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1 Introduction

It has been shown that gauge invariance is enough to completely determine scattering

amplitudes and their underlying analytical structure in certain theories [1–7], and it has

been conjectured that locality and unitarity emerge as a consequence of imposing gauge

invariance [2, 8]. The investigation of which principles determine scattering amplitudes is

not limited to gauge theories; it has been shown that soft theorems are enough to fix tree-

level scattering amplitudes in the non-linear sigma model and Dirac-Born-Infeld [9, 10],

and to impose strong constraints on the Lagrangians of both scalar and vector effective

field theories [11–13].

While the majority of theories considered in this context share the property of be-

ing massless, similar results in very different theories point to an underlying structure or

principle [14, 15], and one can ask to what extent gauge invariance and soft theorems

fix behaviour in theories with coupling to matter [16] or in other sectors of the standard

model [17, 18]. The question we investigate here is to what extent gauge invariance and

soft/infra-red behaviour can be exploited to uncover the underlying analytic structure of

amplitudes in background fields.
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Given that an arbitrary background (coupling to some set of fields in a theory) intro-

duces an arbitrary amount of additional structure, it is not obvious if/how gauge invariance

could (fully) determine properties of amplitudes in that background. We will find, though,

that traces of the above results on gauge invariance and soft limits do persist. We consider

QED with an additional background electromagnetic field. We will show, using tree-level

amplitudes in the background, that imposing explicit gauge invariance uncovers a hidden

analytic structure; gauge invariance demands a certain infra-red behaviour which intro-

duces new poles in the internal momenta. These poles affect the analytic structure of

the entire amplitude (not just the infra-red part); the amplitude factorises on the inter-

nal poles with the residues being individually gauge-invariant sub-amplitudes, each with

distinct analytic structures in the external, scattered, momenta.

The connection between gauge invariance of amplitudes and the infra-red allows us to

extend our results to theories without gauge invariance. We will show for a simple scalar

Yukawa theory that the infra-red structure of amplitudes leads to an almost identical

factorisation of scattering amplitudes.

Our chosen background is an electromagnetic (or later scalar) “sandwich” plane wave of

finite extent. Here, the high degree of symmetry frequently allows exact solutions [19–22],

and our results will be exact in the coupling to the background. The same background

has been used to test the “double copy” conjecture (for a review see [23]) beyond flat

spacetimes [24, 25].

An outline of our results is as follows. Consider a tree-level four-point QED amplitude

in an external field, where all external particles are fermions and hence there is an internal

photon line. The corresponding amplitude is defined in position space, due to a nontrivial

dependence of the background on position. For the case of plane waves, there is at each

vertex a nontrivial dependence on a single spacetime coordinate x+ := n·x for some lightlike

vector nµ. As such only three momentum components are conserved at each vertex, and

overall. Stripping off the δ-function conserving overall three-momentum, the amplitudes

M for our processes may be written in the form

M∼
∫

dv AνY(v)
D̃µν

v + iε
AµX (v) , (1.1)

in which D̃ is the tensor structure of the photon propagator in some gauge, v is the photon

virtuality, and the amplitude naturally factorises at the on-shell pole v = 0 into two sub-

amplitudes, call them AX and AY . These are given by nontrivial spacetime integrals over

x+ dependence at three-point vertices, which are not analytically computable in general.

The sub-amplitudes both have a structure

Aµi (v) ∼
∫

dx+
[
Vµ0 + Vµ(x+)

]
eiΦ(x+;v) , (1.2)

in which V0, V(x+) and Φ(x+; v) take different forms at each vertex, but their important

properties are common; V(x+) depends on the background while V0 does not and so V0

multiplies a pure phase term depending on Φ(x+; v), which is linear in v. It is then clear

that the virtuality integral in (1.1) could be performed before the spacetime integrals at the
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vertices. This is what is normally done in the literature on QED scattering in intense fields

modelled as plane waves (for connections to which see appendix A); one either separates the

virtuality factor into a δ-function and principal value (both of which contribute since the

internal line can go on-shell in a background) or performs the v-integral directly via contour

integration [26–29]. The two methods lead to different representations of the amplitude

with different physical interpretations. A similar issue arises with the choice of gauge for

D̃µν(`) in (1.1); each choice yields a different division of terms, requiring results to be

cross-checked to ensure gauge invariance is preserved [30, 31].

We do something different. The key observation is that the amplitude (1.1) is not, as

we will see, manifestly gauge invariant. It is known how to resolve this in the approaches

cited above, but in contrast we address the issue before proceeding with the calculation.

We will show that if gauge invariance is imposed first then additional poles are introduced

into the sub-amplitudes, so (1.2) becomes

Aµi (v) −→
∫

dx+

∑
j

∆j

v − vj ± iε
Vµ0 + Vµ(x+)

 eiΦi(x
+;v) , (1.3)

in which the pure phase term has acquired a series of new poles vj in the virtuality v, and

additional factors ∆j in the corresponding residues. This new structure renders the sub-

amplitudes individually gauge invariant. Upon performing the virtuality integral in (1.1),

the full amplitude now factorises not just on the usual v = 0 pole but also on (combinations

of) each of the internal poles. Remarkably, we will find that each term in this factorisation is

individually gauge invariant and has a different analytic structure in the external momenta.

In deriving these results we will see that ensuring gauge invariance is intimately connected

to the infra-red, or large distance, behaviour of the phase terms appearing in (1.2), the

poles, and the pole prescriptions in (1.3). As a result, our new representation of the

amplitude (1.1) will exhibit a factorisation of soft terms. It is this connection to the

infra-red which will also allow us to uncover similar structures in non-gauge theories.

This paper is organised as follows. In section 2 we first introduce QED scattering cal-

culations in background plane waves. We explain how gauge invariance of amplitudes leads

to the appearance of new poles in internal momenta. We then evaluate the amplitude in

this form and highlight its important structures, in particular its dependence on external

momenta. In section 3 we investigate the decomposition of our amplitude in detail, iden-

tifying in them a background-field dependent generalisation of soft/hard factorisation. In

section 4 we extend our results to a simple scalar Yukawa interaction, where the infra-red

behaviour leads to an analogous decomposition and factorisation. We conclude in section 5.

2 QED amplitudes: gauge invariance and the infra-red

2.1 Scattering on plane wave backgrounds

We work in lightfront coordinates xµ = (x+, x−, x⊥) with ds2 = dx+dx− − dx⊥dx⊥ and

⊥= 1, 2. (Our results extend directly to d > 4 dimensions.) These coordinates match the
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symmetry properties [20, 21, 32] of our plane wave background, defined by

eA = a⊥(x+)dx⊥ . (2.1)

The electromagnetic fields of the background are E⊥ = −a′⊥ and B⊥ = ε⊥ja′j (j = 1, 2). We

consider ‘sandwich’ plane waves for which the electromagnetic fields vanish as x+ → ±∞;

this splits spacetime into causally separated flat and non-flat regions [33] and gives good

scattering boundary conditions in ‘lightfront time’ x+. We can always fix a⊥(−∞) = 0.

Using the ‘Einstein-Rosen’ [24, 34] gauge (2.1) makes the physics manifest, as the classical

momentum of an electron, charge e, entering the wave from x+ = −∞ with momentum pµ
may be expressed directly in terms of aµ ≡ δ⊥µa⊥ as

πµ(x+) = pµ − aµ(x+) +
2p · a(x+)− a2(x+)

2n · p
nµ , (2.2)

in which nµ is defined by n · x = x+. We write π̂ := π(−a) for positrons. Note that

π2 = p2 = m2, on-shell. It is clear from (2.2) that particle propagation in plane waves can

exhibit a memory effect [35–39] if a⊥(∞) is nonvanishing [36]. For the sake of simplic-

ity we set a⊥(∞) = 0 here; only minor extensions, amounting to slightly modified LSZ

rules [36, 40], are needed to extend our results to the general case.

Amplitudes in plane waves are calculated using background perturbation theory [41–45]:

the background is treated exactly, while scattering of (matter and) photons is treated as

a perturbation around the background. Practically this means, in the path integral, ex-

panding in the coupling e as usual while treating aµ exactly (non-perturbatively) as part of

the ‘free’ action. Such calculations can be performed explicitly in plane waves due to their

many symmetries [19–21]. The position space Feynman rules are as follows. The vertex is

−ieγµ as usual and the photon propagator is

− iDµν(x− y) = −i
∫

d4`

(2π)4

D̃µν

`2 + iε
e−i`·(x−y) , (2.3)

in which we leave D̃µν unspecified so that we may work in an arbitrary gauge. Incom-

ing/outgoing photons of momentum `µ and polarisation εµ are described by εµe
∓i(`·x)

where ε · ` = 0 as usual. The fermion propagator SV (x, y) is now ‘dressed’, being given by

the inverse of the background covariant derivative i/∂ − /a−m:

SV (x, y) =

∫
d4q

(2π)4

(
1 +

/a(y+)/n

2n · q

)
/q +m

q2 −m2 + iε

(
1 +

/n/a(x+)

2n · q

)
e−iSq(x)+iSq(y) , (2.4)

in which Sp is the classical action of a particle in the plane wave,

Sp(x) ≡ p · x+

x+∫
−∞

2p · a− a2

2n · p
. (2.5)

LSZ reduction of the propagator (2.4) yields the “Volkov wavefunctions” for external

fermion legs [19]. These describe initially free fermions propagating from the ‘in’ region of
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Figure 1. Left : the tree level e−e+ → e−e+ amplitude (2.9) in a plane wave, where double lines

represent the wavefunctions (2.6) which include all orders of interaction with the background. Right:

one of the (four) lowest order, five-point contributions to the same process, calculated perturbatively

in the background, indicated by a photon line connected to cross.

spacetime (causally before the sandwich plane wave switches on) to the ‘out’ region (after

it has switched off) [33, 46]. For incoming electrons the Volkov wavefunction is

Ψp(x) =

(
1 +

/n/a(x+)

2n · p

)
upe
−iSp(x) = uπ(x+)e−iSp(x) , (2.6)

where uπ is just a standard u-spinor for the on-shell momentum πµ in (2.2). The scalar

part of Ψp reproduces the momentum πµ when acted on with the background-covariant

derivative:

iDµe−iSp(x) = πµ(x+)e−iSp(x) . (2.7)

Outgoing electrons are described by Ψ̄p with −∞ → ∞ in the integral limit, and in-

coming/outgoing positrons similarly by Ψ̄−q/Ψ−q. In the limit of vanishing background

aµ(x+)→ 0, Ψp reduces to the usual free particle wavefunction upe
−ip.x. Observe that (2.4)

and (2.6) are exact for any value of the dimensionless effective coupling to the background

∼ a/m, even a/m� 1; for applications see [47–49].

2.2 4-point amplitudes

We consider four-point fermion amplitudes as shown in figure 1, which is already enough

to demonstrate our results. In particular consider electron-positron scattering,

e−(p1) + e+(p2)→ e−(p3) + e+(p4), (2.8)

where p2
j = m2. The tree level scattering amplitude S for this process is, in terms of the

Volkov functions (2.6) and the photon propagator Dµν ,

S = ie2

∫
d4x d4y Ψ̄p3(y)γµΨ−p4(y)Dµν(y − x) Ψ̄−p2(x)γνΨp1(x) + . . . . (2.9)

The ellipses represent the other interaction channels — for brevity we consider only the

s-channel diagram in figure 1, but all our discussions apply equally to t and u channels and

to other processes by swapping external legs. At any vertex in a plane wave background
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the integrals over {x−, x⊥} can be carried out as usual to yield conservation of the three

momentum components p+ and p⊥. As such S has the form

S = e2(2π)3δ3
LF (p4 + p3 − p2 − p1)M , (2.10)

where δ3
LF (p) ≡ δ(p+)δ2(p⊥). Three components of the internal photon momenta `µ are

fixed by momentum conservation, so from here `µ = `µ? + vnµ in which

`µ? = pµ1 + pµ2 −
(p1 + p2)2

2n · (p1 + p2)
nµ = pµ3 + pµ4 −

(p3 + p4)2

2n · (p3 + p4)
nµ , (2.11)

is on-shell (`2? = 0) and v is the photon virtuality. Thus the reduced amplitudeM contains

an integral over the virtuality v and nontrivial integrals over x+ and y+ due to the spacetime

dependence of the Volkov wavefunctions. It takes the form

M =
i

2n · `?

∫
dv

2π
AµY(v)

D̃µν

v + iε
AνX (v) , (2.12)

in which the two sub-amplitudes for pair annihilation and pair creation at the spacetime

points x and y respectively are,

AµX (v) =

∫
dx+

[
X µ0 + X µ(x+)

]
eiΦX (x+;v) , AµY(v) =

∫
dy+

[
Yµ0 + Yµ(y+)

]
eiΦY (y+;v) ,

(2.13)

with X µ0 = v̄p2γ
µup1 and Yµ0 = ūp3γ

µvp4 the background-free spin structures at the vertices,

and X µ(x+) and Yµ(y+) the background-dependent parts,

X µ(x+) =
1

2
v̄p2

[
γµ/n/a

n · p1
− /a/nγµ

n · p2
+

a2nµ/n

n · p1 n · p2

]
up1 , (2.14)

Yµ(y+) =
1

2
ūp3

[
/a/nγµ

n · p3
− γµ/n/a

n · p4
+

a2nµ/n

n · p3 n · p4

]
vp4 , (2.15)

(suppressing for conciseness the dependence of the background on x+ or y+) and the phase

functions in the exponents are, writing π1 := π(p1) etc,

ΦX (x+; v) =

x+∫
v − `? · (π1 + π̂2)

n · (p1 + p2)
, ΦY(y+; v) =

y+∫
`? · (π3 + π̂4)

n · (p3 + p4)
− v . (2.16)

Despite the complexity, the essential properties of these objects are simply that X µ0 and

Yµ0 are constants, X µ(x+) and Y(y+) vanish outside the sandwich wave, and the phase

functions Φ are linear in x+/y+ both causally before and after the sandwich wave.

2.3 Gauge invariance and the infra-red

The 4-point amplitude (2.12) is not explicitly gauge invariant.1 To see this, make the

replacement D̃µν → `µqν(`)+`νqµ(`), for qµ(`) an arbitrary function of `µ; the amplitude A
1This is not due to neglecting other channels — the individual diagrams should be invariant here.
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should then vanish, but does not. We expect that `µ dotted into one of the sub-amplitudes

should vanish, so ` · AX (v) = ` · AY(v) = 0, but instead one finds

` · AX (v) = −iv̄p2/nup1
∫

dx+ d

dx+
eiΦX (x+;v) , ` · AY(v) = iūp3/nvp4

∫
dy+ d

dy+
eiΦY (y+;v).

These are boundary terms [50], but they are ambiguous since the pure phases oscillate

without damping asymptotically. Gauge invariance is thus closely tied to the infra-red

behaviour of the sub-amplitudes, and we must make the latter explicit in order to ensure

that the former is preserved — it is here that our calculation deviates from the usual route

taken in the literature. To expose the infra-red behaviour and its consequences, we take

the phase integral and insert as usual convergence factors exp(−ε|x+|) [51, 52] — we can

w.l.o.g. take the sandwich wave to switch on at x+ = 0 and off at x+ = T > 0. Using the

pure phase term in AX to illustrate, the integral to consider is,∫
dx+ eiΦX →

∫ 0

−∞
dx+ eiΦX+εx+ +

∫ T

0
dx+ eiΦX−εx

+
+

∫ +∞

T
dx+ eiΦX−εx

+
. (2.17)

The outer integrals can be performed exactly, as ΦX is linear in x+ outside of the back-

ground. For the inner integral we integrate by parts once to generate terms which cancel

the boundary terms from the outer integrals, and then integrate by parts again, using that

a(0) = a(T ) = 0, to put (2.17) in the form∫
dx+ eiΦX = i

[
1

v − v? + iε
− 1

v − v? − iε

]
− v?
v − v? + iε

∫
dx+ ∆X (x+) eiΦX , (2.18)

where we have defined

v? =
(p1 + p2)2

2n · (p1 + p2)
, ∆X (x+) = 1− `? · (π1(x+) + π̂2(x+))

`? · (p1 + p2)
. (2.19)

Gauge invariance has therefore given us, via a standard infra-red regularisation [51, 52],

a better-defined expression for the pure phase integral. Writing the sum of poles in the

square brackets as 2πδ(v−v?) we see that this term is just the background-free result, while

the integrand of the second term in (2.18) vanishes outside the sandwich wave because the

scalar factor ∆X (x+) goes to zero for a → 0. The essential point is that the same phase

integral as in (2.18) appears in the sub-amplitude AX ; thus we have

AµX (v)→ 2πδ(v − v?)X µ0 +

∫
dx+ eiΦX (x+;v)

[
−v?

v − v? + iε
∆X (x+)X µ0 + X µ(x+)

]
. (2.20)

With this regulated expression for AX we can verify directly that ` · AX = 0, with no

ambiguous boundary term. Repeating the calculation for the pair production vertex, gauge

invariance of the full amplitude M becomes manifest. We then have

M =
i

2n · `?

∫
dv

2π

1

v + iε
D̃µν(

2πδ(v − v̄?)Yµ0 +

∫
dy+ eiΦY (y+;v)

[
−v̄?

v − v̄? − iε
∆Y(y+)Yµ0 + Yµ(y+)

])
(

2πδ(v − v?)X ν0 +

∫
dx+ eiΦX (x+;v)

[
−v?

v − v? + iε
∆X (x+)X ν0 + X ν(x+)

])
(2.21)
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in which the first line contains the gauge invariant pair production vertex with

v̄? =
(p3 + p4)2

2n · (p3 + p4)
, ∆Y(y+) = 1− `? · (π3(y+) + π̂4(y+))

`? · (p3 + p4)
. (2.22)

What we highlight is that imposing gauge invariance, through regularising the infra-red

behaviour of the amplitude, uncovers additional poles in the virtuality at v = v? and v̄?,

not present in (2.12)–(2.13) where there is only the propagator pole at v = 0. When we in-

tegrate over v, the poles will affect not just the infra-red part of amplitude, but the analytic

structure of the whole amplitude when considered as a function of external momenta.

2.4 Gauge invariant factorisation at the poles

Expanding out (2.21) yields several terms with different sets of virtuality poles. Integrating

over v then picks up the residues from each set of poles, at which the whole amplitude

factorises into a pair annihilation part and a pair production part.

The sub-amplitudes AX and AY are themselves made up of terms with different num-

bers of poles, so integrating over v will split them up; näıvely, this would appear to be a

disadvantage given that their form is set by gauge invariance. However, we find that the

pole structure is such that each resulting term is fully gauge-invariant and, furthermore,

that each term also has a different analytic structure in the external momenta. There are

six terms,

M =:Mvac +Mon +MX +MY +M↑ +M↓ , (2.23)

which we consider in order. To simplify notation it is convenient to define the sum of two

momenta pi and pj as

Pij := pi + pj , (2.24)

in what follows. The first thing we learn about the decomposition (2.23) is that it separates

off the vacuum contribution to the total amplitude. Mvac comes from the product of

δ-functions in (2.21) and gives the usual S-matrix element for e−e+ → e−e+ without

background; reinstating the momentum δ-function in (2.10), we have

Svac = ie2(2π)4δ4
(
P12 − P34

) Y0 · X0

P 2
12

. (2.25)

The second termMon in (2.23) picks up only the propagator pole at zero virtuality, v = 0,

which puts the internal line on-shell, `→ `? introduced above. Explicitly,

Mon =
1

2n · `?

∫
dy+

∫ y+

dx+

× eiΦY (y+;0)
[
∆Y(y+)Y0 + Y(y+)

]
·
[
∆X (x+)X0 + X (x+)

]
eiΦX (x+;0) . (2.26)

This term comprises two complete, regulated vertices (evaluated at v = 0), and is manifestly

gauge invariant, hence we have replaced D̃µν → ηµν . The time-ordering, which follows from

the residue theorem, enforces causality for the real photon: pair annihilation occurs before

pair production. The integrals extend only over the sandwich wave duration (otherwise

– 8 –
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x−

x+

MY

MX

1

Figure 2. Illustration of some terms in the decomposition (2.23). The shaded region indicates the

sandwich plane wave field. One vertex in the terms MX and MY effectively lies outside the field,

and so is represented by background-free vertices (single lines). The terms Mon, M↑ and M↓,
are dressed (double lines) at each vertex, however the way in which each vertex interacts with the

background is distinct (see the text).

the integrand vanishes), so both pair annihilation and production occur within the field.

This is illustrated in figure 2.

In all remaining terms of (2.23) the intermediate photon is off-shell. The next term

MX factorises at the poles at v = v̄? (which were combined into a δ-function),

MX =
i

P 2
34

Y0 ·
∫

dx+

[
P 2

12

P 2
12 − P 2

34

∆X (x+)X0 + X (x+)

]
eiΦX (x+;v̄?) . (2.27)

There is now only a single integral; the regularised annihilation vertex lies within the

field. The pair production vertex, though, has reduced to the vacuum vertex Yµ0 defined

below (2.13). Further, the pole sets the internal photon momentum to ` = P34 i.e. this part

of the amplitude obeys free-space conservation of four -momentum at the pair production

vertex (hence the leading factor of 1/P 2
34). In other words, the pair production vertex

effectively lies outside the field, see figure 2. Further, having picked up a different pole,

the denominator of (2.27) has acquired additional terms in the external momenta, so its

analytic structure differs from the terms above (as we will confirm more explicitly below).

It may be checked that MX is gauge invariant.

The fourth term in (2.23) is similar, picking up poles at v = v? via the δ-function in

the annihilation vertex:

MY =
i

P 2
12

∫
dy+ eiΦY (y+;v?)

[
P 2

34

P 2
34 − P 2

12

∆Y(y+)Y0 + Y(y+)

]
· X0 . (2.28)

Here the pair production vertex lies inside the field, while free-space momentum conserva-

tion at free annihilation vertex determines the internal photon momentum to be ` = P12.

As such the dependence on external momenta differs to that of the previous terms.

The fifth and sixth termsM↑ andM↓ in (2.23) also pick up contributions from v = v?
and v = v̄?, respectively, though this time from the poles in the gauge invariant sub-
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amplitudes, i.e. from within the square brackets of (2.21). These terms are, now dropping

the “+” superscripts on lightfront time when unambiguous,

M↑=− 1

2n·`?

∫
dy eiΦY (y;v?)

[
P 2

34

P 2
34−P 2

12

∆Y(y)Y0+Y(y)

]
·X0

∫ y

dx∆X (x)eiΦX (x;v?) , (2.29)

M↓=
1

2n·`?

∫
dxeiΦX (x;v̄?)

[
P 2

12

P 2
12−P 2

34

∆X (x)X0+X (x)

]
·Y0

∫ x

dy∆Y(y)eiΦY (y;v̄?) , (2.30)

The internal line is off-shell in both cases. Both terms are (lightfront) time-ordered.

In (2.29) annihilation occurs causally before pair production, while in (2.30) pair pro-

duction occurs before annihilation.2 Observe that in both (2.29) and (2.30) the integrands

vanish outside the of the sandwich wave, so each interaction must occur within the field,

but unlike Mon the vertices are not symmetric in their structure. Consider M↑, in which

annihilation occurs first. The internal photon has momentum ` = P12, as it did in MX
where the annihilation vertex was free. Here the annihilation vertex is not free, but nor is

it fully dressed by the background, instead we have only

X µ0 ∆X (x)eiΦX (x;v?) , (2.31)

in which the spin/polarisation structure is free, but the phase and scalar factor ∆X see

the background. Despite this, both M↑ and M↓ are individually gauge invariant. This

prompts the question of exactly what kind of interaction this vertex describes. We will

give the answer in section 3, but first we wish to make more clear the connection between

the virtuality poles and the analytic structure of the amplitude as a function of external

momenta. This is most easily done by taking the perturbative limit.

2.5 LO perturbative expansion: poles in external momenta

Here we show explicitly that the decomposition (2.23) given by the internal momentum

poles splits the amplitude into parts with different poles in the external momenta. To do

so we expand to leading order (LO) in the background. It is easily verified that the LO

contributions to M are linear in aµ and come from those terms with one background-free

vertex,MX in (2.27) andMY in (2.28). These must correspond to some five-point pertur-

bative amplitude as on the right of figure 1. Expanding e.g. (2.28), the LO contribution is

easily extracted and most conveniently written in terms of the Fourier transform ãµ of the

field with respect to x+. Defining also the Fourier frequency ω? := v̄? − v? and kµ = ω?nµ,

the LO contribution to MY , call it MY(1), is

MY(1) = iūp3

[
/̃a(ω?)

(
/p3 − /k +m

)
γµ

(p3 − k)2 −m2
+
γµ
(
/k − /p4 +m

)
/̃a(ω?)

(p4 − k)2 −m2

]
vp4

1

(p1 + p2)2
v̄p2γµup1 .

(2.32)

2The appearance of this term in combination with lightfront time-ordering is unusual; it is an example

of a “vacuum” diagram where the total outgoing n · p momentum at the pair production vertex is zero,

which in lightfront quantisation, using lightfront gauge, is expected to vanish [46, 53]. This term is though

gauge invariant; we will show how to recover lightfront results later.
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p1 p2

p3 p4

k

+

p1 p2

p3 p4

k

1

Figure 3. Leading order perturbative contribution to MY (2.28). Our decomposition groups

together the two five-point diagrams required to maintain gauge invariance.

The pair annihilation vertex is the vacuum vertex, while the pair production vertex reduces

to the textbook expression for tree level pair production by two photons in vacuum, γγ →
e−e+, with one photon convoluted with the background ãµ. Observe that a single term in

our decomposition has yielded both interaction channels for γγ → e−e+, which are required

for gauge invariance, see figure 3.

An analogous calculation shows that MX (1), the LO contribution to (2.27), has a

similar expression in which the external field couples to one of the incoming, rather than

outgoing, pair. From this description it is clear that MX (1) and MY(1) must have a

different analytic structure as functions of external momenta; there are poles in (2.32) at

(p1 + p2)2 = 0, (p3 − k)2 = m2 and (p4 − k)2 = m2, but MX (1) has instead poles at

(p3 + p4)2 = 0, (p1 + k)2 = m2 and (p2 + k)2 = m2. In the next section we will see how

these structures extend to next-to-leading order (NLO).

3 Soft separation in background field amplitudes

CompareMY in (2.28) withM↑ in (2.29). Both contain the fully dressed pair production

vertex. The difference between the two is in the annihilation vertex. This is free in MY ,

but in M↑ depends on the background through the simpler vertex (2.31). Comparing the

two, we see we can write M↑ as

M↑ = −i P 2
12

2n · P12

∫
dyM′

Y

∫ y

dx∆X (x)eiΦX (x;v?) , (3.1)

in which M′
Y is shorthand for the integrand of MY . We see that, at the level of the

integrand, M↑ is a scalar multiple of MY . A similar relation holds for M↓ andMX . Our

focus is now on the physical interpretation of this structure.

3.1 Soft interactions with the background

In order to understand (3.1), we again turn to perturbation theory. Expanding ∆X in

powers of the background, using (2.19) and (2.2), we have the lowest order contribution3

∆X (x+) = −2n · P12

P 2
12

aµ(x+)

[
pµ1
n · p1

− pµ2
n · p2

]
+ . . . . (3.2)

3The neglected terms are only quadratic in a and easily written down.
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We recognise in the square brackets a Weinberg ‘soft-factor’ for soft emission/absorption of

background photons, characterised by direction nµ, at the pair annihilation vertex, with aµ
taking the place of the polarisation vector. The significance of this follows from observing

that since both MY and M↑ pick up the same pole, the internal line carries momentum

` = P12 in both cases; hence while there is an interaction with the background at the

annihilation vertex in M↑, this interaction does not enter the momentum conservation

law. Keeping track of the different kinematic prefactors in M↑ and MY , the LO effect

of this interaction is simply to multiply (up to Fourier transform factors) the five point

amplitude MY(1) by the soft factor above, so

M↑(2) ∼ a ·
[
p1

n · p1
− p2

n · p2

]
×

 +

1

+ . . . (3.3)

This is explicitly a hard-soft factorisation; the hard part of the process is the perturbative

five-point amplitude (2.32), figure 3, in which the external field couples as normal to the

created pair, while the soft factor describes emission/absorption of background photons

at the annihilation vertex. The soft factor also affects the analytic structure; relative to

MY(1), there are in M↑(2) additional poles at n · p1 = 0, n · p2 = 0. Analogous results hold

forM↓(2) andMX which both pick up the pole at v = v̄? such that the internal momentum

is ` = p3 + p4. The hard-soft factorisation is

M↓(2) ∼ a ·
[
p3

n · p3
− p4

n · p4

]
×

 +

1

+ . . . (3.4)

with the poles in M↑ obtained from M↓ by exchanging {p1, p2} for {p3, p4}.
Beyond these lowest order calculations, it remains true that the momentum is un-

changed at the vertices of the type (2.31). Thus their only effect is to introduce (under the

lightfront time integral) a scalar factor which, perturabtively, is a standard soft emission

factor. The interpretation of (3.1) is then that it gives an all-orders hard/soft factorisation

in our background, which holds locally (i.e under the integral) because of the nontrivial

spacetime dependence introduced by the background. It would be interesting to connect

this to inverse-soft theorems [54–57].

In conclusion, our decomposition of the full scattering amplitude, into terms with

different internal poles, also corresponds to a separation into hard and soft parts in terms

of the external momenta. These results hint at an underlying structure and classification

of how a background can interact with particles, or “dress” a vertex. We have seen three

types of interaction:

1. No interaction with the background : the vertex is exactly equal to the vacuum ex-

pression, with no influence of the background on the fermions at that vertex. The

intermediate photon is off-shell, with the virtuality determined by (background-free)

conservation of four -momentum.
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p1 p2

p3 p4

` = p1 + p2

1

(a) Mvac

p1 p2

p3 p4

` = `?

1

(b) Mon

p1 p2

p3 p4

` = p3 + p4

1

(c) MX

p1 p2

p3 p4

` = p1 + p2

1

(d) MY

p1 p2

p3 p4

` = p1 + p2

1

(e) M↑
p1 p2

p3 p4

` = p3 + p4

1

(f) M↓

Figure 4. The decomposition (2.23) of the scattering amplitude M into gauge invariant pieces.

Arrows denotes the momentum flow through the propagator. Dashed lines indicate the soft dressing.

The cut in figure 4b indicates that the intermediate photon is on-shell, ` = `? with `2? = 0.

2. Soft interaction: the background affects the interaction at a vertex, but only ‘softly’:

the only contribution is a soft factor. There is in particular no contribution to the

momentum flow at the vertex. We refer to such vertices as soft.

3. Hard interaction: the fully dressed vertex appears, the interaction with the back-

ground affects the momentum flow through the vertex, and the tensor structure is

not simply a soft factor, and only three-momentum is conserved.

In terms of the these three, a diagrammatic representation of each of the sub-amplitudes

in (2.23) is shown in figure 4. Interactions at hard (fully dressed) vertices are indicated

by solid double lines as above, vacuum vertices by single lines, and soft interactions by

dashed double fermion lines. Each of these diagrams is individually gauge invariant. The

only term with two ‘hard’ vertices is the on-shell term, implying absorption of energy

from the background at both vertices. Physically this makes sense; each term in the

amplitude factorises at a different virtuality, and for the on-shell pole, neither of the three-

point sub-amplitudes can occur in vacuum with all particles on-shell unless assisted by the

background.
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4 Scalar Yukawa and the infra-red

We have seen that gauge invariance of QED amplitudes is intimately related to their infra-

red, or soft, behaviour. Soft limits can determine the analytic structure of amplitudes in

theories without gauge symmetry [10]. We therefore consider here a simple scalar Yukawa

theory, and show that analogous analytic structures to those in QED emerge from the soft

behaviour of amplitudes. We consider a scalar Yukawa theory of a massive ‘electron’ ϕ,

massless ‘photon’ A, and external field Aext,

L =
1

2

(
∂ϕ · ∂ϕ−m2φ2

)
+

1

2
∂A · ∂A− gϕ2(A+Aext) , (4.1)

in which the coupling g has mass dimension one in four dimensions. Since the Feynman rules

of the theory mimic those of QED we will here be able to reinforce the preceding results in

a technically simpler setting. The external sandwich wave is now gAext(x) = a(x+), which

has mass dimension 2. In analogy to QED, incoming electron legs are represented by

ϕp(x) = exp

−ip · x− i

2n.p

x+∫
−∞

ds a(s)

 , (4.2)

where p2 = m2. For outgoing electrons ϕ†p take the conjugate and replace −∞ → +∞ in

the exponent. In analogy to QED, a kinetic momentum πµ can be defined as

πµ(x+) = pµ +
a(x+)

2n.p
nµ , (4.3)

which obeys π2(x+) = m2+a(x+); this is the classical mass-shell condition, because in (4.1)

the background is equivalent to a spacetime-dependent mass.

4.1 Infra-red behaviour

We again focus on the 2→ 2 ‘electron’ scattering amplitude in figure 1. Writing iG for the

scalar photon propagator, the S-matrix element is

Sfi = −ig2

∫
d4y

∫
d4xϕ†p3(y)ϕ†p4(y)G(y − x)ϕp2(x)ϕp1(x) + · · ·

= −ig2(2π)3δ3
LF(p1 + p2 − p3 − p4)M + · · · ,

(4.4)

in which the ellipses denote permutations of external legs etc and M is the reduced am-

plitude obtained by integrating out the transverse and longitudinal coordinates. The in-

termediate photon momentum is again `µ = `µ? + vnµ with `? as defined in (2.11), and M
may be written as an integral over the virtuality v,

M =
i

2n · `

∫
dv

2π

1

v + iε

∫
dy+eiΦY (y+;v)

∫
dx+ eiΦX (x+;v) . (4.5)

The functions in the exponents, ΦX (x+; v) and ΦY(y+; v) are given by (2.16) but with the

kinetic momenta given by π̂ → π → (4.3). The integrand at each vertex integral in M is
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a pure phase, the IR behaviour of which is not explicit. An entirely analogous calculation

to that in QED, in which we introduce damping factors and identify the IR contributions,

leads to the regularised expression, once again dropping + subscripts on lightfront times,

M→ i

2n · `

∫
dv

2π

1

v + iε
(4.6)[

2πδ(v − v̄?)−
v̄?

v − v̄? − iε

∫
dy Y(y, v)

][
2πδ(v − v?)−

v?
v − v? + iε

∫
dxX (x, v)

]
.

in which there are new poles in v? and v̄? with the same definitions as in QED, (2.19)

and (2.22). The structure of the amplitude is very similar to that of QED, reflecting the uni-

versality of soft behaviour. The vertex functions X and Y may be conveniently written as

Y(y, v) = ∆Y(y)eiΦY (y;v) , X (x, v) = ∆X (x)eiΦX (x;v) , (4.7)

where the ∆ factors have the same form as (2.19) and (2.22) but with π̂ → π → (4.3).

Performing the virtuality integral and picking up the pole contributions we obtain six

terms which correspond exactly to the QED decomposition (2.23). The term Mvac from

the product of delta-functions is nothing but the background-free contribution, yielding

Sfi = ig2(2π)4δ4
(
P12 − P34

) 1

P 2
12

.

The on-shell term depends on the on-shell momentum `? and is time-ordered as before,

Mon =
1

2n · `?

∫
dy

∫ y

dxY(y, 0)X (x, 0) . (4.8)

The analogues of MY and MX in which one vertex lies outside the field are

MY =
iP 2

34

P 2
12(P 2

34 − P 2
12)

∫
dy Y(y, v?) , MX =

−iP 2
12

P 2
34(P 2

34 − P 2
12)

∫
dxX (x, v̄?) . (4.9)

The vacuum vertices are simply factors of unity here, which obscures their identification

compared to QED. However, we can see in the argument of the photon absorption vertex

Y that the intermediate photon carries the momentum ` = P12 which would be assigned

by the vacuum annihilation vertex (and vice versa for X ). The remaining terms in our

expansion are

M↑ = − 1

2n · `?
P 2

34

P 2
34 − P 2

12

∫
dyY(y, v?)

∫ y

dxX (x, v?) , (4.10)

M↓ = − 1

2n · `?
P 2

12

P 2
34 − P 2

12

∫
dxX (x, v̄?)

∫ x

dy Y(y, v̄?) . (4.11)

The same time ordering is present as in QED, with the pair annihilation vertex occurring

first (second) in M↑ (M↓). Note that the analogue of the QED ‘soft’ vertex is, here,

the full vertex (4.7), because we have no spin of polarisation, which makes the hard-

soft factorisation we saw in QED less explicit; it remains nevertheless, as the momentum
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assigned to the internal line in M↓ and M↑ is the same background-free assignment as in

MY and MX respectively, and the scalar-multiple relation (3.1) is clear in (4.10)–(4.11).

As for QED, the additional poles in the internal momentum have factorised our am-

plitude into parts with different analytic structure in the external momenta — this will be

made explicit by examining the perturbative structure of the amplitudes in the following

two subsections. We first note that the ∆ factors in this scalar setting have a simpler form;

they are almost scalar soft factors multiplied by a:

∆Y(y) = −a(y)

v̄?

(
1

2n · p3
+

1

2n · p4

)
=: −a(y)

v̄?
W34 (4.12)

∆X (x) =
a(x)

v?

(
−1

2n · p2
+
−1

2n · p1

)
=:

a(x)

v?
W12 . (4.13)

In a moment we will see how the missing momentum scale in W34 and W12 is assigned,

changing them into soft factors proper.

4.2 Comparison with LO perturbation theory

The lowest order perturbative contribution is again O(a0), and comes fromMY andMX in

which one vertex is background-free. To this order, we may set a→ 0 in the exponentials.

The lightfront time integral then gives the Fourier transform of a appearing in the ∆ factor.

The reduced amplitude becomes, writing ω? ≡ v̄? − v?,

M→MY(1) +MX (1) = −i 2n · `?
P 2

34 − P 2
12

ã
(
ω?
) [W34

P 2
12

+
W12

P 2
34

]
. (4.14)

The first term in (4.14) comes fromMY and corresponds to the pair of diagrams in figure 3.

The second term in (4.14) comes fromMX and corresponds to the pair of diagrams with the

external field photon attached to incoming legs. Noteably, IR behaviour groups emission

from the outgoing electrons, and emission from the incoming electrons, together, just as

happens in QED where it is necessary for gauge invariance.

We now write ã as (trivially) an integral over frequencies dω weighted with a delta

function fixing ω → ω?. This delta-function combines with that in the prefactor to recover

the covariant delta-function of a perturbative five-point amplitude describing the scattering

of the original set of matter particles and an additional photon of momentum kµ ≡ ωnµ.

This momentum defines the soft factors W̃ proper,

W̃34 =
1

2k · p3
+

1

2k · p4
, W̃12 =

−1

2k · p2
+
−1

2k · p1
, (4.15)

and allows us to simplify (4.14); the corresponding S-matrix element is

Sfi = ig2

∫
dω

2π
ã(ω) (2π)4δ4(P34 − P12 − k)

[
W̃34

P 2
12

+
W̃12

P 2
34

]
+ · · · . (4.16)

This is precisely the tree level contribution to the scalar five-point amplitude e+e+k → e+e,

with the photon momentum convoluted with the field profile.
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4.3 Expansion to NLO

At O(a2
0) our expressions depend on the soft factors W and on a Fourier transform factor

F , which is now quadratic in the field, defined by

F (α, β) :=

∫
dy

∫
dx θ(y − x) eiαya(y) e−iβxa(x) . (4.17)

The on-shell term becomes (a subscript (2) denotes second order in perturbation theory)

Mon
(2) =

−2n · `?
P 2

34P
2
12

W34W12F (v̄?, v?) , (4.18)

in which the soft factors W come directly from the ∆ factors. For the terms with one vertex

outside the field, the soft factors at second order come both from ∆ and from expanding

the phases; we find

MX (2) =
2n · `?

P 2
34(P 2

34 − P 2
12)

W 2
12F (ω?, 0) , MY(2) =

2n · `?
P 2

12(P 2
34 − P 2

12)
W 2

34 F (ω?, 0) . (4.19)

Note both the different denominators and soft factors compared to the on-shell term.

The different Fourier factor reflects the fact that no energy-momentum is taken from the

background at one of the vertices. Finally, the scalar analogue the sub-amplitudes with

one hard and one soft vertex are

M↑(2) =
2n·`?

P 2
12(P 2

34−P 2
12)

W34W12F (ω?,0) , M↓(2) =
2n·`?

P 2
34(P 2

34−P 2
12)

W34W12F (ω?,0) . (4.20)

From this we can exhibit the analogue of the hard/soft factorisation found in QED. The

second order contributionsM↑(2) andM↓(2) are six-point amplitudes in perturbation theory.

They are given, up to Fourier transform factors, by multiplying the five-point amplitudes

MY(1) and MX (1) by soft factors W12 and W34 respectively:

M↑(2) = i
F (ω?, 0)

ã
(
ω?
) W12MY(1) , M↓(2) = i

F (ω?, 0)

ã
(
ω?
) W34MX (1) . (4.21)

Each of these terms has, accounting for the soft factors, a different functional dependence

on, and different poles in, the external momenta. The terms are grouped in the same way

as the gauge invariant QED groupings. All terms in which the photon is off-shell share the

same F factor, which differs from the on-shell term.

5 Conclusions

It has been shown for several theories that gauge invariance and soft limits are enough

to determine the analytic structure of scattering amplitudes. We have made a connec-

tion between these results and QED scattering on background plane waves, showing that

imposing explicit gauge invariance reveals a previously obscured analytic structure in scat-

tering amplitudes. Gauge invariance introduces new poles into the virtuality integral of

internal lines. Amplitudes factorise at each of these poles, giving a new decomposition in
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which each term is individually gauge invariant and has a different analytic structure in

the external scattering momenta.

Further, we saw that gauge invariance was closely linked to the infra-red behaviour of

amplitudes, and that the resulting decomposition separated out terms with a soft inter-

action with the background, resulting in a decomposition into background-free, soft, and

hard interactions with the background. This connection with the infra-red allowed us to

extend our results to a simple scalar Yukawa theory. Exposing the infra-red behaviour of

the scalar amplitudes resulted in a very similar decomposition to that in QED, with each

term in the decomposition having a different analytic structure.

We remark that the decomposition of amplitudes into gauge invariant sub-amplitudes,

both here and more generally, is reminiscent of two different approaches; the “pinch tech-

nique” in QCD [58] and the “background field method” [44]. In the pinch technique a

cancellation of gauge dependent terms [59] when going from correlation functions to scat-

tering amplitudes occurs in such a way as to decompose amplitudes into kinematically

distinct, individually gauge-invariant sub-amplitudes. See [60] for a review. The back-

ground field approach is used to derive effective actions in a manifestly gauge invariant

way by perturbing a quantum field around a classical background. It has been used as

an alternative to the pinch technique, with both agreeing to one loop [61]. It would be

interesting to investigate how these approaches are related to the work presented here,

along with possible connections between the structures in our amplitudes and inverse-soft

theorems [54–57]. We leave this to future work.

A natural question for future work is whether gauge invariance can be applied con-

structively to fully determine amplitudes in background fields. We also wish to establish

more firmly the universality of our results. At the level of four point functions (which

is often enough to reveal new structure [62]), we should also consider processes with an

intermediate fermion dressed by the background. Rather than pursue this in QED, we will

instead consider Yang Mills and QCD in plane waves, following [24, 25, 63], in which case

all particles, both massless and massive, are dressed. Higher N -point amplitudes will also

be investigated. We hope our results will help in understanding the on-shell construction

of the electroweak sector of the standard model [17, 18]; we have seen hints that the deep

connections between gauge invariance, the infra-red, and analytic structure of scattering

amplitudes may be found in general theories.
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A Trident pair production

The large distance regularisation used above is standard when discussing infra-red ef-

fects [51, 52] and is well-known in the literature on QED in strong plane wave backgrounds

(in which ‘strong’ refers to the regime a/m > 1 whereupon the coupling to the background
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cannot be treated perturbatively). In the context of three-point amplitudes it was used as

a method to remove seemingly unphysical contributions to the amplitude from the space-

time region outside the sandwich background [64]. However, our results show that this

interpretation does not hold higher N -point amplitudes; in the decomposition (2.23) there

are termsMX andMY in which one vertex can lie outside the background. That the pro-

cedure removes such contributions from three-point amplitudes is thus largely coincidental;

as we have seen, what the regularisation is really doing is imposing gauge invariance.

It has even been recognised, for three-point [36] and four-point amplitudes [27] that

gauge invariance implies the relation between parts of sub-amplitudes which follows from

the infra-red regularisation. However, for three-point amplitudes there is no free virtuality

parameter v, so it was not recognised that the regularisation would introduce poles into

higher point amplitudes. For four-point amplitudes, most authors perform the virtuality

integral before considering gauge invariance [27, 30, 31, 65], hence the existence of the

additional poles, and the structure they reveal, was not previously noticed. (The closest

to our approach is in [66], where similar expressions for the reduced amplitudes in trident

appear, however the effect of the regularisation on the analytic structure of the amplitude

was not recognised.)

This prompts us to make a more explicit connection to the existing literature. By

making the change Ψ̄−p2 → Ψ̄p2 in (2.9) we obtain the amplitude for trident pair produc-

tion, e− → e− + e− + e+. We saw above that MX and M↓ pick up contributions at the

same virtuality (as do MY and M↑); if we add these terms together, an integration by

parts shows that our expressions for trident match those in [31], though in doing so we lose

the hard-soft factorisation, and separation into different analytic structures. The results

of [31] were checked to be equal to those in [30] calculated previously in a different gauge.

Thus, our approach reproduces literature representations of the trident process.
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