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ABSTRACT

A novel image denoising method based on discrete wavelet

transform (DWT) and goodness of fit (GOF) statistical tests

employing empirical distribution function (EDF) statistics is

proposed. We formulate the denoising problem into a hypoth-

esis testing problem with a null hypothesis corresponding to

the presence of noise, and alternate hypothesis representing

the presence of only desired signal in the image samples being

tested. The decision process involves GOF tests, employing

statistics based on EDF, being applied directly on multiple im-

age scales obtained from DWT. We evaluate the performance

of the proposed method against the state of the art in wavelet

image denoising through extensive experiments performed on

standard images.

Index Terms— image denoising, wavelet transform,

goodness of fit, empirical distribution function

1. INTRODUCTION

Engineers and applied scientists routinely encounter data cor-

rupted with unwanted noise, which must be removed or re-

duced before further processing of the data. This process of

removing noise, also known as denoising, has become a pre-

requisite step in many practical signal and image processing

applications. For 2D signals (images), the denoising problem

can be formally specified as follows:

Let xa,b denote pixels of image X at location a, b =
1 ... N , which contains pixel values sa,b belonging to the true

image S along with additive noise ηa,b ǫ η

xa,b = sa,b + ηa,b (1)

where η is considered as an independent Gaussian noise

N (0, σ2), with zero mean and arbitrary variance σ2. The

goal here is to estimate S from its noisy observation X.

Early signal denoising techniques were based on the clas-

sical Weiner filter operating in the Fourier domain. One ma-

jor drawback of such methods was the inability of the Fourier

transform to handle nonlinear and non-stationary data, often

encountered in practice. These issues led to the development

of multiscale methods employing nonlinear operations, such

as thresholding or shrinkage, in the wavelet domain [1]. Such

class of algorithms exploited the sparsity of desired signal val-

ues in the wavelet domain by specifying a threshold for sig-

nal detection at multiple scales. The coefficients found to be

above the threshold were retained, while the remaining were

discarded. While early methods based on this principle tar-

geted 1D signals, their extensions for 2D signals or images

soon followed.

Among 2D multiscale image denoising methods, the sim-

plest is VisuShrink [1] which employs universal threshold for

all scales/bands, however, it over-smooths large sized images

due to the dependence of its estimated threshold on image

size. Better performances have been reported for denoising

methods employing scale-adaptive threshold values, such as

SureShrink [2], BayesShrink [3], and Surelet [4]. Another ap-

proach, employing empirical Bayesian estimation, exploited

the sparsity and de-correlation properties of DWT for the

purpose of image denoising [5]. Recently, a couple of tech-

niques based on empirical Bayesian estimation have been

proposed which employ 2D scale-mixing complex-valued

wavelet transform [6] and hidden Bayesian network to model

the prior probability of the original image [7].

Another class of multiscale image denoising methods

exploit statistical dependencies among wavelet coefficients

at different scales for estimating the threshold: BiShrink [8]

models those dependencies based on non-Gaussian bivariate

distributions. ProbShrink [9], on the other hand, estimates

the probability that a given coefficient carries significant

information by assuming a generalized Laplacian prior for

noise free data. A recent method performs denoising through

patch-based Wiener filters [10]. Similarly, BM3D [11]

involves grouping of similar fragments of 2D transformed

coefficients, arranging these fragments into 3D data arrays,

followed by the attenuation of noise operation via spatial col-

laborative hard-thresholding. The computational complexity

of the method is considerably large, however, owing to its

complicated multi-step procedure.

We present here a novel image denoising method which

operates by performing the goodness of fit (GOF) test locally

on empirical discrete wavelet transform (DWT) coefficients

of an image at multiple scales. For that cause, EDF statis-

tics are used to quantify the similarity of the observed image

coefficients with those expected from white Gaussian noise

(WGN) input. Subsequently, the coefficients found to be sim-
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ilar to noise samples are removed, while the remaining sam-

ples are retained. The established cycle spinning approach is

also employed to render translation invariance property to the

proposed approach [12]. Note that the proposed technique

is fundamentally different from standard wavelet based im-

age denoising as it involves performing hard thresholding on

EDF statistics of wavelet coefficients rather than the coeffi-

cients themselves. The effectiveness of the resulting scheme

has been shown by comparing it against the state of the art

in multiscale image denoising via extensive experiments per-

formed on standard test images.

2. RATIONALE OF WAVELET DENOISING

Standard wavelet denoising methods operate under the as-

sumption that the wavelet coefficients due to the desired im-

age sa,b are sparse in nature, leading to the distribution of total

energy of s in only a few coefficients in the wavelet domain,

with relatively larger amplitudes. As a result, the majority of

wavelet coefficients correspond to noise η and have lower am-

plitudes. The rationale behind wavelet denoising is to exploit

this sparsity of wavelet coefficients by removing (setting to

zero) the coefficients belonging to noise. This is achieved by

estimating and subsequently applying a nearly optimal thresh-

old value either for all wavelet scales T (universal threshold-

ing), or for each scale separately Tk (level-dependent thresh-

olding).

3. GOODNESS-OF-FIT TEST

Goodness-of-Fit (GOF) test indicates how well a specified

model or distribution fits a given set of observations. Typi-

cally, GOF testing involves defining a measure of GOF, which

is used to quantify the difference between the observed val-

ues and the values expected under the specified distribution.

While many GOF measures are available presently with each

having its unique properties [13], we will only discuss the

widely used Anderson Darling (AD) [14] test statistics in this

work.

Let us denote the empirical cumulative distribution func-

tion (ECDF) of input samples by F(x) and the hypothesised

cumulative distribution function (CDF) by Fr(x). The AD

test statistic τAD is given by the following relation:

τAD =

∫

∞

−∞

(Fr(x)−F(x))
2
ψ(Fr(x))d(Fr(x)) (2)

where ψ(Fr(x)) is a non-negative weight function given by
(

Fr(x)(1 − Fr(x))
)

−1
, and is defined over the interval 0 ≤

x < 1. The relation for AD statistic, given in (2), can be

rewritten in a more convenient form as:

τAD = −W − S, (3)

where

S =

W
∑

i=1

(2i− 1)

W

(

ln(Fr(xi))− ln(Fr(xW+1−i))
)

(4)

and W denotes the length of window or segment (of data

under observation) containing the ordered and normalized

values xi. The probability distribution of distances τAD are

asymptotically specified for infinite window lengths, i.e. for

W ⇒ inf .
A threshold Tα could be computed for a given error prob-

ability of false alarm Pfa under which the candidate distribu-

tion is falsely rejected; Pfa denotes the probability of erro-

neously detecting a noise sample as one from desired signal,

and must therefore be reduced as much as possible.

Prob{τAD > T |H0} = Pfa (5)

where H0 denotes the null hypothesis corresponding to the

case of noise detection.

4. GOF BASED WAVELET DENOISING

We propose to address the denoising problem by perform-

ing the GOF tests locally on empirical wavelet coefficients

of ‘noise + image’ mixture. For that purpose, a hypothesis

testing framework is developed with the null H0 and alter-

native hypothesis H1 corresponding to the detection of noise

only and true image pixels only cases, respectively.

H0 : τAD < Tj

H1 : τAD ≥ Tj , (6)

where Tj corresponds to the chosen threshold for scale j.
The specification of H0 and H1 as given in (6) requires

obtaining discrete wavelet coefficients of noisy image at mul-

tiple scales. Next, the GOF test is performed locally on coef-

ficients belonging to each scale, to determine if the observed

coefficients belong to WGN distribution or the desired im-

age pixels. The AD statistic provides robustness and flexi-

bility compared to other GOF measures because it gives more

weight to the tail of the distribution. Hence, the AD test statis-

tic is employed within the GOF test to quantify the differ-

ence between the observed values and the values expected un-

der reference noise distribution (Gaussian noise in our case).

The resulting test statistic value τ is then compared against a

threshold value Tk - which is a function of the specified prob-

ability of false alarm Pfa - to determine if the coefficients

belong to noise or desired image pixels. Those coefficients

belonging to noise are discarded to yield the estimate of the

true image. The steps involved in the proposed algorithm, we

shall call it GOF -DWT , are discussed next:

4.1. Threshold Estimation

In the proposed GOF -DWT method, for a given value of

Pfa, the threshold Tk must be computed for each scale level



Fig. 1: Formation of the wavelet transformed empirical

wavelet coefficients matrix W .

k. To find that relation, it is important to revisit the original

relation of the AD statistic, as given in (2). It can be shown

that the asymptotic distribution of τAD under H0 is

F(τAD|H0;x) =

√
2π

τAD

∞
∑

i=1

ai(4i+1) exp

(

− (4i+ 1)2π
2

8τAD

)

×
∫

∞

0

exp

(

τAD

8(W 2 + 1)
− (4i+ 1)(πw)

2

8τAD

)

dW, (7)

where ai = (−1)iΓ(i + 5)/(Γ(0.5)i!) and Γ denotes the

gamma function [15]. For the AD statistic, using the defi-

nition of Pfa in (5), the relation between the threshold T and

Pfa is given by:

Pfa = 1−F(τAD|H0;x) (8)

The speed of convergence of the limiting distribution in (7)

is such that it suffices to use that distribution instead of using

the actual distribution of τAD even for W ≥ 5, while calcu-

lating threshold T as a function of Pfa [15]. Based on that,

tables listing the values of thresholds T against the probabil-

ity of false alarm Pfa are available [15]. Another approach is

to obtain the relation between Tk and Pfa through numerical

simulations on a large set of WGN data. This process, though

not further discussed in detail in this paper due to space con-

straints, is graphically shown in Fig. 2.

4.2. DWT Decomposition

An input noisy image X is then decomposed into its empirical

wavelet coefficients as

W = W(X), (9)

where W is composed of the empirical wavelet coefficients

wl
k(i, j) in accordance with Fig. 1. k denotes the scale of

decomposition and l denotes the index of horizontal (l = 1),

vertical (l = 3) or diagonal (l = 2) wavelet coefficients at a

given scale.

4.3. Noise Variance Estimation

TheGOF -DWT method requires the estimate of input noise

level σ̂ for its operation. This is estimated by calculating

the median of the diagonal DWT coefficients at the first level

(corresponding to the finest scale) via the following relation

σ̂ =
median(|{w2

1(i, j)}i,j=1,...N
2

|)
0.6745

(10)

Subsequently, the wavelet coefficient vector W is normalized

by σ̂

W̃ =
W

σ̂
(11)

to obtain the normalized wavelet coefficients w̃l
k(i, j) which

are arranged in W̃ in accordance with Fig. 1.

4.4. GOF Thresholding using AD Statistic

In this step, the GOF test employing AD statistic is performed

on each scale of noisy image to identify the empirical wavelet

coefficients corresponding to WGN distribution, which are

subsequently discarded. Let us denote the GOF thresholding

operation by G, which is performed on wavelet coefficients

w̃l
k(i, j) separately to yield denoised coefficients as follows

Ẁ = G(W̃, Tj). (12)

where Ẁ is composed of the denoised empirical wavelet co-

efficients ẁl
k(i, j) in accordance with Fig. 1.

The GOF operation G is based on the local binary hypoth-

esis testing problem modeled in (6): the decision regarding

the presence of noise (H0) or actual image pixels (H1) is

made for wavelet coefficients at each scale by applying the

GOF based thresholding. Firstly, the GOF measure τ
(i,j)
k is

computed for DWT coefficients w̃l
k(i, j) at indexes {i, j} us-

ing (3), where the index set {i, j} denotes the mid point of an

image segment of W of size W = 5 × 5. Subsequently, for

each index set and scale k, if τ
(i,j)
k < Tk, then that coefficient

in the kth scale is discarded (set to zero), else its original value

is retained, yielding ẁl
k(i, j). Finally, the above two steps are

repeated for all scales k = 1 . . .K.

4.5. Translation Invariant Image Reconstruction

The denoised image Ŝ is reconstructed by applying the in-

verse DWT operation W−1 on Ẁ as follows

Ŝ = W−1(Ẁ), (13)

where Ŝ is further scaled by the noise level estimate σ̂, i.e.

Ŝ = Ŝ × σ̂ to compensate for the normalisation performed

earlier.

To compensate for the lack of translation invariance of the

critically sampled DWT operation, 2D cycle spinning proce-

dure is used, which applies a suitable inverse circulant shift
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Fig. 2: Graphical illustration of the GOF -DWT method.

The left hand side depicts the process of numerical estimation

of threshold vs Pfa relation. On the right hand column, GOF

procedure is shown on one of the scales of the Barbara im-

age. Note that the GOF operation is local, as it is performed

on square window size of 5x5 pixels. The end result is the

binary decision (H0 or H1) regarding the distribution of the

window being considered.

operator to Ŝ and averages the subsequent results to obtain

the final denoised image. Fig. 2 shows the block diagram of

the GOF -DWT method, excluding the cycle spinning step.

The proposed method after including the cycle spinning step

will be referred to as TI-GOF -DWT throughout the paper.

5. EXPERIMENTAL RESULTS

In this section, we present results of extensive experiments

performed using the proposed TI-GOF -DWT method and

other state of the art denoising methods, operating on stan-

dard noisy input images. The images used in this case are the

standard ‘Lena’, ‘Barbara’, ‘Aeroplane’ and ‘Medical’ im-

ages, which are shown in Fig. 3. The images were corrupted

with the Gaussian noise of standard variations in the range of

σ = 10 to σ = 50. The noisy input images were denoised

using the TI-GOF -DWT method along with other wavelet

based image denoising algorithms, including the SureShrink-

TI SureTI [12], BiShrink BiShr [8], ProbShrink ProbShr
[9], Surelet SureLet [4], and cSM [6]. Four decomposi-

tion levels of the Daubechies’ 8-tap filter, used as a mother

wavelet, were used in all our experiments. The window size

is chosen to be 5×5 pixels for local GOF operation in the TI-

GOF -DWT ; smaller window size results in poor estimates

of CDF, whereas larger window size compromises the local

analysis. The Pfa was specified to be equal to 0.005. The pa-

rameters of the comparative denoising methods were all cho-

Fig. 3: Input images: (from left to right) Lena, Barbara, Aero-

plane and Medical images used in our experiments.

Table 1: Denoising results: Output PSNR values obtained

against different input noise variances for input images.

σσσ 10 20 30 40 50 10 20 30 40 50

PSNR 28.13 22.11 18.59 16 14.15 28.13 22.11 18.59 16 14.15

Image Lena (512 × 512) Barbara (512 × 512)

SureTI 34.31 31.09 29.27 27.99 26.75 32.71 28.56 26.34 24.93 23.91

Bishr 34.29 31.03 29.09 27.72 26.62 32.81 28.78 26.59 25.12 24.08

ProbShr 34.44 31.48 29.29 28 27.02 33.22 29.04 26.58 24.89 23.85

Surelet 34.34 30.97 29.07 27.81 26.86 32.46 28.17 25.97 24.65 23.83

cSM 34.09 30.95 29.18 27.97 27.05 32.53 28.57 26.46 25.15 24.27

Prop. 34.64 31.47 29.67 28.31 27.29 33.36 29.42 27.26 25.96 24.89

Image Aeroplane (512 × 512) Medical (256 × 256)

SureTI 34.50 30.89 28.87 27.45 26.17 34.87 30.73 28.43 26.84 25.43

Bishr 34.35 30.75 28.67 27.20 26.06 34.24 30.19 27.96 26.42 25.27

ProbShr 34.71 31.25 29.14 27.67 26.66 35.11 30.99 28.66 27.10 25.90

Surelet 34.51 30.86 28.86 27.47 26.47 34.49 30.41 28.18 26.68 25.54

cSM 34 30.49 28.60 27.31 26.39 33 29.22 27.16 25.70 24.63

Prop. 34.78 31.23 29.23 27.84 26.75 39.07 35.15 33.05 31.55 30.37

sen to enable fair comparison with the TI-GOF -DWT . We

performed repeated simulations with K = 50 iterations for

each test image (and input variance) to obtain accurate quan-

titative results.

Table 1 shows the mean peak signal to noise ratios

(PSNR) of the denoised images obtained from different

denoising methods, for a range of input noise variances. The

mean PSNR values were taken after performing K = 50
iterations at each instance. It is evident from Table 1 that

the TI-GOF -DWT largely outperformed other methods on

all input images for a range of input noise variances. Only

Probshr was able to perform slightly better than the TI-

GOF -DWT method for ‘Lena’ and ‘Aeroplane’ images at

noise levels σ = 10 and σ = 50 respectively. In our exper-

iments, the proposed method took 30 seconds on average to

denoise a 256× 256 noisy image.

To validate the above observation regarding the effective-

ness of TI-GOF -DWT in denoising of images, we take the

specific case of the ‘Medical’ image corrupted with noise

of level σ = 30. In Fig. 4, in addition to the original and

noisy images, the denoised images obtained from ProbShr,

SureLet, cSM and TI-GOF -DWT are respectively shown

in Fig. 4(c-f). Note that the TI-GOF -DWT (along with

ProbShr) was able to capture the details of the original im-

age better as compared to others, which is specifically evident

in the upper part of the image.

Moreover, Fig. 5 shows the denoised ‘Lena’ images ob-

tained from TI-GOF -DWT for different noise variances.

Again, note that the proposed method was able to capture fine

details of the ‘Lena’ image very effectively, even for high in-

put noise standard deviation of σ = 40.



(a) Original (b) Noisy Image (c) ProbShr

(d) Surelet (e) cSM (f) TI-GOF -DWT

Fig. 4: Input, noisy (σ = 30) and denoised Medical images

obtained from different methods.

(a) Noisy (σ = 20) (b) Noisy (σ = 30) (c) Noisy (σ = 40)

(d) Prop. (e) Prop. (f) Prop.

Fig. 5: Denoised Lena image obtained from the proposed TI-

GOF -DWT method at different input noise variances.

6. CONCLUSIONS

We have presented a wavelet based image denoising method

which employs the goodness of fit (GOF) statistical test to

identify and subsequently suppress noise samples in discrete

wavelet transform (DWT) coefficients of input image. Statis-

tics based on empirical distribution function (EDF), Anderson

Darling (AD) measure, has been employed in the GOF test-

ing process. The presented approach, by design, can deal with

arbitrary noise distributions though we have only focused on

white Gaussian noise (WGN) in this work. The proposed ap-

proach has been shown to outperform the state of the art in

wavelet based image denoising methods via thorough experi-

mental results.
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