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Abstract

Typically, a medical image offers spatial information on
the anatomy (and pathology) modulated by imaging spe-
cific characteristics. Many imaging modalities including
Magnetic Resonance Imaging (MRI) and Computed To-
mography (CT) can be interpreted in this way. We can
venture further and consider that a medical image natu-
rally factors into some spatial factors depicting anatomy
and factors that denote the imaging characteristics. Here,
we explicitly learn this decomposed (disentangled) rep-
resentation of imaging data, focusing in particular on
cardiac images. We propose Spatial Decomposition Net-
work (SDNet), which factorises 2D medical images into
spatial anatomical factors and non-spatial modality fac-
tors. We demonstrate that this high-level representa-
tion is ideally suited for several medical image analysis
tasks, such as semi-supervised segmentation, multi-task
segmentation and regression, and image-to-image synthe-
sis. Specifically, we show that our model can match the
performance of fully supervised segmentation models, us-
ing only a fraction of the labelled images. Critically, we
show that our factorised representation also benefits from
supervision obtained either when we use auxiliary tasks
to train the model in a multi-task setting (e.g. regressing
to known cardiac indices), or when aggregating multi-
modal data from different sources (e.g. pooling together
MRI and CT data). To explore the properties of the
learned factorisation, we perform latent-space arithmetic
and show that we can synthesise CT from MR and vice

versa, by swapping the modality factors. We also demon-
strate that the factor holding image specific information
can be used to predict the input modality with high ac-
curacy. Code will be made available at https://github.
com/agis85/anatomy_modality_decomposition.

1 Introduction

Learning good data representations is a long running goal
of machine learning [Bengio et al., 2013a]. In general,
representations are considered “good” if they capture ex-
planatory (discriminative) factors of the data, and are
useful for the task(s) being considered. Learning good
data representations for medical imaging tasks poses ad-
ditional challenges, since the representation must lend it-
self to a range of medically useful tasks, and work across
data from various image modalities.

Within deep learning research there has recently been
a renewed focus on methods for learning so called “dis-
entangled” representations, for example in Higgins et al.
[2017] and Chen et al. [2016]. A disentangled representa-
tion is one in which information is represented as a num-
ber of (independent) factors, with each factor correspond-
ing to some meaningful aspect of the data [Bengio et al.,
2013a] (hence why sometimes encountered as factorised
representations).

Disentangled representations offer many benefits: for
example, they ensure the preservation of information not
directly related to the primary task, which would other-
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wise be discarded, whilst they also facilitate the use of
only the relevant aspects of the data as input to later
tasks. Furthermore, and importantly, they improve the
interpretability of the learned features, since each factor
captures a distinct attribute of the data, while also vary-
ing independently from the other factors.

1.1 Motivation

Disentangled representations have considerable potential
in the analysis of medical data. In this paper we com-
bine recent developments in disentangled representation
learning with strong prior knowledge about medical image
data: that it necessarily decomposes into an “anatomy
factor” and a “modality factor”.

An anatomy factor that is explicitly spatial (repre-
sented as a multi-class semantic map) can maintain pixel-
level correspondences with the input, and directly sup-
ports spatially equivariant tasks such as segmentation and
registration. Most importantly, it also allows a meaning-
ful representation of the anatomy that can be generalised
to any modality. As we demonstrate below, a spatial
anatomical representation is useful for various modality
independent tasks, for example in extracting segmenta-
tions as well as in calculating cardiac functional indices.
It also provides a suitable format for pooling information
from various imaging modalities.

The non-spatial modality factor captures global image
modality information, specifying how the anatomy is ren-
dered in the final image. Maintaining a representation of
the modality characteristics allows, among other things,
the ability to use data from different modalities.

Finally, the ability to learn this factorisation using a
very limited number of labels is of considerable signifi-
cance in medical image analysis, as labelling data is te-
dious and costly. Thus, it will be demonstrated that the
proposed factorisation, in addition to being intuitive and
interpretable, also leads to considerable performance im-
provements in segmentation tasks when using a very lim-
ited number of labelled images.

1.2 Overview of the proposed approach

Learning a decomposition of data into a spatial content
factor and a non-spatial style factor has been a focus of
recent research in computer vision [Huang et al., 2018,
Lee et al., 2018] with the aim being to achieve diversity
in style transfer between domains. However, no consid-

Figure 1: A schematic overview of the proposed model.
An input image is first encoded to a multi-channel spatial
representation, the anatomical factor s, using an anatomy
encoder fanatomy. Then s can be used as an input to a
segmentation network h to produce a multi-class segmen-
tation mask, (or some other task specific network). The
factor s along with the input image are used by a modality
encoder fmodality to produce a latent vector z represent-
ing the imaging modality. The two representations s and
z are combined to reconstruct the input image through
the decoder network g.

eration has been taken regarding the semantics and the
precision of the spatial factor. This is crucial in medical
analysis tasks in order to be able to extract quantifiable
information directly from the spatial factor. Concurrently
with these approaches, Chartsias et al. [2018] aimed to
precisely address the need for interpretable semantics by
explicitly enforcing the spatial factor to be a binary my-
ocardial segmentation. However, since the spatial factor
is a segmentation mask of only the myocardium, remain-
ing anatomies must be encoded in the non-spatial factor,
which violates the concept of explicit factorisation into
anatomical and modality factors.

In this paper instead, we propose Spatial Decomposi-
tion Network (SDNet), schematic shown in Figure 1, that
learns a disentangled representation of medical images
consisting of a spatial map that semantically represents
the anatomy, and a non-spatial latent vector containing
image modality information.

The anatomy is modelled as a multi-channel feature
map, where each channel represents different anatomical
substructures (e.g. myocardium, left and right ventri-
cles). This spatial representation is categorical with each
pixel necessarily belonging to exactly one channel. This
strong restriction prevents the binary maps from encod-
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ing modality information, encouraging the anatomy fac-
tors to be modality-agnostic (invariant), and further pro-
motes factorisation of the subject’s anatomy into mean-
ingful topological regions.

On the other hand, the non-spatial factor contains
modality-specific information, in particular the distribu-
tion of intensities of the spatial regions. We encode the
image intensities into a smooth latent space, using a Vari-
ational Autoencoder (VAE) loss, such that nearby values
in this space correspond to neighbouring values in the
intensity space.

Finally, since the representation should retain most of
the required information about the input (albeit in two
factors), image reconstructions are possible by combining
both factors.

In the literature the term “factor” usually refers to ei-
ther a single dimension of a latent representation, or a
meaningful aspect of the data (i.e. a group of dimensions)
that can vary independently from other aspects. Here we
use factor in the second sense, and we thus learn a repre-
sentation that consists of a (multi-dimensional) anatomy
factor, and a (multi-dimensional) modality factor. Al-
though the individual dimensions of the factors could be
seen as (sub-)factors themselves, for clarity we will refer
to them as dimensions throughout the paper.

1.3 Contributions

Our main contributions are as follows:

• With the use of few segmentation labels and a recon-
struction cost, we learn a multi-channel spatial repre-
sentation of the anatomy. We specifically restrict this
representation to be semantically meaningful by im-
posing that it is a discrete categorical variable, such
that different channels represent different anatomical
regions.

• We learn a modality representation using a VAE,
which allows sampling in the modality space. This
facilitates the decomposition, permits latent space
arithmetic, and also allows us to use part of our net-
work as a generative model to synthesise new images.

• We detail design choices, such as using Feature-wise
Linear Modulation (FiLM) [Perez et al., 2018] in the
decoder, to ensure that the modality factors do not
contain anatomical information, and prevent poste-
rior collapse of the VAE.

• We demonstrate our method in a multi-class segmen-
tation task, and on different datasets, and show that
we maintain a good performance even when training
with labelled images from only a single subject.

• We show that our semantic anatomical representa-
tion is useful for other anatomical tasks, such as
inferring the Left Ventricular Volume (LVV). More
critically, we show that we can also learn from such
auxiliary tasks demonstrating the benefits of multi-
task learning, whilst also improving the learned rep-
resentation.

• Finally, we demonstrate that our method is suitable
for multimodal learning (here multimodal refers to
multiple modalities and not multiple modes in a sta-
tistical sense), where a single encoder is used with
both MR and CT data, and show that informa-
tion from additional modalities improves segmenta-
tion accuracy.

In this paper we advance our preliminary work [Chart-
sias et al., 2018] in the following aspects: 1) we learn
a general anatomical representation useful for multi-task
learning; 2) we perform multi-class segmentation (of mul-
tiple cardiac substructures); 3) we impose a structure
in the imaging factor which follows a multi-dimensional
Gaussian distribution, that allows sampling and improves
generalisation; 4) we formulate the reconstruction process
to use FiLM normalisation [Perez et al., 2018], instead of
concatenating the two factors; and 5) we offer a series
of experiments using four different datasets to show the
capabilities and expressiveness of our representation.

The rest of the paper is organised as follows: Section 2
reviews related literature in representation learning and
segmentation. Then, Section 3 describes our proposed ap-
proach. Sections 4 and 5 describe the setup and results of
the experiments performed. Finally, Section 6 concludes
the manuscript.

2 Related work

Here we review previous work on disentangled represen-
tation learning, which is typically a focus of research on
generative models (Section 2.1). We then review its ap-
plication in domain adaptation, which is achieved by a
factorisation of style and content (Section 2.2). Finally,
we review semi-supervised methods in medical imaging,
as well as recent literature in cardiac segmentation, since
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Figure 2: The architectures of the four networks that make up SDNet. The anatomy encoder is a standard U-
Net [Ronneberger et al., 2015] that produces a spatial anatomical representation s. The modality encoder is a
convolutional network (except for a fully connected final layer) that produces the modality representation z. The
segmentor is a small fully convolutional network that produces the final segmentation prediction of a multi-class mask
(with L classes) given s. Finally the decoder produces a reconstruction of the input image from s with its output
modulated by z through FiLM normalisation [Perez et al., 2018]. The bottom of the figure details the components
used throughout the four networks. The anatomical factor’s channels parameter C, the modality factor’s size nz,
and the number of segmentation classes L depend on the specific task and are detailed in the main text.

they are related to the application domain of our method
(Sections 2.3 and 2.4).

2.1 Factorised representation learning

Interest in learning independent factors of variation of
data distributions is growing. Several variations of
VAE [Kingma and Welling, 2014, Rezende et al., 2014]
and Generative Adversarial Networks (GAN) [Goodfellow
et al., 2014] have been proposed to achieve such a factori-
sation. For example β-VAE [Higgins et al., 2017] adds a
hyperparameter β to the KL-divergence constraint, whilst
Factor-VAE [Kim and Mnih, 2018] boosts disentangle-
ment by encouraging independence between the marginal
distributions. On the other hand, using GANs, Info-
GAN [Chen et al., 2016] maximises the mutual infor-
mation between the generated image and a latent fac-
tor using adversarial training, and SD-GAN [Donahue
et al., 2018] generates images with a common identity
and varying style. Combinations of VAE and GANs have
also been proposed, for example by Mathieu et al. [2016]
and Szabó et al. [2018]. Both learn two continuous fac-
tors: one dataset specific factor, in their case class la-
bels, and one factor for the remaining information. To
promote independence of the factors and prevent a de-
generate condition where the decoder uses only one of
the two factors, mixing techniques have also been pro-

posed [Hu et al., 2017]. These ideas also begin to see
use in medical image analysis: Biffi et al. [2018] apply
VAE to learn a latent space of 3D cardiac segmentations
to train a model of cardiac shapes useful for disease di-
agnosis. Learning factorised features is also used to dis-
tinguish between (learned) features specific to a modality
from those shared across modalities [Fidon et al., 2017].
However, their aim is combining information from multi-
modal images and not learning semantically meaningful
representations.

These methods rely on learning representations in the
form of latent vectors. Our method is similar in concept
with Mathieu et al. [2016] and Szabó et al. [2018], which
both learn a factorisation into known and other residual
factors. However, we constrain the known factor to be
spatial, since this is naturally related to the anatomy of
medical images.

2.2 Style and content disentanglement

There is a connection between our task and style transfer
(in medical image analysis known as modality transfor-
mation or synthesis): the task of rendering one image
in the “style” of another. Classic style transfer meth-
ods do not explicitly model the style of the output image
and therefore suffer from style ambiguity, where many
outputs correspond to the same style. In order to ad-
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dress this “many to one” problem, a number of models
have recently appeared that include an additional latent
variable capturing image style. For example, colouring a
sketch may result in different images (depending on the
colours chosen) thus, in addition to the sketch itself, a
vector parameterising the colour choices is also given as
input [Zhu et al., 2017].

Our approach here can be seen as similar to a disen-
tanglement of an image into “style” and “content” [Gatys
et al., 2016, Azadi et al., 2018], where we represent con-
tent (i.e. in our case the underlying anatomy) spatially.
Similar to our approach, there have been recent disentan-
glement models that also use vector and spatial represen-
tations for the style and content respectively [Almahairi
et al., 2018, Huang et al., 2018, Lee et al., 2018]. Fur-
thermore, Esser et al. [2018] expressed content as a shape
estimation (using an edge extractor and a pose estima-
tor) and combined it with style obtained from a VAE.
The intricacies of medical images differentiate us by ne-
cessitating the expression of the spatial content factor as
categorical in order to produce a semantically meaning-
ful (interpretable) representation of the anatomy, which
cannot be estimated and rather needs to be learned from
the data. This discretisation of the spatial factor also
prevents the spatial representation from being associated
with a particular medical image modality. The remainder
of this paper uses the terms “anatomy” and “modality”,
which are associated with medical image analysis, to refer
to the synonymous “content” and “style” that are most
common in deep learning/computer vision terminology.

2.3 Semi-supervised segmentation

A powerful property of disentangled representations is
that they can be applied in semi-supervised learning
[Almahairi et al., 2018]. An important application in
medical image analysis is (semi-supervised) segmentation,
for a recent review see Cheplygina et al. [2018]. As dis-
cussed in this review, manual segmentations are a labori-
ous task, particularly as inter-rater variation means mul-
tiple labels are required to reach a consensus, and im-
ages labelled by multiple experts are very limited. Semi-
supervised segmentation has been proposed for cardiac
image analysis using an iterative approach and Condi-
tional Random Fields (CRF) post-processing [Bai et al.,
2017], and for gland segmentation using GANs [Zhang
et al., 2017].

More recent medical semi-supervised image segmen-

tation approaches include Zhao et al. [2018] and Nie
et al. [2018]. Zhao et al. [2018] address a multi-instance
segmentation task in which they have bounding boxes
for all instances, but pixel-level segmentation masks for
only some instances. Nie et al. [2018] approach semi-
supervised segmentation with adversarial learning and a
confidence network. Neither approaches involve learning
disentangled representations of the data.

2.4 Cardiac segmentation

We apply our model to the problem of cardiac segmen-
tation, for which there is considerable literature [Peng
et al., 2016]. The majority of recent methods use con-
volutional networks with full supervision for multi-class
cardiac segmentations, as seen for example in participants
of workshop challenges [Bernard et al., 2018]. Cascaded
networks [Vigneault et al., 2018] are used to perform 2D
segmentation by transforming the data into a canonical
orientation and also by combining information from dif-
ferent views. Prior information about the cardiac shape
has been used to improve segmentation results [Oktay
et al., 2018]. Spatial correlation between adjacent slices
has been explored [Zheng et al., 2018] to consistently seg-
ment 3D volumes. Segmentation can also be treated as a
regression task [Tan et al., 2017]. Finally, temporal infor-
mation related to the cardiac motion has been used for
segmentation of all cardiac phases [Qin et al., 2018, Bai
et al., 2018b].

Differently from the above, in this work we focus on
learning meaningful spatial representations, and leverag-
ing these for improved semi-supervised segmentation re-
sults, and performing auxiliary tasks.

3 Materials and methods

Overall, our proposed model can be considered as an au-
toencoder, which takes as input a 2D volume slice x ∈ X,
where X ⊂ IRH×W×1 is the set of all images in the data,
with H and W being the image’s height and width respec-
tively. The model generates a reconstruction through an
intermediate disentangled representation. The disentan-
gled representation is comprised of a multi-channel spa-
tial map (a tensor) s ∈ S := {0, 1}H×W×C , where C
is the number of channels, and a multi-dimensional con-
tinuous vector factor z ∈ Z := IRnz , where nz is the
number of dimensions. These are generated respectively
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by two encoders, modelled as convolutional neural net-
works, fanatomy and fmodality. The two representations
are combined by a decoder g to reconstruct the input. In
addition to the reconstruction cost, explicit supervision
can be given in the form of auxiliary tasks, for example
with a segmentation task using a network h, or with a
regression task as we will demonstrate in Section 5.2. A
schematic of our model can be seen in Figure 1 and the
detailed architectures of each network are shown in Figure
2.

3.1 Input decomposition

The decomposition process yields representations for the
anatomy and the modality characteristics of medical im-
ages and is achieved by two dedicated neural networks.
Whilst a decomposition could also be performed with
a single neural network with two separate outputs and
shared layer components, as done in our previous work
[Chartsias et al., 2018], we found that by using two sep-
arate networks, as also done in Huang et al. [2018] and
in Lee et al. [2018], we can more easily control the infor-
mation captured by each factor, and we can stabilise the
behaviour of each encoder during training.

3.1.1 Anatomical representation

The anatomy encoder is a fully convolutional neural net-
work that maps 2D images to spatial representations,
fanatomy : X → S. We use a U-Net [Ronneberger et al.,
2015] architecture, containing downsampling and upsam-
pling paths with skip connections between feature maps
of the same size, allowing effective fusion of important
local and non-local information.

The spatial representation is a feature map consist-
ing of a number of binary channels of the same spa-
tial dimensions (H,W ) as the input image, that is s ∈
{0, 1}H×W×Cs.t.

∑C
c=1 sh,w,c = 1 ∀h ∈ {1, . . . ,H}, w ∈

{1, . . . ,W}, where C is the number of channels. Some
channels contain individual anatomical (cardiac) sub-
structures, while the other structures, necessary for recon-
struction, are freely dispersed in the remaining channels.
Figure 3a shows an example of a spatial representation,
where the representations of the myocardium, the left and
the right ventricle, are clearly visible, and the remaining
channels contain the surrounding image structures (albeit
more mixed and not anatomically distinct).

The spatial representation is derived using a softmax

activation function to force each pixel to have activa-
tions that sum to one across the channels. Since softmax
functions encode continuous distributions, we binarise the
anatomical representation via the operator s 7→ bs+0.5c,
which acts as a threshold for the pixel values of the spatial
variables in the forward pass. During back-propagation
the step function is bypassed and updates are applied to
the original non-binary representation, as in the straight-
through operator [Bengio et al., 2013b].

Thresholding s is an integral part of the model’s de-
sign and offers two advantages. Firstly, it reduces the
capacity of the spatial factor, encouraging it to be a rep-
resentation of only the anatomy and preventing modality
information from being encoded. Secondly, it enforces a
factorisation of the spatial factor in distinct channels, as
each pixel can only be active on one channel. To illus-
trate the importance of this binarisation, an example of a
non-thresholded spatial factor is shown in Figure 3b. Ob-
serve, that the channels of s are not sparse with variations
of gray level now evident. Image intensities are now en-
coded spatially, using different grayscale values, allowing
a good reconstruction to be achieved without the need of
a modality factor, which we explicitly want to avoid.

3.1.2 Modality representation

Given samples of the data x ∈ X with their corresponding
s ∈ S (deterministically obtained by fanatomy), we learn
the posterior distribution of latent factors z ∈ Z := IRnz ,
q(z|x, s).

Learning this posterior distribution follows the VAE
principle [Kingma and Welling, 2014]. In brief a VAE
learns a low dimensional latent space, such that the
learned latent representations match a prior distribu-
tion that is set to be an isotropic multivariate Gaussian
p(z) = N (0, 1). A VAE consists of an encoder and a de-
coder. The encoder, given an input, predicts the parame-
ters of a Gaussian distribution (with diagonal co-variance
matrix). This distribution is then sampled, using the
reparameterisation trick to allow learning through back
propagation, and the resulting sample is fed through the
decoder to reconstruct the input. VAEs are trained to
minimise a reconstruction error and the KL divergence
of the estimated Gaussian distribution q(z|x, s) from the
unit Gaussian p(z),

LKL = DKL(q(z|x, s)‖p(z)),

where DKL(p‖q) =
∫
p(z)log p(z)

q(z|x,s)dxds. Once trained,
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(a) Anatomical representation with binary thresholding.

(b) Anatomical representation with no binary thresholding.

Figure 3: (a) Example of a spatial representation, expressed as a multi-channel binary map. Some channels represent
defined anatomical parts such as the myocardium or the left ventricle, and others the remaining anatomy required
to describe the input image on the left. Observe how sparse most of the informative channels are. (b) Spatial
representation with no thresholding applied. Each channel of the spatial map, also captures the intensity signal in
different gray level variations and is not sparse, in contrast to Figure 3a. This may hinder an anatomical separation.
Note that no specific channel ordering is imposed and thus the anatomical parts can appear in different order in the
anatomical representations across experiments.

sampling a vector from the unit Gaussian over the latent
space and passing it through the decoder approximates
sampling from the data, i.e. the decoder can be used as
a generative model.

The posterior distribution is modelled with a stochas-
tic encoder (this is analogous to the VAE encoder) as a
convolutional network, which encodes the image modal-
ity, fmodality : X × S → Z. Specifically, the stochastic-
ity of the encoder (for a sample x and its anatomy fac-
tor s) is achieved as in the VAE formulation as follows:
fmodality(x, s) produces first the mean and diagonal co-
variance for an nz dimensional Gaussian, which is then
sampled to yield the final z.

3.2 Segmentation

One important task for the model is to infer segmenta-
tion masks m ∈M := {0, 1}H×W×L, where L is the num-
ber of anatomical segmentation categories in the training
dataset, out of the spatial representation. This is an inte-
gral part of the training process because it also defines the
anatomical structures that will be extracted from the im-
age. The segmentation network1 is a fully convolutional

1Experimental results showed that having an additional segmen-
tor network, instead of enforcing our spatial representation to con-

network consisting of two convolutional blocks followed
by a final 1× 1 convolution layer (see Figure 2), with the
goal of refining the anatomy present in the spatial maps
and produce the final segmentation masks, h : S →M .

When labelled data are available, a supervised cost
is employed that is based on a differentiable Dice loss
[Milletari et al., 2016] between a real segmentation mask
m of an image sample x and its predicted segmentation
h(fanatomy(x)),

Lsegm = 1−2× E
x,m

[∑
h,w,l(mh,w,l × h(fanatomy(x))h,w,l) + ε∑
h,w,l(mh,w,l + h(fanatomy(x))h,w,l) + ε

]
,

where the added small constant ε prevents division by
0. In a semi-supervised scenario, where there are images
with no corresponding segmentations, an adversarial loss
is defined using a discriminator over masks DM , based on
LeastSquares-GAN [Mao et al., 2018]. Networks fanatomy

and h are trained to maximise the adversarial objective,
against DM which is trained to minimise it,

Ladv = E
x,m

[
DM (h(fanatomy(x)))2 + (DM (m)− 1)2

]
.

tain the exact segmentation masks, improves the training stability
of our method. Furthermore, it offers flexibility in that the same
anatomical representation can be used for multiple tasks, such as
in segmentation and the calculation of the left ventricular volume.
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The architecture of the discriminator is based on DC-
GAN discriminator [Radford et al., 2015], without Batch
Normalization.

3.3 Image reconstruction

The two factors are combined by a decoder network g to
generate an image y ∈ Y := IRH×W×1 with the anatomi-
cal characteristics specified by s and the imaging charac-
teristics specified by z, g : S × Z → Y . The fusion of the
two factors acts as an inpainting mechanism where the
information stored in z, is used to derive the image signal
intensities that will be used on the anatomical structures,
stored in s.

The reconstruction is achieved by a decoder convolu-
tional network conditioned with four FiLM [Perez et al.,
2018] layers. This general purpose conditioning method
learns scale and offset parameters for each feature-map
channel within a convolutional architecture. Thus, an
affine transformation (one per channel) learned from the
conditioning input is applied.

Here, a network of two fully connected layers (see Fig-
ure 2) maps z to the scale and offset values γ and β for
each intermediate feature map Fc of the decoder. Each
channel of Fc is modulated based on c pairs γc and βc as
follows: FiLM(Fc|γc, βc) = γc � Fc + βc, where element-
wise multiplication (�) and addition are both broadcast
over the spatial dimensions. The decoder and FiLM pa-
rameters are learned through the reconstruction of the
input images using Mean Absolute Error,

Lrec = E
x

[‖x− g(fanatomy(x), fmodality(x, fanatomy(x)))‖1] .

The design of the decoding process restricts the type of
information stored in z to only affect the intensities of the
produced image. This is important in the disentangling
process as it pushes z to not contain spatial anatomical
information.

The decoder can also be interpreted as a conditional
generative model, where different samples of z condi-
tioned on a given s generate images of the same anatom-
ical properties, but with different appearances. The re-
construction process is the opposite of the decomposition
process, i.e. it learns the dependencies between the two
factors in order to produce a realistic output.

3.3.1 Modality factor reconstruction

A common problem when training VAE is posterior col-
lapse: a degenerate condition where the decoder is ignor-
ing some factors. In this case, even though the recon-
struction is accurate, not all data variation is captured in
the underlying factors.

In our model posterior collapse manifests when some
modality information is spatially encoded within the
anatomical factor.2 To overcome this we use a z recon-
struction cost, according to which an image y produced
by a random z sample should produce the same modality
factor when (re-)encoded,

Lzrec = E
z,y

[‖z − fmodality(y, fanatomy(y))‖1] .

The faithful reconstruction of the modality factor z pe-
nalises the VAE for ignoring dimensions of the latent dis-
tribution and encourages each encoded image to produce
a low variance Gaussian. This is in tension with the KL
divergence cost which is optimal when the produced dis-
tribution is a spherical Gaussian of zero mean and unit
variance. A perfect score of the KL divergence results in
all samples producing the same distribution over z, and
thus the samples are indistinguishable from each other
based on z. Without Lzrec , the overall cost function
can be minimised if imaging information is encoded in s,
thus resulting in posterior collapse. Reconstructing the
modality factor prevents this, and results in an equilib-
rium where a good reconstruction is possible only with
the use of both factors.

4 Experimental setup

4.1 Data

In our experiments we use 2D images from four datasets,
which have been normalised to the range [-1, 1].

(a) For the semi-supervised segmentation experiment
(Section 5.1) and the latent space arithmetic (Sec-
tion 5.5) we use data from the 2017 Automatic Car-
diac Diagnosis Challenge (ACDC) [Bernard et al.,
2018]. This dataset contains cine-MR images ac-
quired in 1.5T and 3T MR scanners, with resolution
between 1.22 and 1.68 mm2/pixel and a number of

2Note that while using FiLM prevents z from encoding spatial
information, it does not prevent the case of posterior collapse i.e.
that s encodes (all or part of) the modality information.
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phases varying between 28 to 40 images per patient.
We resample all volumes to 1.37 mm2/pixel resolu-
tion. Images are cropped to 224× 224 pixels. There
are images of 100 patients for which manual segmen-
tations are provided for the left ventricular cavity
(LV), the myocardium (MYO) and the right ventri-
cle (RV), corresponding to the end systolic (ES) and
end diastolic (ED) cardiac phases. In total there are
1,920 images with manual segmentations (from ED
and ES) and 23,530 images with no segmentations
(from the remaining cardiac phases).

(b) We also use data acquired at Edinburgh Imaging Fa-
cility QMRI with a 3T scanner. The dataset con-
tains cine-MR images of 26 healthy volunteers each
with approximately 30 cardiac phases. The spatial
resolution is 1.406 mm2/pixels with a slice thick-
ness of 6mm, matrix size 256 × 256, a field of view
360mm×303.75mm, and image size 256×208 pixels.
This dataset is used in the semi-supervised segmenta-
tion and multi-task experiments of Sections 5.1 and
5.2 respectively. Manual segmentations of the left
ventricular cavity (LV) and the myocardium (MYO)
are provided, corresponding to the ED cardiac phase.
In total there are 241 images with manual segmenta-
tions (from ED) and 8,353 images with no segmen-
tations (from the remaining cardiac phases).

(c) To demonstrate multimodal segmentation and
modality transformation (Section 5.3), as well as
modality estimation (Section 5.4), we use data from
the 2017 Multi-Modal Whole Heart Segmentation
(MM-WHS) challenge, made available by Zhuang
et al. [2010], Zhuang [2013], and Zhuang and Shen
[2016]. This contains 40 anonymised volumes, of
which 20 are cardiac CT/CT angiography (CTA)
and 20 are cardiac MRI. The CT/CTA data were
acquired in the axial view at Shanghai Shuguang
Hospital, China, using routine cardiac CTA proto-
cols. The in-plane resolution is about 0.78×0.78mm
and the average slice thickness is 1.60mm. The MRI
data were acquired at St. Thomas hospital and
Royal Brompton Hospital, London, UK, using 3D
balanced steady state free precession (b-SSFP) se-
quences, with about 2mm acquisition resolution at
each direction and reconstructed (resampled) into
about 1mm. All data have manual segmentations
of seven heart substructures: myocardium (MYO),
left atrium (LA), left ventricle (LV), right atrium

(RA), right ventricle (RV), ascending aorta (AO) and
pulmonary artery (PA). Data preprocessing is as in
Chartsias et al. [2017]. The image size is 224 × 224
pixels. In total there are 3,626 MR and 2,580 CT
images, all with manual segmentations.

(d) Finally, we use cine-MR and CP-BOLD images of
10 canines to further evaluate modality estimation
(Section 5.4). 2D images with an in-plane resolu-
tion of 1.25mm× 1.25mm were acquired at baseline
and severe ischemia (inflicted as controllable steno-
sis of the left-anterior descending coronary artery
(LAD)) on a 1.5T Espree (Siemens Healthcare) on
the same instrumented canines. The image acquisi-
tion is at short axis view, covering the mid-ventricle,
and is performed using cine-MR and a flow and mo-
tion compensated CP-BOLD acquisition. The pixel
resolution is 192 × 114 [Tsaftaris et al., 2013]. This
dataset (not publicly available) is ideal to show com-
plex spatio-temporal effects as it images the same
animal with and without disease and using two al-
most identical sequences with the only difference that
CP-BOLD modulates pixel intensity with the level of
oxygenation present in the tissue. In total there are
129 cine-MR and 264 CP-BOLD images with manual
segmentations from all cardiac phases.

4.2 Model and training details

The overall cost function is a composition of the individ-
ual costs of each of the model’s components and is defined
as:

L = λ1LKL + λ2Lsegm + λ3Ladv + λ4Lrec + λ5Lzrec .

The λ parameters are set to values: λ1=0.01, λ2=10,
λ3=10, λ4=1, λ5=1. We adopt the value of λ1 from Zhu
et al. [2017], that also trains a VAE for modelling intensity
variability. Separating the anatomy into segmentation
masks is a difficult task, and is also in tension with the
reconstruction process which pushes parts with similar
intensities to be in the same channels. This motivates
our decision in increasing the values of the segmentation
hyperparameters λ2 and λ3.

We set the dimension of the modality factor nz=8 as in
Zhu et al. [2017] across all datasets. We also set the num-
ber of channels of the spatial factor to C=8 for ACDC and
QMRI and increase to C=16 for MM-WHS, to support
the increased number of segmented regions (7 in MM-
WHS) and the fact that CT and MR data have different

9



contrasts and viewpoints. This additional flexibility al-
lows the network to use some channels of s for common
information across the two modalities (MR and CT) and
some for unique (not common) information.

We train using Adam [Kingma and Ba, 2014] with a
learning rate of 0.0001 and a decay of 0.0001 per epoch.
We used a batch size of 4 and an early stopping criterion
based on the segmentation cost of a validation set. All
code was developed in Keras [Chollet et al., 2015]. The
quantitative results of Section 5 are obtained through 3-
fold cross validation, where each split contains a propor-
tion of the total volumes of 70%, 15% and 15% corre-
sponding to training, validation and test sets. SDNet im-
plementation will be made available at https://github.
com/agis85/anatomy_modality_decomposition.

4.3 Baseline and benchmark methods

We evaluate our model’s segmentation accuracy by com-
paring with one fully supervised and two semi-supervised
methods described below:

(a) We use U-Net [Ronneberger et al., 2015] as a fully
supervised baseline because of its effectiveness in var-
ious medical segmentation problems, and also since
it is frequently used by the participants of the two
cardiac challenges MM-WHS and ACDC. It’s archi-
tecture follows the one proposed in the original pa-
per, and is the same as the SDNet’s anatomy encoder
for fair comparison.

(b) We add an adversarial cost using a mask discrimi-
nator to the fully-supervised U-Net, enabling its use
in semi-supervision. This can also be considered as
a variant of SDNet without the reconstruction cost.
We refer to this method as GAN in Section 5.

(c) We also use the self-train method of Bai et al.
[2017], which proposes an iterative method of using
unlabelled data to retrain a segmentation network.
In the original paper a Conditional Random Field
(CRF) post-processing is applied. Here, we use U-
Net as a segmentation network (such that the same
architecture is used by all baselines) and we do not
perform any post-processing for a fair comparison
with the other methods we present.

To permit comparisons, training of the baselines uses
the same hyperparameters, such as learning rate decay,

optimiser, batch size, and early stopping criterion, as used
for SDNet.

5 Results and discussion

We here present and discuss quantitative and qualitative
results of our method in various experimental scenarios.
Initially, multi-class semi-supervised segmentation is eval-
uated in Section 5.1. Subsequently, Section 5.2 demon-
strates multi-task learning with the addition of a regres-
sion task in the training objectives. In Section 5.3, SDNet
is evaluated in a multimodal scenario by concurrently seg-
menting MR and CT data. In Section 5.4 we investigate
whether the modality factor z captures multimodal infor-
mation. Finally, Section 5.5 demonstrates properties of
the factorisation using latent space arithmetic, in order
to show how z and s interact to reconstruct images.

5.1 Semi-supervised segmentation

We evaluate the utility of our method in a semi-supervised
experiment, in which we combine labelled images with
a pool of unlabelled images to achieve multi-class semi-
supervised segmentation. Specifically, we explore the sen-
sitivity of SDNet and the baselines of Section 4.3 to the
number of labelled examples, by training with various
numbers of labelled images. Our objective is to show that
we can achieve comparable results to a fully supervised
network using fewer annotations.

To simulate a more realistic clinical scenario, sampling
of the labelled images does not happen over the full image
pool, but at a subject level: initially, a number of sub-
jects are sampled, and then all images of these subjects
constitute the labelled dataset. The number of unlabelled
images is fixed and set equal to 1200 images: these are
sampled at random from all subjects of the training set
and from cardiac phases other than End Systole (ES) and
End Diastole (ED) (for which no ground truth masks ex-
ist). The real segmentation masks used to train the mask
discriminator are taken from the set of image-mask pairs
from the same dataset.

In order to test the generalisability of all methods to
different types of images, we use two cine-MR datasets:
ACDC which contains masks of the LV, MYO and RV;
and QMRI which contains masks of the LV and MYO.
Spatial augmentations by rotating inputs up to 90◦ are
applied to experiments using ACDC data to better simu-
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late the orientation variability of the dataset. No augmen-
tations are applied in experiments using QMRI data since
all images maintain a canonical orientation. No further
augmentations have been performed to fairly compare the
effect of the different methods.

We present the average cross-validation Dice score (on
held out test sets) across all labels, as well as the Dice
score for each label separately, and the corresponding
standard deviations. Note that images from a given sub-
ject can only be present in exactly one of the training,
validation or test sets. Table 1 contains the ACDC re-
sults for all labels, MYO, LV and RV respectively, and
Table 2 contains the QMRI results for all labels, MYO,
and LV respectively. The test set for each fold contains
280 images of ED and ES phases, belonging to 15 subjects
for ACDC, and 35 images of the ED phase belonging to
4 subjects for QMRI. The best results are shown in bold
font, and an asterisk indicates statistical significance at
the 5% level, compared to the second best result, com-
puted using a paired t-test. In both tables the lowest
amount of labelled data (1.5% for Table 1 and 6% for
Table 2) correspond to images selected from one subject.
Segmentation examples for ACDC data using different
number of labelled images are shown in Figure 4, where
different colours are used for the different segmentation
classes.

For both datasets, when the number of annotated im-
ages is high, then all methods perform equally well, al-
though our method achieves the lowest variance. In Ta-
ble 1 the performance of the supervised (U-Net) and self-
trained methods decreases when the number of annotated
images reduces below 12.5%, since the limited annota-
tions are not sufficiently representative of the data. When
using data from one or two subjects, these two methods
which mostly rely on supervision fail with a Dice score
below 55%. On the other hand, even when the number
of labelled images is small, adversarial training used by
SDNet and GAN helps maintaining a good performance.
The reconstruction cost used by our method further reg-
ularises training and consistently produces more accurate
results, with Dice scores equal to 73%, 77% and 78% for
1.5%, 3% and 6% labels respectively, that are also signif-
icantly better, with p-values 0.0006, 0.02, and 0.002, in a
paired t-test.

It is interesting to compare the performance of SDNet
with our previous work [Chartsias et al., 2018]. We there-
fore modify our previous model for multi-class segmenta-
tion and repeat the experiment for the ACDC dataset.

We compute the Dice scores and standard deviations for
100%, 50%, 25%, 12.5%, 6%, 3%, and 1.5% of labelled
data to be respectively 79±7%, 75±8%, 79±7%, 77±10%,
75 ± 9%, 66 ± 15%, and 59 ± 13%. Comparing with the
results of Table 1, SDNet significantly outperforms our
previous model (at the 5% level, paired t-test).

On the smaller QMRI dataset, the segmentation results
are seen in Table 2, and correspond to two masks instead
of three. When using annotated images from just a sin-
gle subject (corresponding to 6% of the data the lowest
possible), the performance of the supervised method re-
duces by almost 50% compared to when using the full
dataset. SDNet and GAN both maintain a good perfor-
mance of 75% and 79%, with no significant differences
between them.

5.2 Left ventricular volume

It is common for clinicians to not manually annotate all
endocardium and epicardium contours for all patients if
it is not necessary. Rather, a mixture of annotations and
other metrics of interest will be saved at the end of the
study in the electronic health record. For example, we
can have a scenario with images of some patients that
contain myocardium segmentations and some images with
the value of their left ventricular volume. Here we test
our model in such a multi-task scenario and show that we
can benefit from such auxiliary and mixed annotations.
We will evaluate, firstly whether our model is capable
of predicting a secondary output related to the anatomy
(the volume of the left ventricle), and secondly whether
this secondary task improves the performance of the main
segmentation task.

Using the QMRI dataset, we first calculate the ground
truth left ventricular volume (LVV) for each patient as
follows: for each 2D slice, we first sum the pixels of the
left ventricular cavity, then multiply this sum with the
pixel resolution to get the corresponding area and then
multiply the result with the slice thickness to get the vol-
ume occupied by each slice. The final volume is the sum
of all individual slice volumes.

Predicting the LVV as another output of SDNet follows
a similar process to the one used to calculate the ground
truth values. We design a small neural network consisting
of two convolutional layers (each having a 3×3×16 kernel
followed by a ReLU activation), and two fully connected
layers of 16 and 1 neurons respectively, both followed by
a ReLU activation. This network regresses the sum of
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Table 1: Dice score (%) on ACDC for MYO, LV, RV, and average. Standard deviations are shown as subscripts.
The models are trained with 1200 unlabelled and different fraction of labelled images (each one corresponding to
a proportion of selected subjects). For each of the three components and the average separately, the best result is
shown in bold font and an asterisk indicates statistical significance at the 5% level compared to the second best
method in the same row/component.

labels U-Net GAN self-train SDNet
MYO LV RV avg MYO LV RV avg MYO LV RV avg MYO LV RV avg

100% 837 886 7910 857 826 876 758 835 847 895 828 856 845 884 788 845
50% 837 877 7910 857 817 866 7510 827 8010 8510 7811 828 836 877 779 836
25% 779 829 6714 7511 789 858 7211 798 7613 8510 7015 7811 80∗

7 856 7311 81∗
6

12.5% 7113 8013 6117 7013 788 856 6913 798 6317 7713 5721 6715 798 857 6913 808

6% 6312 7613 5622 6513 7511 8111 6913 7512 4627 5923 3418 4723 779 8310 7112 78∗
9

3% 5519 6620 4620 5218 7332 7910 6714 7510 2015 3520 2214 2415 76∗
7 82∗

8 6814 77∗
8

1.5% 2619 3321 3517 2119 6721 7811 6312 6712 1110 1914 2512 1611 7012 7713 6415 73∗
12

Table 2: Dice score (%) on QMRI for MYO, LV, and average. Standard deviations are shown as subscripts. The
models are trained with 1200 unlabelled and different fraction of labelled images (each one corresponding to a
proportion of selected subjects). For each of the two components and the average separately, the best result is shown
in bold font and an asterisk indicates statistical significance at the 5% level compared to the second best method in
the same row/component.

labels U-Net GAN self-train SDNet
MYO LV avg MYO LV avg MYO LV avg MYO LV avg

100% 729 906 837 757 933 864 759 925 867 756 934 864

50% 7215 8218 7415 719 867 835 6211 889 799 736 905 845

25% 5414 809 6910 687 867 815 3622 5629 4926 667 887 808
12.5% 5211 816 657 688 886 797 4216 6414 5814 679 886 807

6% 2114 4328 4320 649 8410 7510 86 2111 137 657 8710 795

the pixels of the left ventricle, taking as input the spatial
representation. The predicted sum can then be used to
calculate the LVV offline.

Using a pre-trained model of labelled images corre-
sponding to one subject (last row in Table 2 with 6%
labels), we fine-tune the whole model whilst training the
area regressor using ground truth values from 17 sub-
jects. We find the average LVV over the test volumes
equal to 138.57mL (standard deviation of 8.8), and the
ground truth LVV equal to 139.23mL (standard deviation
of 2.26), with no statistical difference between them in a
paired t-test. Both measurements agree with the normal
LVV values for ED cardiac phases, which was reported as
143mL in a large population study [Bai et al., 2018a]. The

multi-task objective used to fine-tune the whole model
also benefits test segmentation accuracy, which is raised
from 75.6% to 83.2% (statistically significant at the 5%
level). 3 for both labels individually: MYO accuracy rises
from 63.3% to 70.6% and LV accuracy rises from 81.9% to
89.9%. While this is for a single split, observe that using
LVV as an auxiliary task effectively brought us closer to
the range of having 50% annotated masks (second row in
Table 2). Thus, auxiliary tasks, such as LVV prediction,
which is related to the endocardial border segmentation,
can be used to train models in a multi-task setting and
leverage supervision present in typical clinical settings.

3The multi-task objective in fact benefits the Dice score (statis-
tically significant at the 5% level)
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Figure 4: Segmentation example for different numbers of labelled images from the ACDC dataset. Blue, green and
red show the models prediction for MYO, LV and RV respectively.

5.3 Multimodal learning

By design, our model separates the anatomical factor
from the image modality factor. As a result, it can
be trained using multimodal data, with the spatial fac-
tor capturing the common anatomical information and
the non-spatial factor capturing the intensity information
unique to each image’s particular modality. Here we eval-
uate our model using a multimodal MR and CT input to
achieve segmentation (Section 5.3.1) and modality trans-
formation (Section 5.3.2).

Both these tasks rely on learning consistent anatomi-
cal representations across the two modalities. However,
it is well known that MR and CT have different contrasts
that accentuate different tissue properties and may also
have different views. Thus, we would expect some chan-
nels of the anatomy factor to be used in CT but not in
MRI whereas some to be used by both. This disentan-
glement of information captures both differences in tissue
contrasts but also differences in view when parts of the
anatomy are not visible in all slice positions of a 3D vol-
ume.

This is illustrated in Figure 5, which shows three exam-
ple anatomical representations from one MR and two CT
images, and specifically marks common anatomical fac-

tors that are captured in the same respective channels,
and unique factors that are captured in different chan-
nels.

5.3.1 Multimodal segmentation

We train SDNet using MR and CT data with the aim
to improve learning of the anatomical factor from both
MR and CT segmentation masks. In fact, we show below
that when mixing data from MR and CT images, we im-
prove segmentation compared to when using each modal-
ity separately. Since the aim is to specifically evaluate
the effect of multimodal training in segmentation accu-
racy, unlabelled images are not considered here as part of
the training process, and the models are trained with full
supervision only.

In Table 3 we present the Dice score over held out MR
and CT test sets, obtained when training a model with
differing amounts of MR and CT data. Results for 12.5%
of data correspond to images obtained from one subject.
Training with both data leads to improvements in both
individual MR and CT performances. This is the case
even when we add 12.5% of CT on 100% of MR, and
vice versa; this improves MR performance (from 75% to
76%, not statistically significant, although improvement
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Figure 5: Example of anatomical representations from one MR and two CT images respectively. Green boxes mark
common spatial information captured in the same channels, whereas red boxes mark information present in one but
not the other modalities.

becomes significant as more CT are added), but also CT
performance (from 77% to 81%, statistically significant).

We also train using different mixtures of MR and CT
data, but keeping the total amount of training data fixed.
In the CT case, we observe that Dice ranges between
77% (at 100%) and 65% (at 12.5%). This shows that
CT segmentation clearly benefits from training alongside
MR, since when training on CT alone with 12.5%, the
corresponding Dice is 23%. In the MR case, we observe
that Dice ranges between 75% (at 100%) and 49% (at
12.5%). Here, the relative reduction is larger than in the
CT case, however MR training at 12.5% also benefits from
the CT data, since the Dice when training on 12.5% MR
alone is 27%. Furthermore, the Dice score for the other
proportions of the data is relatively stable with a range of
69% to 74% for CT, and a range of 67% to 75% for MR.

In both experimental setups, whether the total number
of training data is fixed or not, having additional data
even when coming from another modality helps. This
can have implications for current or new datasets of a
rare modality, which can be augmented with data from a
more common modality.

5.3.2 Modality transformation

Although our method is not specifically designed for
modality transformations, when trained with multimodal
data as input, we explore cross-modal transformations
by mixing the disentangled factors. This mixing of fac-
tors is a special case of latent space arithmetic that we
demonstrate concretely in Section 5.5. We combine dif-
ferent values of the modality factor with the same fixed

Table 3: Dice score (%) on MM-WHS (LV, RV, MYO,
LA, RA, PA, AO) data, when training with different mix-
tures of MR and CT data. Standard deviations are shown
as subscripts.

MR train CT train MR test CT test

100% 100% 785 801
100% 12.5% 763 566
12.5% 100% 397 811
12.5% 0% 2712 -

0% 12.5% - 237
100% 0% 753 -
87.5% 12.5% 745 656
75% 25% 752 693

62.5% 37.5% 722 692
50% 50% 685 733

37.5% 62.5% 674 734
25% 75% 676 743

12.5% 87.5% 497 736
0% 100% - 774

anatomy factor to achieve representations of the anatomy
corresponding to two different modalities.

To illustrate this we use the model trained with 100%
of the MR and CT in the MM-WHS dataset and demon-
strate transformations between the two modalities. In
Figure 6 we synthesise CT images from MR (and MR from
CT) by fusing a CT modality vector z with an anatomy
s from an MR image (and vice versa). We can readily see
how the transformed images capture intensity character-
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istics typical of the domain.

5.4 Modality type estimation

Our premise is that the learned modality factor z cap-
tures imaging specific information. We assess this in two
different settings using multimodal MR and CT data and
also cine-MR and CP-BOLD MR data.

Taking one of the trained models of Table 3 correspond-
ing to a split with 100% MR (14 subjects of 2,837 im-
ages) and 100% CT images (14 subjects of 1,837 images)4,
we learn posthoc a logistic regression classifier (using the
same training data) to predict the image modality (MR
or CT) from the modality factor z. The learned regressor
is able to correctly classify the input images as CT or MR,
on a held out test set (3 subjects of 420 images for MR
and 3 subjects of 387 images for CT) 92% of the time. To
find whether there is a single z dimension that captures
best this binary semantic component (MR or CT) we re-
peat 8 independent experiments training 8 single input
logistic regressors, one for each dimension of z. We find
that z5 obtains an accuracy of 82%, whereas the remain-
ing dimensions vary from 42% to 66% accuracy. Thus, a
single dimension (in this case z5) captures most of the in-

4The results are based on a single split for ease of interpretation
as between different splits we cannot relate the different z dimen-
sions.

Figure 6: Modality transformation between MR and
CT when a fixed anatomy is combined with a
modality vector derived from each imaging modal-
ity. Specifically let xmr, xct be MR and CT im-
ages respectively. The left panel of the figure shows
the original MR image xmr, and a ‘reconstruction’
of xmr using the modality component derived from
xct, i.e. g(fanatomy(xmr), fmodality(xct, fanatomy(xct))).
The right panel of the figure shows the original
CT image xct, and a ‘reconstruction’ of xct us-
ing the modality component derived from xmr, i.e.
g(fanatomy(xct), fmodality(xmr, fanatomy(xmr))).

tensity differences between MR and CT which are global
and affect all areas of the image.

In a second complementary experiment we perform the
same logistic regression classification to discriminate be-
tween cine-MR and CP-BOLD MR images (which are
also cine, but contain additionally oxygen-level dependent
contrast). Here, SDNet and the logistic regression model
are trained using 95 cine-MR and 214 CP-BOLD images
from 7 subjects, and evaluated on a test set of 27 and 31
images from 1 subject respectively. Unlike MR and CT
which are easy to differentiate due to differences in signal
intensities across the whole anatomy, BOLD and cine ex-
hibit subtle spatially and temporally localised differences
that are modulated by the amount of oxygenated blood
present (the BOLD effect) and the cardiac cycle and these
are most acute in the heart.5 Even here the classifier can
detect BOLD presence with 96% accuracy, when all di-
mensions of z are used. When each z dimension is used
separately, accuracy ranges between 47% and 65%, and
thus no single z dimension globally captures the presence
(or lack) of BOLD contrast.

These findings are revealing and have considerable im-
plications. First they show that our modality factor z
does capture modality specific information which is ob-
tained completely unsupervised, and depending on con-
text and complexity of the imaging modality, a single z
dimension may capture it almost completely (in the case
of MR/CT). This also implicitly suggests that spatial in-
formation may be captured only in s.6

More importantly, it opens the question of how the spa-
tial and modality factors interact to reproduce the out-
put. We address these questions below using latent space
arithmetic.

5.5 Latent space arithmetic

Herein we demonstrate the properties of the disentangle-
ment by separately examining the effects of anatomical
and modality factors on the synthetic images and how
modifications of each alter the output. For these exper-
iments we consider the model from Table 1, trained on

5These subtle spatio-temporal differences can detect myocardial
ischemia at rest as demonstrated in Bevilacqua et al. [2016], Tsaf-
taris et al. [2013].

6It is possible to detect the modality from the anatomical fac-
tor alone. If there are systematic differences between the modali-
ties, this can be exploited by a classifier for detection. However, in
this case the modality information is not actually contained in the
anatomy factor.
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Figure 7: Reconstructions of an input image, when re-
arranging the channels of the spatial representation. The
images from left to right are: the input, the original re-
construction, the reconstruction when moving the MYO
to the LV channel, the reconstruction when exchanging
the content of the MYO and the LV channels, and finally
a reconstruction obtained after a random permutation of
the channels.

ACDC using 100% of the labelled training images.

Arithmetic on the spatial factor s: We start with the
spatial factor and in Figure 7 we alter the content of the
spatial channels to qualitatively see how the decoder has
learned an association between the position of each chan-
nel and different signal intensities of the anatomical parts.
In all these experiments the z factor remains the same.
The first two images show the input and the original re-
construction. The third image is produced by adding the
MYO spatial channel with the LV spatial channel and by
nulling (zeroing) the MYO channel. We can see that the
intensity of the myocardium is now the same as the inten-
sity of the left ventricle. In the fourth image, we swap the
channels of the MYO with the one of the LV, resulting in
reverse intensities for the two substructures. Finally, the
fifth image is produced by randomly shuffling the spatial
channels.

Arithmetic on the modality factor z: Next, we examine
the information captured in each dimension of the modal-
ity factor. Since the modality factor follows a Gaussian
distribution, we can draw random samples or interpolate
between samples in order to generate new images. In this
analysis, an image x is firstly encoded to factors s and z.
Since the prior over z is an 8-dimensional unit Normal dis-
tribution, 99.7% of its probability mass lies within three
standard deviations of the mean. As a result, the proba-
bility space is almost fully covered by values in the range
[−3, 3]. By interpolating each z-dimension between −3
and 3, and whilst keeping the values of the remaining di-
mensions and s fixed, we can decode synthetic images that
will show the variability induced by every z-dimension.

To achieve this we consider a grid where each z dimen-
sion is considered over 7 fixed steps from −3 and 3. Each
row of the grid corresponds to one of the 8 z dimensions,
whereas a column a specific z-th value in the range [−3, 3].
This grid is visualised in Figure 8.

Mathematically described, for i ∈ {1, 2, . . . , 8} and j ∈
{1, 2, . . . , 7}, an image in the ith row and jth column of
the grid is g(s, z � vi + (1 − vi) � δj), where � denotes
element-wise multiplication, vi is a vector of length 8 with
all entries 1 except for a 0 in the ith position, and δj =
−3 + 6(j − 1).

In order to assess the effect of zi (the ith dimension of
z) on the intensities of the synthetic results, we calculate
a correlation image and a difference image (for every row
of results). The value of each pixel in the correlation im-
age is calculated using the Pearson correlation coefficient
between the interpolation values of a zi and the intensity
values of the synthetic images for this pixel.

ρzi,yh,w
=

∑7
j=1(zji − z̄i)(y

j
h,w − ȳh,w)

σziσyh,w

∀ h,w ∈ H,W,

where h,w are the height and width position of a pixel, z̄i
is the mean value of zi, ȳh,w is the mean value of a pixel
across the interpolated images. The difference image is
calculated for each row by subtracting the image in the
last column position on the grid (δj = 3) with the first
position on the grid (δj = −3). 7

In Figure 8, the correlation images show large pos-
itive or negative correlation between each z dimension
and most pixels of the input image, demonstrating that
z mostly captures global image characteristics. However,
local correlations are also evident for example between
z1 and all pixels of the heart, between z4 and the right
ventricle and between z5 and the myocardium. However,
different magnitude changes are evident, as the difference
image in the last last column of Figure 8 shows. z1 and
z4 seem to alter significantly the local contrast.

5.6 Factor sizes

While throughout the paper we used C = 8 and nz = 8,
it is worthwhile discussing the effects of these important
hyperparameters as they determine the capacity of the
model.

7Note that in order to keep the correlation and the difference
image in the same scale [-1, 1], we rescale the images from [-1, 1] to
the [0,1], which does not have any effect on the results.
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Figure 8: Reconstructions when interpolating between z
vectors. Each row corresponds to images obtained by
changing the values of a single z-dimension. The final
two columns (correlation and ∆image) indicate areas of
the image mostly affected by this change in z.

We have found through experiments that when C > 8
many channels are all zero. This additional capacity is
helpful when we use multimodal data, as for example in
the MR/CT experiments, where C = 16. This allows
to capture information common and unique across the
two modalities in different s-channels see Figure 5). On
the other hand, making C small (C < 4) we find that
the model does not have enough capacity (for example
an SDNet with C = 4 trained at 100% labels has Dice
performance 68.1 ± 8%, a drop compared to 84% when
C = 8, that is also statistically significant at 5%).

We used nz = 8 inspired by related literature [Zhu
et al., 2017]. Experiments with similar values of nz main-
tain the segmentation performance, though this is de-
creased for high values of nz. Specifically, an SDNet with
4, 32, and 128 dimensions trained at 100% labels has Dice
84± 5%, 83± 6%, and 82± 6%, respectively. Compared
to 84% when nz = 8, the results for nz = 4 and nz = 32
are similar, but the result for nz = 128 is worse (and also
statistically significant at 5%), suggesting that the addi-
tional dimensions may negatively affect training and do
not store extra information. To assess this we used the
methodology in Burgess et al. [2018] to find the capacity

of each z-dimension, which is also a measure of informa-
tiveness. This is calculated using the average variance per
dimension, where a smaller variance indicates higher ca-
pacity. A variance near 1 (with a mean=0) would indicate
that this dimension encodes a Normal distribution for any
datapoint, and thus, according to Burgess et al. [2018], is
uninformative and points to encoding the average of the
distribution mode. Using this analysis, for nz = 128 we
observed that two z-dimensions each had variance of 0.88,
while the remaining 126 had an average variance of 0.91.
Repeating this analysis for nz = 32, nz = 8 and nz = 4
we get the following results. For nz = 32, two dimensions
each has variances 0.78 and 0.79, while the remaining 30
dimensions have an average variance of 0.81. For nz = 8,
two z-dimensions each has variances 0.63 and 0.73, while
the remaining 6 have an average variance of 0.75. Finally
for nz = 4, two dimensions have variances 0.62 and 0.65,
and the average variance of the other two is 0.77, which
are similar to the results of nz = 8. This analysis shows
that with smaller nz, more informative content is cap-
tured in the individual z-dimensions, and thus a high nz
is redundant for this particular task.

6 Conclusion

We have presented a method for disentangling medical
images into a spatial and a non-spatial latent factor,
where we enforced a semantically meaningful spatial fac-
tor of the anatomy and a non-spatial factor encoding
the modality information. To the best of our knowl-
edge, maintaining semantics in the spatial factor has not
been previously investigated. Moreover, through the in-
corporation of a variational autoencoder, we can treat our
method as a generative model, which allows us to also ef-
ficiently model the intensity variability of medical data.

We demonstrated the utility of our methodology in a
semi-supervised segmentation task, where we achieve high
accuracy even when the amount of labelled images is sub-
stantially reduced. We also demonstrated that the seman-
tics of our spatial representation mean it is suitable for
secondary anatomically-based tasks, such as quantifying
the left ventricular volume, which not only can be ac-
curately predicted, but also improve the accuracy of the
primary task in a multi-task training scenario. We also
show that the factorisation of the model presented can be
used in multimodal learning, where both anatomical and
imaging information can be encoded to create synthetic
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MR and CT images, using even small fractions of CT and
MR input images, respectively.

The broader significance of our work is the disentan-
glement of medical image data into meaningful spatial
and non-spatial factors. This intuitive factorisation does
not require the specific network architecture choices used
here, but is general in nature and thus could be ap-
plied in diverse medical image analysis tasks. Factori-
sation facilitates manipulations of the latent space and
as such probing and interpreting the model. Such inter-
pretability is considered key to advance the translation
of advanced machine learning methods in the clinic (and
perhaps why it has been recently emphasised with ded-
icated MICCAI workshops http://interpretable-ml.

org/miccai2018tutorial/).

Our work has some limitations that inspire future di-
rections. We can envision that extensions to 3D (in lieu
of 2D), and the explicit learning of hierarchical factors
that better capture semantic information (both in terms
of anatomical and modality representations), would fur-
ther improve applicability of our approach in several do-
mains such as brain (which benefits from 3D view) and
abdominal imaging. This work further encourages future
extensions to improve the fidelity of reconstructed images
by explicitly modelling image texture, which would bene-
fit applications in ultrasound. This can be achieved with
the design of more powerful decoders, although how best
to maintain the balance between the semantics of the spa-
tial representation and the quality of the reconstruction
is an open question. Finally, future work includes the
extension of the method’s applicability in a completely
unsupervised setting where no annotated examples are
available.
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