronary disease is linked to 

a worse outcome. There is also no randomised controlled trial to investigate whether treating 
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incidental coronary disease improves outcomes. Based on the lack of evidence, the 

conclusion here is that there is currently no justification of screening. 

 

From the systematic review conducted, there is ongoing interest with regards to CTCA as a 

CVD risk prediction tool; this has been discussed in the introduction and discussion sections 

of Chapter 6. The studies reviewed typically look at long term outcomes (classically 10-year 

risk of developing CVD events) that are relevant to this type of long-term cohort design, such 

as all-cause mortality and composite cardiac outcomes. If CTCA is applied to CVD risk 

prediction in the oncology setting, relevant outcomes that are specific to the situation need to 

be developed first. For instance, outcomes that reflect cardiotoxicity in radiotherapy appears 

attractive, which can be roughly divided into short-term or late effects. The potential 

predictive value of CTCA in the setting of cardiotoxicity will, however, be a new hypothesis 

generating excise as its application implies underlying coronary disease predisposes 

patients to cardiotoxicity. To my knowledge, there is currently biological evidence to support 

this hypothesis, which opens to door for potential future research. 

 

7.3 Personal experience & reflections 

Acquiring the generic skills relevant to research has been a rewarding experience but the 

initial learning curve was very steep. Learning to use the statistical package (STATA), 

searching the literature and extracting information for the systematic review and meta-

analysis was particularly challenging. However, the time and effort spent to acquire these 

skills was necessary to establish a foot hold in research. Relevant to the field of prognostic 

research, The Keele Prognosis Course provided me with the basics of prognosis 

methodology. Along with previous experience in the diagnostic test accuracy literature, the 

most precious lesson I learnt was that designing either a primary or secondary study 

requires time, reading, drafting and re-drafting. Most importantly, making an informed 
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decision about the study design at the outset is paramount. To reflect critically, I would say 

that initial inexperience contributed to the many shortcomings of the feasibility study. With 

more experience now, and having learnt the hard way, these shortcomings will be avoided in 

all future research performed. 

 

As a result of the research process, I have learnt a lot about bias assessment and data 

extraction in the field of CVD risk prediction. With additional learning and some guidance, my 

next step will be to perform statistical analysis on an observational dataset in order to 

understand some of the selective reporting practices that were encountered. To overcome 

the lack of aggregate data, learning how to perform individual participant data analysis 

appears to be the next logical step. Prior to that, I may need to enhance my base level of 

statistical knowledge, perhaps undertaking a higher degree in statistics, or learning from the 

relevant institutions that have experience with this unique type of data analysis.  

 

The knowledge gained about prognosis research is relevant to my own clinical practice in 

radiology, which is intertwined with emerging technology and analysis. With the rise of the 

newer techniques, such as textural analysis in radiomics and artificial intelligence, there are 

a lot of hypes and promises about their potential diagnostic and prognostic benefits. The risk 

is that the research community can become over optimistic with new technology or biased by 

those who have a vested interest in promoting these new technologies. Following on from 

this research process, I am now better equipped to assess new technology and establish 

whether it meaningfully adds to existing clinical practise or is prognostically significant. With 

the current scarcity of systematic reviewers performing prognostic type reviews, my 

experience will hopefully allow me to collate and present relevant evidence on new and 

emerging technologies to the imaging community. 
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Chapter 8 – Appendices 

 

8.1 Appendix 

Appendix 1 Search strategy 

 

1. (CCTA or CTCA or CAC).tw. 

2. "ct coronary angiogra*".tw. 

3. "comput* tomogra* coronary angiogra*".tw. 

4. "coronary comput* tomogra* angiogra*".tw. 

5. "Computed tomography of the heart".tw. 

6. cardiac imaging techniques/ 

7. ((arter* or coronary) adj1 calci*).tw. 

8. ((Agatston or calcium) adj1 score*).tw. 

9. or/1-8 

10. (cardio* adj2 (disorder* or event* or disease* or condition* or isch?emia)).tw. 

11. ((cardiac or heart or coronary or acute coronary or stable or unstable) adj2 (angina or 

disease* or condition* or event* or disorder* or syndrome* or isch?emia)).tw. 

12. ((myocardial or coronary) adj1 (infarct* or isch?emia)).tw. 

13. ((ST segment* elevat* or non ST elevat* or non ST segment* elevat* or ST elevat*) adj1 

myocardial adj1 (infarct* or isch?emia)).tw. 

14. (STEMI or NSTEMI or "Non STEMI").tw. 

15. exp Cardiovascular Disease/ or exp Myocardial Ischemia/ or exp Myocardial Infarction/ 

or exp Coronary Artery Disease/ or exp Coronary Disease/ or exp Acute Coronary 

Syndrome/ or exp Angina Pectoris/ or exp Angina, Unstable/ or exp Angina, Stable/ 

16. stroke*.tw. 

17. (cereb* adj1 (disease* or accident* or h?emorrhage or incident* or isch?emia)).tw. 

18. ((ish* or thrombotic or h?emorrhagic) adj1 stroke*).tw. 

19. exp stroke/ or exp cerebrovascular disorders/ 



134 
 

20. or/10-19 

21. "add* value*".tw. 

22. "progno*".tw. 

23. "reclassif*".tw. 

24. "risk stratification*".tw. 

25. or/21-24 

26. "all-cause mortalit*".tw. 

27. ((non fatal or nonfatal) adj1 myocardial adj1 (infarction* or disease* or isch?emia)).tw. 

28. (mortalit* or morbidit*).tw. 

29. (cardi* adj1 (event* or incident* or mortalit* or morbidit*)).tw. 

30. (CABG* or OPCAB* or OPCABG*).tw. 

31. (bypass adj1 (surger* or graft* or graft surger*)).tw. 

32. ((aortocoronary or heart or cardiac or triple or quadruple or coronary or coronary artery 

or coronary bypass or coronary artery byapss or off pump or surgical or non surgical or 

nonsurgical) adj1 (coronary bypass* or bypass surger* or bypass graft* or bypass operation* 

or bypass* or graft surger* or revasculari?ation*)).tw. 

33. (CABG* adj1 (surger* or operation*)).tw. 

34. exp Coronary Artery Bypass/ 

35. ((coronary or coronary artery or percutaneous transluminal coronary or transluminal 

coronary or percutaneous transluminal or percutaneous or balloon) adj1 angioplast*).tw. 

36. (angiograph* adj5 peripheral vascular disease*).tw. 

37. "peripheral vascular disease*".tw. 

38. exp Peripheral Vascular Diseases/ 

39. ((hospital* or admission* or inpatient admission* or inpatient care or inpatient procedure* 

or inpatient or initiat* or first line or second line or third line or treatment* or therap* or 

preventive treatment* or preventative treatment* or prophylactic treatment* or clinical 

treatment* or med* or medication* or medical therap* or agent* or drug* or statin* or 

cholestrol reduct* or cholestrol lower* or HMG-CoA reductase inhibitor* or 
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Hydroxymethylglutaryl-coenzyme A reductase inhibitor* or antihypertensive* or angiotensin 

converting enzyme* or ACE or beta* or beta adrenoreceptor antagonist* or calcium channel 

blocker* or diuretic* or antiplatelet* or clopidogrel* or aspirin* or acetylsalicylic acid or ASA or 

anticoagulant* or warfarin* or coumadin* or metformin or insulin*) adj3 ((cardiac or heart or 

coronary or acute coronary or cereb* or stable or unstable) adj2 (angina or disease* or 

condition* or event* or disorder* or accident* or h?emorrhage or incident* or syndrome*))).tw. 

40. or/26-39 

41. "framingham risk* score*".tw. 

42. "Framingham General Cardiovascular Risk Score".tw. 

43. (framingham adj1 (CHD or cardiovascular)).tw. 

44. (FRS or GFRS or ATP III or framingham).tw. 

45. "adult treatment panel III".tw. 

46. ((ATP III or framin*) adj4 (risk* or score* or criteri* or ind* or categor* or profile* or 

stratif*)).tw. 

47. or/41-46 

48. 9 and 20 and (25 or 40) and 47 
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Appendix 2 Inclusion & exclusion criteria of studies investigated CACS and/or TACS 

Year 

First Author 

Inclusion 

Criteria 

Exclusion Criteria Endpoint 

2013 

Agarwal 

Type 2 

diabetes after 

age 34, with/ 

without CVD 

Diabetic ketoacidosis or 

serious health condition (e.g. 

advanced nephropathy) 

Composite = 1) all-cause 

mortality 2) MI, cardiac 

arrest, arrhythmia, PVD, 

stroke or HF 

2011 

Ahmadi 

Veterans 

presented with 

suspected CHD 

Subjects with established 

CVD, stroke, diabetic 

retinopathy, end-stage renal 

disease, Raynaud syndrome, 

infection, cancer, 

immunosuppression, systemic 

inflammation status, or end-

stage liver disease 

Single = all-cause 

mortality 

2005 

Arad 

Age 50-70, 

without any 

history, 

symptoms & 

signs of CVD 

Extensive exclusion criteria 

relating to any diagnosis, 

medication or biomarkers 

suggesting underlying CVD 

Composite = 1) all-cause 

mortality 2) non-fatal MI/ 

coronary death, coronary 

revascularisation (bypass 

surgery or percutaneous 

angioplasty), stroke or 

PVD surgery 

2007 

Budoff 

n/a n/a Single = all-cause 

mortality 
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2015 

Chang 

Any 

cardiovascular 

risk factors 

Previous CHD Composite = cardiac 

death, non-fatal MI or 

need for coronary 

revascularisation 

2015 

Cho 

Age >18, > 64-

row CT, 

interpretable 

image quality & 

prospective 

CHD risk 

factors 

collection  

Experienced chest pain, 

unknown symptoms status, a 

previous history of MI, 

coronary revascularisation or 

cardiac transplant 

Composite = 1) all-cause 

mortality 2) non-fatal MI 

2012 

Cho 

Age >18, > 64-

row CT, 

interpretable 

image quality, 

clinical 

indication for 

CHD evaluation 

& prospective 

CHD risk 

factors 

collection 

Chest pain, unknown 

symptom status, previous MI, 

coronary revascularisation, 

cardiac transplant, withouth 

follow-up data of mortality or 

CTCA findings 

Composite = 1) all-cause 

mortality 2) non-fatal MI 
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2010 

Elias-Smale 

Age 55-85 & 

asymptomatic 

Symptomatic candidates 

defined by presence of MI, 

CABG or angioplasty at time 

of scanning, not living 

independently, lost to follow-

up, inadequate image quality, 

refuse to participate or 

logistical reason leading to not 

able to attend follow-up 

Composite = fatal & non-

fatal CVD endpoints 

2011 

Elias-Smale 

age >55 Symptoms defined by 

percutaneous coronary 

intervention, CABG, MI, stroke 

Composite = classified 

according to ICD-10, 

including MI, CHD 

mortality, TIA or 

ischaemic strokes 

2010 

Erbel 

Age 45-75 Known CHD at baseline Composite = 1) all-cause 

mortality 2) non-fatal MI, 

cardiac death, major 

cerebrovascular, surgical 

or non-surgical coronary 

revascularisation, 

angiographically defined 

new-onset PVD, 

hospitalisation for cardiac 

disease or initiation of 

medical therapy for 

cardiac disease 
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2013 

Forouzandeh 

Age >18, chest 

pain within the 

previous 24 

hours 

suggestive of 

ischaemia 

&admission 

under 

observational 

status for 

stress SPECT 

Non-cardiac chest pain, 

elevated troponin, new/ 

presumably new ST-segment 

elevation or depression on 

baseline ECG, haemodynamic 

instability, previous CABG, 

previous angioplasty, women 

of child bearing potential with 

known or suspected 

pregnancy or inability to 

provide consent 

Composite = MACE were 

defined as cardiac death, 

non-fatal MI or unstable 

angina 

2014 

Gibson 

Age 45-84, free 

of clinical CVD 

at baseline, 

four racial 

ethnic groups 

from six US 

communities 

(African-

American, 

Hispanic, Asian 

predominantly 

Chinese 

descent, White) 

Physician-diagnosed MI, 

angina, HF, stroke, TIA, 

CABG, angioplasty, valve 

replacement, pacemaker 

placement or other vascular 

surgeries (see original MESA 

exclusion criteria) 

Composite = fatal or non-

fatal strokes due to 

haemorrhage infarct or 

TIA 

2004 

Greenland 

Age >45 & at 

least 1 

coronary risk 

Diabetes, symptomatic, 

coronary events prior to CT 

scan 

Composite = non-fatal MI 

or CHD death 
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factor 

2010 

Hadamitzky 

n/a Known CHD, angina, non-

anginal chest pain defined by 

Diamond Forrester or other 

symptoms caused by cardiac 

disease 

Composite = cardiac 

death, nonfatal MI, 

unstable angina requiring 

hospitalisation or late 

revascularisation (>90 

days after CTCA) 

2013 

Hermann 

Age 45-75, 

negative history 

of previous 

stroke, CHD & 

MI 

Overt CVD, inability to give 

informed consent to 

participate in the study, 

conditions that preclude 

follow-up for 5 years, severe 

psychiatric disorders or illegal 

substance or pregnancy 

Composite = stroke 

events both ischaemic & 

haemorrhagic, defined as 

focal neurologic deficit of 

presumed 

cerebrovascular 

origin >24 hours 

2012 

Kavousi 

Age >55 CHD defined as clinically 

manifest MI, CABG or 

angioplasty 

Composite = fatal and 

non-fatal CHD 

2012 

Lau 

Type 2 

diabetes, 

Chinese & FRS 

<20% 

Patients calculated to be at 

high risk (>20%) of developing 

a cardiovascular event within 

10 years based on the 

recalibrated FRS for Chinese, 

prior history of prior ACS, 

ischaemic stroke, acute limb 

ischaemia, stable angina, 

symptomatic PVD, creatinine 

Composite = ACS, 

ischaemic stroke, new 

onset symptomatic PVD, 

death due to ACS or 

ischaemic stroke or 

symptom driven 

revascularisation 

procedures of the carotid, 

coronary or peripheral 



141 
 

level >220, severe hepatic 

disease, malignancy or 

connective tissue diseases  

arteries 

2015 

Matsushita 

Same as 

Gibson 2014 

Same as Gibson 2014 Composite = first 

incidence of CHD 

(ranges from angina to 

death), stroke, HF or 

PVD 

2011 

Mohlenkamp 

Age 45-75 MI, coronary revascularisation 

or baseline indication for statin 

therapy according to Canadian 

Cardiovascular Society 

guidelines 

Composite = fatal & non-

fatal CHD events, CVD 

mortality, stroke or 

coronary 

revascularisation 

2011 

Mohlenkamp 

Age 45-75 Subjects with hsCRP > 10 

mg/l suggesting acute 

inflammation or history of MI 

or coronary revascularisation 

Composite = CHD events 

2013 

Park 

Self referred 

screening  

Prior history of 

revascularisation or known 

CHD, poor image quality due 

to blooming artefact or 

patients who had 

Composite = cardiac 

death, MI, unstable 

angina or stroke 
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revascularisation procedure 

within 90 days of CTCA 

2010 

Polonsky 

Same as 

Gibson 2014 

Original MESA exclusion 

criteria & diabetes 

Composite = MI, death 

due to CHD, resuscitated 

cardiac arrest, definite or 

probable angina followed 

by coronary 

revascularisation or 

definite angina not 

followed by coronary 

revascularisation 

2001 

Raggi 

n/a n/a Composite = cardiac 

events 

2004 

Raggi 

At least one 

cardiac risk 

factor 

Presence of CHD Single = all-cause 

mortality 

2012 

Rana 

Volunteers Previous CVD or 

symptoms, >80 years old, 

pregnancy, significant medical 

co-morbidity, prior coronary 

catheterization or prior CACS 

Composite = first CVD 

event defined by cardiac 

death, MI, stroke or late 

revascularisation >90 

days after CACS 

2003 

Shaw 

Referred by 

primary care 

due to 

History of admission to 

hospital due to chest pain, 

ACS, MI, prior coronary 

Single = all-cause 

mortality 
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presence of 

cardiac risk 

factors 

angiography & previous 

revascularisation 

2013 

Versteylen 

Had both 

CACS & CTCA 

at baseline 

Unstable angina, 

haemodynamic instability, 

pregnancy, renal insufficiency, 

severe iodine allergy, history 

of coronary artery disease, 

inconclusive CTCA & clinical 

data missing 

Composite = 1) single = 

all-cause mortality 2) 

ACS (troponin T 

elevation, ST segment 

elevation/ depression 

of >1 mm, or at least 2 of 

these symptoms together 

with invasive 

angiographic 

confirmation of culprit 

lesion), MI, unstable 

angina, revascularisation 

2009 

Wong 

Had both 

CACS & TACS 

at baseline 

Atrial fibrillation & history of 

CVD 

Composite = 1) Hard 

CHD events = MI or 

cardiac death 2) Total 

CHD events = hard CHD 

events plus late 

revascularisations (>90 

days) 3) Total CVD 

events = total CHD 

events plus stroke  
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2012 

Yeboah 

Same as 

Gibson 2014 + 

without 

diabetes, FRS 

of 

between >5% 

and <20%, 

complete data 

on all 6 of novel 

risk markers 

Original MESA exclusion 

criteria & diabetes 

Composite = 1) Incident 

CHD 2) Incident CVD = 

incident CHD, stroke or 

CVD death 

2014 

Yeboah 

Same as 

Gibson 2014 

Original MESA exclusion 

criteria & diabetes 

Composite = 1) single = 

all-cause mortality 2) 

Incident CHD event = MI, 

death due to CHD, 

resuscitated cardiac 

arrest, definite or 

probable angina followed 

by coronary 

revascularisation, and 

definite angina not 

followed by coronary 

revascularisation 3) 

Incident CVD event = 

incident CHD + stroke, 

stroke death or other 

CVD death defined by 

MESA protocol  
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Appendix 3 Inclusion and exclusion criteria of studies investigated CTCA 

Year 

First Author 

Inclusion criteria Exclusion criteria Endpoint 

2015 

Cho 

Age> 18, > 64-row 

CT, interpretable 

image quality & 

available CHD risk 

factors 

Experienced chest 

pain, unknown 

symptoms status, a 

previous history of MI, 

coronary 

revascularisation, 

cardiac transplant 

Composite = 1) single =all-cause 

mortality 2) non-fatal MI 

2012 

Cho 

Age >18, > 64-row 

CT, interpretable 

image quality, 

clinical indication for 

CHD evaluation & 

prospective CHD 

risk factors 

collection 

Same as Cho 2015 + 

without follow-up data 

of mortality or CTCA 

findings 

Composite = 1) single =all-cause 

mortality 2) non-fatal MI 

2011 

Chow 

Age> 18, > 64-row 

CT, interpretable 

image quality & 

available CHD risk 

factors 

MI, coronary 

revascularisation or 

cardiac transplant 

Single = all-cause mortality 

2010 

Hadamitzky 

n/a Known CHD, angina, 

non-anginal chest 

pain defined by 

Diamond Forrester or 

Composite = cardiac death, nonfatal 

MI, unstable angina requiring 

hospitalisation and late 

revascularisation (>90 days after 
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other symptoms 

caused by cardiac 

disease 

CCTA) 

2013 

Hadamitzky 

Suspected but not 

proven CHD, 

assessment of both 

luminal stenosis as 

well as presence & 

composition of 

plaque in CTCA & a 

follow-up of at least 

90 days 

Known CHD including 

self-reported MI; 

coronary 

revascularisation, 

stents/ CABG on CT 

Single = time to death from any 

cause 

2010 

Chow 

Primary indications 

for CTCA were 

chest pain or 

dyspnoea 

History of coronary 

revascularisation, 

heart transplantation 

or congenital heart 

disease 

Composite = 1) all-cause mortality 

2) all MACE (cardiac death & non-

fatal MI)  

2011 

Lin 

Normal sinus 

rhythm & capable of 

breath-hold 

Known CHD, prior 

coronary 

revascularisation, 

CTCA identified 

obstructive CHD 

(>50%) or non-

verifiable Social 

Security numbers 

Single = all-cause mortality 



147 
 

2013 

Park 

Self referred 

screening  

Prior history of 

revascularisation or 

known CHD, poor 

image quality due to 

blooming artefact or 

patients who had 

revascularisation 

procedure within 90 

days of CTCA 

Composite = cardiac death, MI, 

unstable angina or stroke 

2013 

Versteylen 

Had both CACS & 

CTCA 

Unstable angina, 

haemodynamic 

instability, pregnancy, 

renal insufficiency, 

severe iodine allergy, 

history of CHD or 

inconclusive CCTA, 

clinical data missing 

Composite = ACS (troponin T 

elevation, ST segment elevation/ 

depression of >1 mm, or at least 2 of 

these symptoms together with 

invasive angiographic confirmation 

of culprit lesion), MI, unstable 

angina, revascularisation + all-cause 

mortality  
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Appendix 4 An example of qualitative documentation for and against pooling aggregate data 

Outcome of concern: The added value of CTCA in addition to CACS & FRS 

Publications of concern: 

1. Cho 2012, CCTA and risk of all-cause mortality and nonfatal myocardial infarction in 

subjects without chest pain syndrome from the CONFIRM Registry 

2. Hadamitzky 2010, Prognostic value of coronary CT angiography 

3. Versteylen 2013, Additive value of semi-automated quantification of coronary artery 

disease using cardiac computed tomographic angiography to predict future acute 

coronary syndrome 

 

Potential meta-analysis size effects and groups: 

Difference in AUC 

• When compared with risk factors 

o Cho 2012 

o Hadamitzky 2010 

o Versteylen 2013 

• When compared with risk factors and CACS 

o Cho 2012 

o Hadamitzky 2010 

o Versteylen 2013 

Evidence for meta-analysis: 

• Comparable endpoints – all recorded as composite cardiovascular outcomes, 

Versteylen 2013 and Cho 2012 included all-cause mortality as composite outcomes 

while Hadamitzky 2010 did not 
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• Different patient cohorts  

• Overlapping regions  

• Comparable inclusion and exclusion criteria 

• Comparable mean ages 

• Comparable follow-up time  

• Comparable CT techniques  

• Same year risk prediction – unknown for Versteylen 2013 

Evidence against meta-analysis: 

• Different designs – prospective, retrospective and unclear 

• Different symptoms 

o Asymptomatic in Hadamitzky 2010 and Cho 2012 

o Symptomatic in Versteylen 2013 

• Different inclusion and exclusion criteria – mainly Versteylen 2013 include patient 

with chest pain but not the other two 

• Different hazard models – not stated in 2 of the studies 

• Different number of participants 

• Different FRS models  

o FRS 1998 = Cho 2012, Hadamitzky 2010 

o FRS 2008 = Versteylen 

• Different FRS risk categories  

• Different event rate 2.2 – 22.3% 

 

Overall verdict for meta-analysis is probably justified provided that Versteylen 2013 is treated 

separately given that this is a group has higher pre-test probability at baseline, different FRS 

category and much higher event rate.  
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Potential meta-analysis groups: 

The extra value of CTCA in addition to FRS 1998 and CACS as indicated by difference in 

AUC in predicting composite cardiovascular outcome 

• When compared with risk factors only 

o Cho 2012 (asymptomatic) 

▪ Subgroup event definition = all-cause mortality + non-fatal MI 

▪ Adjustment = none 

▪ Effect size = 0.74 (0.66-0.81) - 0.59 (0.52-0.67) = 0.15 

▪ Comment = contact author for CI/ SE and/ variance 

o Hadamitzky 2010 (asymptomatic) 

▪ Subgroup event definition = composite cardiovascular outcome 

including cardiac death, nonfatal MI, unstable angina requiring 

hospitalisation and late revascularisation (>90 days after CCTA) 

▪ Adjustment = none 

▪ Effect size = 0.22, no CI 

▪ Comment = author contacted on 07/02/16 

o Versteylen 2013 (symptomatic, as a separate group) 

▪ Subgroup event definition = Composite = ACS (troponin T elevation, 

CT segment elevation/ depression of >1 mm, or at least 2 of these 

symptoms together with invasive angiographic confirmation of culprit 

lesion), MI, unstable angina, revascularisation + all-cause mortality  

▪ Adjustment = none 

▪ Effect size = 0.64, CI 0.52 to 0.76, - 0.59, CI 0.45 to 0.73 = 0.05 

▪ Comment = contact author for CI/ SE and/ variance 

• When compared with both risk factors and CACS 

o Cho 2012 (asymptomatic) 

▪ Subgroup event definition = all-cause mortality + non-fatal MI 
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▪ Adjustment = none 

▪ Effect size = 0.74 (0.66-0.81) - 0.71 (0.64-0.78) = 0.03 

▪ Comment = contact author for CI/ SE and/ variance 

o Hadamitzky 2010 (asymptomatic) 

▪ Subgroup event definition = composite cardiovascular outcome 

including cardiac death, nonfatal MI, unstable angina requiring 

hospitalisation and late revascularisation (>90 days after CCTA) 

▪ Adjustment = none 

▪ Effect size = 0.07, no CI 

▪ Comment = author contacted on 07/02/16 

o Versteylen 2013 (symptomatic, as a separate group) 

▪ Subgroup event definition = Composite = ACS (troponin T elevation, 

CT segment elevation/ depression of >1 mm, or at least 2 of these 

symptoms together with invasive angiographic confirmation of culprit 

lesion), MI, unstable angina, revascularisation + all-cause mortality  

▪ Adjustment = none 

▪ Effect size = 0.64, CI 0.52 to 0.76, - 0.67, CI 0.54 to 0.79 = -0.03 

▪ Comment = contact author for CI/ SE and/ variance 
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Appendix 5 Threshold information of CACS, TACS & CTCA 

Coronary calcium score 

Author Year Reference 

Group 

Group 1 Group 2 Group 3 Other Groups 

Agarwal 2013 <10 10-99. 100-299 300-999, >1000 log, ordinal 

Ahmadi 2011 Discordant 

low risk 

Discordant 

high risk 

  
Discordant high risk 

& 4 adjustments, 

CAC in discordant 

low risk  

Arad 2005 0 1-99. 100-399 >/=400 n/a 

Budoff 2007 0, absence of 

vessel >100, 

3 groups from 

cumulative 

survival curve 

1-10, 11-100 101-399 400-699, 999, >1000 1-vessel >100, 2-

vessel >100, 3-

vessel >100, any 

vessel >100 

unadjusted, any 

vessel >100 adjusted 

Budoff 2007 0 (3 

subgroups) 

1-10, 11-100 101-299, 300-399 400-699, 700-

999, >1000 

7 other subgroups 

Chang 2015 0 </=10, 11-100 101-400 >400 log, 3 other adjusted 

log 

Cho 2012 0 for 2 

outcomes & 2 

adjusted 

groups 

1-100 (for 2 

outcomes) 

101-400 ((for 2 

outcomes) 

>400 (for 2 outcomes) 6 adjusted groups 

Cho 2015 ?</=10 </=100 100-400 400-1000, >1000 n/a 

Elias-Smale 2010 0 >0 n/a n/a log 

Elias-Smale 2011 1st tertiles for 

2 outcomes & 

3 adjustments 

2nd tertiles 

(for 3 

adjustments) 

3rd tertiles (for 3 

adjustments) 

n/a n/a 

Erbel 2010 0 for 

unadjusted & 

adjusted, 1st 

quartile for 

unadjusted & 

adjusted 

1-99, 2nd 

quartile. Both 

for unadjusted 

& adjusted. 

100-399, 3rd 

quartile. Both for 

unadjusted & 

adjusted. 

400-

999, >/=400, >/=1000, 

4th quartile. All for 

unadjusted & 

adjusted. 

log unadjusted & 

adjusted 
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Forouzandeh 2013 0 for 

unadjusted & 

3 adjustments 

1-100 100-400 >400 >0 for unadjusted & 3 

adjustments 

Gibson 2014 0 for 3 

outcomes & 

unadjusted & 

adjusted 

0-100 100-400 >400 log for 3 outcomes & 

unadjusted & 

adjusted, >0 for 3 

outcomes & 

unadjusted & 

adjusted 

Greenland 2004 0, 0 & FRS 0-

9, 0 & FRS 

10-15, 1-100 

& FRS 0-9, 

101-300 & 

FRS 0-9 

1-100, 1-100 

& FRS 

categories 1-4 

101-300, 101-300 

& FRS categories 

1-4 

>/=301, >/=301 & 

FRS categories 1-4 

trend, per SD 

increase 

Hermann 2013 ?0 1-99. 100-399 >/=400 log (including 

unadjusted & 3 

adjustments), men 

log (unadjusted & 2 

adjustments), women 

log (unadjusted & 1 

adjustment) 

Kavousi 2012 n/a n/a n/a n/a log, men log, women 

log 

Lau 2012 <40 >40 n/a n/a n/a 

Matsushita 2015 non-CKD 

quartile 2, 

CKD quartile 

2 

non-CKD 

quartile 3, 

CKD quartile 

3 

non-CKD quartile 

4, CKD quartile 4 

n/a n/a 

Mohlenkamp 2011 

Cor 

0 for 

unadjusted & 

adjusted 

1-99 for 

unadjusted & 

adjusted 

100-399 for 

unadjusted & 

adjusted 

>/=400 for unadjusted 

& adjusted 

n/a 

Mohlenkamp 2011 

Quan 

0 (for 2 

different 

outcomes, 

unadjusted 

and 2 

1-99 (for 2 

different 

outcomes, 

unadjusted 

and 2 

100-399 (for 2 

different 

outcomes, 

unadjusted and 2 

adjustments) 

>/=400 (for 2 different 

outcomes, unadjusted 

and 2 adjustments) 

n/a 
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adjustments) adjustments) 

Park 2013 0 0-100 100-400 >400 n/a 

Polonsky 2010 n/a n/a n/a n/a log 

Raggi 2001 0 decile >0, percentile 

univariate, 

percentile 

multivariate, 

10th, 20th, 

30th decile 

40th, 50th, 60th 

decile 

70th, 80th, 90th decile log, >0 

Raggi 2004 <10 (for men 

& women) 

11-100 (for 

men & 

women) 

101-400 (for men 

& women) 

401-1000 , >1000 (for 

men & women) 

n/a 

Rana 2012 n/a n/a n/a n/a log 

Wong 2009 <10 (for 3 

outcomes) 

10 to 99 (for 2 

outcomes) 

100-399 (for 3 

outcomes) 

>/=400 (for 3 

outcomes) 

log (for 3 outcomes) 

Yeboah 2009 n/a n/a n/a n/a univariate log, 

multivariate log 

(adjusted only) 

Yeboah 2014 n/a n/a n/a n/a univariate log (for 3 

outcomes), 

multivariate log (for 3 

outcomes) 

Han 2015 0 (unadjusted 

& adjusted) 

1-100 

(unadjusted & 

adjusted) 

101-400 

(unadjusted & 

adjusted) 

>400 (unadjusted & 

adjusted) 

log (unadjusted & 

adjusted) 

Valenti 2015 0 (unadjusted 

& 2 

adjustments) 

10-99 

(unadjusted & 

2 

adjustments) 

100-399 

(unadjusted & 2 

adjustments) 

400-999 (unadjusted 

& 2 

adjustments), >1000 

(unadjusted & 2 

adjustments) 

>0 (unadjusted & 

adjusted) 

Computed tomographic coronary angiogram 
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Cho 2012 none/ non-

obstructive 

(unadjusted & 

adjusted), 

none/ normal 

(unadjusted & 

2 

adjustments) 

non-

obstructive 

(unadjusted & 

2 

adjustments) 

obstructive CAD 

(unadjusted & 

adjusted) 

1-vessel disease 

(unadjusted & 2 

adjustments), 2-

vessel disease 

(unadjusted & 2 

adjustments), 3-

vessel disease/ LMS 

(unadjusted & 2 

adjustments) 

n/a 

Chow 2011 no CAD (3 

adjustments) 

non-

obstructive (3 

adjustments) 

obstructive low-

risk (3 

adjustments) 

obstructive high risk 

(3 adjustments) 

CAD severity (3 

adjustments) 

Cho 2015 ? non-

obstructive 

obstructive 1-vessel disease, 2-

vessel disease, 3-

vessel disease/ LMS 

n/a 

Hadamitzky 2010 n/a n/a n/a n/a presence of CAD, 

most severe 

stenosis, number of 

arteries narrowed, 

LMS/ proximal LAD 

stenosis 

Hadamitzky 2010 non-

obstructive 

obstructive n/a n/a n/a 

Hadamitzky 2013 n/a no. of 

segments with 

any plaque or 

stenosis (c-

index 

unadjusted & 

adjusted) 

no. of segments 

with 

stenosis >50% 

(HR, c-index 

unadjusted & 

adjusted), no. of 

proximal 

segments 

with >50% 

stenosis (c-index 

unadjusted & 

adjusted) 

no. of segments with 

stenosis >70% (HR, 

c-index unadjusted & 

adjusted) 

no. of segments with 

non-calcified 

plaques, no. of 

segments with mixed 

plaques, no. of 

segments with 

calcified plaques (c-

index unadjusted & 

adjusted), no. of 

segments with mixed 

or calcified or 

plaques (c-index 

unadjusted & 

adjusted), no. of 
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proximal segments 

with calcified or 

mixed plaques (c-

index unadjusted & 

adjusted) 

Hadamitzky 2013 no. of 

segments 

with non-

calcified 

plaques 

no. of 

segments with 

any plaque or 

stenosis 

no. of segments 

with 

stenosis >50%, 

no. of proximal 

segments 

with >50% 

stenosis  

no. of segments with 

stenosis >70% 

no. of segments with 

mixed plaques, no. of 

segments with 

calcified plaques , 

no. of segments with 

mixed or calcified or 

plaques, no. of 

proximal segments 

with calcified or 

mixed plaques 

Chow 2010 non-

obstructive 

CAD (for 3 

outcomes) 

n/a obstructive >50% 

(for 3 outcomes), 

obstructive but 

not high risk (for 3 

outcomes) 

obstructive >70% (for 

3 outcomes), 

obstructive high risk 

(for 3 outcomes) 

no CAD (for 3 

outcomes), CAD 

severity (for 3 

outcomes) 

Lin 2011 ? n/a n/a 1-vessel disease 

(unadjusted & 2 

adjustments), 2-

vessel disease 

(unadjusted & 2 

adjustments), 3-

vessel disease 

(unadjusted & 2 

adjustments) 

1-4 segments 

(unadjusted & 2 

adjustments), >/=5 

segments 

(unadjusted & 2 

adjustments), non-

calcified plaque 

(unadjusted & 2 

adjustments), mixed 

plaque (unadjusted & 

2 adjustments), 
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calcified plaque 

(unadjusted & 2 

adjustments) 

Park 2013 0% stenosis  1-49% 

stenosis 

50-69% stenosis/ 

LMS 1-49%  

>/=70%/ LMS 50% degree of stenosis 

(unadjusted & 

adjusted) 

Park 2013 0% stenosis 1-49% 

stenosis  

50-69% stenosis/ 

LMS 1-49%  

>/=70%/ LMS 50% n/a 

Vertseylen 2013 n/a n/a n/a n/a n/a 

Thoracic aortic calcium score 

Elias-Smale 2011 1st tertile 

(unadjusted & 

2 

adjustments) 

2nd tertile 

(unadjusted & 

2 

adjustments) 

3rd tertile 

(unadjusted & 2 

adjustments) 

n/a n/a 

Wong 2009 <10 for 3 

different 

outcomes 

(hard CHD, 

total CHD & 

total CVD, for 

adjusted & 

unadjusted) 

10-99 (hard 

CHD, 

adjusted & 

unadjusted) 

100-399 (total 

CHD & total CVD, 

adjusted & 

unadjusted) 

n/a adjusted & 

unadjusted log for 

hard CHD, total CHD 

& total CVD 

Yeboah 2014 n/a n/a n/a n/a Univariate & 

multivariate log for 3 

different outcomes 

(incident CVD, CAD 

& all-cause mortality) 

Abbreviations: CAC = coronary calcium score; CHD = coronary heart disease; CKD = chronic kidney disease;  

c-index = concordance index; CVD = cardiovascular disease; FRS = Framingham Risk Score;  

SD = standard deviation; HR = hazard ratio; LAD = left anterior descending; LMS = left main stem;  
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8.2 Figure, Table & Appendix captions 

 

Figure captions 

 Figure 1. PRISMA-P flow chart 

Figure 2. QUIPS bias assessment tool 

Figure 3. Early strategy of evidence synthesis - CTCA 

Figure 4. Early strategy of evidence synthesis - CACS 

Figure 5. Initial evidence synthesis for CACS 

Figure 6. Association between cardiovascular events & CACS 

Figure 7. Incremental discrimination of CACS in addition to FRS 

Figure 8. The category-based NRI (A) Event NRI. (B) Non-event NRI. (C) Combined NRI. 

Figure 9. Association between obstructive coronary disease & cardiovascular disease 

Figure 10. The added discrimination of computed tomographic coronary angiogram in 

predicting composite cardiac events in addition to Framingham Risk Score 

Figure 11. The correlation between the difference in AUC & baseline FRS AUC 

Figure12. AHA 15-segment model adopted from (175). 

Figure 13. Representative example of where anatomical areas were chosen for quantitative 

analysis. Area 1 & 2 = anterior thoracic wall subcutaneous fat; area 3 & 4 = paraspinal 

muscles; area 5 & 6 sub-axillary fat. Adapted from (178) and performed at Plymouth 

Hospitals NHS Trust. 
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Figure 14. Comparison between standard of care and gated scans: The difference in 

subjective score between chest CTs. 

Figure 15. 71 year old man, BMI 30.3, received regular CT surveillance for prostate cancer, 

classed as never smoked. Images displayed in lung windows. (a) The standard of care scan 

showed edge blurring artefact affecting diagnostic confidence in the middle lobe. (b) The 

equivalent research scan showed no edge blurring artefact. The DLP of the standard of care 

scan was 515.7 mGy-cm compared to the DLP of the research scan was 270.3 mGy-cm.  

Figure 16. 48 year old woman, BMI 34.9, received regular CT surveillance for endometrial 

cancer, classed as ex-smoker. Images displayed in lung windows. (a) The standard of care 

scan showed edge blurring artefact in the upper lobes. (b) The equivalent research scan 

showed no edge blurring artefact. The DLP of the standard of care scan was 452.2 mGy-cm 

compared to the DLP of the research scan was 180.2 mGy-cm. 

Figure 17. 65 year old male, BMI 33.4, received regular CT surveillance for renal cancer, 

classed as ex-smoker. Images displayed in lung windows. (a) The standard of care scan 

showed double line artefact in the heart border affecting diagnostic confidence. (b) The 

equivalent research scan showed minor double line artefact. The DLP of the standard of 

care scan was 611.9 mGy-cm compared to the DLP of the research scan was 240.3 mGy-

cm. 

Figure 18. 81 year old man, BMI 31.8, received regular CT surveillance for rectal cancer, 

classed as ex-smoker and was in sinus rhythm (acquisition heart rate 41-44 bpm). A 

prospectively gated axial CT scan with diastolic triggering allowed evaluation of the LIMA 

(left image), venous to diagonal (middle image) and venous to right coronary artery grafts 

(right image). The DLP of the axial scan was 240.3mGy-cm compared to the DLP of the 

helical scan was 465.7 mGy-cm.  
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Figure 19. 58 year old woman, BMI 27.1, received regular CT surveillance for vulvar cancer 

had previous coronary investigations. (A) A prospectively gated axial CT scan with diastolic 

triggering (acquisition heart rate 58-62 bpm) had good image quality that enabled 

reconstruction with volume rendering of the coronary tree and stents within the left anterior 

descending and right coronary artery. (B & C) Curved multiplane reformat images allowed 

further scrutiny of the right coronary stent. 

Figure 20. The correlation between body mass index and dose length product in both the 

helical (ungated) and axial (ECG gated) scans. 

 

Table captions 

Table 1. The characteristics of the 31 included studies 

Table 2. The design and participant characteristics of the 9 included studies 

Table 3. The vendor and technology of the scanners to determine CACS 

Table 4. The reported outcomes of the 35 included studies 

Table 5. Thresholds used for Framingham Risk Score 

Table 6. Information regarding validation and calibration 

Table 7. Alteration of the risk factors used for the calculation of Framingham Risk Score in 

35 eligible studies compared to the Framingham Risk Score 1998, 2002 and 2008 

Table 8. Selective reporting of association 

Table 9. Documentation of multivariable regression, calibration, discrimination & 

reclassification 
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Table 10. Median AUC values and ΔAUC according to different aspects of design and 

analysis 

Table 11. Median NRI values according to different aspects of design and analysis 

Table 12. The chest CT protocols of standard of care and research scans 

Table 13. Baseline characteristics of the population (n=80). 

Table 14. Objective difference and dosimetry of standard of acre and research CT (n = 80). 

Table 15. The correlation between heart rate and the number of diagnostic coronary 

segments. 

Appendix captions 

Appendix 1. Search strategy 

Appendix 2. Inclusion and exclusion criteria of studies investigated CACS and/or TACS 

Appendix 3. Inclusion and exclusion criteria of studies investigated CTCA 

Appendix 4. An example of qualitative documentation for and against pooling aggregate data 

Appendix 5. Threshold information of CACS, TACS & CTCA 
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