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Abstract: The desalination techniques, such as reverse osmosis, distillation, capacitive 21 

deionization, and battery desalination, require lots of electrical or thermal energy 22 

consumption. Herein, we propose a consumption-free electrochemical desalination method 23 

based on the light-driven photocathode with Pt/CdS/Cu2ZnSnS4(CZTS)/Mo architecture. 24 

Modification of a CdS layer under CZTS can improve the desalination performance due to 25 

the inner p-n junction formed between CdS and CZTS that enhances the separation of the 26 

photoexcited carriers without recombination. This photocathode-assisted electrodialysis 27 

desalination plays the dual functions of both energy conversion and ion removal with the 28 

blocking of ion exchange membranes. The [Fe(CN)6]
4-/3- redox couples are recirculated 29 

between anode and photo-cathode as electrolyte while the salt streams are fed into middle 30 

compartment. Under light illumination, this architecture produces the photo-generated 31 

electrons to the redox couples with the conversion of [Fe(CN)6]
3- to [Fe(CN)6]

4- at the 32 

positive chamber, causing the cations capture in the presence of ion-exchange membrane. At 33 

the same time, [Fe(CN)6]
4- is oxidized at the negative reservoir. The light-driven 34 

electrochemical reaction of electrolyte redox couples can result in the continuous desalination 35 

process. This work will be significant for the consumption-free photoelectrochemical 36 

desalination research. 37 

Keywords: Photo-desalination, electrochemical desalination, photo-cathode, Cu2ZnSnS4. 38 

 39 
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1. Introduction 41 

The zero discharge of industrial wastewater is of the key importance nowadays, and the 42 

people's demand for fresh water resources is steadily increasing, which has become one of 43 

the world's challenges1-9. According to the estimation from World Health Organization 44 

(WHO), more than 20 % of world’s population are facing the inadequate drinking water10. 45 

The ocean accounts for 97.3 % of the total water reserves on the earth11. To solve the crisis of 46 

freshwater, a lot of effort has been paid to seawater desalination. There are several methods 47 

adopted as the desalination technologies, such as multi-effect distillation (MED), multi-stage 48 

flash (MSF), reverse osmosis (RO), electrodialysis (ED) etc.12-17 However, these technologies 49 

require the energy input like thermal or electrical energy, which is a burden in the era of 50 

energy shortage. For example, the energy expense of the matured RO, MSF or MED accounts 51 

for 50-77 % among the total cost 3, 18. The energy consumption may critically affect the 52 

future of these technologies. It is necessary to look for the renewable energy supply to drive 53 

the desalt process. The direct photovoltaic desalination and solar thermal desalination have 54 

been widely investigated using the sustainable solar energy. In a photovoltaic (PV) 55 

desalination system, PV powered reverse osmosis (PV-RO) has emerged as a mature and 56 

commercially available technology which has been studied in depth 19-26. In PV, the 57 

semiconductor p-n junction on the solar panel absorbs sunlight to form electron-hole pairs. 58 

Under the effect of the built-in electric field in the p-n junction, the holes flow from N region 59 

to the P region, and the electrons flow from the P region to the N region, forming a current 60 

output electric energy. RO is a pressure-driven desalination technology which consumes 61 

large energy. Thus, PV-RO desalination system uses PV power supply to solve the energy 62 

consumption problem in RO 27-29. As for the solar thermal desalination, a solar thermal 63 

collector absorbs solar radiation and converts it into localized heat, leading to seawater 64 

evaporation 30-37 In general, a solar thermal evaporation desalination system contains two 65 
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layers: The top solar absorbing layer which has high absorption in the solar spectrum absorbs 66 

and converts the incident solar radiation into heat; The bottom thermal insulating layer which 67 

prevents the heat loss and increases the solar thermal efficiency is used to transport water to 68 

the surface heat region. For example, Kim et al. designed an efficient solar desalination 69 

device with a highly solar-to-vapor conversion efficiency of 91.8% under one sun 70 

illumination 38. The device was constructed with a three-dimensional mesopores graphene 71 

network as the photo-absorber material at the top layer and a water-transporting layer (wood 72 

piece) as thermal insulation on the body. The mesopores in the photo-absorber material 73 

enhance the light absorption and help the generated vapors escape into the air. The wettable 74 

wood piece provides very efficient water paths by capillary force. Yin et al. developed a 75 

high-efficiency solar steam generation device with solar-to-vapor conversion efficiency of 76 

91.5% under one sun illumination 39. The designed device utilized macroporous double-77 

network hydrogel of poly(ethylene glycol) diacrylate (PEGDA) and PANi as the light 78 

absorbing layer and the cellulose-wrapped layer served as both thermal insulation and water 79 

supply. Except for the direct photovoltaic desalination and solar thermal desalination, the 80 

photoelectrochemical desalination has emerged recently. For instance, Liang et al. proposed a 81 

bio-photo-electrochemical desalination cell with a bio-photocatalyst anode and K3[Fe(CN)6] 82 

catholyte 40. However, the salt can be intermittently removed due to the two separated 83 

electrodes, and an additional medium is required in order to avoid the bacteria growth on the 84 

anode. More recently, Kim et al. proposed the water-energy nexus technology 41, including 85 

the tri-functions of desalination, energy conversion and hydrogen production. The photo-86 

generated charge carriers were produced by photo-anode with TiO2 nano-rod arrays to 87 

facilitate the ion transportation, resulting in the desalination at middle salt compartment and 88 

the electricity production outside. However, there are still some issues in the system such as 89 

chloride oxidation, the pH value changes and the reduced energy efficiency etc. In our recent 90 
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work, we reported a photo-anode-based continuous desalination unit based on the redox 91 

reaction of 4-hydroxy-2, 2, 6, 6-tetramethylpiperidine 1-oxyl (TEMPO) 42, which consists of 92 

TiO2 photoanode modified with LEG4 dye and TEMPO redox electrolyte. The salt removal 93 

rate (SRR) is very limited due to the low photocurrent but still serves as an important proof-94 

of-concept for the continuous photo-desalination. Up till now, the photo-desalination based 95 

on photocathode hasn’t been demonstrated yet. During the past few years, CZTS has been 96 

widely explored as the promising candidate for thin film solar cell because of its optimum 97 

band gap energy (1.5 eV) and high absorption coefficient (104 cm-1) with a good absorption 98 

ability in the visible region 43, 44. Moreover, CZTS is regarded as a low-cost, earth-abundant, 99 

toxic-element-free and sustainable photocatalyst with high light absorption and good stability 100 

45, 46. The combination of CdS layer and CZTS can form an internal p-n junction, which 101 

promotes the separation of photo-induced electrons and holes by the built-in electric field and 102 

thus improving the desalination performance 47. 103 

In this work, we propose a photocathode-assisted redox-flow electrochemical desalination 104 

method by utilizing the light absorber CdS/CZTS as photocathode, carbon cloth coated with 105 

Pt nanoparticles as anode, [Fe(CN)6]
4-/[Fe(CN)6]

3- as redox electrolyte. The reduction of 106 

ferricyanide happens with the cation extraction from the near salt stream through cation ion 107 

exchange membrane which is driven by CdS/CZTS photocathode, while the anions in the 108 

diluted stream are transferred to other concentrated salt stream through anion ion exchange 109 

membrane, resulting in the desalination. This present work can achieve the continuous 110 

desalination by circulating the redox flow electrolyte based on the CdS/CZTS photocathode 111 

illumination. Deposition of a CdS layer on CZTS can form an inner p-n junction at the 112 

interface of CdS/CZTS which not only enhances the separation rate of photoexcited carriers 113 

but also reduces surface recombination, and thus generally enhancing photocathode 114 

performance. This new consumption-free electrochemical desalination method based on the 115 
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light-driven photocathode with Pt/CdS/CZTS/Mo architecture was firstly proposed which 116 

might open up an avenue for energy-free desalination based on the photocathode illumination, 117 

and will further motivate the development of photocathode materials to enhance the 118 

electrochemical desalination performance. 119 

 120 

2. Materials and methods 121 

2.1  Materials and Fabrication of photocathode 122 

The specifications of chemicals in this work can be given as follows: SC(NH2)2 (Macklin, 123 

99%), Cu(NO3)2 (Macklin, 99.99%), Zn(NO3)2 (Aladdin, 99.99%), Sn(CH3SO3)2 (Macklin, 124 

50 wt. % in H2O), HNO3 (Macklin, 98%), CdSO4 (Macklin, 99%), NH4OH (Macklin, 25-125 

28%), H2PtCl6 (Macklin, 99.995%), K3Fe(CN)6 (Energy Chemical, 99%), K4Fe(CN)6·3H2O 126 

(Macklin, ≥99.5%) and NaCl (Aldrich, 99.5%). All these reagents were analytical grade and 127 

used without any purification. The water solution used in the experiment was prepared using 128 

deionized water. 129 

The preparation process of the photocathode was reported elsewhere48-50. In brief, the first 130 

layer of CZTS thin film was prepared using 50 mM thiourea, 17 mM copper nitrate, 11.5 mM 131 

zinc nitrate, and 11.5 mM tin methanesulfonate as precursor in aqueous condition. The pH 132 

value was adjusted to 1.5 using nitric acid before spraying onto Mo-coated soda-lime glass 133 

substrate (Mo/glass) that was preheated for 10 min at 380 ℃. Finally, the obtained CZTS thin 134 

film was further sulfurized using sulphur powder source at 600 ℃ for 30 min. The second 135 

layer of CdS film was deposited using the chemical bath deposition method (CBD) as follows: 136 

as-synthesized CZTS film was dipped into an aqueous solution of 12.5 mM CdSO4, 0.22 mM 137 

SC(NH2)2, and 11 M NH4OH for 13 min at 60 ℃. The final catalyst layer of Pt particles was 138 

deposited on the CdS/CZTS films by photoelectrodeposition. The deposition was conducted 139 
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using a three-electrode electrochemical system with CdS/CZTS as working electrode, Pt 140 

sheet as counter electrode, Ag/AgCl as reference electrode in 0.1 M Na2SO4 solution 141 

containing 1 mM H2PtCl6 as electrolyte. During the deposition process, the working electrode 142 

was illuminated by the simulated AM 1.5G solar irradiation with 300 W Xenon lamp for 30 143 

seconds. 144 

 145 

2.2 Fabrication of PC-ED device (photocathode electrochemical desalination) 146 

The PC-ED cell comprises two redox streams (RS), two salt streams (SS), photocathode 147 

(PC) and counter electrodes (CE). The configuration is sequenced as follows: 148 

PC | RS || SS || SS || RS | CE 149 

where “|” denotes the separation of components, and “||” represents the membranes which 150 

play an important role in the effective separation of molecules51, 52, i.e., anion exchange 151 

membrane (AEM) or cation exchange membrane (CEM). One AEM was inserted between 152 

the two salt streams A and B as shown in Figure 1a. Two CEMs were placed between redox 153 

flow and salt streams. The redox electrolyte contains a mixture of 40 mM of potassium 154 

ferrocyanide and potassium ferricyanide with the addition of 2000 ppm of NaCl. The salt 155 

stream contains the same concentration of NaCl as that in the redox chambers.  156 

The anode and cathode chambers were both fed with ferri-/ferrocyanide solution with 157 

concentration of 40/40 mM. The electrolytes were prepared by dissolving K3Fe(CN)6 and 158 

K4Fe(CN)6·3H2O with a mole ratio of 1:1 in a 2000 ppm NaCl solution. The total volume 159 

was 4 ml. The desalination and concentrate chambers (A and B) were fed with the same 160 

concentrations of NaCl with 2000 ppm as initial salt feeds and each volume was 1.35 ml. The 161 

thickness of each plate was 3 mm. In the centre of this compartment, the square-cut area 162 

exposed to the electrolyte was about 1 cm2, which was the active membrane area applied. The 163 
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tube with 1 mm diameter was applied in the tests, and the flow rates were controlled at 4.15 164 

ml/min. 165 

 166 

2.3 The tests of electrochemistry, photo-electrochemistry and desalination   167 

The electrochemical measurements of cyclic voltammetry (CV) and electrochemical 168 

impedance spectroscopy (EIS) were conducted by an electrochemical working station 169 

(CHI760E) with a conventional three-electrode system. Glassy carbon, Pt sheet and Ag/AgCl 170 

electrodes are served as working electrode, counter electrode and reference electrode, 171 

respectively, and 40 mM/40 mM [Fe(CN)6]
4-/[Fe(CN)6]

3-
 solution containing 2000 ppm NaCl 172 

as electrolyte. The linear sweep voltammetry (LSV) was also tested with three electrodes, 173 

whereas the selected working electrode was photocathode material (CdS/CZTS), the other 174 

two electrodes and electrolyte were same as CV and EIS tests. The photo-driven discharge of 175 

PC-ED at zero bias was conducted by CHI760E Potentiostat with I-t program. The photo-176 

driven discharge of PC-ED with the constant current was measured by NEWARE Battery 177 

Testing System. The flow rate of salt and redox solution was controlled by peristaltic pump 178 

(NKCP-C-S04B). The conductivity of the salt concentration was monitored by conductivity 179 

meters (eDAQ, EPU357). The controllable wavelength of 400-800 nm was used as the 180 

continuous light source from A YSL Photonics SC-Pro, and a concave lens was located 181 

between the light source and the device to enlarge the light spot in order to cover the whole 182 

photocathode. The light source output spectrum was measured by a spectrometer (Maya2000 183 

Pro, Ocean Optics). 184 

 185 

3. Results and discussion 186 

The SEM scan was conducted for the surface morphology of CdS/CZTS as shown in 187 

Figure S1. It was clearly observed that CdS is well covered on the surface of CZTS grains 49. 188 
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Figure S2 demonstrates the photograph of photocathode electrochemical desalination (PC-ED) 189 

device set-up with illumination and Figure 1a shows the schematic configuration for PC-ED 190 

device. The PC-ED device consists of four compartments, three membranes and two 191 

electrodes. The [Fe(CN)6]
4-/3- redox couples are recirculated using a peristaltic pump in 192 

negative and positive chambers. The other two middle compartments are fed with salt 193 

streams (stream A & stream B), and circulated individually. The salt stream A and stream B 194 

are separated by anion exchange membrane (AEM) and two cation exchange membranes 195 

(CEM) are placed between salt streams and the redox-flow chambers. The mechanism of 196 

photocathode is displayed in Figure 1b. Upon illumination, CZTS photo active material is 197 

excited and generated the electrons at conduction band (CB), followed by electrons 198 

acceptance by the nearby n-type semiconductor CdS and tunnelling to Pt layer that expedites 199 

the reduction of ferricyanide ion. Simultaneously, the sodium ions in stream A are coupling 200 

extracted to photo-cathode chamber through CEM in order to compensate the static balance 201 

while chloride ions are transmitted to stream B through AEM. The extracted sodium ions are 202 

carried to the anode compartment together with the redox couples. With the further oxidation 203 

back to ferricyanide, the sodium ions in anode chamber are released to stream B. In the 204 

outside circuit, the electrons from the anode collector are provided to the excited state of 205 

CZTS holes via the conducting Mo layer. The overall effect is that the salt in stream A is 206 

removed to stream B under the light illumination on the CdS/CZTS cathode.  207 
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 208 

Figure 1: (a) The schematic diagram of PC-ED device; (b) The internal reaction mechanism 209 

of photocathode; (c) The absorption spectra of photocathode and light source; (d) The I-V 210 

curves of CdS/CZTS electrode under dark and 153 mW/cm2 illumination. 211 

  212 

Figure 1c shows the absorption spectra of CdS/CZTS and the continuous wavelength light 213 

source output spectrum with the range of 400-1000 nm. The CdS/CZTS absorption spectra 214 

overlap well with the light source spectrum between 420 nm and 800 nm. Therefore, the 215 

sufficient photons will be absorbed by CdS/CZTS layers in this research. The I-V curves of 216 

CdS/CZTS with/without illumination are demonstrated in Figure 1d. The current density can 217 

reach 1.4 mA/cm2 under light irradiation with power of 153 mW. However, the current 218 

density is close to zero in the dark condition. The obtained photocurrent can be used for the 219 

continuous electrochemical desalination. 220 
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 221 

To investigate the redox reaction of [Fe(CN)6]
4-/3- couples, the CV technique is utilized by 222 

the electrochemical working station with the glassy carbon as working electrode, Pt sheet as 223 

counter electrode and Ag/AgCl as reference electrode in an aqueous medium that contains the 224 

40 mM/40 mM of [Fe(CN)6]
4-/3- redox couples and 2000 ppm of NaCl. As shown in Figure 225 

2a, a pair of redox peaks are assigned to oxidation at 0.45 V and reduction at 0.07 V. 226 

According to the Nernst Equation (1)53: 227 

𝐸𝑟𝑒𝑑𝑜𝑥 = 𝐸
0
𝑟𝑒𝑑𝑜𝑥 + 

𝑅𝑇

𝑛𝐹
ln [

𝐶𝑜𝑥

𝐶𝑟𝑒𝑑
]                  (1) 228 

where Cox and Cred are concentrations of [Fe(CN)6]
3- and [Fe(CN)6]

4-. During the 229 

desalination process, the concentration of [Fe(CN)6]
3- is equal to the concentration of 230 

[Fe(CN)6]
4-. Thus, 𝐸𝑟𝑒𝑑𝑜𝑥 = 𝐸

0
𝑟𝑒𝑑𝑜𝑥 ≈ 𝐸1/2. Furthermore, the standard hydrogen electrode 231 

(SHE) appears at -4.5 eV at the vacuum level, and the relationship between the redox 232 

potential Eredox and the Fermi level EF, redox can be presented in the below equation (2)54: 233 

𝐸𝐹,𝑟𝑒𝑑𝑜𝑥 = −4.5 eV − 𝑒𝑜𝐸𝑟𝑒𝑑𝑜𝑥                 (2) 234 

Combined Eq. (1-2) and CV curve, 𝐸𝑟𝑒𝑑𝑜𝑥 = 𝐸1
2

= 0.26 𝑉, eo = 1 (electron), the fermi 235 

level of the redox couple is found to be 𝐸𝐹,𝑟𝑒𝑑𝑜𝑥 = −4.76 𝑒𝑉, that matches well with the 236 

energy band of CdS/CZTS as an efficient charge transfer.  237 
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 238 

Figure 2: (a) The three-electrodes CV of [Fe(CN)6]
4-/3- with scanning rate of 10 mV/s; (b) 239 

EIS spectrum of CdS/CZTS recorded from 100 kHz to 1 Hz at zero bias; LSV curve of 240 

CdS/CZTS electrode under 153 mW/cm2 chopped illumination (c) and under different 241 

intensities of the output power density (d). 242 

 243 

To understand the charge transfer kinetics, the EIS was carried out using three electrodes. 244 

As shown in Figure 2b, the photocathode material has a smaller semi-circle on the EIS 245 

Nyquist diagram under light illumination, compared with the dark condition. This indicates 246 

the lower surface resistance, caused by the photo-induced carriers. Moreover, the 247 

photoelectrochemical properties of CdS/CZTS photoelectrodes were further determined by 248 

LSV under 153 mW/cm2 chopped illumination (Figure 2c). It is observed that the 249 

photocurrent difference between light and dark conditions is larger at the zero potential vs 250 
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Ag/AgCl. The photocurrent obtained under light conditions can be used for desalination. 251 

Figure 2d shows the effect of the power density of the light source on the photocurrent 252 

density. The specific photocurrent densities are 2, 2.7, 3.3 and 3.8 mA/cm2 at 0 V vs 253 

Ag/AgCl with the specific power densities of 10, 35, 95 and 153 mW/cm2, respectively. 254 

Among the tested batch, the highest photocurrent can be obtained at the power density of 153 255 

mW/cm2. Thus, this power density is chosen for further desalination. 256 

 257 

Figure 3a shows the variation of photocurrent intensity at zero bias under 153 mW/cm2 258 

illumination. It can be seen that after turning on the light, the photocurrent immediately 259 

jumped to 0.47 mA/cm2, then gradually decreased from 0.25 mA/cm2 with the prolongation 260 

of time. At the same time, the salt concentrations of the two salt channels (stream A & stream 261 

B) were recorded by conductivity meters, as shown in Figure 3b. The salt conductivity 262 

decreases from the initial 4143 uS/cm to 2866 uS/cm in stream A. The charge efficiency and 263 

salt removal rate are 0.64 and 1.06 μg·cm-2·min-1, respectively. At the same time, the salt 264 

conductivity in stream B increases from 4136 uS/cm to 6081 uS/cm. Thus, the salt in stream 265 

A is removed to stream B, which is driven by the photo-illumination. The relatively weak 266 

photocurrent results in a poor desalination performance which is affected by many factors 267 

such as ions exchange membranes, electrodes surface areas, the thickness of device as well as 268 

some other uncontrollable factors etc. Currently, we are working on some strategies to 269 

improve the photocurrent and desalination performance. 270 
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 271 

Figure 3: (a) Photo-driven current density at zero bias (short circuit) and (b) its 272 

corresponding conductivity variation; (c) Photo-driven discharge curve at 0.1 mA/cm2 273 

constant current density and (d) its corresponding conductivity variation.  274 

 275 

The photocatalytic desalination mechanism of PC-ED device can be described as follows; 276 

hʋ + 𝐶𝑑𝑆 𝐶𝑍𝑇𝑆⁄  → e(Pt)
−  + 𝐾3[𝐹𝑒(𝐶𝑁)6]

3− → 𝐾3(𝑁𝑎)[𝐹𝑒(𝐶𝑁)6]
4−      (3) 277 

𝑁𝑎(𝑆𝑎𝑙𝑡 𝑆𝑡𝑟𝑒𝑎𝑚 𝐴)
+

𝐶𝐸𝑀
→  𝐾3(𝑁𝑎)[𝐹𝑒(𝐶𝑁)6]

4−                                                  (4) 278 

𝐾3(𝑁𝑎)[𝐹𝑒(𝐶𝑁)6]
4− → 𝐾3[𝐹𝑒(𝐶𝑁)6]

3− + e(IE)
− + Na+                            (5) 279 

𝐸𝑥𝑐𝑒𝑠𝑠(𝑁𝑎+)
𝐶𝐸𝑀
→  𝑆𝑎𝑙𝑡 𝑆𝑡𝑟𝑒𝑎𝑚 𝐵                                                               (6) 280 

𝐶𝑙(𝑆𝑎𝑙𝑡 𝑆𝑡𝑟𝑒𝑎𝑚 𝐴)
−

𝐴𝐸𝑀
→  𝑆𝑎𝑙𝑡 𝑆𝑡𝑟𝑒𝑎𝑚 𝐵                                                            (7) 281 

 282 

Figure 3c shows the voltage curve under the discharge of 0.1 mA/cm2 constant current 283 

density, which was recorded with the battery tester. On the light illumination, the open-circuit 284 
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voltage (OCV) can reach 0.32 V immediately. Once applying the discharge current of 0.1 285 

mA/cm2, the voltage drops to 0.20 V and keeps decreasing gradually with the desalination 286 

process and the energy consumption of desalination cell. The salt conductivity is recorded in 287 

Figure 3d during the photo-discharge. The conductivity decreases from the initial 3988 uS/cm 288 

to 3945 uS/cm in stream A. The charge efficiency and salt removal rate are 0.16 and 0.52 289 

μg·cm-2·min-1, respectively. The salt conductivity in stream B rises from the initial 3982 290 

uS/cm to 4073 uS/cm after 60 minutes. There are some differences of conductivity change in 291 

stream A and stream B which may be due to the short desalination and small photo-current. 292 

Specifically, the desalination system is not stable at the initial stage, especially under the 293 

condition of small photocurrent. In the case of photo-driven desalination at zero bias (short 294 

circuit) in Figure 3a-b, the photocurrent is larger, and thus the desalination effect is more 295 

obvious, and the desalination time reaches 14.7 hours. However, a small constant current 296 

density with the value of 0.1 mA/cm2 is applied, which is smaller than that at the zero bias. 297 

Hence, the desalination effect is poor in Figure 3c-d, only lasting for 60 minutes. Actually, in 298 

the initial stage of short-circuit desalination in Figure 3b, the variation of salt concertation is 299 

also unstable. However, with the long desalination process, the change of salt concertation 300 

tends to be stable. 301 

 302 

4. Conclusion 303 

A photocathode-assisted redox-flow electrochemical desalination method was proposed. 304 

CdS/CZTS photocathode can be excited under illumination and transport electrons to 305 

ferricyanide ions through platinum layer for reduction reaction. The reduced ferrocyanide 306 

ions carrier the sodium ions and flow to anode channel where the sodium ions are extracted 307 

by the salt stream B due to the oxidation of redox couples. The redox reaction is accompanied 308 

by the transport of sodium and chloride ions in the two salt streams (desalinated salt stream A 309 
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and salinated salt stream B). This photocathode-assisted redox flow electrochemical system 310 

can achieve the continuous desalination by circulating the redox flow electrolyte. This new 311 

method can open up an avenue for energy-free desalination based on the photocathode 312 

illumination, and will further motivate the development of photocathode materials to enhance 313 

the electrochemical desalination performance. 314 
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