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Abstract—Thermal cycling as well as temperature gradient in time and
space affects the lifetime reliability and performance of heterogeneous
multiprocessor systems-on-chips (MPSoCs). Conventional temperature
management techniques are not intelligent enough to cater for perfor-
mance, energy efficiency as well as operating temperature of the system.
In this paper we propose a light-weight novel thermal management
mechanism in the form of intelligent software agent, which monitors
and regulates the operating temperature of the CPU cores to improve
reliability of the system. We validated our methodology on the Odroid-
XU4 SoC and it has been successful to reduce the operating temperature
by 6.32% while improving performance by 7.96% and reducing power
consumption by 9.45% than the state-of-the-art.

Index Terms—Lifetime reliability, multiprocessor systems-on- chip
(MPSoCs), thermal management, thermal cycling, DVFS

I. INTRODUCTION AND MOTIVATION

Modern embedded systems employ heterogeneous Multi-Processor
Systems-on-Chips (MPSoCs), where several types of processing cores
are available within a single chip, to deliver power as well as energy
efficient computing. Many of research and development have been
focused on developing algorithm in such system-on-chip to provide
energy efficiency while catering for performance [1]–[3]. One of the
most popular heterogeneous MPSoC is the Samsung Exynos 5422 [4],
which employs 4 ARM Cortex A-15 (big) CPUs and 4 ARM Cortex
A-7 (LITTLE) CPUs and 6 ARM Mali-T628 GPU cores, implement-
ing ARM’s big.LITTLE technology. Comparatively little research has
been performed on developing algorithm and mechanisms to provide
temperature-aware energy efficient allocation of computing resources
while meeting end-user demands for performance on such MPSoCs.

Elevated temperatures have adverse effects on Integrated Circuits
(ICs) and reliability of electronic products can be heavily influenced
by spatial or temporal gradients, or absolute temperatures [5]. To
mitigate such reliability issues most mobile devices often come with
thermal capping. Now a days devices often come with hardwired
Thermal Management Units (TMUs) as well as software TMUs
which regulates the energy consumption as well as the temperature of
the associated components. But so far none of these state-of-the-art
thermal management units have been proven to be effective enough
(see Sec. II) to cater for performance, energy efficiency as well as
thermal-regulation.

The Exynos 5422 SoC also supports Dynamic Voltage Frequency
Scaling (DV FS)1 capabilities, which could be used to reduce
dynamic power consumption (P ∝ V 2f ) [6]–[8]. In order to cater for
performance several resource mapping and partitioning mechanisms
using DVFS [1], [2], [6], [9]–[11] have been proposed while keeping
energy consumption low. Since applications can be classified into
three categories [7]: compute intensive, memory intensive and mixed

This work is supported by the UK Engineering and Physical Sciences
Research Council EPSRC [EP/R02572X/1 and EP/P017487/1].

1DVFS helps to reduce the energy consumption by executing the workload
over extra time at a lower voltage and frequency, which could be accounted
for reduced power consumption.

load (both compute and memory intensive), given most applications
in real-world fall under the mixed load category, we had the following
observations:
Observation 1: ARM Cortex A-15 CPU being an out-of-order
sustained triple-issue processor, is capable of providing maximum
performance, but when we ran a mixed load program on such CPU,
the core temperature rises very fast due to executing workload that
are both compute and memory intensive.
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Fig. 1. Frequency and Temperature vs Execution Time Comparison of
Streamcluster

Fig. 1 shows the motivation to design a dynamic thermal manager
for executing applications on a heterogeneous multi-core archi-
tecture (Exynos 5422) containing two types of cores in clusters
(big.LITTLE), where 4b and 4L cores are present. The horizontal
axis shows the execution time steps whereas the vertical primary
axis (left-hand side) reflects the Frequency (in MHz) for the big cores
on which the program is executing and the vertical secondary axis
reflects the temperature (in °Centigrade) of the big core, which has
the worst temperature behavior2, while executing the workload. We
choose Streamcluster3 from the PARSEC benchmark suit [12] to be
our mixed workload on the big cluster. The benchmark completed its
execution in 433.12 secs, but Fig. 1 only shows the variance result
for first 39.9 secs of the execution because there was repetition in
the behavior of the results. From the figure, it could be noticed that
the peak temperature4 on the big core was around 95° centigrades
and because of this the thermal management unit (TMU) of the OS
starts to regulate the temperature of the cores by CPU throttling5. For
none of our experiments, we could profile the temperature behavior
of LITTLE cores not just because they are less powerful (1/4 size
of the big ones and operates at a lower frequency) but there is no

2Usually the cores exhibit worse temperature behavior which are residing
close to the memory.

3We choose the native option of the Streamcluster to mimic real-world data-
mining algorithms, which are both compute intensive and memory intensive.

4For our study we have fetched the peak temperature out of the 4 big cores
on the SoC. More details are provided in Section IV.

5Adjusting the clock speed of the CPU to use less energy consumption and
reduce CPU temperature for improved reliability.
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temperature sensor for LITTLE cores onboard as well. Therefore all
our results only focused on temperature behavior and CPU throttling
on the big cores. Although CPU throttling is good in terms of reliable
operations but the stock thermal management algorithm of the OS
is not intelligent enough to provide performance at the same time.
In Fig. 1 we could notice that the clock speed varies from 2000
MHz to 900 MHz at a periodic time step, which causes a drop in
performance of the executing application(s). Thus it is necessary to
design a thermal manager, which is intelligent enough to cater for
performance as well as maintain a desirable temperature of the cores.
Observation 2: In a study [7] by Basireddy et al., the researchers
have proposed a novel workload management system, which classifies
workloads of the executing applications based on Memory Reads
Per Instruction (MRPI) metric and manages DVFS levels of cores
based on it. This method has resulted to 33% more energy effi-
ciency as compared to modern state-of-the-art workload management
approaches and Fig. 2 shows that efficient workload management
could also result in energy efficiency as well as performance. For
this experimentation, we executed the same Streamcluster benchmark,
which completed its execution in 409.596 secs, but Fig. 2 only reflects
the variance result for first 39.9 secs of the execution because there
was repetition in the behavior of the results. Another interesting
thing that could be noticed is that the peak temperature of the big
cores also reduced when the workload was mapped appropriately
between the CPU cores executed with appropriate DVFS levels
for similar mixed-load applications. In some studies [13], [14] it
has been found that by reducing the operating temperature by 10-
15° centigrades could improve the lifespan of the device by 2x. Since
the reliability of the device is highly dependent on the operating
temperature of the device, devising temperature-aware mechanisms
capable of reducing the operating temperature can help improve the
life-span of the SoC device. Therefore, there is a desperate need to
implement dynamic thermal manager, which is capable of regulating
the operating temperature of the system on top of the state-of-the-art
workload and resource management mechanisms so that we could
cater not just only energy efficiency and performance but also the
overall reliability of the MPSoC.
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Fig. 2. Frequency and Temperature vs Execution Time Comparison of
Streamcluster Using MRPI

In order to overcome the limitations of the existing approaches
towards addressing temperature-aware workload management mech-
anisms, which are capable of catering for both performance and re-
duced energy consumption, we propose a novel light-weight dynamic
thermal management mechanism utilizing the concept of intelligent
software agents based on a fast heuristic approach. This thermal
management mechanism could be used as module sitting in the appli-
cation layer to reap its benefits. We call our proposed methodology,
“EdgeCoolingMode”, since the intelligent software agents monitors
and regulates the operating temperature of the system. To this end,
this paper makes the following contributions:

1) A light-weight mechanism in the form of intelligent software

agent to monitor and regulate temperature of the CPU cores to
improve reliability of the system.

2) Validation of the proposed thermal management intelligent
agent on a real hardware platform, the Odroid-XU4 [15].

The rest of the paper is organized as follows. Section II presents
the state-of-the-art work pursued in the same field. Section III
describes our proposed methodology and its implementation. Section
IV shows the system model describing the hardware and software
infrastructures used for our experiments, the experimental results and
validation of our proposed approach. In Section V we explore some
related discussion on the proposed methodology and finally, Section
VI concludes the paper.

II. RELATED WORK

In several earlier studies, many researchers have focused on
designing methodologies and frameworks to optimize power and
operating temperature of MPSoCs. One such noteworthy study is
performed by Ghasemazar et al. [16] where the researchers pro-
posed a hierarchical framework leveraging DVFS capabilities of
the processing cores to find the optimal voltage-frequency to cater
for power consumption and temperature. This methodology was
successful in achieving 20% performance boost without impacting the
overall operating temperature but their experiments focused mainly
on CISC architectures and all results were based on a MATLAB-
based Chip Multiprocessor simulator. In another paper [17] Kamal
et al. proposed a heuristic based thermal stress-aware mechanism
for management of power and temperature in MPSoCs formulated
in a convex optimization problem. This approach was implemented
on Sniper multicore simulator [18] and was able to reduce spatial
and temporal thermal gradients by 7% and 18% respectively when
compared to the work in [16]. In another work by Iranfar et al. [19],
the researchers proposed a multi-tier hierarchical thermal stress-aware
power and temperature management framework for MPSoCs, where
the methodology used similar convex optimization solution in multi-
layer to improve mean time to failure (MTTF)6. The effectiveness
of this methodology is again proved based on simulations performed
on Sniper multicore simulator. All the aforementioned noteworthy
studies were implemented and experimented in simulations7 instead
of experimenting on real devices, which could differ a lot from the
practical results achieved from real devices because there are so many
factors that account for the operating temperatures such as ambient
surrounding temperature, chemical reactions on the devices due to
weather change, etc.

In [20] Sigla et al. present a predictor using power sensors to
predict the next power consumption based on the following frequency
setting is developed. Their technique uses a leakage power model
of the ARM’s big.LITTLE architecture on the Odroid-XU3 to vali-
date its predictor and Dynamic Power and Frequency Management
technique. An Extension of this work has also been published in
[21]. Both [20], [21] methods involve predicting the future core
temperatures to adjust the workloads or frequencies before exceeding
a set threshold, but computation of such predictive temperatures
increases the performance overhead of such methods.

In our approach, we utilize the concept of intelligent software
agents and linear regression based supervised machine learning to
design a light-weight fast heuristic based operating temperature
regulator, which could be used on top of any scheduler or governor or

6Mean time to failure (MTTF) is the length of time a device is expected
to operate/last till failure.

7Although modern simulators such as Sniper multicore provides simulation
results very close to real devices but there are many unaccountable factors that
could happen when executed on a real device instead of simulation, especially
in case of temperature variance.



any other types of system resource manager to achieve efficient oper-
ating temperature without loosing performance and energy efficiency
criteria.

III. PROPOSED METHODOLOGY: EDGECOOLINGMODE

A. Overview of EdgeCoolingMode

There are four schools of thought for artificial intelligence [22]:
Thinking Rationally [23], Acting Rationally [24], Thinking Humanly
[25] & Acting Humanly [26], where intelligent agents are built or
designed to portray each school of thought. In our EdgeCoolingMode
we propose an intelligent software agent that would monitor and
regulate the thermal behavior of the system by Thinking and Acting
Rationally based on our heuristic approach.

Fig. 3. EdgeCoolingMode Software Agent

Fig. 3 reflects the working of EdgeCoolingMode, which starts by
defining a thermal budget by the user. EdgeCoolingMode agent has
two distinct modules: Learning module, which monitors the operating
frequency & temperature of the cores and creates a relationship
variable (α) based on linear regression. Although relationship be-
tween power and temperature [5], therefore frequency (P ∝ V 2f )
and temperature does not follow a linear relationship in practice but
to make our heuristic approach fast we make the assumption that
the relationship is linear and try to reduce the error capacity of our
approach by defining an error variable (ε). Based on the user-defined
maximum threshold of the operating temperature of the system, the
Learning module updates the value of the relationship (α) and error
(ε) variables. In the Decision module, the agent adjusts the operating
temperature of the system by deciding by how much the operating
frequency needs to be reduced based on the value of α deduced in
the Learning module. In order to make our EdgeCoolingMode agent
more intelligent and adaptive, we have also adopted the concept of
ContinuousLearning [27]–[29], which is bio-inspired. A human-
being continuously learns from its environment and tries to adapt to
the surrounding through continuously learning from it. We replicate
the same concept in our EdgeCoolingMode agent so that with
changing environment and conditions, the agent could adjust the α
and ε variables. Our proposed approach can work with the existing
Governor or dynamic thermal and power management (DTPM) of
the OS or any other resource manager that is installed on the system
or is working in co-habitation.

B. Learning Module

In the study [5] through experiments on real devices it was
found that on heterogeneous MPSoCs such as Odroid platforms,
power and temperature follows a relationship of quadratic function
or exponential function based on various other dependable factors8.
We also validate this relationship in Sec. V. However, to make our
heuristic approach fast during run time to take necessary decision for
thermal regulation we assume that frequency and temperature follows
a linear relationship represented by Eq. 1. In Sec. IV also show
the effectiveness of using such linear regression based methodology,
which has yielded amazing results in terms of performance and
reduction in temporal temperature gradients considerably.

Ti = α× Fi + ε ,

where Fi : Operating frequency at time instance i,
Ti : Operating temperature at time instance i,

α : Relationship variable,
ε : Error variable

(1)

In the Learning module the agent tries to monitor the thermal
changes using Eq. 1 and evaluate the value of α and ε based on Eq. 2.
If we consider that α and ε remain constant between two temperature
variance (to find the variance relationship between frequency and
temperature) and, F2 and T2 as the operating frequency and operating
temperature at the time instance, whereas F1 and T1 as the operating
frequency and operating temperature at previous time instance then
we could derive:

T2 = α× F2 + ε ,

T1 = α× F1 + ε ,

∴ α = (T2 − T1)/(F2 − F1)

(2)

From Eq. 2 we could solve for α. Thus for every instance of
operating frequency of the cluster, i.e. Fi, the agent maps it to a
peak operating temperature of the cluster cores (Ti) (see Eq. 3).

Fi 7−→ Ti (3)

Now from Eq. 3 and 2 and by reducing the frequency (using
DVFS capabilities) by a certain number of frequency scaling levels9,
different Fi, Ti, α, ε & frequency scaling level reduction steps (l)
are recorded by the agent, which would be used to decide which
frequency to drop to in the Decision module when the operating
temperature reaches the threshold value10. The algorithm for Learning
module is provided in Algo. 1.

C. Decision Module

In the decision module the EdgeCoolingMode agent uses different
relationship variable (α), error variable (ε), frequency scaling level
steps li computed from Algo. 1 and then calculate the desired
frequency using the following equation:

Fi − Fdesired = (Ti − Tdesired)/(α) ,

where Tdesried < Tthreshold

(4)

8Power/Temperature relationship could vary because of whereabouts of the
temperature sensors onboard or distance between temperature sensors and
hotspot, etc.

9For Exynos 5422 [4] big core cluster has 19 frequency scaling levels with
100MHz each step.

10Here, temperature threshold is the thermal cap of the CPU cores that the
EdgeCoolingMode agent regulates such that Ti ≤ Tthreshold.



Algorithm 1: Learning Module Execution
Input:
1. Tmax: threshold value of operating temperature
2. n: number of different frequency scaling levels
Output: S(α, ε, l): set of α values for s frequency scaling levels
Initialize: Tthreshold = Tmax;
Mapping Frequency with Temperature:
Write(Fi, Ti, map.csv); . Monitor and track different frequency

& temperature readings (Eq. 3)
Calculate α & ε:
Read(map.csv); . Monitor map.txt file for changes in Ti
if Ti−1 ≥ Tthreshold then

for each frequency scaling level li in n do
< αi, εi > = CalculateAlphaEpsilon(l, Fi, Ti, Fi−1,
Ti−1); . Compute α & ε using the Eq. 2

Write(S(αi, εi, li), alphas.txt);
. Write our α, ε & l values so that it could be later

updated through conituous learning return S(αi, εi, li);

else
return void();

The EdgeCoolingMode agent tries to find the least value of
Fi − Fdesired i.e. the least number of frequency scaling level, it
should drop to so that the operating temperature could be reduced
without affecting the overall performance of the executing application
as opposed to what generic TMUs or DPTMs11 do. Majority of
stock TMUs and DPTMs reduce the frequency of the cores dras-
tically to achieve thermal and power budget but that also reduces
the performance of the executing application drastically. Although
EdgeCoolingMode does not monitor performance directly but since
for most computational application operating frequency is directly
proportional to performance and hence by reducing the frequency by
least scaling level the agent not just reduces the operating temperature
but also try to affect performance the least. Therefore, from the Eq.
4 the agent has to find the least value of Fi−Fdesired by computing
the predictive operating temperature using the values of αi & εi for
every frequency scaling level steps (li).

∀{li ∈ n} : ldesried = (Fi − Fdesired)least ,

where li : each frequency scaling level
n : number of different frequency scaling level steps

(5)

The algorithm for this module is provided in Algo. 2.

D. Continuous Learning
The Learning module keeps running and keeps updating the value

of relationship variable (α), error variable (ε) for different associated
frequency scaling levels for which the operating frequency should be
reduced to reduce spatial and temporal thermal gradient.

IV. EXPERIMENTAL RESULTS

A. System
1) Hardware Infrastructure: Nowadays heterogeneous MPSoCs

consist of different types of cores, either having the same or different
instruction set architecture (ISA). Moreover, the number of cores
of each type of ISA can vary based on MPSoCs and are usually
clustered if the types of cores are similar. For this research, we have
chosen an Asymmetric Multicore Processors (AMPs) system-on-chip
(AMPSoC), which is a special case of heterogeneous MPSoC and

11DPTM is Dynamic Power and Thermal Management techniques that
regulates both power and temperature.

Algorithm 2: Decision Module Execution
Input:
1. Tmax: threshold value of operating temperature
2. n: number of different frequency scaling level steps
Output: (Fi − Fdesired)least: least desired operating frequency

to drop to
Initialize: Tthreshold = Tmax;
Decide:
S(αi, εi, li) = Read(alphas.txt);

. Read the αi and εi for each li
if Ti ≥ Tthreshold then

for each frequency scaling level li in n do
lthis = CalculateLeastFrequency(αi, Fi, Ti, Fi−1, Ti−1);

. Compute lthis, which is (Fi − Fdesired)
if lthis ≤ li && lthis ≥ lprev then

SetOperatingFrequency(Fdesired);
. Set the operating frequency to the desired optimal
one

return (Fi − Fdesired)least;
lprev = li;

else
return void();

has clustered cores on the system. Our study was pursued on the
Odroid XU4 board [15], which employs the Samsung Exynos 5422
[4] MPSoC. Exynos 5422 is based on ARM’s big.LITTLE technology
[30] and contains cluster of 4 ARM Cortex-A15 (big) CPU cores
and another of 4 ARM Cortex-A7 (LITTLE) CPU cores, where each
core implements the ARM v7A ISA. This MPSoC provides dynamic
voltage frequency scaling feature per cluster, where the big core
cluster has 19 frequency scaling levels, ranging from 200 MHz to
2000 MHz with each step of 100 MHz and the LITTLE cluster has
13 frequency scaling levels, ranging from 200 MHz to 1400 MHz,
with each step of 100 MHz. Additionally, each core on the cluster
has a private L1 instruction and data cache, and a L2 cache, which
is shared across all the cores within a cluster.

Since Odroid XU4 board does not have an internal power sensor
onboard, hence an external power monitor [31] with networking
capabilities over WIFI is used to take power consumption readings.
Although the ARM Cortex-A7 (LITTLE) CPU cores on Odroid XU4
do not have temperature sensor but our intelligent agent approach is
scalable and works for heterogeneous cluster cores.

2) Software Infrastructure: For multi-core systems, multi-threaded
applications are heavily used in recent times to represent workloads
as they could leverage concurrency and parallel processing. Examples
of such applications are available in several benchmarks such as
PARSEC [12]. For our experiments we have tried several applications
from the PARSEC benchmark such as Streamcluster, Facesim, x264,
etc. but to validate the effectiveness of our EdgeCoolingMode
mechanism we chose Streamclsuter with native option because it
closely represented a real-world mixed load application and the
execution period was long enough to observe thermal regulation in the
system. We also validated our approach for Whetstones benchmark
[32]. We have run all our experiments on UbuntuMate version 14.04
(Linux Odroid Kernel: 3.10.105).

B. Experimental Setup
We implemented our proposed EdgeCoolingMode software agent

on top of the MRPI based Mapping and Resource Manager [7] as
well as on stock Linux Governors to perform the experiments and
validate the effectiveness of our methodology. For all our experiments
we did not modify anything else on the system, hardware or software,
so that the agent’s standalone effectiveness could be determined. We



choose 7 different operating temperature thresholds: 95°, 94°, 93°,
92°, 91°, 90°and 89°.

C. Temperature Results

In table I we provide the different α and ε values for different
threshold (90-95°)12 for drop of frequency by two-step levels (reduc-
tion of 200 MHz). Here each α and ε are the values for the instance
when operating temperature reached the threshold value and the agent
reduced frequency by two-steps to reduce the operating temperature.

TABLE I
RESULTS: VALUES OF α & ε FOR DIFFERENT TEMPERATURE THRESHOLDS

95° 94° 93° 92° 91° 90°
α =
0.02,
ε = 55

α =
0.01,
ε = 74

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.01,
ε = 74

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.02,
ε = 55

α =
0.02,
ε = 52

α =
0.005,
ε = 85

α =
0.01,
ε = 74

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.01,
ε = 73

α =
0.02,
ε = 55

α =
0.01,
ε = 75

α =
0.02,
ε = 56

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.02,
ε = 55

α =
0.01,
ε = 71

Fig. 4 and 5 show the operating temperature & frequency respec-
tively of the big core, which was monitored during the execution of
benchmarks with our proposed EdgeCoolingMode agent in effect as
well without utilizing the agent. We choose to show only values for 5
temperature threshold: 89°, 91°, 93°& 95°, so that it could be easily
understood from the graph.

We ran Streamcluster from PARSEC five times each for different
temperature threshold values (89°, 90°, 91°, 92°, 93°, 94°& 95°) and
for MRPI, Linux governor in performance mode & Linux governor
in ondemand mode. Fig. 6 summarizes the average execution time (in
secs), average peak temperature (in ° centigrade), average power con-
sumption (in Watt) and the average number of times CPU throttling
took place. The average is computed by taking all 5 execution for each
temperature budget into account. From the table it could be noticed
that using our EdgeCoolingMode we have achieved 6.32% reduction
in peak temperature13 while improving performance by 7.96% and
reducing power consumption by 9.45%.

We executed Whetstones benchmark for five times and here, we
present the average result of all five executions. For Whetstones
the total execution time, when run with the Linux’s stock governor
ondemand, is 121.56 secs with 206.8 times CPU throttling and an
average temperature of 93.95° centigrade. With our approach, we
achieved 4.11% reduction in temperature with a performance boost of
1.65% and no CPU throttling. We have also noticed that while using
linear regression of temperature vs frequency instead of quadratic
equation, on an average the computation takes 193 ms whereas the
quadratic one takes 237 ms and hence has a speedup of 1.295x with
no loss in accuracy over time.

V. DISCUSSION

During our experiments, we noticed that power/temperature rela-
tionship was following a quadratic equation instead of exponential
as is the well-known case. There could be several reasons for such
behavior. One possibility is that we have run our experiments with the
active cooling mechanism (cooling fan with heatsink) on board of the

12We only showed from 90-95° centigrades for this experiment to show the
computations of α and ε for space constraint in this paper.

13Considering that Linux’s thermal cap is at 95°centigrades.
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Fig. 4. Execution Time/Temperature Relationship For Streamcluster
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Fig. 5. Execution Time/Frequency Relationship For Streamcluster

Odroid XU4, which tried to physically regulate the temperature thus
regulating the spatial thermal gradient as much as possible through
active heat dissipation. Another point we have to keep in mind is
that since our methodology acts as an intelligent agent to enhance
the capacities of thermal regulation of the system instead of acting as
a replacement for the already existing thermal management unit on
the system, we did not turn off the TMUs for our experiments. We
mapped the relationship between power and temperature after exe-
cuting14 our EdgeCoolingMode mechanism with a thermal threshold
of 90° centigrades and the relationship follows a quadratic function
(see Fig. 7). Since our proposed EdgeCoolingMode was acting as a
thermal regulator, therefore, regulating the temporal thermal gradient

14We ran Stremcluster benchmark from PARSEC and mapped the power
consumption with the peak temperature of the big cluster.

Fig. 6. Result for different temperature threshold: Execution time, Avg.
temperature, Avg. power, Avg. times throttling for different temperature
threshold



and hence from the aforementioned figure (Fig. 7) we could see
that the temperature is regulated (temperature variance stabilizes) and
maintained below the thermal cap set by the OS.

We have also noticed that we achieve different results based on the
time period of the day due to the difference in ambient temperature
between night and day15. Fig. 6 shows the results of experiments
performed during daytime when the ambient temperature was hottest.
Thus if the same set of experiments are performed now the results
might vary by a little percentage.
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Fig. 7. Power/Temperature Relationship Using EdgeCoolingMode

VI. CONCLUSION

In this paper, we have proposed a light-weight thermal management
mechanism in the form of an intelligent agent, which is capable
of monitoring and regulating the operating temperature of the CPU
cores on MPSoCs. The efficacy of the methodology was evaluated
by implementing and validating the mechanism on the Odroid-XU4
MPSoC, employing ARM’s big.LITTLE architecture. The results of
applying the agent-based thermal manager showed that, compared
with the state-of-the-art power and temperature management ap-
proach, the proposed approach was not only capable of reducing
operating temperature of the CPU cores but at the same time im-
proved performance of the executing application as well as reduction
in power consumption.
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