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Using corpus linguistics to investigate mathematical explanation 

Juan Pablo Mejía-Ramos, Lara Alcock, Kristen Lew, Paolo Rago, Chris Sangwin, and 
Matthew Inglis 

Abstract: In this chapter we use methods of corpus linguistics to investigate the ways 
in which mathematicians describe their work as explanatory in their research papers. 
We analyse use of the words explain/explanation (and various related words and 
expressions) in a large corpus of texts containing research papers in mathematics and 
in physical sciences, comparing this with their use in corpora of general, day-to-day 
English. We find that although mathematicians do use this family of words, such use 
is considerably less prevalent in mathematics papers than in physics papers or in 
general English. Furthermore, we find that the proportion with which mathematicians 
use expressions related to ‘explaining why’ and ‘explaining how’ is significantly 
different to the equivalent proportion in physics and in general English. We discuss 
possible accounts for these differences. 
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I. Corpus linguistics 

Corpus linguistics is a methodological approach that involves analysing large 
collections of naturally occurring texts, known as corpora. Its methods can be used to 
investigate many types of linguistic questions. Before reporting our study on the 
notion of explanation in mathematics and physics research papers, we briefly outline 
the basic concepts of this approach. This outline of corpus linguistics falls into three 
parts, each focusing on an important stage of conducting a corpus analysis: 
assembling a corpus, processing raw text to render it suitable for analysis, and 
deciding upon an analytical approach. 

1.1 Assembling a corpus 

A corpus is simply a large collection of machine-readable texts designed to represent 
some broader body of natural language. In theory, any text could be considered a 
corpus, but the term is normally reserved for a set of texts carefully sampled to be 
representative of a larger body of language. For example, while we might analyse the 
complete Diary of Samuel Pepys with a view to understanding linguistic features of 
Pepys’s writing, we would not consider it a corpus representative of the writing of 
17th century England: such a generalisation would be problematic because we would 
not know whether a particular linguistic feature was characteristic of the period’s 
writing generally, or only of Pepys’s writing.  

The desire for generalization arises because corpus linguists are most commonly 
interested in understanding the properties of some broad body of language, such as 
broadsheet newspaper articles or political speeches. As it would be difficult to collect 
the text of every political speech ever made, a first consideration is how to obtain as 
representative a sample as possible (Biber, 1993). This gives rise to important issues 
of sampling that parallel those of traditional empirical research. Just as experimental 
psychologists ideally seek to sample participants randomly from their population of 
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interest, corpus linguists ideally seek to sample texts randomly from the wider set of 
texts to which they would like to generalize. The population is referred to as the 
‘sampling frame’, and sometimes genuine random sampling can occur: given access 
to an appropriate archive, it would be possible to randomly select 10% of all 
newspaper articles published in a given time period. But corpus linguists are often 
interested in a less accessible sampling frame, which makes it difficult to randomly 
sample. For example, in the current investigation we would like to generalize to all 
research-level mathematical writing. But randomly sampling from this population 
would be difficult, as some writing in the population is inaccessible. In such situations 
we must instead appeal to the representativeness of our corpus. 

One common approach to ensuring adequately representative sampling is to use a 
bibliographic index. For instance, researchers might define the sampling frame to be 
every text included in a particular list of published texts. The Lancaster-Oslo/Bergen 
(LOB) corpus, designed to be representative of general written British English, took 
this approach and used the British National Bibliography and Willings’ Press Guide 
as indices (Johansson et al. 1978). Alternatively, it is possible to sample participants 
rather than texts. For instance, the British National Corpus (a comprehensive 
collection of 100 million words of spoken and written English, designed to represent a 
cross-section of current English usage) contains a spoken section where participants – 
selected using demographic sampling techniques – were asked to record their day-to-
day spoken interactions for several days (Crowdy 1993). In either case, 
representativeness might be further ensured via hierarchical or stratified sampling 
approaches. A sample might be composed of 10% of texts from one sub-category, 
10% from another, and so on. The Brown and LOB corpora both adopted this 
approach in an attempt to be representative of American and British English 
respectively. Each contains 500 texts sampled from 15 categories (e.g. press 
reportage, popular lore, general fiction, science fiction, learned and scientific writing).  

A second consideration when assembling a corpus is size.  The required size depends 
on the linguistic feature being studied: if the feature is relatively rare, then a much 
larger corpus will be needed. Biber (1993), for instance, gave the relative frequencies 
of various linguistic features in a particular corpus, noting that conditional 
subordination occurred 2.5 times per 1000 words, whereas prepositions occurred 111 
times. Clearly, this means that a larger corpus is required to study conditional 
subordinations than prepositions. Fortunately, creating extremely large samples of 
texts has recently become considerably easier, and corpora have been constructed 
based on webpages (e.g. various corpora based on Wikipedia articles), on television 
subtitles (e.g. the SUBTLEX-UK corpus; Van Heuven et al. 2014), and on 
parliamentary proceedings (e.g. the Hansard corpus; The SAMUELS Consortium, 
2015). 

A third consideration concerns dispersion. This refers to how evenly distributed a 
linguistic feature is across texts in a corpus. If a feature appears in only few texts, 
perhaps written by only a few authors, then this calls into question the generalisability 
of any claimed results, even if the corpus is reasonably representative in general 
(McEnery and Wilson, 2001).  

In the study we describe below, our decisions concerning the sampling frame meant 
that we were able to assemble a large corpus of mathematical texts (approximately 
31m words) as well as a control corpus of physics texts (approximately 59m words). 
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We then addressed considerations of representativeness by following good practice 
from empirical research in psychology: we assembled two further corpora of 
mathematics and physics texts of approximately the same size and from the same 
source, thus allowing us to replicate all our analyses on a new dataset. This should 
enable the reader to feel confident that we did not conduct a large number of analyses 
and report only those which gave statistically significant results (cf. John et al. 2012, 
and Simmons et al. 2011, on p-hacking).  

1.2 Processing the corpus 

Assembling a novel corpus, or selecting an existing corpus, is only the first stage of a 
corpus linguistics research project. Often it is necessary to process texts in some way 
before proceeding with the analysis. In general contexts it is often important to 
annotate a corpus with tags relevant to the researchers’ questions. This might involve 
grammatical tagging (often called part-of-speech, or POS tagging) where each word 
in the corpus is tagged with a label that categorizes it in some way. For instance, it 
may be useful to know if a word is an adjective, noun, or adverb (and so on). One 
common way of tagging a corpus is to append the tag after each word (e.g. replacing 
“cutting” with “cutting_NN” where the “NN” represents the code ‘noun, singular or 
mass’). Leech (2013) pointed out several important features an annotation scheme 
should have. First, it should always be possible to remove the tags and revert to the 
raw corpus. Second, the tags should be extricable from the corpus if necessary (e.g. it 
should be possible to count the number of nouns in a corpus). Third, the annotation 
scheme should be carefully documented. Leech also emphasized that the quality of 
the annotation should be documented. If, for example, a computer-based POS tagger 
is used (e.g. TagAnt), it might be appropriate to manually check a sample of the 
corpus and record the agreement percentage. Understandably, automated computer-
based POS tagging is a complex process (for a review see Garside et al. 2013). 

POS tagging has been successfully applied to mathematical corpora. For instance, 
Dawkins et al. (2018) used a corpus of university-level mathematics textbooks and 
presented a comparative analysis of the use of ‘is’ in mathematical and non-
mathematical English. Because they were interested in advanced scientific texts that 
contain complex mathematical notation, this raised particular issues about the 
processing of LaTeX-encoded mathematical symbols. Our approach to this issue is 
discussed in the methods section below. 

1.3 Analysing the corpus 

Once a corpus has been successfully assembled and processed, the next step is to 
choose an analysis technique that addresses the research question. Of course, there are 
many possible analytical approaches; here we give a brief overview of only the most 
common. 

Often it is possible to answer research questions by simply studying the frequency 
with which certain words or phrases occur. Mejía-Ramos and Inglis (2011), for 
instance, used this approach to analyse ‘semantic contamination’ from day-to-day 
English into mathematical language. Semantic contamination refers to the 
phenomenon in which the meanings of words in natural language ‘leak’ into a 
different linguistic register (e.g. Monaghan, 1991). Mejía-Ramos and Inglis compared 
the frequency of the verb and noun forms of the word ‘proof’ (i.e. ‘prove’ and 
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‘proof’) in the specialist (business, medical, legal proceedings, etc.) and informal 
(conversations, popular radio, etc.) sections of the British National Corpus. They 
found that the verb form was significantly more common in informal than in formal 
language, and derived the hypothesis that ‘proof’ was more likely to be associated 
with the notions of formal validity, whereas ‘prove’ was more likely to be associated 
with the less formal notion of conviction. In two subsequent experimental studies, 
they found that changing a question from “does the argument prove the claim?” to “is 
the argument a proof of the claim?” did indeed change students’ responses in the 
direction predicted. 

In the study reported here, our interest in the relative frequency of a particular set of 
words (which we will refer to as ‘explain words’) in mathematical writing means that 
our main analysis too involved defining which words fell into our category and 
counting their occurrences. By also conducting the same analysis on a different 
corpus (of physics papers) we were then able to compare the frequencies in two 
subgenres of research papers. Clearly, when comparing frequencies in corpora of 
different sizes it is necessary to adopt a frequency rate measure; the number of 
occurrences per million words is typically used. Counting the (relative) frequencies of 
a category of words in two corpora generates a two-by-two contingency table, with 
the two corpora as rows and the hits and non-hits (words in the corpus that are and are 
not in the category) as columns. This permits use of a chi-squared test or Fisher’s 
exact test to assess statistically whether the relative frequencies differ significantly 
between the two corpora.  Our analysis is reported below. 

As well as counting words or categories of words, it is also possible to study the 
frequencies of more complex linguistic features. For instance, one might be interested 
in producing a list of the most frequently occurring ‘n-grams’ or ‘lexical bundles’ – 
collections of words of a given length. Or one might be interested in producing a 
frequency list of ‘clusters’ – collections of words of a given length that contain a 
given word. Herbel-Eisenmann, Wagner and Cortes (2010) used the notion of a 
lexical bundle to study common interaction patterns in mathematics classrooms. 
Using a corpus formed from transcripts of interactions in secondary mathematics 
lessons, they found that there are particular types of lexical bundles involved in 
teacher/student interactions that allow the communication of feelings, attitudes, value 
judgements and assessments. By comparing their findings with other corpora (of, for 
instance, university classes) the researchers were able to argue that their findings were 
particular to the secondary mathematics context. 

An alternative way to compare corpora is to identify keywords: words that occur 
disproportionately often in one corpus compared to another, but that have not been 
identified a priori by the researcher. These can be identified using chi-squared 
statistics in a similar manner to the approach described earlier. For instance, we can 
compare British and American English by identifying the keywords in the LOB 
corpus compared to the Brown corpus (organized by chi-squared values, these are: 
London, labour, I, sir, Mr, she, towards, Britain, British and centre). Similarly, we can 
identify keywords in the Brown corpus compared to the LOB corpus (program, 
toward, state, states, center, defense, federal, labor, York and American). By 
identifying the keywords in one corpus with respect to another, researchers can begin 
to understand differences between the bodies of language represented by each of the 
corpora. 
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More qualitative ways to analyse corpora can help researchers to understand how 
given words are used. For instance, most corpus linguistics software packages allow 
examination of ‘concordances’ or ‘key words in context’ (KWIC). The packages 
generate lists containing every occurrence of a given word – the search term – with 
context on either side (perhaps 80 characters to either side of the occurrence). By 
carefully studying a concordance, or a randomly selected subset of a concordance, 
researchers can begin to develop categories capturing how the word is used. This can 
subsequently support further quantitative analysis, especially if multiple equivalent 
corpora are available (e.g. a concordance analysis can be conducted on one corpus 
and then a quantitative analysis can be used on the other to triangulate). 

Similarly, packages can also permit examination of words that systematically co-
occur. For instance, ‘back’ and ‘front’ are often found close to each other, and corpus 
linguists would say that ‘back’ is a collocate of ‘front’ (and vice versa). More 
formally, two words are collocates if there is an above-chance co-occurrence of them 
within some given span (perhaps plus or minus five words). Collocates can be 
identified by constructing a word frequency list of all words within a five-word 
window around the search term, and comparing it to the overall word frequency list of 
the corpus. Words that disproportionately occur around the search term are its 
collocates (various statistical criteria can be used to formalize what 
‘disproportionately’ means). Understanding the collocates of a given word can help 
reveal its meaning, and perhaps uncover implicit associations that it has with other 
words or ideas (Hunston, 2002; Sinclair, 1991). In particular, studying the collocates 
of a word can identify a word’s ‘semantic prosody’, the “consistent aura of meaning 
with which a form is imbued by its collocates” (Louw, 1993, p. 157). Baker, 
Gabrielatos, Khosravinik, Krzyżanowski, McEnery and Wodak (2008) used this 
method to study representations of refugees and asylum seekers in British 
newspapers, finding that collocates were often words that may negatively stereotype 
refugees and asylum seekers. For example, their collocate analysis showed how 
references to refugees and asylum seekers were often accompanied by quantification 
via water metaphors (e.g. pour, flood, stream), which “tend to dehumanize [refugees 
and asylum seekers], constructing them as an out-of-control, agentless, unwanted 
natural disaster.” (p. 287) In other words, the words ‘refugee’ and ‘asylum seeker’ 
have negative semantic prosody in British newspapers.  

The outline of corpus linguistic research methods given here is necessarily basic. 
Readers interested in conducting corpus analyses might wish to consult McEnery and 
Wilson’s (2001) excellent textbook for further information. We now turn to our 
investigation of the notion of explanation in mathematics and physics research papers. 

II. Mathematical Explanation 

Explanations are important, nowhere more so than in education. Teachers routinely 
offer instructional explanations as part of classroom practice, answering implicit or 
explicit questions posed by their students or themselves (e.g. Leinhardt, 2001; 
Treagust and Harrison, 1999). Also important are self-explanations generated by 
learners with the aim of increasing their own understanding (Rittle-Johnson et al. 
2017). Encouraging students to self-explain can be a highly effective pedagogical 
strategy: in the context of university level mathematics, Hodds et al. (2014) found that 
students prompted to explain a mathematical proof to themselves attained 
comprehension one standard deviation better than peers in a control group (cf. Chi et 
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al.1989, Fonseca and Chi 2011). Finally, student-generated explanations can be used 
in educational assessment, particularly when one wishes to focus on the depth of 
students’ conceptual understanding (e.g. Bisson et al. 2016; Knuth et al. 2006). But 
what are explanations, especially in mathematics? 

Philosophers of science have devoted considerable attention to the question of what it 
means for A to explain B. Many accounts rely on either statistical associations or 
causal mechanisms. For instance, Salmon (1971, 1984) suggested that A explains B if 
B is consistently correlated with A or if there is a causal history that connects B and A 
(cf. Hempel and Oppenheim, 1948). So one can say that buying shoes in the wrong 
size explains why one’s feet hurt because there is a causal connection between the 
two events. But, while causal and statistical accounts work well in scientific contexts, 
they fail in mathematics (Colyvan 2011, Mancosu 2001). Mathematical concepts are 
not related causally because there is no temporal order: the fact that the square root of 
2 is irrational is not located at a particular time. Nor are they related statistically: 
mathematical facts take no probabilities other than 0 or 1. Consequently, scientific 
accounts of explanation do not seem to apply to mathematics.  

But if mathematical explanations are not scientific explanations, then what are they? 
This question has generated significant philosophical interest. A small number of 
philosophers regard the lack of causal and correlational relations as reason to deny 
that mathematical explanations exist (Resnik and Kushner 1987, Zelcer 2013), 
arguing that there is little empirical evidence to suggest that explaining is central to 
mathematicians’ practice. However, others vociferously dispute this (e.g. Colyvan 
2011, Weber and Frans, 2016). The dispute seems to turn on the extent to which 
practicing mathematicians use the notion of explanatory value in their own work. For 
example, Steiner (1978) claimed that “mathematicians routinely distinguish proofs 
that merely demonstrate from proofs which explain” (p.135). In contrast, Resnik and 
Kushner (1987) claimed that mathematicians “rarely describe themselves as 
explaining” (p. 151). Hafner and Mancosu (2005) responded by stating that 
“[c]ontrary to what Resnik and Kushner claim (p. 151), mathematicians often describe 
themselves and other mathematicians as explaining” (p. 223, emphasis in the 
original). Hafner and Mancosu (2005) supported this claim by presenting several 
examples of what they called explanatory talk in mathematical practice: passages of 
research mathematics papers in which the authors explicitly describe themselves or 
some piece of mathematics as explaining a given “mathematical phenomenon”. While 
this evidence is not sufficient to settle the disagreement, the specific cases discussed 
by Hafner and Mancosu have been interpreted in significantly different ways: 

“I believe that detailed case studies, such as those by Hafner and Mancosu 
(2005), decisively refute Resnik’s and Kushner’s [claim]” (Lange 2009, p. 
203, our emphasis). 

“Though philosophers have lately been pointing out some exceptions, the 
examples tend to be rather exotic (e.g., in Hafner and Mancosu 2005). There 
has been no systematic analysis of standard and well-discussed texts 
illustrating any pattern of mathematical explanations.” (Zelcer 2013, 179-180). 

Clearly – and contrary to Lange’s (2009) suggestion – it is impossible to decisively 
refute a claim that a given event is rare by identifying one or more instances of the 
event occurring. Instead, a systematic analysis of the type suggested by Zelcer (2013) 
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is needed. Attempts in this direction have been made, in scientific fields if not in 
mathematics. Overton (2013), for instance, analysed all regular articles published in 
the journal Science in a one-year period (a total of 781 papers and approximately 1.6 
million words). He searched for all ‘explain words’ (defined to be: explain, explains, 
explained, explaining, explainable, explanation, explanations, unexplained, 
unexplainable, explicate, explicates, explicated, explicable, inexplicable) and 
compared their frequencies to those of words of other types. Overton found that 
approximately 45% of the 781 papers contained at least one “explain” word (with an 
average of 0.96 “explain” words per article), and he concluded that: “The numbers for 
“explain” are perhaps surprisingly low if scientific journals are vehicles for 
explanations. […] The observed frequencies of “explain” words suggests that 
explanation is only moderately important in science.” (p. 1387). This low frequency 
of ‘explain words’ in articles in science—a field in which explanation is widely 
regarded as playing a central role—might warrant Zelcer’s (2013) scepticism of the 
predominance of explanatory talk in mathematics – a field in which even the 
existence of explanation is debated. One goal of this chapter is to shed light on this 
decades-old dispute among philosophers concerning the frequency with which 
mathematicians describe themselves or their mathematical work as explaining other 
mathematics. Like Overton (2013), we do this by analysing large collections of text.  

A second goal of this chapter is to explore the types of explanations mathematicians 
discuss in their explanatory talk. To date, analyses of mathematical explanations tend 
to differentiate between explanations of other mathematics (mathematics X explains 
mathematics Y, or X is an explanatory proof of theorem Y), and explanations of 
physical phenomena (mathematics X explains physical phenomenon Y). Colyvan 
(2011) referred to these as intra-mathematical and extra-mathematical explanations 
respectively. Hafner and Mancosu (2005) further differentiated between two uses of 
intra-mathematical explanations: those that are “instructions” on how to master the 
tools of the trade, explaining how to employ mathematical techniques, and those that 
“call for an account of the mathematical facts themselves, the reason why” (p. 217). 
While Hafner and Mancosu considered the latter to be a “deeper” use of mathematical 
explanation, others have emphasized the importance of the former in mathematical 
practice. For instance, Rav (1999) emphasized the mathematical methodologies and 
problem solving strategies/techniques contained in proofs, and insisted that one of the 
main reasons mathematicians read proofs is to glean this mathematical know-how:  

“Proofs are for the mathematician what experimental procedures are for the 
experimental scientist: in studying them one learns of new ideas, new 
concepts, new strategies—devices which can be assimilated for one's own 
research and be further developed.” (p. 20) 

This claim is consistent with empirical evidence from both small-scale interview 
studies and large-scale surveys asking mathematicians about their practice (Weber 
and Mejía-Ramos, 2011, Mejía-Ramos and Weber, 2014). But neither this claim nor 
the distinctions upon which it relies have been examined at scale in written 
mathematical research papers.  

In this chapter, we address this issue, reporting a study that employs methods of 
corpus linguistics to address the following specific questions:  
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1. To what extent do mathematicians describe themselves (or their 
mathematical work) as explaining mathematical phenomena in their 
research papers, and how does this compare with descriptions of 
explanation in physics discourse and in general, day-to-day discourse? 

2. How does the extent to which mathematicians describe themselves as 
explaining compare with the extent to which they describe themselves 
as engaging in related mathematical activities (such as proving 
theorems)? 

3. To what extent do mathematicians describe themselves as explaining 
why a certain mathematical statement is true, as compared with 
explaining how to do something in mathematics?  

III. Methods 

3.1 Collecting the Texts 

For our study, we needed a large sample of mathematics research papers, together 
with two comparison corpora: a large sample of research papers from another 
discipline, and corpora of general, day-to-day English. For our comparison 
disciplinary corpus, we collected physics research papers, and for our day-to-day 
English corpus we used both the British National Corpus (BNC) and the larger 
Corpus of Contemporary American English (COCA)1. To assemble our corpora of 
mathematics and physics research papers, we adopted two largely pragmatic criteria: 

1) Text should be in LaTeX format to enable consistent processing (discussed 
below). 

2) Text should be published non-commercially and freely available online. 

Based on these criteria, we used research papers uploaded to the ArXiv 
(https://arxiv.org/). The ArXiv is an online repository of electronic preprints of 
scientific papers in mathematics, physics, astronomy, computer science, quantitative 
biology, quantitative finance, and statistics; it is one of the main repositories that 
mathematicians and physicists around the world use to share their work. We 
downloaded the bulk source files (mostly TeX/LaTeX) containing all papers uploaded 
to the ArXiv in the first eight months of 2009 (which provided us with a large enough 
sample of more than 30,000 research papers), then converted the source code to plain 
text for use with standard corpus analysis software (all analyses reported in this paper 
were performed using CasualConc, version 2.0.3).  

3.2 Processing the Texts 

Converting mathematical language into a form that can be processed using the 
standard corpus linguistics software presents a challenge. Most professional 
mathematics is written using the TeX/LaTeX2 markup language, not plain text. Our 
                                                
1 COCA contains more than 560 million words of spoken, fiction, popular magazines, newspapers, and academic 
texts. 
2 TeX was developed in the 1970s (Knuth, 1979) to enable digital typesetting of structured documents containing 
mathematics.  Most professional mathematicians still write using TeX or the subsequent LaTeX markup language.  
TeX/LaTeX is written as plain text documents that include control codes to structure the document and codes to 
typeset the special symbolism used in mathematics.  The system consciously separated the encoding of the 
document from the processing and production of the human readable (e.g. printed) output. 
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first goal was therefore to create a method of converting LaTeX source code to plain 
text in a way that preserved the natural sentence structure of the language, but 
removed non-linguistic features of the source code (the code “\textbf{text}” for bold 
text, for instance). We constructed scripts to achieve this, converting LaTeX to 
analysis-ready plain text.3 

Another important question for the would-be creator of a mathematical corpus 
concerns how to deal with inline mathematical notation. For instance, a typical 
mathematical sentence might be “Let 𝑓:𝑋 → 𝑌  be a bijection.” How should 
“𝑓:𝑋 → 𝑌” appear in a plain text corpus? One approach would be to leave the LaTeX 
source code intact and analyse the code as if it were natural language. The difficulty 
with this option is that there are several different ways in which one could encode 
“𝑓:𝑋 → 𝑌” in LaTeX. For instance, “$f:X\rightarrow Y$” and “\(f:X\rightarrow Y\)” 
produce identical output, and “$f\,:\,X\longrightarrow Y$” differs only stylistically 
(the spacing is wider and length of the arrow slightly longer). We therefore felt that 
retaining the LaTeX codes would be unhelpful for the majority of questions a 
researcher would wish to answer using a mathematical corpus. A second option would 
be to delete all mathematical code entirely, and record the example above as “Let be a 
bijection”. We rejected this option because failing to preserve the logical structures of 
sentences would influence certain analyses (those that investigate the collocation of 
words, for instance). Instead we opted to replace all occurrences of inline 
mathematics with the string “inline_math” (although this choice of string can be 
altered by users of our scripts if desired).  

3.3 Analyzing the Corpus 

With the source files processed, we sorted the articles using their primary subject 
classification (mathematics, physics, etc.) to assemble our two disciplinary corpora: 
one containing the processed text of all mathematics papers and the other containing 
the processed text of all physics papers. As noted above, one benefit of working with 
these large datasets is that a researcher can partition a large corpus into smaller 
samples that remain sufficiently large to conduct statistical analyses. This provides 
samples for both exploratory and confirmatory analyses: the researcher can perform 
initial analyses on one sample and then test whether the corresponding findings 
replicate when the same analyses are performed on a different sample. With this in 
mind, we split each disciplinary corpus into two smaller samples based on the month 
in which the papers had been uploaded: for each discipline, the first sample contained 
the papers uploaded in January-April 2009, and the second sample contained the 
papers uploaded in May-August 2009.  

IV. Results 

Table 1 presents the number of physics and mathematics papers uploaded to the 
ArXiv in January-April and May-August of 2009, together with the number of words4 
in each set of papers. We notice that in those eight months, researchers uploaded 

                                                
3 These scripts are freely available for research purposes at https://github.com/sangwinc/arXiv-text-extracter. 
4 A word here is any string of characters between spaces. As discussed above, for these analyses we opted to 
replace all occurrences of inline mathematics with the string “inline_math” and count it as one word. For instance, 
the string “Let 𝑓:  𝑋   →   𝑌 be a bijection” in a paper, coded in LaTeX by the authors as “Let $f:X\rightarrow Y$ be 
a bijection”, would have been translated to text as “Let inline_math be a bijection” and coded as having 5 words. 
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approximately 2.4 times as many physics papers as mathematics papers. We also 
notice that, on average, physics papers contained around 5,000 words, whereas 
mathematics papers contained around 6,200 words. 

 January-April 2009 May-August 2009 

 
#papers #words #papers #words 

Mathematics 5,087 30,892,695 4,970 31,289,569 
Physics 11,787 58,859,660 12,370 62,807,075 

 

Table 1. Number of papers and words in the physics and mathematics corpora 

We used the January-April sample to address each of our research questions and the 
resulting analyses are presented in Sections 4.1-4.3.  In Section 4.4, we briefly present 
the analyses of the replication using the May-August sample. 

4.1 Absolute and relative frequency of ‘explanatory talk’  

Following Overton (2013), we defined ‘explain words’ to be 18 words linguistically 
related to the word explain5: 

‘Explain words’:  explain, explains, explained, explaining, explainable, 
explanation, explanations, explanatory, unexplained, 
unexplainable, explicate, explicates, explicated, 
explicating, explicable, inexplicable, explication, 
explications. 

Table 2 shows the frequencies of ‘explain words’ in our corpus of 5087 mathematics 
papers and 11787 physics papers uploaded between January and April of 2009. 
‘Explain words’ occurred a total of 4910 times in the mathematics papers (around 159 
times per million words), an average of 0.97 times per paper, with 1898 of 
mathematics papers (approximately 37%) in this sample containing at least one 
‘explain word’. This provides an existence proof of explicit explanatory talk in this 
corpus. In order to assess whether this is a large or small frequency, we conducted the 
same analysis on the physics corpus.  

In comparison, ‘explain words’ showed up 21345 times in the corresponding set of 
physics papers (around 363 times per million words), an average of 1.81 times per 
paper, with 6499 of these papers (roughly 55%) containing at least one ‘explain 
word’. Thus, the number of ‘explain words’ per million in the physics papers is 
around 2.28 times that of the mathematics papers.  

                                                
5 Our aim was to be consistent with Overton’s (2013) analysis. However we decided to include the words 
explanatory, explication, explications, and explicating given their close relation to some of the 14 words in 
Overton’s (2013) original analysis (e.g. the original list included explicate, but not explication). However, as Table 
2 shows, these additional words did not appear frequently in these corpora of research papers. Indeed, only five 
‘explain words’ (explain, explained, explanation, explains, and explaining) make up more than 95% of all 
appearances of ‘explain words’ in each of these two corpora. 
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 Mathematics Physics 
 frequency per million frequency per million 

explain 1827 59.14 

54.7 

7768 131.97 
explained 1690 54.71 

 

6513 110.65 
explanation 498 16.12 3564 60.55 
explains 484 15.67 1601 27.20 
explaining 175 5.66 914 15.53 
explanations 119 3.85 675 11.47 
explanatory 51 1.65 62 1.05 
unexplained 22 0.71 177 3.01 
explication 13 0.42 4 0.07 
explicated 10 0.32 15 0.25 
explicate 6 0.19 5 0.08 
explicating 5 0.16 0 0.00 
unexplainable 4 0.13 8 0.14 
explications 4 0.13 2 0.03 
explainable 1 0.03 23 0.39 
explicates 1 0.03 1 0.02 
explicable 0 0.00 9 0.15 
inexplicable 0 0.00 4 0.07 

Total 4910 158.92 21345 362.63 
Table 2. Frequency and frequency per million words of ‘explain words’ appearing in 
the January-April mathematics and physics papers 

Figure 1 compares across corpora, displaying frequencies per million words of 
‘explain words’ in the mathematics papers, the physics papers, and the two general 
English corpora. We note that while the number of ‘explain words’ per million in the 
physics papers (362.63) is roughly 1.4 times higher than that in COCA (250.97) or the 
BNC (260.01), the frequency of ‘explain words’ in these day-to-day English corpora 
is still around 1.6 times higher than that of the mathematics papers (158.92). 
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Figure 1. Frequency of ‘explain words’ (per million words) in the mathematics, 
physics, COCA, and BNC corpora. 

4.2 Explanation versus related notions  

To assess the extent to which the observed frequencies of ‘explain words’ were high 
or low within mathematical discourse, we compared them against the frequencies of 
words related to other intuitively important mathematical activities. Table 3 presents 
the frequencies of words linguistically related to the notions of conjecturing, defining, 
modeling, proving, showing, and solving. 

‘Conjecture words’: 6 conjecture, conjectured, conjectures, conjectural, 
conjecturally, conjecturing. 

‘Define words’:  defined, define, definition, defines, definitions, 
defining, definable, undefined, redefine, redefined, 
definability, redefinition, definably, redefining, 
welldefined, definedness, interdefinable, predefined, 
redefinitions, interdefinability, redefines, definitional, 
definitionally, undefinability, undefinable. 

‘Model words’: model, models, modeled, modeling, modelled, 
modelling, countermodel, submodel, submodels, 

                                                
6 For each group, words are listed in order of frequency, with the most frequent words in the group listed first. The 
italicized words in each group make up 95% of all instances of words from that group appearing in the 
mathematics papers uploaded in the first four months of 2009. 
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modelized, modelization, modelisation, modelize, 
modelizing, countermodels, premodel, remodeled. 

‘Prove words’: proof, prove, proved, proves, proofs, proving, proven, 
provable, reprove, disprove, provability, provably, 
reproved, disproved, unprovable, unproven, 
reproving, disproving, reproves, prover, unproved, 
subproof, disproof, disproven, disproves, reproven. 

‘Show words’:  show, shows, shown, showed, showing. 

‘Solve words’:  solution, solutions, solve, solving, solvable, solved, 
solves, resolvent, solvability, subsolution, resolved, 
resolving, supersolution, resolve, solver, resolvents, 
unsolved, resolves, solvers, nonsolvable, 
supersolutions, subsolutions, unresolved, nonsolvable, 
unsolvable, cosolvable, equisolvable, supersolvable, 
unsolvability. 

 frequency per million per paper in #papers in %papers 
define 124129 4018.07 24.40 4838 95% 
prove 111838 3620.21 21.99 4710 93% 
show 59359 1921.45 11.67 4691 92% 
solve 53013 1716.04 10.42 3073 60% 
model 23658 765.81 4.65 2013 40% 
conjecture 8362 270.68 1.64 1413 28% 
explain 4910 158.94 0.97 1898 37% 
Table 3. Frequencies of words related to explaining, conjecturing, defining, modeling, 
proving, showing, and solving in the January-April mathematics papers. The last two 
columns provide the number of papers containing at least one word in that group and 
the percentage of such articles 

Measured against these other frequencies, mathematicians used ‘explain words’ rather 
infrequently. For instance, mathematicians used ‘explain words’ in their papers 
approximately 12 times less frequently than ‘show words’ and nearly 23 times less 
frequently than ‘prove words’.  

So far, our study of explanatory talk has investigated the use of ‘explain words’. This 
approach has the virtue of focusing on unambiguously explicit discussion of 
explanation, but could potentially leave unnoticed a significant amount of explanatory 
talk (i.e. mathematicians describing themselves or their work as explaining some 
mathematical phenomenon). For instance, the main case of explanatory talk discussed 
by Hafner and Mancosu (2005) highlights how a mathematician described one of his 
proofs as providing “the true reason why” a given mathematical phenomenon was the 
case. Clearly, this is a case of explanatory talk that does not use ‘explain words’. 
However, a difficulty of expanding our investigation to expressions that do not use 
‘explain words’ is that these alternative expressions may not actually indicate the 
presence of explanatory talk. For instance, Overton (2013) argued that the use of 
words such as ‘because’ (which he found to be ubiquitous in his corpora) may not 
really indicate the presence of scientific explanations (p. 1387). Fortunately, Hafner 
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and Mancosu (2005) identified eight expressions that they found to be commonly 
used in the literatures of mathematics and philosophy of mathematics to describe the 
search for mathematical explanations. Table 4 presents these expressions along with 
the specific concordance search we made to investigate their prevalence in the 
mathematics and physics papers, and the frequencies with which these alternative 
expressions appeared. The total number of occurrences of these expressions is only 
about 10% of the total number of ‘explain words’ in each set of papers. Furthermore, 
there were disproportionately more occurrences of these expressions in physics than 
in mathematics, so this analysis does not materially affect the findings based on 
‘explain words’ only. We suggest, therefore, that Hafner and Mancosu (2005) may 
have overestimated how common these expressions are in mathematics research 
papers. We are also left wondering to what extent such common alternative 
expressions exist. 

Alternative expression Concordance search7 Mathematics  Physics 
"the deep reasons" deep* reason* 5 16 
"an understanding of the 
essence" 

understand* of the essence 0 0 
understand* the essence 0 5 

"a better understanding" better understand* 161 767 
"a satisfying reason" satisfy* reason 0 0 
"the reason why" reason* why 312 924 
"the true reason" true reason* 3 1 
"an account of the fact" an account of the fact 0 0 
"the causes of" cause* of 16 609 

 Total 497 2322 
Table 4. Frequencies of alternative expressions related to explanatory talk in the 
January-April mathematics and physics papers 

4.3 Explaining why versus explaining how  

To compare mathematicians’ propensity to describe themselves as explaining why a 
certain mathematical statement is true (Hafner and Mancosu’s “deep” explanation) 
with their propensity to describe themselves as explaining how to do something in 
mathematics (related to Rav’s notion of mathematical know-how), we created a 
concordance to identify every instance in which an explain word was followed 
immediately by the words why or how. We did this by searching the concordance for 
*expla* why and *expla* how, and checking that all results were indeed uses of 
‘explain words’. We then repeated the process with the corpus of physics papers.  

When taken together, the total of *expla*-why and *expla*-how expressions were 
roughly as common in math papers as they were in physics papers, with 
approximately 22 of these expressions showing up per million words in each set of 
papers; they formed a relatively small subset of the wider use of ‘explain words’ 
(roughly 14% and 6% of explain word usage in mathematics and physics, 
respectively).  However, as shown in Table 5, the distributions of these two different 
types of expressions in the mathematics and physics papers differed significantly 
                                                
7 In concordance searches an asterisk can be used as a wildcard to find words (or expressions with words) that 
contain a particular string of characters, but with potentially different beginnings or endings. For instance, a search 
for “deep* reason*” would find the expressions “deeper reasons” and “deep reasoning”. 
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(Fisher’s exact test, p < .001). Mathematicians used nearly twice as many *expla*-
how expressions as *expla*-why expressions; physicists used between two and three 
times as many *expla*-why expressions as *expla*-how expressions. Furthermore, 
general English is more similar to physics than to mathematics in use of these 
expressions.  Figure 2 shows that the frequency of *expla*-why expressions in 
general English is around 15 per million words, and that *expla*-how expressions 
occur roughly half as frequently. 

 Mathematics Physics 

 
frequency per million frequency per million 

*expla* why 247 7.99 952 16.17 
*expla* how 458 14.83 353 6.00 

Total 705 22.82 1305 22.17 
Table 5. Frequencies and frequencies per million words of ‘explain words’ 
immediately followed by the words why or how in the January-April mathematics and 
physics papers. 

 

Figure 2. Frequencies of ‘explain words’ immediately followed by the words why or 
how in the mathematics, physics, COCA, and BNC corpora. 

4.4 Replication using the May-August 2009 papers 

To replicate our analyses, we used the May-August 2009 papers from the ArXiv. 
Table 6 presents the frequencies of ‘explain words’ appearing in the May-August set 
of mathematics and physics papers, while Table 7 presents the frequencies of ‘explain 
words’ immediately followed by the words why or how in these sets of papers. 
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Table 6 reveals the same pattern of frequencies as Table 2. Indeed, the same five 
‘explain words’ (explain, explained, explanation, explains, and explaining) made up 
95% of all ‘explain words’ in each set of papers. Furthermore, the number of ‘explain 
words’ per million was very similar in the two sets of papers (158.94 and 163.63 in 
mathematics; 362.64 and 351.60 in physics), with around 2.15 times more ‘explain 
words’ per million in the physics papers than in the mathematics papers. 

Table 6. Frequency and frequency per million words of ‘explain words’ appearing in 
the May-August mathematics and physics papers. 

 Mathematics Physics 

 
frequency per million frequency per million 

*expla* why 277 8.85 970 15.44 
*expla* how 526 16.81 464 7.39 

Total 803 25.66 1434 22.83 
Table 7. Frequency and frequency per million words of ‘explain words’ immediately 
followed by the words why or how in the May-August mathematics and physics 
papers. 

Similarly, the frequencies presented in Table 7 are consistent with those in Table 5: 
the numbers of *expla*-why and *expla*-how expressions per million were similar in 
each discipline (25.66 in mathematics; 22.83 in physics), but there were significantly 
different distributions of these types of expressions in the two sets of papers (Fisher’s 
exact test, p < .001). Again, mathematicians used nearly twice as many *expla*-how 
expressions as *expla*-why expressions, and physicists used a little over twice as 
many *expla*-why expressions as *expla*-how expressions.  

 Mathematics Physics 
 frequency per million frequency per million 
explain 1881 60.12 7974 126.96 
explained 1841 58.84 6596 105.02 
explanation 537 17.16 3788 60.31 
explains 525 16.78 1694 26.97 
explaining 166 5.31 954 15.19 
explanations 98 3.13 740 11.78 
explanatory 36 1.15 78 1.24 
unexplained 19 0.61 159 2.53 
explication 1 0.03 5 0.08 
explicated 6 0.19 12 0.19 
explicate 6 0.19 12 0.19 
explicating 0 0.00 5 0.08 
unexplainable 0 0.00 1 0.02 
explications 2 0.06 5 0.08 
explainable 1 0.03 24 0.38 
explicates 0 0.00 0 0.00 
explicable 0 0.00 24 0.38 
inexplicable 1 0.03 12 0.19 

Total 5120 163.63 22083 351.60 
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V. Discussion 

Our analysis of explanatory language in a large sample of mathematics papers allows 
us to offer empirically justified contributions to philosophical debates. We relate our 
findings now to various points raised in our opening sections. 

First, our findings do not support the often-made claim in the philosophy of 
mathematics that explanatory talk is prevalent in mathematical writing. Indeed, 
mathematics research papers contain less than half the amount of ‘explain words’ in 
physics research papers, and less than two-thirds the amount in general English. Even 
within the subject, mathematicians discuss explanation less than other practices such 
as solving problems and proving theorems. Nevertheless, our data are also 
inconsistent with Zelcer’s (2013) claim that mathematicians “rarely” talk about 
explanation, whereas this is “the standard vocabulary” of science: we found around 
160 ‘explain words’ per million in mathematics and 360 per million in physics. So, 
although discussion of explanation is less common in mathematics, it is far from non-
existent. Philosophers who appeal to mathematical practice to justify the importance 
of studying mathematical explanation will find succour in our data.  

Second, our data shed light on the types of explanation discussed by mathematicians. 
We found that when mathematicians engage in explanatory talk, they seem more 
often interested in explaining how to do something in mathematics than in explaining 
why things are the way they are. In both physics and general English we found the 
opposite. This is particularly interesting given the concern philosophers of 
mathematics devote to intra-mathematical explanations of the form X explains why Y 
(where X and Y are mathematical assertions), and particularly to the notion of 
explanatory proofs in which proof X explains why theorem Y is true (Colyvan 2011; 
Steiner 1978). Perhaps this concern has been inherited from more traditional study of 
scientific explanation, where scientists wish to answer why-questions about the real 
world and where, according to our findings about physics, this is reflected in their 
written discourse. Our findings suggest that a focus on explaining why may be 
misguided for those interested in explanation in the discourse of professional 
mathematicians. Indeed, as suggested by Rav (1999), it seems that when it comes to 
proofs and explanations, mathematicians communicate more in terms of learning how 
to solve problems than in terms of learning why mathematical results hold true. 

Of course, as with any empirical work, one must be careful about several of the 
inferential jumps made in this kind of analysis. First, while the ArXiv may well be the 
world’s largest, most widely used repository of mathematical preprints and postprints, 
it nevertheless represents a specific type of mathematical discourse. Our work thus 
leaves open the possibility that studies of mathematical discourse in settings such as 
conversational or other digital communications could lead to contrasting findings. 
Perhaps, for instance, mathematicians are more willing to discuss explanations in 
general and answers to why questions in particular when communicating in “live” 
verbal settings. Second, we have analysed these research papers for a potentially 
limited type of explanatory talk, requiring the use of ‘explain words’ or a limited 
number of alternative, related expressions. While this was an obvious place to start, it 
is certainly possible that analysing other expressions related to mathematical 
explanation might alter our results. These limitations indicate clear avenues for future 
empirical research on mathematical explanation. 
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