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Abstract— This paper proposes an online fault localization 

method for low voltage DC microgrids. This method is based 

on Artificial Neural Network (ANN) and only requires 

real-time measurements of a local power converter to locate a 

fault. During a DC fault, the current component fed by the AC 

grid can contribute to time-variant non-linearity, which is 

undesirable to the development of the data-driven method. A 

novel real-time scheme is thus proposed to exclude such 

components from DC fault current. The principle of the 

scheme is introduced and illustrated with time-domain analysis. 

The effectiveness is verified by case studies of locating a DC 

fault in a radial DC network fed by a 3-phase voltage source 

converter.  

Keywords — Low-voltage DC Microgrid, Fault localization, 

Data-driven, Data-refining, ANN 

I. INTRODUCTION  

ULNERABILITY of short-circuit faults and lack of 

mature protection scheme are the major constraints in 

the practical implementation of voltage source converter 

(VSC) based low-voltage direct current (LVDC) distribution 

system [1]. However, LVDC distribution system (or DC 

Microgrid) is becoming an attractive option due to increased 

penetration and development of renewable energy sources 

(RES), energy storage systems (EES), and electric vehicles 

(EV) [2]. Further, it provides flexible operational control to 

RES along with enhanced efficiency and optimal power flow 

[2].  

Regardless of all the advantages of establishing LVDC 

system, detecting, isolating and locating DC fault 

appropriately has become a bottleneck in the development of 

LVDC distribution system. Majority of the established fault 

locating techniques so far locates the fault after isolating the 

faulty section (i.e. by using off-line methods), which 

normally requires extra signal injecting relay and/or device 

to locate the fault. A typical approach is to inject a special 

signal into the faulty section using a power probe unit (PPU) 

after fault isolation [3]–[5]. The injected signal can be then 

analyzed for locating fault using various methods, such as 

method based on voltage comparison [6], a non-iterative 

method based on least square [3], and impedance estimation 

[4]. Extra signal injecting device (i.e. PPU) is required adding 

an extra cost and complexity as well as increased fault 

locating time. The use of PPU  along with the human 

intervention (even for portable PPUs [3]) makes these 

techniques costly and inconvenient. 

 

Conversely, non-unit based fault-locating techniques 

based on an analytical model involve derivation criterion 

with the high probability of inaccuracy due to the addition of 

noise [7]. Further, some recently established fault location 

techniques incorporated multi-resolution analysis (MRA) 

based on Wavelet Transform (WT) [8], [9], and data-driven 

methods with Artificial Neural Networks (ANN) [10] in 

LVDC networks. With a trained neural network from a 

collection of off-line data, ANN has the ability to perform 

fast calculations, which makes it suitable for developing 

real-time fault location technique using real-time data. 

Comparing with the deterministic analytical method, 

data-driven approaches do not have to seek analytical 

solutions for complex systems, which is mathematically 

complicated, hence making such methods practically 

challenging to implement. ANN based fault-locating 

technique for LVDC system is introduced to locate a DC 

fault in an off-line manner [11]. Taking advantage of 

data-driven approach, such power electronics-based network 

is treated as a black box in network training. However, this 

method requires large number of cases and dataset for 

training purposes which increases its implementation time as 

the network gets bigger. Further, the reported techniques 

have also overlooked the non-linearity introduced by the AC 

source, which can be quite significant for large impedance 

fault. On the other hand, a DC fault also produces an impact 

on the variation of AC side fault current contribution. This 

inserts an additional complexity in DC fault current. Without 

the exclusion of such impact, the robustness of fault-locating 

techniques could be undermined.  

In this paper, an online technique for locating fault is 

proposed based on ANN. The technique is based on local 

measurement (i.e. using only voltage and current signal), 

which can be embedded within a power converter. By 

excluding the non-linear AC contribution in fault current 

detection, the robustness against fault timing can be 

improved. 

The paper is outlined as follows. Section II illustrates the 

modelling of LVDC system and analyses the fault behaviour 

of LVDC system detailing the current contribution from the 

AC source. In Section III, a novel online AC fault current 

exclusion method is proposed. ANN-based fault locating 

estimation technique is demonstrated and validated by 

performing a case study analysis in Section IV. Finally, the 

conclusion is drawn in Section V.     

 

V 



II. MODELLING OF LVDC SYSTEM 

A. System Layout  

Two-level three-phase voltage source converter (VSC)  is 

commonly used for AC-DC interfacing in utility DC systems 

due to its operational flexibility with RES [12]–[14]. 

Switching and average models for VSC have been developed 

so far to utilize in LVDC system modelling [15]–[18].  By 

looking into the modulation transient, the switching model 

can detail the high-frequency circuit switching for a 

converter during a fault transient. Whereas the modulation 

process is assumed instant in an average model hence the 

ignorance of transients during a modulation cycle [19]–[21]. 

Therefore, a detailed switching model is being used in this 

research.  

At a steady state, a vector control method is used to 

regulate the current and power exchange between the DC 

Microgrid and the mains. As illustrated in Fig.1., the function 

extends to DC voltage regulation as well. During a severe DC 

fault, the DC voltage may drop well below the essential level 

[23] out of modulation; hence the current/voltage will not be 

functioning. This will disable the vector control of the 

interfacing VSC [22], which is demonstrated in Fig. 1.  

LVDC system with a detailed VSC switching model is 

developed based on in Fig. 1 to analyze the post-fault 

behaviour under short-circuit fault conditions. VSC is 

connected to AC voltage source through AC side inductive 

reactance, Lac and resistance, Rac. Whereas, C1, Lcable and 

Rcable represent terminal capacitance, DC side cable 

inductance and resistance, respectively for an unearthed 

system. Whereas, Rf, demonstrates the level of fault 

resistance during short-circuit faults. VDC corresponds to DC 

voltage, iC is the capacitor current and icable expresses the 

current passing through DC side cable. A capacitor between 

earth and the cables is negligible due to low voltages of the 

system. 

B. DC Post-Fault Analysis   

DC pole-to-pole fault is the most vulnerable fault for VSCs. 

The fault transient can be divided into three stages [2]: In 

Stage (I), VSCs terminal capacitors discharges and high 

current flows through the short-circuit loop. Stage (II) is 

initiated after the complete discharge of the terminal 

capacitor. In this stage, as the fault current reaches its peak  

 

Fig 1. LVDC system with General Control Scheme for 2-level VSC [22]  

value, it gradually decays through the free-wheeling diodes. 

In Stage (III), AC side source starts to contribute towards the 

fault current through AC side reactance and the diodes. The 

transient model for each stage during the short-circuits fault 

is demonstrated in Fig. 2. 

The transient fault current through the cable during stage 

(III), i.e. after the conduction of free-wheeling diodes is 

solved as [23]: 
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where   ,    , and C represents the total resistance, 

inductance, and capacitance of DC side, respectively.    

represents the ac source angular frequency,   is the angle of 

phase-a at time t. 

From (1), we can clearly find that the fault current is 

relevant to the timing of a fault. 

               represents the AC side feed in current 

during fault stage (I & II) transient 

    
    represents the decaying of the capacitor 

discharging current during Stage I transient 

         ⁄                represents the AC feed 

in current and circulating the current flow through converter 

in Stage (II & III) transient 

       ⁄              represents the final steady-state 

fault current after the transient 

III. AC SOURCE CURRENT FILTRATION 

Due to the clear non-linear and time-variant characteristic of 

fault current in (2), it is difficult to develop an accurate fault 

locating technique based on that. However, when the  
 

  TABLE I 

LVDC SYSTEM SIMULATION PARAMETERS  

 

Parameter Nominal Value 

Rated Input Power 2 MW 

AC side Transformer L-L Voltage 690 V 

AC Nominal Frequency 50 Hz 

AC side Inductive Reactance 0.2 p.u. 

AC side Resistance 0.01 p.u. 

DC Side Voltage 1200 V 
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Terminal Capacitance (CT) 10 mF 

Cable length (lC) 1 km 

Cable Resistance/m 0.01 mΩ/m 

Cable Inductance/m 0.1µH/m 

Diode Resistance (RD) 0.01  
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Fig. 2. Equivalent Circuit for fault analysis at each stage. (a) Stage-I, 

Capacitor discharging stage. (b) Stage-II, Free-wheeling diodes conduction 

stage. (c) Stage-III, AC-Source fault contribution stage.   

 

components relevant to AC side are excluded, the remainder 

becomes irrelevant to time and still relevant to the fault 

location.  

The flow of fault current through free-wheeling diodes in 

each arm of VSC is determined by voltage and resistance 

(    across each diode. Hence, diode current is a function 

of AC side phase voltage,   , impedance voltage,    , and 

diode resistance, which can be expressed as a function as:   

 

                                                                                             

(3) 

 

During a DC fault, the AC feed-in current through the 

diodes can be obtained with a switching model in Fig. 2 and 

is illustrated in Fig. 3. It can be observed that the AC feed-in 

component is dependent on time. Hence, the dependency of 

AC fault current on time has a direct influence on AC side 

fault contribution towards the DC side. This fault current 

contribution from AC side varies signal characteristics at 

each instance and induces extra intricacy in locating fault 

accurately.                                    

By varying the timing of the same DC fault, the faulty 

behaviour can be obtained as Fig. 4 shows. It can be seen 

that the profile in the first 10 ms (a typical data window for 

the data-driven method) are different when the fault timing 

is changed from t = 0.3 to 0.301. This variation is caused by 

the time-variant nature of the AC voltage, which can 

directly cause variation of the result of fault-locating. This 

variation can be more significant when the fault is less 

severe and the time-consistent component becomes less 

significant. On the contrary, once the AC current is 

excluded, both profiles are almost identical in the first 10 ms, 

which is illustrated in Fig. 4 as well.  

A. Exclusion of Source Current Contribution  

Taking advantage of the fast sampling capability of a power 

converter, the prospected currents and voltages can be 

continuously sampled and monitored in every control cycle 

e.g. every 1/5000 second. By embedding voltage 

measurement across the middle point of each arm within a 

power converter, the diode current can be determined 

instantaneously after the converter has been blocked during 

the fault. Based on this, an AC current exclusion scheme is 

developed in this section. 

Given the symmetry of 3 phases, phase a is used to 

illustrate the developed scheme. Considering the schematic 

of the diode arm in Fig. 5, the route of phase-a current is 

determined by the bias of both diodes. If phase a current, ia 

is greater than zero, the voltages va and vZ will be compared 

to  

 

  
 Fig.3.  Fault currents with and without AC side contribution  

 

 
Fig.4.  AC fault current contribution  

 

check the biasing of the diode. If the voltage va is greater 

than +vZ, diode D1 conducts and ia will be equal to the 

current through the diode. By implementing the forecited 

scheme in every control cycle, the AC contribution to DC 

current from phase a can be obtained in real-time and then 

deducted from the diode current detection, which is 

illustrated in Fig. 6. Fault current shown in Fig. 6 shows a 

converter current, where the AC fault current and circulating 

current generated by DC side are flowing together during 

fault at DC Side. In Fig. 6, ia-F represents filtered current and 

iD1-M  illustrates the measured current flowing through the 

diode, D1.  
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By applying a similar scheme in all phase, the mechanism 

of source current exclusion can be summarized as follows: 

 
Algorithm: Proposed Online Algorithm to filter AC side fault 

contribution  

 

  Step 1: Acquire phase current, ij, phase voltage, vj (where j 

represents phases a, b or c) at AC side, and line impedance 

voltage, vZ at DC side.  

  Step 2: If the magnitude of ij is greater than zero, go to the next 

step, otherwise start again. 



  Step 3: If va is greater than vZ, this determines that the acquired 

sample of current passes through diode D1 (upper arm diode). 

The acquired sample is the filtered fault current contributed by 

phase a through D1. Compare the filtered current with the 

measured current through diode D1 for any error.   

  Step 4:  If va is less than vZ, this determines that the acquired 

sample of current passes through diode D2 (lower arm diode). 

The acquired sample is the filtered fault current contributed by 

phase a through D2. Otherwise, terminate the comparative 

analysis and start again. Comapre the filtered current with 

measured current through diode D2 for any error.   

  Step 5: Filter the fault currents contributed by each phase and 

sum them all to acquire a total fault contribution from AC source.  

  Step 6:  Calculate Error 

  Step 7:  End procedure  

 

     shows the part of the filtered transient current which has 

been separated by using measured diode current and filtered 

current as  
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Fig. 5.  Fault current and AC side current flow during Stage (III) through 

arm 1. 

 

The extracted signal can be seen in Fig. 7. The figure 

represents the filtered circulating current through D1 that 

flows in the converter after the capacitor-discharge, 

discussed earlier. 

This clearly demonstrates that the fault current 

contribution from the AC side has been filtered out 

effectively and can be used in further evaluation. Similarly, 

AC side contribution from phase b and phase c can be 

filtered out using the same methodology. By filtering AC 

fault current from each arm of VSC, total circulating current 

through VSC (i.e. without AC fault current) can be 

calculated as:   

 

                
    

                                                                   

(6) 

 

Total circulating current through converter after filtering the 

AC feed-in current is shown in Fig.8.  
 

 
Fig. 6.  Free-wheeled fault current during Stage (III) and AC side fault 

current through arm 1.  

 

 
Fig. 7. Currents after filtering out AC side contribution 

 

 
  Fig. 8. VSC filtered free-wheeled circulating current 

IV. ANN BASED FAULT LOCATION TECHNIQUE 

To avoid the mathematical complexity of solving a circuit of 

a high order, a data-driven method, ANN, is introduced in 

this section. 

A. Artificial Neural Network-Fault Locating (ANN-FL) 

Algorithm   

ANN has the ability to establish a non-linear mapping 

between input data set and output variables by appropriately 

selecting the number of layers and neurons. With 

pre-collected data of a certain system, a cascaded 

multi-layered network can be built, where the output of one 

layer is fed into another. Each layer is being associated with 

its specific weight matrix ‘ω’, a bias vector „β‟, an input 

vector „η‟ and an output vector „ο‟ [24], which summarized 

the characteristic of the target system.  

 Using feedforward three-layered (1-Input and 2-Hidden 

layer) ANN (ANN-FL) [25], the number of neurons for the 

input layer is set equal to the input variables. This layer 

process input signals to ANN and sends an output signal from 

each layer to calculate weights and biases.  

 Proposed ANN-FL uses hyperbolic tangent transfer 

function (as demonstrated by (7) ) in its hidden layers to 

analyze system conditions and make decisions appropriately 

[24]. The number of neurons can be selected accordingly in 

these layers, where the processing power of ANN is 

proportional to the number of neurons. 

 

            [         ]   ⁄                                 

(7) 

 

Fifteen neurons are selected for hidden layer-1 and 4 

neurons for hidden layer-2 for the ANN-FL. Less number of 



neurons are selected to keep the computational time as low as 

possible while maintaining the appropriate fault locating 

accuracy of the network. Finally, hidden layers process the 

data and send it to the output layer after transforming results 

inappropriate value i.e. the location of the fault in this case.    

Data of circulating fault current through VSC is gathered 

to create a database for different fault locations from d=10% 

to d=100% (with steps of 10%) of the cable length. This 

database matrix is used to train ANN-FL. Training of 

ANN-FL has performed with Error Back Propagation (EBP) 

technique by the Levenberg-Marquardt (LM) [26] algorithm 

considering the 1000 number of iterations in the training 

epoch. Pseudo-code for proposed ANN-FL method for 

locating fault is described as:   

 

Algorithm: Proposed Artificial Neural Network-based Fault 

Location Method  

 

1:   Input: feature If  from actual data 

2:  Linearization of data  

3:   Initialization 

4:   for 1 → K do 

5:     Load ANN 

6:     Train ANN-FL Model 

7:     Calculate Mean Square Error (MSE) 

8:     if MSE > Threshold, then 

9:         Adjust weights 

10:    else 

11:       Save weights 

12:  end for   

13:  Test ANN-FL Model for fault Location  

14:  Calculate Error 

15:  end procedure  

 

B. Case Studies  

A radial network of DC microgrid supplied by a VSC is 

established in MATLAB-Simulink based on parameters 

given in Table-I.  

1) Neural-Network Training Process: For illustration, the 

fault resistance is set to 100% of the system‟s nominal 

resistance i.e. fault resistance, Rf to be 7.2 mΩ. Data 

samples of circulating fault current through VSC is gathered 

to create a database for different fault locations from d=10% 

to d=100% (with steps of 10%) of the cable length.  

With a 2-dimensional output of both fault resistance and 

fault location, ANN is trained for the data collected for 

different fault locations, locating fault with 10% increment 

of a cable length where the total length of the cable is taken 

as 1000m with a data window of 10 ms at a resolution of 1 

ms after the fault occurs.  

       Data samples collected for each fault location are 

being given as input η = (η1, η2, η3, η4 …. η10) to the network, 

as shown in Fig. 9, for training purposes. The training 

process of the network is based on the forward propagation 

of fault current input samples and backpropagation of errors. 

Continuous adjustment of weights and biases is made by 

comparing the desired output with calculated values using 

error backpropagation. This process of training ANN tries to 

achieve the accuracy requirement between the real output 

and estimated output and thus develops a correlation 

between the fault current and fault location.   

        The training of this 2-layered ANN with (10   

1000) input matrix, 15 neurons in first layer and 4 neurons 

in second layer is achieved in 11 mins and 35 secs.   
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Fig. 9. Fault Locating ANN Structure  

 

2) Neural-Network Testing Phase:  After the ANN has 

been trained, it is ready to use for locating fault online. 

Keeping the fault resistance constant, the trained network is 

tested with various fault locations over a DC feeder of 1000m 

supplied by a 3-phase VSC and fault timing of t = 50 ms and t 

=51 ms, respectively. The protection of VSC is considered to 

be based on overcurrent protection and it is blocked one step 

further, as the circuit breaker is not closed immediately. The 

results are shown in Fig. 10.  

Test results (in Fig. 10) for estimating fault location 

without blocking the AC side current illustrates a higher 

degree of inaccuracy in fault localization with AC side fault 

contribution. Moreover, the impact of time-variability 

becomes obvious when the fault location (including AC side 

fault current contribution) is estimated after the fault 

initialization at t = 51ms. Estimation error increases to a 

higher value with an average increase of 4% by varying the 

time of fault as the fault current contribution of each phase 

varies accordingly.  

The robustness of developed methodology for locating 

fault is tested by first filtering the AC fault current 

contribution with fault initiated at t=51ms. Results in Fig. 10 

clearly demonstrate that estimation error for the filtered fault 

current overlaps the results tested for without AC current 

contribution when fault initiated at t=50ms. Fig. 10 illustrates 

that the fault estimation accuracy is between ±2% between 

230m to 750m of fault which confirms the efficiency of the 

technique.     

Discussion:  The fault locating result at the front and end 

side is relatively less accurate, as the fault estimation error 

varies from ±4% to 8%. The accuracy at these points can be 

improved by enhancing the resolution of the data window. 

Since this is not the focus of this paper, the result is not 

further discussed considering page limit. Since the 

illustrated fault timing variation is only 1 ms whereas the 

grid frequency is  

 



 
Fig. 10. Fault location estimation error at random locations 

 

50 Hz, it can be anticipated that the robustness and accuracy 

can be further deteriorated when the time variation is 

between 1ms and 19 ms when the input data is not refined. 

Although it is possible to improve accuracy without 

exclusion of AC contribution by introducing an extra 

dimension of phase angle in the ANN training, it will 

significantly add up to the complexity. 

V. CONCLUSION 

In this paper, the ANN-based online fault locating method 

for LVDC system is proposed. By analytically refining input 

data, the proposed method demonstrates a clear advantage 

over those “black box” approaches when applying a 

data-driven method to locate a fault. The proposed technique 

is proved to be able to locate a DC fault using real-time local 

measurements and hence can be embedded in a power 

converter. By incorporating the proposed scheme of AC 

current exclusion, the accuracy can be improved. In addition, 

this method can significantly improve the robustness against 

the variation of fault timing.  
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