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Abstract: Human motion detection is getting considerable attention in the feld of Artifcial 
Intelligence (AI) driven healthcare systems. Human motion can be used to provide remote healthcare 
solutions for vulnerable people by identifying particular movements such as falls, gait and breathing 
disorders. This can allow people to live more independent lifestyles and still have the safety of 
being monitored if more direct care is needed. At present wearable devices can provide real-time 
monitoring by deploying equipment on a person’s body. However, putting devices on a person’s 
body all the time makes it uncomfortable and the elderly tend to forget to wear them, in addition to 
the insecurity of being tracked all the time. This paper demonstrates how human motions can be 
detected in a quasi-real-time scenario using a non-invasive method. Patterns in the wireless signals 
present particular human body motions as each movement induces a unique change in the wireless 
medium. These changes can be used to identify particular body motions. This work produces 
a dataset that contains patterns of radio wave signals obtained using software-defned radios (SDRs) 
to establish if a subject is standing up or sitting down as a test case. The dataset was used to create 
a machine learning model, which was used in a developed application to provide a quasi-real-time 
classifcation of standing or sitting state. The machine-learning model was able to achieve 96.70% 
accuracy using the Random Forest algorithm using 10 fold cross-validation. A benchmark dataset of 
wearable devices was compared to the proposed dataset and results showed the proposed dataset 
to have similar accuracy of nearly 90%. The machine-learning models developed in this paper are 
tested for two activities but the developed system is designed and applicable for detecting and 
differentiating x number of activities. 

Keywords: human motion detection; machine learning; random forest; KNN; SVM; neural networks; 
USRP; channel state information; real-time classifcation 

1. Introduction 

Human motion detection is an important area of research in the feld of healthcare systems. 
Eventually, more and more sectors of the healthcare industry will begin to use technology [1,2]. 
In recent years, home healthcare through the use of different technologies has gained much attention 
for its ability to improve the lives of people who require special care [3,4]. Special care is required by 
a large number of people such as the elderly population. The elderly population is on the rise, leading 
to a substantial decline in nursing home capacity [5,6]. The elderly population is set to be 2.1 billion in 
the year 2050 according to statistics from the United Nations [7,8]. With this expected growth in the 
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elderly population, it will have even more strain on the lack of caregivers, so that dependencies on the 
technology will be required to support the treatment [9]. The monitoring of elderly and vulnerable 
people can allow them to live more independently. This means that the level of care they receive can 
be less. This is because the monitoring can provide real-time messages to caregivers in the instance of 
a fall [10]. Human motion detection is the process of using technology to extract the features of the 
human movement [11–13]. Human motion detection can be used for the monitoring of patients and 
vulnerable people such as the elderly or young children [14,15]. Fall detection is just one example of 
how human motion can be used in the healthcare industry although an important example. The World 
Health Organization reports that falls can cause around 646,000 deaths and over 37 million serious 
injuries. [16,17]. If a system was able to provide careers with this information in real-time then the 
patient would be able to receive assistance from the carer without the carer having to be with the 
vulnerable person at all times contributing to a more independent lifestyle. Human movement can 
be detected by the use of wearable devices such as mobile or smartwatches using accelerometers, 
which can then pass the information to carers or physicians etc. [18,19]. This leaves an issue of 
when the patient forgets to wear the wearable device. Another method of human motion detection 
is to use radio waves already in the atmosphere such as Wi-Fi in a home network. This technique is 
considered as non-invasive. Non-invasive is defned in medical terms as not involving the introduction 
of instruments into the body such as the case with wearable devices. This can be achieved by using 
the Channel State Information (CSI) from Wi-Fi to look at the amplitude of the CSI as a human moves 
between the radio waves [20,21]. The CSI is a feature in Wi-Fi that describes how the wireless signal 
propagates between the transmitting node and receiving node [22]. This data can be exploited to 
detected changes during a specifc human motion. This research will explore the use of Universal 
Software-defned Radio Peripheral (USRP) to build a dataset of the CSI information of human activities 
and then use machine learning for binary classifcation of a human either sitting down or standing up. 
USRPs will be used because they offer a simple framework for experimentation rather than setting 
up complex systems for functionality testing [15,23]. USRPs are widely used in research applications 
because of their ability to transfer and receive frequencies in several bands [24]. URSPs provide 
fexibility as they can be tuned to a wide range of frequencies [25]. This work will use 64 subcarriers. 
Orthogonal frequency division multiplexing (OFDM) is used for 64 points of fast Fourier transformer 
(FFT) producing 64 frequency carriers (subcarriers) [26]. Lower frequencies are able to detect the 
smaller movements while higher frequencies are able to detect larger movements [27]. Using USRPs 
allows for a range of frequencies to be used in the experimentation which will allow a greater detection 
in movements overall. This paper aims to research the abilities to use RF signals to be able to classify 
human motion in a real-time application. This paper reports two major contributions to the state of the 
art. The frst contribution is presenting a simple set up of how a machine learning model can provide 
real-time classifcation on human motion using data retrieved from a URSP. The second contribution is 
providing a comparison between the newly acquired dataset and an existing wearable device human 
motion dataset. This paper is organized in the following sections. Section 2 will detail some of the 
related work. Section 3 will detail the methods employed to collect the data. Section 4 will describe the 
methods of machine learning used and Section 5 will display the results and discuss said results as 
well as compare the results to a benchmark dataset collected from wearable devices. 

2. Related Work 

This section looks at the recent literature in various forms of human motion detection and 
where machine learning has been applied. The articles in [28–30] collected a range of human 
activities where the test subjects were using wearable accelerometer on their wrists. The dataset 
collected by these activities was then run through the machine learning algorithms of Random 
Forest, K Nearest Neighbours (KNN) and Support Vector Machines (SVM). The results found 
that the Support Vector Machine had the highest results of 91.5%. The work of [31–33] used 
frequency-modulated continuous-wave (FMCW) radar system to look at the Doppler, temporal 
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changes and radar cross-sections to collect data of falling and other fall-related activities such as 
stepping, jumping, squatting, walking and jogging from three participants. The data was then run 
through 10 cross-fold validation with KNN to achieve a high accuracy result of 95.5%. This work 
demonstrates that wireless waves can be used to classify human motion through the changes in 
frequencies. A similar work was done on multi-channel extraction in [34,35]. Jalal et al. [36] used 
a benchmark dataset of 14 indoor human activities. The benchmark dataset was collected using triaxial 
accelerometer sensors. The research included separating the static activities from the dynamic activities. 
The paper then went on to apply the random forest algorithm for machine learning classifcation. 
The static results scored higher at 92.16% with the dynamic activities scoring 80.0% with an average 
result of 85.17%. The work conducted in [37] used wearable smartwatches to monitor the movement 
of ping-pong players. The watch recorded data of eight different motions on how the test subjects 
moved the ping-pong paddle including forehand attack, forehand fick, backhand fick etc. The data 
was then processed using seven machine learning algorithms including Random Forest, SVM, KNN 
and decision trees. The research found the Random Forest to be the best performance with an accuracy 
score of 97.80%. The paper [38] made use of CSI on Wi-Fi OFDM signals for the classifcation of 
fve different arm movements. The human-made different arm movements while standing between 
a Wi-Fi router and a laptop sending wireless signals to each other. The CSI was then captured and 
machine learning was applied to the collected data. The machine learning algorithm chosen was the 
Long Short-Term Memory (LSTM) which was able to achieve a high-accuracy result of 96%. A similar 
work on healthcare was done in [39–41]. Nipu et al. [42] used CSI information to try and identify 
a specifc person. The experiment conducted had different people walk through two devices while 
data is transmitted and store the CSI information obtained while that person walked through the radio 
frequencies. The dataset was then passed through the machine learning algorithms, Random forest 
and Decision tree. The experiments found that the algorithms scored higher when only two people 
were used in a binary classifcation experiment. 

3. Collection of Data 

In this section, we will discuss the methods of how the data is collected. The work of this 
paper makes use of Universal Software Radio Peripheral (USRP) devices to send packets between 
antennas [43]. Two USRPs were used, namely the X310/X300 models from a national instrument (NI), 
each equipped with extended bandwidth daughterboard slots covering DC– 6 GHz with up to 120 MHz 
of baseband bandwidth. The X300 model was used as the transmitter with the X310 model performing 
as the receiver. The devices were connected to two PCs through 1G Ethernet cable connections. 
The USRP’s were equipped with two VERT2450 omni-directional antennas. The simulation was 
designed using MATLAB/Simulink program linked to the USRP’s. The experiment was undertaken in 
an offce environment and USRPs were kept at 4 m within line of sight with each other, to achieve the 
best performance. Experiments were performed with set parameters. Table 1 lists the parameters of 
the software confguration of the USPRs. The USRPs used in the study have a frequency range from 
1 GHz to 10 GHz. Center frequency for the USRPs was set as 5.32 GHz and the operational frequency 
of omni-directional antenna was also 5.32 GHz, with 3 dBi gain. The gain of USRP chosen to be 70 for 
transmitter and 50 for the receiver. The hardware parameters values of the USRP is summarised in 
Table 2. Ethical approvals of participants have been acquired through the University of Glasgow 
ethic review committee. The participants were asked to perform the different human motions in this 
research of standing up and sitting down. Participants completed the task multiple times to be able 
to collect many samples of the CSI information to allow for error and allow cleanest samples to be 
taken forward. The test was performed in an 7-by-8 m offce space containing furniture such as tables, 
chairs, draws, etc. The human motion is then carried out between the antennas and the Channel State 
Information is then recorded while this human motion is carried out. As radio signal propagation is 
proportionate to the movement of the human, the CSI will differentiate as different motion takes place. 
The CSI will show certain properties when a certain movement is made by the human. In this paper, 
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we have recorded the CSI for multiple subjects sitting down on a chair and then standing from a chair. 
As there are many variations in the way the signals propagate and human movement will never be 
exactly the same, the movement should follow the same patterns in the CSI data. Some samples can 
be considered as good samples where interference is set to a minimum and some samples may be 
affected by ambient movement or atmosphere factors. Multiple samples are taken to try to capture the 
fow of the patterns and machine learning is used to attempt to classify the samples. The fnal dataset 
contains 30 samples each of sitting and standing. Figures 1 and 2 display the CSI of the 64 subcarriers 
of the USRP. Each color represents a subcarrier and the frequency of the subcarrier is shown along the 
Y-axis and time is shown along the X-axis while an activity is taking place. Figure 1 shows the pattern 
followed in a good sample of sitting down and Figure 2 shows the pattern followed in a good sample 
of standing up. 

Table 1. Software confguration parameters selection. 

Parameters Values 

Input data (Signal) round(0.75*rand(104,1)) 
Sample time 1/80e4 
Modulation type QPSK 
Bit per symbol M 2 bits 
OFDM Subcarrier 64 subcarriers 
Pilot subcarrier 4 
Null subcarrier 12 
Cycle prefx M NFFT-data subcarrier 
Samples per frame Used subcarrier log2 (M) 

Table 2. Hardware confguration parameters selection. 

Parameters Values 

Platform USRP X300/X310 
TX IP address 192.168.11.1 
RX IP address 192.168.10.1 
Channel mapping 1 TX, 2 RX 
Centre frequency 5.32 GHz 
Local oscillator offset Dialog 
PPS source Internal 
Clock source Internal 
Master clock rate 120 MHz 
Transport data type Int16 
Gain (dB) TX 70, RX 50 
Sample time 1/80e4 
Interpolation factor 500 
Decimation factor 500 

Figure 1. Channel State Information for the human motion of sitting down. 
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Figure 2. Channel State Information for the human motion of standing up. 

The USRPs are confgured to transmit data from one antenna to the other for 10 s. As the signals 
propagate in different ways each time a sample is taken, the number of packets received has slight 
variations. However, this has little effect as the aim is to detect patterns in the radio waves as a certain 
human motion is carried out during the transmission of packets. Figure 3 details the process used in 
this experimentation. 

Figure 3. Experiment fow chart. 

4. Machine Learning Process 

The dataset performance has been measured using a range of machine learning algorithms using 
the Python SciKit library. Scikit is a machine learning package that is widely used in the data science 
feld [44]. The Samples are converted into CSV format so that they can be processed using the SciKit 
library. The Python library Pandas is used to process the CSV fles. Pandas imports the CSV fles as 
dataframes within Python which the SciKit library then processes [45]. The labels are added as the frst 
column on the dataframes as the data is of varying length throughout the samples. Then the dataframe 
of each sample is combined together to make the full dataset, the varying lengths result in NAN values 
being part of the dataset. To resolve this issue SciKit provides a function called simple imputer. This is 
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used to replace all NAN values with a 0. Therefore the shorter samples of the dataset will contain 
0 values tailing the row on the CSV fle. This is not perceived to be a problem as the different lengths 
are minor and the pattern of the RF signals is still apparent. This is part of the variance between 
different samples. The data set is then divided into two variables, one for the labels and one for the 
data itself. Then the four machine learning algorithms are declared. The four algorithms used to test 
this dataset are Random Forest, K nearest Neighbours, Support Vector Machine and Neural Networks. 
The ensemble classifer takes each algorithm prediction as a vote and then whichever prediction has 
the most votes will be the prediction declared by the ensemble classifer. 

Random forest is a collection of decision trees. Each tree makes a prediction of the output 
by taking in looking for features found in the training phase. This prediction is considered a vote. 
The majority of predictions is the fnal Random Forest prediction [46]. Equation (1) shows how SciKit 
uses Random Forest: 

Nij = WjCj − Wle f t(j)Cle f t(j) − Wright(j)Cright(j) (1) 

• Nij= the importance of node j 
• Wj= weighted number of samples reaching node j 
• Cj= the impurity value of node j 
• le f tj= child node from left split on node j 
• rightj= child node from right split on node j 

The K nearest Neighbours algorithm is known for its simplicity. The algorithm works by 
comparing the testing data to the training data [47]. The features of the training data are assigned a K 
sample then the testing data is assigned to the K sample that most closely matches the new data [48]. 
Equation (2) shows the Euclidean KNN equation which is the default method for SciKit: vu ut 

k 

∑(xi − yi)2. (2) 
i=1 

• k = is the number of samples 
• x = the data 
• y = the label 

The Support Vector Machine algorithm works by constructing hyper planes and uses these hyper 
planes to separate the input data into different categories. The training data is used to train the hyper 
planes based on features of the training data [49]. Equations (3) and (4) shows how SVM works: 

positiveequation = w.u + b > 0 (3) 

negativeequation = w.u + b < 0. (4) 

• w = the vector per perpendicular to median of hyper-plane 
• u = the unknown vectors 
• b = b is constraint 

The Neural Network model is inspired by the human brain [50]. A neural network consists of 
an input layer, hidden layer and output layer which are all interconnected. The aim is to transform 
a set of inputs to the desired outputs by using weights associated with the neurons in the hidden 
layer [51]. When the neural network passes the training input, the output is observed. If the output is 
incorrect then the hidden layer is adjusted until the correct output is achieved. Then the testing data 
can be passed through the model as the input data and the output is the prediction [52]. � n � 

f b + ∑ xiwi . (5) 
i=1 
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• b = bias 
• x = input to neuron 
• w = weights 
• n = the number of inputs from the incoming layer 
• i = a counter from 0 to n 

Two experiments are done using each algorithm on the dataset. The frst experiment makes 
use of 10 fold cross-validation. The 10 fold cross-validation is used to test machine learning models 
where the data is divided into training and testing data. The number 10 refers to the number of 
groups. Each group takes a turn as the test data and the rest of the groups are used as training data. 
This ensures that there is variance in the test data. The results of the 10 runs are then averaged to 
give the fnal results [53]. The second experiment uses the train test split method where the dataset is 
split 70/30. We used 70% of the dataset to train the dataset and 30% of the dataset is used for testing. 
The results of this paper will use the performance metrics of Accuracy, Precision, Recall and F1-score. 
These performance metrics are calculated by looking at four classifcation values. The classifcation 
values are True Positive (TP), True Negative (TN), False Positive (FP) and False Negative. The equations 
for how the performance metrics are calculated are shown in Equations (6)–(9). 

The accuracy displays the total number of correct classifications versus the total classifications made. 

TP + TN 
Accuracy = . (6)

TP + TN + FP + FN

Precision metric is used to measure one of the classifcations against how precise it is in comparison 
to all classifcations. The results are presented as an average between both sitting and standing. 

TP 
Precision = . (7)

TP + FP

The recall wasused to show the ratio of the correct classifcation to all classifcations for that label. 
This was run for both sitting and standing and presented as an average. 

TP 
Recall = . (8)

TP + FN

The F1-score is used to provide an average between the Precision and Recall Metrics. 

Precision ∗ Recall 
F1− score = 2X . (9)

Precision + Recall

5. Results and Discussion 

This section presents the output of the machine learning algorithms after they have completed 
10-fold cross-validation and train test split using the Python variables containing the data and 
comparing the prediction of the data to the actual labels of the data. The performance metrics 
used to compare the algorithms include the accuracy score as well as precision, recall, and f1 score. 
A confusion matrix is also provided to show how each sample has been classifed. 

5.1. Cross-Validation 

In table 3 it can be seen that the best accuracy is from Random Forest followed by the neural 
network. Although both KNN and Support Vector Machine still has high accuracy. When the 
algorithms were compiled together in the ensemble classifer, the accuracy was 92.18%. The accuracy 
was calculated as an average of the 10 sets of testing data used in each of the 10 cross-fold validation 
process. The dataset is made up of 30 samples each of sitting and standing which each contain 
64 subcarriers. So the total number of rows contained in the dataset is 3840 subcarriers. The confusion 
matrix is a table used to describe how an algorithm has performed. The confusion matrix shows 
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exactly how many samples were classifed in which category. The Y axis on the confusion matrix 
represents the prediction of the algorithm and the X axis represents the actual classifcation. 

Table 3. Cross-validation results. 

Algorithm Accuracy Precision Recall f1-Score 

Random Forest 92.47% 0.93 0.92 0.92 
K nearest Neighbours 88.17% 0.89 0.88 0.88 
Support Vector Machine 84.68% 0.86 0.85 0.85 
Neural network model 90.05% 0.90 0.90 0.90 
Ensemble Classifer 92.18% 0.92 0.92 0.92 

The Random Forest algorithm was the best performer out of all the algorithms. It can be seen 
in Figure 4 how the 3840 samples have been classifed. We classifed 1821 sitting samples as sitting. 
This is represented in the top left square where the X-axis matches the Y-axis. Then, 99 sitting samples 
were incorrectly classifed as standing. This is where the X-axis and Y-axis mismatch. The majority 
of sitting samples were correctly classifed so this shows good results. The classifcation of standing 
samples was slightly less accurate but still good results. 190 samples were classifed incorrectly as 
sitting, which is higher than the 99 sitting samples incorrectly classifed as standing. This leaves the 
remaining 1730 standing samples as being correctly classifed. 

Figure 4. Confusion matrix for random forest. 

The KNN algorithm had an accuracy score of 88.17%, which is only around 4% less than Random 
Forest. In the confusion matrix shown in Figure 5 it can be observed on how much the classifcations 
differ in the 4% difference in accuracy. It appears that both algorithms had better classifcation results 
with sitting over standing. KNN had 138 sitting subcarriers incorrectly classifed as standing but had 
316 standing classifers incorrectly classifed as sitting. However, the majority of subcarriers were 
classifed correctly. 

http:classified.We
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Figure 5. Confusion matrix for K Nearest Neighbours (KNN). 

Support Vector Machine was the lowest scoring algorithm in this experiment but with an accuracy 
score of 84.68%, the majority of samples were classifed correctly. Unlike Random forest and KNN, 
SVM showed better performance with the standing up samples. Only 111 of the standing subcarriers 
were wrongly classifed as sitting down. We classifed 477 sitting-down samples incorrectly as standing, 
as shown in Figure 6. 

Figure 6. Confusion matrix for Support Vector Machines (SVM). 

The Neural Network classifer had the second-best accuracy score of 90.05%. Like Random forest 
and KNN, it had better performance with sitting down samples. The confusion matrix shown in 
Figure 7 shows only 132 sitting samples were incorrectly classifed compared to the 250 standing 
samples classifed incorrectly. 
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Figure 7. Confusion matrix for neural networks. 

The confusion matrix for the ensemble classifcation is shown in Figure 8. The ensemble had 
the best performance with the sitting down samples with only 75 of the samples being classifed as 
incorrect. The ensemble classifer was let down by the standing up samples as it incorrectly classifed 
225 samples. It can be seen that the ensemble technique worked well with the sitting down samples 
but was not so good with the standing up samples. Support Vector Machine had the lowest error rate 
for standing up samples. 

Figure 8. Confusion matrix for ensemble classifcation. 

5.2. Train Test Split 

In Table 4 it can be seen that the best accuracy is still Random Forest followed by the neural 
network. Although both KNN and Support Vector Machine still have high accuracy, when the 
algorithms are compiled together in the ensemble classifer the accuracy is 93.83%. The accuracy is 
calculated by comparing the 30% test data predictions to the actual labels of the data. The full dataset 
is made up of 30 samples each of sitting and standing which each contain 64 subcarriers. So the 
total number of rows contained in the dataset is 3840 subcarriers. 1152 subcarriers is the number of 
the 30% test samples used in the train test split method rather than the whole dataset being used 
testing data at some point. In the testing data there are 512 standing up samples and 640 sitting down 
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samples. The confusion matrix in this experiment shows only the 1152 samples, the total number of 
tested samples. 

Table 4. Train test split results. 

Algorithm Accuracy Precision Recall f1-Score 

Random Forest 96.70% 0.97 0.97 0.972 
K nearest Neighbours 
Support Vector Machine 
Neural network model 

90.71% 
81.77% 
93.40% 

0.91 
0.87 
0.94 

0.91 
0.82 
0.93 

0.91 
0.82 
0.93 

Ensemble Classifer 93.83% 0.94 0.94 0.94 

The Random Forest algorithm was the best performer out of all the algorithms. It can be seen 
in Figure 9 how the 1152 samples have been classifed. 606 sitting samples were correctly classifed 
as sitting. This is represented in the top left square where the X-axis matches the Y-axis. Then 
34 sitting samples were incorrectly classifed as standing. This is where the X-axis and Y-axis mismatch. 
The majority of sitting samples were correctly classifed which is a positive result. The classifcation 
of standing samples was more accurate than sitting in contrast to the cross-validation results. Only 
four samples were classifed incorrectly as sitting, which leaves the remaining 508 standing samples as 
correctly classifed. 

Figure 9. Confusion matrix for random forest. 

The KNN algorithm had an accuracy score of 90.71%, which is an improvement over the 
cross-validation experiment. In the confusion matrix shown in Figure 10, KNN, just like Random 
Forest, performed better with the standing-up samples rather than the sitting-down samples. KNN had 
69 sitting subcarriers incorrectly classifed as standing, but had only 38 standing classifers incorrectly 
classifed as sitting. However, the majority of subcarriers were classifed correctly. 
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Figure 10. Confusion matrix for KNN. 

Support Vector Machine was the lowest scoring algorithm in this experiment, but with an accuracy 
score of 81.77%, the majority of samples were classifed correctly. Like Random forest and KNN, SVM 
showed better performance with the standing up samples. Only one of the standing subcarriers was 
wrongly classifed as sitting down however 209 sitting down samples were classifed incorrectly as 
standing, as shown in Figure 11. 

Figure 11. Confusion matrix for SVM. 

The Neural Network classifer had the second-best accuracy score of 93.40%. Like the other 
algorithms, it had better performance with standing-up samples. The confusion matrix shown 
in Figure 12 shows 76 sitting samples were incorrectly classifed compared to the 0 standing samples 
classifed incorrectly. 
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Figure 12. Confusion matrix for neural networks. 

The confusion matrix for the ensemble classifcation is shown in Figure 13. The ensemble method 
shows better performance with the standing samples as expected as all the algorithms performed 
better with the standing samples. The ensemble method gave a good average number for the incorrect 
sitting samples preventing it from going too high, making use of the voting system. 

Figure 13. Confusion matrix for ensemble classifcation. 

5.3. Comparison of Cross-Validation and Train Test Split 

The difference in accuracy can be seen in Figure 14. The train test split shows better classifcation 
results with the standing up samples. This is because there are more standing up samples within 
the 70% training set. This shows that the more training on a sample gives better results. All of the 
algorithms have higher accuracy except from SVM with the train test split. Cross-validation, however, 
gives a better representation of the algorithm performance since all of the data takes a turn for training 
and testing so every possible combination is tested. 
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Figure 14. Comparison of cross validation and train–test split. 

5.4. Real Time Classifcation 

For Real-Time classifcation of data, the dataset needs to be used to create a model. Random 
forest provided the highest accuracy results, it was chosen to create the model. Instead of dividing the 
dataset into 10 groups for cross-fold validation, the whole dataset was used for training. This allows 
for the model to have the most amount of training. The SciKit Python package allows for models to 
be saved and recalled later by using the Joblib package. Flask was used to create a web interface that 
could action Python scripts. 

The application works when the user presses the “Run Classifcation” button. The button then 
actions a Python script within the Flask app. The Python script works by connecting to the Matlab 
session that records the CSI from the USRP. The Matlab session will need to be shared and then Python 
can connect and access the variables stored on Matlab. When an experiment is run on the USRP the CSI 
is stored in a timeseries called CSI in Matlab. The Python script frst activates a Matlab script which 
then extracts the raw CSI data from the timeseries. Once the raw data is stored on a variable in Matlab 
the Python script can access the variable and apply the previously saved model to make classifcations 
on the new data obtained from the USRPs. As this process takes place the interface will display 
“Loading...” as the output. To test the real-time application additional samples of sitting down and 
standing up were taken. Six of each group were taken to give a total of 12 samples. These 12 samples 
were completely unseen when training the model as they were not contained in the dataset. The trained 
model was able to correctly classify all of these samples. As seen in Figure 15, the classifcation is 
displayed as the output after the script has run. This web application has proved to be able to access 
the Matlab variable that contains the CSI obtained from the USRP and make classifcations using 
a previously stored model. The real-time web application is able to be extended to make any amount 
of classifcations as it is based on the model used to make the classifcations of newly received data. 
Figure 16 details the process undertaken by the real-time application web interface. 

http:output.To
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Figure 15. Flask web interface displaying classifcation result. 

Figure 16. Flask web interface process. 

5.5. Benchmark Dataset 

As the machine learning results for the dataset were of high accuracy, it evidences that CSI is 
a viable method for human motion detection. For a comparison of how effective CSI can be used 
to identify human motion, we have compared the machine learning results of this dataset to that 
of another dataset. Ref. [54] have published a dataset detecting a range of human motions using 
smartphones which are equipped with accelerometers. The machine learning process used with the 
USRP dataset created in this research has been applied to this benchmark training dataset. This 
comparison gives a good indication of how non-interference detection compares to wearable devices in 
the feld of human motion detection. The results show that the USRP dataset is able to provide similar 
results to the benchmark dataset which is using wearable devices. The Random Forest algorithm 
displays similar results. The accuracy values are shown in Tables 5 and 6 for cross-validation and train 
test split experiments respectfully. Figures 17 and 18 give a visual representation of the differences 
between the two datasets for cross-validation and train test split experiments respectfully. The Random 
Forest was the best performer in both sets of data with both cross-validation and train test split 
methods. KNN performed much better using the USRP dataset with a cross-validation but was lower 
with the train–test split. Support Vector Machine had similar performance within the two datasets with 
only a larger difference in accuracy between datasets using the train split method. The Neural Network 
algorithm also had a small difference between datasets with a slight increase with the cross-validated 
USRP dataset but a larger difference in favor of the benchmark dataset when using the train test 
split. The ensemble classifer actually performed better with the benchmark dataset in both methods 
but by only a small difference when using the cross-validation method. Such fndings demonstrate 
that the USRP is capable of producing similar results and even higher precision scores compared to 
a dataset obtained using wearable devices. The primary reason that the datasets collected using USRP 
outperforms the wearable devices datasets is that USRP leverage on multiple frequency subcarriers. 
An intricate change in wireless medium is picked up by the multiple carrier USRP model, whereas the 
wearable devices such as accelerometer and magnetometer are not sensitive enough to detect body 
motion. That is why, due to high sensitivity against body motion, the USRP works better in detecting 
body movements. 



Sensors 2020, 20, 2653 16 of 20 

Table 5. Comparison of results with cross validation. 

Algorithm USRP Dataset Accuracy Benchmark Dataset Accuracy 

Random Forest 92.47% 91.20% 
K nearest Neighbours 
Support Vector Machine 
Neural network model 

88.17% 
84.68% 
90.05% 

77.06% 
85.90% 
89.21% 

Ensemble Classifer 92.18% 92.40% 

Table 6. Comparison of results with train test split. 

Algorithm USRP Dataset Accuracy Benchmark Dataset Accuracy 

Random Forest 96.70% 96.49% 
K nearest Neighbours 
Support Vector Machine 
Neural network model 

90.71% 
81.77% 
93.40% 

92.48% 
86.21% 
96.11% 

Ensemble Classifer 93.83% 97.74% 

Figure 17. Comparison of results with cross validation. 

Figure 18. Comparison of results with train test split. 
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6. Conclusions 

In this paper, we have proposed an algorithm and dataset which can be used in the detection of 
human motion. The dataset includes observations of the channel state information from USRPs as 
human activities take place between the antennas. The dataset is designed for binary classifcation 
between sitting down and standing up human motion. The performance of machine learning 
shows good results with the Random Forest algorithm producing a high accuracy result of 92.47%. 
The high-accuracy in the results show that there is a signifcant difference between the CSI information 
of standing up and sitting down for a machine algorithm to be able to establish the difference. The web 
application was able to successfully classify samples of data that were absent during the learning 
phase directly from the Matlab session which contained the CSI directly from the USRP. The use of 
USRP data to detect human motion was also compared to a benchmark dataset where human motion 
was detected using wearable devices. The same machine-learning techniques were applied to the 
benchmark dataset and the results show good accuracy with the benchmark dataset. 
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