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Abstract

This paper examines the implications of the market selection hypothesis on the accuracy of

the probabilities implied by equilibrium prices and on the “learning” mechanism of markets. I

use the standard machinery of dynamic general equilibrium models to generate a rich class of

probabilities, price probabilities, and discuss their properties. This class includes the Bayes’ rule

and known non-Bayesian rules. If the prior support is well-specified, I prove that all members

of this class perform as well as Bayes’ rule in terms of likelihood. If the prior support is

misspecified in that the bayesian prior does not converge, I demonstrate that some members of

price probabilities significantly outperform Bayes’. Because these members are never worse and

sometimes better than Bayes, my result challenges the prevailing opinion that Bayes’ rule is the

only rational way to learn.
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1 Introduction

It has long been argued that financial markets aggregate the different opinions of their partici-

pants efficiently. A possible explanation comes from themarket selection hypothesis (Friedman,

1953) according to which selection forces push equilibrium prices to reflect the beliefs of the

most accurate trader in the market. By selecting for the most accurate trader, the market
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works as a learning algorithm that gives more weight to more accurate models. The market

selection hypothesis has been extensively investigated and shown to hold in a variety of market

structures including general equilibrium (Sandroni, 2000; Blume and Easley, 2006; Sandroni,

2005), general equilibrium models with some strategic agents that internalize their market im-

pact (Leoni, 2008), or asymmetric information (Mailath and Sandroni, 2003), and in models of

market with fixed investment strategies Bottazzi et al. (2018).1

The link between the market selection hypothesis and learning is evident in general equilib-

rium models with complete markets and equally patient traders having log-utilities, where the

equilibrium dynamics of the state price densities coincide with the dynamic of the Bayesian pos-

terior calculated from a prior on the set of trader beliefs (Rubinstein, 1974; Blume and Easley,

1993). In this paper, I relax the log-utility assumption and focus on the accuracy of the resulting

state price densities.

Price Probability is the class of all probabilities that can be represented as state-price den-

sities of an economy with complete markets, no aggregate risk, and in which the market se-

lection hypothesis holds. This class is rich: Corollary 1, and 2 show that it includes Bayes’

rule (BMA)2 as well as known non-Bayesian rules such as the Normalized Maximum Likeli-

hood (NML) (Rissanen, 1986; Shtar’kov, 1987; Grünwald, 2007) and the Sequential Normalized

Maximum Likelihood (SNML) (Roos and Rissanen, 2008).

I find that most members of price probabilities are fundamentally not Bayesian because

they do not make convex predictions — i.e., the predictive probability might not be a convex

combination of the models in the support (see section 5) — and furthermore, some of its members

are time-inconsistent.

Given the overwhelming experimental evidence showing that most agents are not Bayesian

(Rabin, 2002; Kahneman, 2011), it is natural to ask if non-Bayesian members of the price

probability class constitute a “rational” alternative to Bayes’ rule. However, what does it mean

to be “rational”? Contrary to the axiomatic approach to learning in the economics literature,

according to which a prediction rule is rational if consistent with a set of axioms (Ghirardato,

2002; Gilboa and Marinacci, 2011), I take a point of view closer to machine learning (Breiman

et al., 2001; Sutton and Barto, 1998) and propose a pragmatic notion of rationality. A prediction

rule is pragmatically rational if it guarantees good predictions irrespective of the true probability.

I consider these points of view as complementary. The former is appropriate in situations in

which an agent is not subject to an external criterion of performance. In this case, a set of

axioms can jointly determine an agent’s preferences and beliefs. The latter is appropriate for

1Conversely, the market selection hypothesis does not hold when markets are incomplete (Coury and Sciubba,
2012) and in situations of asymmetric information in which information is costly (Sciubba, 2005).

2Bayesian Model Averaging: Hoeting et al. (1999)
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cases in which agent decisions are evaluated according to an external criterion of performance

(e.g., Sharpe ratio for portfolio managers, calibration for weather forecasters). Because the

criterion pins down agent preferences, a pragmatic agent should internalize this constraint in

his decision problem and choose a prediction rule that is optimal for his preferences. These

two points of view coincide in well-specified learning problems, but might and often differ in

misspecified learning problems.

Taking advantage of the almost universal predominance of Bayes’ rule and its sound ax-

iomatic foundation, I use BMA as a benchmark and propose an accuracy criterion for prediction

rules based on likelihood comparisons. I find that if the learning problem is correctly specified

all members of price probability are as good as Bayes’ because they converge to the truth almost

surely at a comparable rate (merge). I call this property P-efficiency.

Facing a well-specified learning problem, however, is the exception rather than the rule for

many practical prediction problems (predicting stock market returns, weather, outcomes of

sport events...). So, it is pragmatically relevant to also compare the performance of prediction

rules under model misspecification. I identify the following categories.

• A probability mixture, p, is super-efficient if the log-likelihood ratio between BMA and p

is bounded above in every sequence, but there are probabilities, P̂ , such that it diverges to

negative infinity P̂ -almost surely. That is, p is super-efficient if p and BMA use the same

prior information, there are no sequences in which BMA is overwhelmingly more accurate

than p, and there are cases of misspecification, in which p is overwhelmingly more accurate

than BMA.

• A probability mixture, p is universal-efficient if the log-likelihood ratio between BMA and

p is bounded above and below, in every sequence — that is, if p is qualitatively as accurate

as BMA in every sequence.

• A probability mixture, p is sub-efficient if the log-likelihood ratio between BMA and

p is bounded above almost surely when the model is well-specified, but there cases of

misspecification such that it diverges to infinity.

The universal-efficient members of price probabilities are time-inconsistent (except for BMA),

thus rational, in all settings in which time inconsistency cannot be used to construct arbitrages.

Time-consistent members of price probability (except for BMA) can either be sub-efficient

or super-efficient, depending on the risk attitudes of the agents in the generating economy. The

super-efficient members of price probability are generated by economies in which all agents have

CRRA utility with parameter γi > 1. In these economies, consumption shares move slower than

in log economies which determine a slower convergence toward the model with the maximum
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likelihood probability. Although non-convex, they share important similarities with known

robust algorithms in Computer Science and Game Theory (HEDGE algorithm by Freund and

Schapire (1997); Safe Bayesian by Grünwald (2012); and Smooth Fictitious Player by Fudenberg

and Levine (1998)). These algorithms show that if the loss (utility) function differs from log-

likelihood, an agent can be better off abandoning Bayes’ rule for a rule that underreacts to

information by giving less weight to past realizations. My result contributes to this literature

by showing that Baye’s rule can be improved also when the loss (utility) function is log.

Conversely, the sub-efficient members of price probability are generated by economies in

which all agents have CRRA utility with parameter γi < 1. In these economies, consumption

shares move more slowly than in log economies which determine a slower convergence toward

the model with the maximum likelihood probability. Although non-convex, they share simi-

larities with the algorithms above-mentioned, albeit with parameters that would make them

sub-optimally overreact to information.

Section 2 derives and defines the Price Probabilities class and presents known probability

mixture models. Section, 3 characterizes members of price probability with analytical form.

Section 4 discusses the relative accuracy of members of the price probability class, while Section

5 shows that most price probabilities are not Bayesian.

2 Price probabilities

2.1 Environment

Time is discrete and begins at date 0. At each date, a random variable (the economy) can

be in S mutually exclusive states, S := {1, ..., S}, with a Cartesian product St = ×tS. The

set of all infinite sequences of states is S∞ := ×∞S, with a representative path, σ = (σ1, ...).

σt = (σ1, ..., σt) denotes the partial history until period t and (σt−1, σt) is the concatenation of

σt−1 and σt, i.e. the sequence whose first t-1 realizations coincide with σt−1 and last element

is σt. C(σt) is the cylinder set with base σt, C(σt) = {σ ∈ S∞|σ = (σt, . . .)}, Ft the σ-algebra

generated by the cylinders, Ft = σ (C(σt),∀σt ∈ St}), and F is the σ-algebra generated by their

union, F = σ (∪∞Ft). By construction {Ft} is a filtration. In what follows, all variables with

index t are assumed to be measurable according to the natural filtration Ft.

For any probability measure p on F , p(σt) := p({σ1 × ... × σt} × S × S × ...) denotes the

marginal probability of the partial history σt, while p(σt|) := p(σt|σt−1) = p(σt)
p(σt−1) denotes

the conditional probability of the last observation of the partial history σt given its first t-1

realizations.3 P is the true probability on F .

3For notation’s sake, we assume that past realizations constitute all the relevant information, i.e. Ft := σt.
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2.2 The Economy

In this section, I introduce the economic setting I use to define price probabilities. Consider an

Arrow-Debreu exchange economy with complete markets. The economy contains a finite set of

traders I. Each trader, i, has consumption set R+. A consumption plan c : S∞ →
∏∞
t=0 R+

is a sequence of R+- valued functions (ct(σ))
∞
t=0. Each trader i is characterized by a payoff

function ui : R+ → R over consumption, a discount factor βi ∈ (0, 1), and an endowment

stream
(
eit(σ)

)∞
t=0

. Each trader has a subjective probability pi on F , his beliefs. I denote the

set of trader beliefs by P := {pi : i ∈ I}. Each trader, i, aims to solve:

maxEpi
∑
t=0

βtui(cit(σ)) s.t.
∑
t=0

∑
σt∈St

q(σt)
(
cit(σ)− eit(σ)

)
≤ 0;

where q(σt) is the price of a claim that pays a unit of consumption on the last realization

of σt, in terms of consumption at time zero. Let q(σt|) := q(σt|σt−1) be the price of a claim

that pays a unit of consumption at period/event σt, in terms of consumption at period/event

σt−1. It is worth noting the analogy between the equilibrium relation of time-zero and next-

period prices, q(σt|) = q(σt)
q(σt−1) (Ljungqvist and Sargent, 2004), and the way unconditional and

conditional probabilities are linked, p(σt|) = p(σt)
p(σt−1) . If the sum of next-period prices were 1,

equilibrium prices would define a standard probability measure.

2.3 Assumptions

A competitive equilibrium is a sequence of prices and, for each trader, a consumption plan

that is affordable, preference maximal on the budget set, and mutually feasible. Assumptions

A0-A4, below, are sufficient for the existence of the competitive equilibrium (Peleg and Yaari,

1970) and for the market selection hypothesis to hold (Sandroni, 2000).

A0 : The number of traders is finite.

A1 : The payoff functions ui : R+ → [−∞,+∞] are C1, concave, strictly increasing, and

satisfy the Inada condition at 0 — that is, ui(c)′ →∞ as c↘ 0.

A2 : For all agents i ∈ I and for all (t, σ), pi(σt) > 0⇔ P (σt) > 0.

A3 : The aggregate endowment equals 1 in every period: for all (t, σ),
∑
i∈I e

i
t(σ) = 1.

A4 : All traders have an identical discount factor: for all i ∈ I, βi = β.

Because the second welfare theorem applies, I assume that the initial optimal consumption

choices are known and given by C0 = [c10 ... c
I
0] >> 0. By A3,

∑
i∈I c

i
0 = 1, which allows us to

interpret time-zero consumption shares as the weights that a hypothetical Bayesian prior gives
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to probabilities in P. The absence of aggregate risk is needed to eliminate biases on risk-neutral

probabilities due to aggregate consumption fluctuations.

Last, I add a diversity of beliefs assumption to make the learning problem not trivial.

A5 : The set of agents’ beliefs P := {pi : i ∈ I} has at least two orthogonal models.

For intuition, the reader can think of P as being a set of distinct and time independent multi-

nomial distributions.

2.4 The price probability class

Members of price probabilities are obtained by interpreting equilibrium prices of the Arrow se-

curities as representing relative likelihoods and then using these relative likelihoods to construct

probabilities via normalization. Given the set of (agents’) probabilistic models P, different time-

zero (consumption-share) distributions (C0), preferences ({ui}Ii=1) and normalization methods

determine different probability measures. I call the class of all such probability measures price

probabilities:

Definition 1. Price probabilities, M(P), is the class of all the probabilities that can be

represented as normalized equilibrium prices of an economy that satisfies A0-A4.4

In the rest of the paper, I focus on two normalization methods: pNNL, in which time-zero

prices are normalized at every horizon; and pSNNL, in which next-period prices are normalized

sequentially.

Definition 2. Normalized Normed Likelihood (NNL):

∀σt ∈ St, pNNL(σt) =
q(σt)∑
σ̂t q(σ̂

t)
; pNNL(σt|) : not defined.

NNL is the only probability measure that preserves the relative likelihoods of time-zero

prices at every horizon (a new normalization is done at every horizon). In economic terms,

pNNL is the cost of moving a unit of consumption in period/event σt in terms of time-zero

consumption, divided by the cost of moving a unit of consumption from time-zero to time t

for sure. Because all normalizations are conducted with respect to time-zero prices, a set of

conditional probabilities such that pNNL(σt) =
∏t
τ=1 p

NNL(στ |) for all t is not guaranteed to

exist. More generally,

4This definition can be extended naturally to the continuum by using the model and assumptions of Massari
(2019). However, P-efficiency of members of P might not hold in the large as Massari (2019) showed that the MSH
can fail in the large.
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Proposition 1. Under A0-A5, pNNL satisfies the following time-consistency property if and

only if all agents in the generating economy have log utility

∀σt−1,
∑
σ̂t∈St

p(σ̂t ∩ σt−1) = p
((
∪σ̂t ∈ St

)
∩ σt−1

)
= p(σt−1).

Thus, pNNL generically defines a sequence of probability measures on St, which does not

obey the chain rule of conditional probabilities.

Definition 3. Sequential Normalized Normed Likelihood (SNNL):

∀σt ∈ St, pSNNL(σt) =

t∏
τ=1

pSNNL(σt|) ; pSNNL(σt|) =
q(σt|)∑
σ̂t
q(σ̂t|)

SNNL is the only probability measure that preserves the relative likelihoods of next-period

prices. It is the cost of moving a unit of consumption from period/event σt−1 one period ahead

in state σt, divided by the cost of moving a unit of consumption for sure. Unlike pNNL, pSNNL

is time-consistent because it is constructed recursively. In the economics literature, pSNNL is

also known as the equivalent martingale measure (Sandroni, 2000) or market consensus (Jouini

and Napp, 2007; Dindo and Massari, 2020).

2.5 Probability mixture models

This section gives a brief overview of the definition probability mixture, it describes known

probability mixture models that belong to the price probability class. These mixture models

have been derived independently and with different objectives in mind. My framework is the first

to encompass all of them at once. I refer the reader to Foster and Vohra (1999) and Grünwald

(2007) for a more comprehensive discussion.

• Probability mixture. Given a reference set of probability measures P, a probability

mixture is any function that combines members of P to deliver a sequence of probabilities

(pt)
∞
t=1. If the probability mixture can be calculated recursively, its definition coincides

with Dawid (1984)’s definition of a statistical forecasting scheme and each pt is the marginal

probability of a probability on F . Otherwise, each pt is defined only on Ft and (pt)
∞
t=1

represents a sequence of probability assessments.

Before presenting known probability mixtures and compare their properties, it is helpful to start

with the instrumental definition of log-regret.

• Log-regret: Given a partial history σt and a (finite5) reference set of probabilities P, the

5All definitions can be extended to the case in which |P| = R substituting sup for max.
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log-regret of a probability p on Ft is the log-likelihood ratio between the model in P with

the highest likelihood on σt (i.e. the most accurate model in P with hindsight) and p:

given σt, R(p,P, σt) = maxi∈I{ln pi(σt)/p(σt)}. The log-regret is a measure of how well

p predicts vis a vis the most accurate model in P with hindsight of the realized sequence.

Different sequences have different log-regrets. To avoid this dependence, it is customary to

focus on the worst-case log-regret — which means on the log-regret calculated on the least

favorable sequence of realizations: Rt(p;P) = maxσt∈St R(p,P, σt). A probability mixture

with a small worst-case log-regret is desirable because in every sequence it is almost as

accurate as the most accurate model in P with hindsight.

Known probability mixture models

• BMA: Bayesian Model Averaging is considered the “gold standard” among all probability

mixtures. Given a Bayesian prior distribution C0 on a set of probabilities P, BMA directly

follows from Bayes’ rule:

∀σt ∈ St, pBMA(σt) =
∑
i∈I

pi(σt)ci0 ; pBMA(σt|) =
∑
i∈I

pi(σt|)cit−1(σ), (1)

where cit−1(σ) = pi(σt−1)ci0/
∑
i∈I p

i(σt−1)ci0 are the weights of the prior distribution

obtained via Bayes’ rule from C0.6 The prominence of BMA is due to its sound axiomatic

foundation, its good predictive performance, and its tractability. BMA is directly implied

by Kolmogorov (1933)’s axioms (adopting the standard definition of conditional probability

pBMA(σt|) := pBMA(σt)/pBMA(σt−1)), and it is compatible with Savage (1954)’s axioms

(Ghirardato, 2002). Moreover, BMA is consistent — if the true probability belongs to

P, BMA’s predictions converge to it—, can be calculated recursively, and has bounded

worst-case log-regret (if |P| is finite).

• NML: Normalized Maximum Likelihood is the probability mixture which corresponds to

the model that minimizes the maximal worst-case log-regret at any horizon: pNML(·t) =

arg minpRt(p,P). Rissanen (1986) and Shtar’kov (1987) independently showed that:

∀σt ∈ St, pNML(σt) =
maxi∈I p

i(σt)∑
σ̂t maxi∈I pi(σ̂t)

; pNML(σt|) : not defined (2)

NML has bounded worst-case log-regret (if |P| is finite), which makes it desirable on data

compression tasks. However, NML is hardly used in prediction tasks because it cannot

be calculated recursively, it is time-inconsistent across periods, and it defines a sequence

6The unusual notation “cit−1(σ)” for the weights of the prior distribution is to ease the comparison between
consumption shares and probabilistic mass. In log-economies, they coincide (Section 3.2).
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of unconditional probabilities that do not satisfy the chain-rule:
∑
σt
pNML(σt−1, σt) 6=

pNML(σt−1). Notably, NML does not uniquely define a set of conditional probabilities.

• SNML: Sequential Normalized Maximum Likelihood is the probability mixture that, in

every period, prescribes using the model in P that had the highest likelihood in the past.

SNML was derived by Roos and Rissanen (2008) to obtain a recursive version of NML, and

later applied to the problem of optimal portfolio allocation (Follow the Leader strategy,

De Rooij et al., 2014; Massari, 2017). SNML’s period t predictions coincide with the

conditional probabilities that NML gives to σt, assuming that t is the final horizon:

∀σt ∈ St, pSNML(σt) =

t∏
τ=1

pSNML(σt|) ; pSNML(σt|) =
pNML(σt)∑

σ̃t
pNML(σt−1, σ̃t)

(3)

SNML is consistent and it can be calculated recursively. However, unlike NML, SNML’s

worst-case regret is unbounded even if the cardinality of P is finite.

Lemma 1 highlights a first similarity between members of price probabilities and NML and

SNML mixture models. It shows that that the relation between pNNL and pSNNL mimics

that between NML and SNML: pSNNL’s period t predictions coincide with the conditional

probabilities that pNNL gives to σt, assuming that t is the final horizon:

Lemma 1. In an economy that satisfies A0-A4,

∀σt, pSNNL(σt|) =
pNNL(σt)∑

σ̂t
pNNL(σt−1, σ̂t)

.

3 Price probabilities in identical CRRA economies

If all traders have an identical CRRA utility function, members of price probabilities can be

analytically characterized. This setting is flexible enough to show that BMA, NML, and SNML

belong to price probabilities (Corollaries 1 and 2). In what follows, I use the notation:

Definition 4. pNNLγ and pSNNLγ denote the pNNL and the pSNNL probabilities obtained from an

economy that satisfies A0-A4 and in which all traders have an identical CRRA utility function

with parameter γ, for all i ∈ I, ui(c) =
(
c1−γ − 1

)
/ (1− γ).7

7As is customary, I define ln 0 = −∞. Moreover, I use γ = 0 as a short notation for the limit equilibrium quantities
of an identical CRRA economy in which γ → 0 after the equilibrium quantities are calculated.
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3.1 NNL in identical CRRA economies: pNNLγ

Proposition 2. Given beliefs set P, prior C0, and parameter γ, pNNLγ is given by:

∀σt ∈ St, pNNLγ (σt) =

(∑
i∈I p

i(σt)
1
γ ci0

)γ
∑
σ̂t∈St

(∑
i∈I p

i(σ̂t)
1
γ ci0

)γ . (4)

Equation 4 shows that pNNLγ coincides with the normalized 1/γ norm of the likelihoods of

members of P according to the measure C0. Because BMA and NML are the normalized L1

and L∞ norms, respectively, they both belong to price probabilities.

Corollary 1. BMA and NML belong to price probabilities. Specifically,

i) pNNLγ=1 (σt) = pBMA(σt);

ii) pNNLγ=0 (σt) = pNML(σt).

Proof. i) Notice that if γ = 1, the denominator of Equation (4) equals 1, and compare Equation (4)

with Equation (1).

ii) Notice that limγ→0

(∑
i∈I p

i(σt)
1
γ ci0

)γ
= ||pi(σt)||∞: the sup norm; and compare Equation (4) with

Equation (2).

Taking Bayes’ rule as a reference point, the effect of γ on pNNLγ is qualitatively as follows. In a

log-economy (γ = 1) pNNLγ coincides with BMA and the interaction between prior information

(C0) and empirical evidence (σt) is regulated by Bayes’ rule. For γ = 0, pNNLγ coincides

with NML (i.e., it is the optimal probability with respect to worst-case log-regret). Given the

explosive nature of the log-likelihood on sequences whose frequencies are close to the boundary

of the simplex, NML ignores the information of the prior (C0 plays no role), and it assigns

a relatively higher probability to sequences whose frequency lies close to the boundary of the

simplex. For values of γ 6= 1, pNNLγ represents a compromise between the minimum log-regret

approach behind NML and the Bayesian attempt to make the most out of the information in

the prior. Compared with a BMA with the same Uniform prior on P, pNNLγ with γ < (>)1

assigns more probability to those sequences whose frequency lies close to the boundary (center)

of the simplex and penalizes those sequences whose frequency lies close to the center (boundary)

of the simplex.
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3.2 SNNL in identical CRRA economies: pSNNLγ

Proposition 3. Given beliefs set P, prior C0, and parameter γ, pSNNLγ is given by:

∀σt ∈ St, pSNNLγ (σt|) =

(∑
i∈I p

i(σt|)
1
γ ciγ,t−1(σ)

)γ
∑
σ̂t∈S

(∑
i∈I p

i(σ̂t|)
1
γ ciγ,t−1(σ)

)γ ; (5)

with ciγ,t−1(σ) =by Eq.10 pi(σt−1)
1
γ ci0∑

i∈I p
i(σt−1)

1
γ ci0

.

By construction,
∑
i∈I c

i
γ,t−1(σ) = 1, thus each ciγ,t−1(σ) can be interpreted as being the

weight attached to model pi by a prior distribution Cγ,t−1(σ). Equation 5 shows that pSNNLγ

coincides with the sequentially normalized 1/γ norm of the next period probabilities members

of P according to the distribution Cγ,t−1(σ). It is easy to verify that SNML belongs to price

probabilities.

Corollary 2. SNML belongs to price probabilities. Specifically,

pSNNLγ=0 (σt) = pSNML(σt).

Proof.

∀σt−1, pSNNL0 (σt|) =Lem.1 pNNL0 (σt)∑
σ̂t
pNNL0 (σt−1, σ̂t)

=Cor.1 pNML(σt)∑
σ̂t
pNML(σt−1, σ̂t)

:=Eq.3 pSNML(σt|).

The pSNNLγ prediction scheme is closely related to other robust prediction schemes as the

Cγ,t−1(σ) prior is the core of many known algorithms. Ciγ,t−1(σ) is a special case of the “Gen-

eralized Bayes’ rule” introduced by Vovk (1990). The gamma parameter is often called the

learning rate as it determines the convergence rate of the posterior. The choice of this parame-

ter plays a fundamental role in both the HEDGE algorithm (Freund and Schapire, 1997) and the

Safe Bayesian approach (Grünwald, 2012). pSNNLγ differs from these algorithms because instead

of relying on the generalized prior to mix the probabilities in the support (or the actions) it

directly relies on a generalized posterior that treats equally past and future performance. This

symmetry of treatment comes with the need to normalize the predictive generalized distribution

into a probability. This normalization makes pSNNLγ prediction non-convex in the sense that

its prediction might fall out of the convex combination of models in the support (see Section

5). While the (generalized) prior evolution of the cited algorithm can be directly compared to

standard Bayes and values of γ < (>)1 mapped into predictions that over(under)-react to in-
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formation with respect to Bayes’ rule (Epstein et al., 2008), this is no longer possible for SNNL,

which can deliver non-convex predictions (Section 5).8 The algorithms mentioned above utilize

values of γ ≥ 1, indicating that under-reacting to information is the way to robustify standard

Bayes. Similarly, I find that pSNNLγ can outperforms Bayes’ only for values of gamma greater

than 1, and only in misspecified learning problems in which the Bayesian posterior does not

eventually concentrate on a unique parameter.

4 Asymptotic performance of price probabilities

4.1 The criterion

In this section, I introduce the efficiency criterion I use to characterize the performance price

probabilities. Following an established tradition across fields, the criterion I propose is based

on prequential likelihood ratios (Dawid, 1984; Ploberger and Phillips, 2003).

Definition 6. Let pBMA(σt) := pBMA(σt|P) be the likelihood of a BMA with a full-support

prior on P,

• a probability mixture, p, with belief set, P, is P-efficient if

∀P ∈ P, ln p
BMA(σt)

p(σt)
�P -a.s. 1;

• a probability mixture, p, with belief set, P, is universal-efficient if

8 Following Epstein et al. (2008) approach,

Definition 5. A prediction rule (NB) under-reacts to information with respect to Bayes (B) if for every non-
degenerate distribution on the support CNB(σt) we have that

CNB(σt) = CB(σt)⇒ ∀σt+1, C
NB(θ|σt+1σ

t) ∈ Conv(CB(θ|σt), CB(θ|σt+1σ
t)).

A prediction rule (NB) over-reacts to information with respect to Bayes (B) if for every non-degenerate distribution
on the support CNB(σt) we have that

CNB(σt) = CB(σt)⇒ ∀σt+1, C
B(θ|σt+1σ

t) ∈ Conv(CNB(θ|σt), CNB(θ|σt+1σ
t)).

For intuition of the effect of γ on the evolution of Ciγ,t−1(σ), suppose that S := {a, b} and draws are believed i.i.d.,
so that all probabilities in P are Bernoulli with, for all i ∈ I, pi(at) = i in every period. Letting ta and tb representing
the number of a, b observations until period t-1, respectively, we obtain:

∀i ∈ I, ciγ,t−1(σ) =
pi(σt)

1
γ ci0∑

j∈I p
j(σt)

1
γ cj0

=
i
ta
γ (1− i)

tb
γ∑

j∈I j
ta
γ (1− j)

tb
γ

.

So, if γ < 1, the model overreacts to empirical evidence: e.g.,γ = 1
2

is equivalent to updating using Bayes’ rule
“counting every past realization twice.” If γ > 1, the model underreacts to empirical evidence: e.g.,γ = 2 is
equivalent to updating using Bayes’ rule “counting every past realization as half.”
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∀σ ∈ S∞, ln
pBMA(σt)

p(σt)
� 1;

• a probability mixture p with belief set P is super-efficient if is P-efficient and

 ∀σ ∈ S∞, lim sup ln pBMA(σt)
p(σt) < +∞

∃P̂ : lim ln pBMA(σt)
p(σt) =P̂ -a.s. −∞

;

• a probability mixture, p, with beliefs set, P, is sub-efficient if is P-efficient and

 ∀σ ∈ S∞, lim inf ln pBMA(σt)
p(σt) > −∞

∃P̂ : lim ln pBMA(σt)
p(σt) =P̂ -a.s. +∞

;

where the notation f(x) � g(x) abbreviates lim sup f(x)/g(x) < +∞ and lim inf f(x)/g(x) >

−∞.

So, p, is P-efficient if it is as good as Bayes’ when the learning problem is well-specified.

The rest of the definition characterizes the relative performance of p and pBMA in misspecified

setting. I say that p is universal-efficient if it is as accurate as Bayes’ in every sequence. A

probability mixture p is super-efficient if it does at least as well as Bayes’ in every sequence and

there are probabilities P̂ for which it outperforms Bayes’ P̂ -a.s. — that is, if it guarantees to

do at least as well as using Bayes’ rule and there are cases (when the model is misspecified) in

which it does infinitely better. A probability mixture, p, is sub-efficient if there are no sequences

in which it outperforms Bayes’, and there are cases of misspecification in which it is infinitely

worse.

4.2 Discussion

Objectively comparing different learning rules is not trivial. My criterion has been chosen to

satisfy the following desiderata:

D1: The comparison must be performed in every sequence because in most cases in which

we need to make predictions, we do not know the true probability. If we knew the true

probability, we would not need to find the best mixture of members of P.

D2: The benchmark must be appropriate. The BMA is chosen because it is widely known,

utilized, and has a sound axiomatic foundation.9

9Moreover, BMA has finite worst-case log-regret (if |P| is finite). Thus a likelihood comparison against BMA is
also a way to verify if a probability mixture possesses this fundamental property.
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D3: The probability mixture, p, and BMA must use the same support and empirical evidence to

be comparable. Otherwise, the comparison would be about the quality of the information,

rather than the way to use it.

D4: The criterion must be asymptotic to eliminate the small sample effect of the priors. Fur-

thermore, small sample accuracy criteria should be avoided because they are potentially

misleading (Massari, 2013).10

The possibility of super-efficient mixture models is, in my experience, often received with

skepticism. Here are some responses to concerns raised at conferences and by referees.

• The criterion is weak. For example, it would be satisfied by using Bayes’ rule in an en-

larged prior support.

This observation is correct. However, it violates D3: a different prior support implies dif-

ferent information on the set of possible models. Changing the support alters the intrinsic

nature of the learning problem. What we want to achieve is to use the same informa-

tion more efficiently, not show that a larger prior support can explain more sequences. A

super-efficient mixture “beats” Bayes’ using the same information.

• Price probabilities are Bayesian in disguise.

This statement is false. In Section 5, I prove that under A5, unless all agents in the

generating economy have log-utility, pNNL and pSNNL are not Bayesian because they

might make predictions that are not convex combinations of models in P.

• Bayesian updating is almost a tautology if we think of probabilities as empirical frequencies.

Why should we abandon it?

Bayes rule is not defined when updating from sets of measure 0. When the model is

misspecified, the Bayesian measure attaches 0 probability to all tail events that occur P -

a.s., thus its application is far from natural. In these cases, and if our ultimate goal is

making predictions, it seems natural to compare Bayes’ rule against alternative rules on

the basis of accuracy, rather than internal consistency. As Dawid (1982) eloquently said:

“If a subjective distribution P attaches probability zero to a non-ignorable event, and if

this event happens, then P must be treated with suspicion, and modified or replaced.”

• The super-efficiency result must be incorrect because it is in contrast with Wald (1947)’s

Complete Class Theorem (CCT).

My result is orthogonal to the CCT. CCT is a result about the optimality of the Bayesian

procedure for decision in a static setting. Therefore, CCT is moot about the efficiency of

10Massari (2013) shows that given two probabilities {pa}, {pb}, it is not true that if pa’s next-period predictions
are infinitely often more accurate than pb and never less accurate, then pa’s predictions are more accurate than pb

on long sequences.

14



Bayes’ rule to incorporate empirical evidence in a prior distribution. More generally, there

is no tension between my super-efficiency result and the known optimality of Bayesian deci-

sion criteria. If the model is well-specified, all members of price probability are asymptoti-

cally indistinguishable from Bayes. If the model is misspecified, while Bayesian predictions

are guaranteed to be exactly as accurate as the most accurate model in the support (Berk,

1966), pSNNL can deliver predictions that are even more accurate than that.

• Where are the tricks/hidden assumptions?

The crucial assumption needed to ensure super-efficiency is the non-convex prior support.

In Proposition 4, I show that super-efficiency occurs only on those sequences on which

the Bayesian posterior does not concentrate fast enough on a unique model. By concavity

of the log-likelihood function, this event can happen only if the support contains two

orthogonal models with similar likelihood, but no intermediate model (i.e. if the prior

support is not convex.11

• These results are practically irrelevant.

Regarding relevance, the super-efficiency properties of the parameters I identify apply ver-

batim to all standard prediction problems. I choose to work in a parametric setting with

finitely many parameters only for ease of exposition and to maintain the state price inter-

pretation. For applications of similar results, I refer the reader to Grünwald and van Om-

men (2014), which shows that underreacting rules outperform the BMA with prior on a fi-

nite set of linear regression models. Furthermore, consistent with our results,Timmermann

(2006) brings evidence that forecasting combinations of statistical models with weights

evolving slower than BMA outperform BMA in many cases of misspecification. Avramov

(2002); Cremers (2002) have found that BMA guarantees better out-of-sample prediction

than that obtained using model selection criteria — which are qualitatively equivalent to

pSNNL0 — in the context of forecasting U.S. stock market indices.

• Asymptotic criteria are not relevant for investment decisions on a finite horizon (Samuel-

son, 1971, 1979).

Samuelson’s critique is based on the argument that, given beliefs and prices, different pref-

erences determine different optimal investment strategies. His critique does not apply here

because preferences play no role in my accuracy criterion.

11To convexify the prior support is hardly a solution. First, to convexify the prior support violates D3. Second,
it is often difficult to do in a non-parametric context. Last, increasing the dimensionality of the prior support its
undesirable as it reduces the learning rate (Schwarz, 1978; Clarke and Barron, 1990).
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4.3 Asymptotic performance of pSNNL

Theorem 1. pSNNL is P-efficient in any economy that satisfies A0-A5. Furthermore,

i) pSNNLγi>1 is super-efficient;

ii) pSNNLγi=1 is universal-efficient;

iii) pSNNLγi<1 is sub-efficient;

where pSNNLγi>1 , pSNNLγi=1 and pSNNLγi<1 denote the pSNNL probabilities obtained from an economy

that satisfies A2-A4 and in which all traders have CRRA utility function with parameter γi >

1, γi = 1, and γi < 1, respectively.

So, pSNNL, is as good as Bayes’ when the learning problem is well-specified. Furthermore,

Theorem 1 specifies how risk attitudes of agents in the generating economy affects the accuracy

of pSNNL in misspecified learning problems.

Intuition:

- pSNNL is P-efficient irrespective of preferences because when there is an agent who knows the

truth, P , he dominates P -a.s.. Furthermore, inspection of the FOC shows that his consumption-

share converges to one at an exponential rate, which guarantees that pSNNL → P at an expo-

nential rate (i.e. pSNNL merges to P).

- pSNNLγi=1 is universal-efficient because it coincides with Bayesian updating.

- pSNNLγi>(<)1 is super-efficient (sub-efficient). Let us focus on the (more interesting) case of γi > 1

and make use of the economy generating pSNNLγi>1 to gain intuition. From the proof of Theorem

1, we see that

ln
pBMA(σt)

pSNNL(σt)
= ln

βtpBMA(σt)

q(σt)
+

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)

=︸︷︷︸
by Massari (2017)

Corollary 1

O(1) +

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)

So, pSNNLγi>1 is super-efficient if there are paths on which
∑t
τ=1 ln

(∑
σ̂τ
q(σ̂τ |)/β

)
→ −∞ and no

path on which
∑t
τ=1 ln

(∑
σ̂τ
q(σ̂τ |)/β

)
→ +∞ . In economic terms, for all (t−1, σ),

∑
σ̃t
qt(σ̃t|)

is the cost of moving a unit of consumption for sure a period ahead, i.e., the reciprocal of the

risk-free rate. The effect of risk attitudes on the risk-free rate follows this intuition. In every

period most agents subjectively believe that assets are mispriced and trade for speculative rea-

sons because they disagree. When agents have log utility (γ = 1), prices (and thus interest

rates) do not affect optimal saving choices (the substitution effect equals the income effect) and

the reciprocal of the risk-free rate is given by the discount factor: for all (t, σ), β =
∑
σ̃t
qt(σ̃t|).

However, if γ > 1, the substitution effect is stronger than the income effect; so, agents opti-
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mally invest less than if they had log utility, and a higher risk-free rate arise
∑
σ̃τ
qτ (σ̃τ |) < β

for all (t, σ) in which the consumption-share is not degenerate. When the consumption share

distribution is non-degenerate a positive fraction of periods, this effect cumulates to −∞.

The argument above suggests that non-concentration of the Bayesian prior plays a special

role in determining the (sub)super-efficient condition. This is indeed the case:

Proposition 4.

i) In every path in which pBMA’s posterior does not concentrate on a unique model,

lim ln
pSNNLγi>1 (σt)

pBMA(σt)
= +∞ and lim ln

pSNNLγi<1 (σt)

pBMA(σt)
= −∞.

ii) In every path in which pBMA’s posterior concentrates exponentially fast on a unique model,

ln
pSNNLγi>1 (σt)

pBMA(σt)
� 1.

Proposition 4 tells us that γi < 1 is detrimental while γi > 1 is desirable in cases in which

the Bayesian prior does not concentrate on a unique model in the support. If the Bayesian

posterior does not concentrate, then the true model must be somewhere in the middle because

the data supports more than one model. In this case, the generalized prior, by giving more

(less) weight to empirical evidence produces forecasts that are closer (further) to the truth than

the Bayesian.

Known asymptotic results in Bayesian statistics12 make Proposition 4 useful in recognizing

the probabilities that determine the (sub)super-efficiency condition.13 For economically relevant

examples in which concentration of the Bayesian posterior does not occur we refer the reader to

Beker and Espino (2011).

Next, we make use of the analytical form of pSNNLγ to present three cases showing that

pSNNLγ can significantly outperform but never underperform BMA if γ > 1; whereas pSNNLγ

can significantly underperform but never outperform BMA with if γ < 1. The generality of the

example rests in the choice of the sequences in Cases 1 and 2. Case 1 utilizes the sequence on

which the Bayesian posterior concentrates the least; case 2 utilizes the sequence in which the

convergence rate of the Bayesian posterior is the fastest. Case 3 illustrates Proposition 3.

Example 1: Let S = {a, b}, C0 = [.5 .5], and P = {p1, p2}, with p1, p2 i.i.d. measures:

12If |P| < ∞, in most standard settings (if members of P are either i.i.d. or conditionally iid), the Bayesian
posterior does not concentrate if and only if there is more than one model with the same K-L divergence. Otherwise,
it concentrates exponentially fast.

13Proposition 4 enormously simplifies this task. Even if traders’ beliefs and the true measure are iid, pSNNL’s
dynamic is path-dependent.
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∀t, p1(at) = 1/3 = p2(bt). Consider three pSNNLγj s with parameters γ0 = 0, γ1 = 1 and γ2 = 2,

respectively.

Case a: The true probability, P , is degenerate. It gives probability 1 to the alternating

sequence {a, b, a, ...}. This is the most favourable case for probability mixtures with slow con-

centration rate of the prior. Because both models are equally (in)accurate, the best predictor

is the one giving equal weight to p1 and p2 in every period (as C0 does). By Equation 5:

pSNNL0 (at|) =
pNML(σt)∑

σ̂t
pNML(σt−1, σ̂t)

=

 1
2
if t odd

2
3
if t even

pSNNL1 (at|) =
∑
i∈I

pi(a)
pi(σt−1)ci0∑
i∈I p

i (σt−1) ci0
=

 1
2
if t odd

5
9
if t even

pSNNL2 (at|) =

(∑
i∈I p

i(a)
1
2

pi(σt−1)
1
2 ci0∑

i∈I p
i(σt−1)

1
2 ci0

)2

∑
σ̂t

(∑
i∈I p

i(σ̂t)
1
2

pi(σt−1)
1
2 ci0∑

i∈I p
i(σt−1)

1
2 ci0

)2 =

 1
2
if t odd

9
17
if t even

Thus, on {a, b, a, ...}, ∀µ ∈ (0, 1),



pBMAµ (σt)

pSNNL0 (σt)
=

µ( 1
3 )

t
2 ( 2

3 )
t
2 +(1−µ)( 2

3 )
t
2 ( 1

3 )
t
2

( 1
2 )

t
2 ( 1

3 )
t
2

→ +∞

pBMAµ (σt)

pSNNL1 (σt)
=

µ( 1
3 )

t
2 ( 2

3 )
t
2 +(1−µ)( 2

3 )
t
2 ( 1

3 )
t
2

( 1
2 )

t
2 ( 4

9 )
t
2

= O(1)

pBMAµ (σt)

pSNNL2 (σt)
=

µ( 1
3 )

t
2 ( 2

3 )
t
2 +(1−µ)( 2

3 )
t
2 ( 1

3 )
t
2

( 1
2 )

t
2 ( 9

17 )
t
2

→ 0

.

Case a shows that, pSNNL2 produces predictions that are closer to the empirical frequency than

pSNNL1 and pSNNL0 and thus more accurate.

Case b: The true probability, P , is degenerate. It gives probability 1 to the sequence

{a, a, a, ...}. Because p2 is clearly the best model, case b is the most favourable sequence for

probability mixtures that overreact to empirical evidence.

Thus,on {a, a, a, ...},∀µ ∈ (0, 1),



pBMAµ (σt)

pSNNL0 (σt)
=

µ( 2
3 )t+(1−µ)( 1

3 )t

1
2 ( 2

3 )t−1 = O(1)

pBMAµ (σt)

pSNNL1 (σt)
=

µ( 2
3 )t+(1−µ)( 1

3 )t

1
2 ( 2

3 )t+ 1
2 ( 1

3 )t
= O(1)

pBMAµ (σt)

pSNNL2 (σt)
=

µ( 2
3 )t+(1−µ)( 1

3 )t(
1
2 ( 2

3 )
t
γ + 1

2 ( 1
3 )

t
γ

)γ
∗e−

∑t
τ=1 ln(q(a|)+q(b|))

= O(1)

.14

Case b shows that, although pSNNL0 only takes one observation to correctly identify the most ac-

curate model, pSNNL0 and pBMA converge to p2 fast enough not to compromise their asymptotic

likelihood performance.

14By Proposition 4, ii)
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Case c: Draws are i.i.d.; for all t, the true probability of a is P (at) = .5. Because p1 and

p2 are equally (in)accurate, the Bayesian posterior does not concentrate (Massari, 2013),

and Proposition 4 implies,


PBMA(σt)

pSNNL0 (σt)
→P -a.s. +∞

PBMA(σt)

pSNNL1 (σt)
�P -a.s. 1

PBMA(σt)

pSNNL2 (σt)
→P -a.s. 0

.

Remark: The relationship between pNNL and pSNNL mimics that between NML and

SNML. Each next-period forecast of the pSNNL corresponds to the last period conditional distri-

bution of the corresponding pNNL probability. Thus, pSNNL can be thought of as a compromise

to make pNNL recursive. This interpretation makes the super-efficiency part of Theorem 1 even

more surprising. It shows that a forecaster can perform significantly better by using a recursive

method even when he knows the final horizon of his prediction task. Because a recursive method

does not use the length of the sequence he is forecasting as an input, this result illustrates a

case in which ignoring some relevant information increases prediction accuracy.

4.4 Asymptotic performance of pNNL

Theorem 2. pNNL is universal-efficient in any economy that satisfies A0-A4.

Theorem 2 tells us that, although non-convex and time-inconsistent, pNNL performs quali-

tatively as well as BMA in terms of likelihood in any sequence (and thus P -a.s.). If we are only

concerned about accuracy, there is no reason to consider non-convexity or time-consistency to

be a fundamental property of rational forecasts.

Intuition: universal efficiency of pNNL implies that the prediction of pNNL and those of pBMA

must be asymptotically equivalent. For intuition, consider Equation 16 in the proof of Theorem

2 and the unconditional Bayesian probabilities from a full support prior C0:

pNNL(σt) ∝

∑
i∈I p

i(σt) 1
u′i(c

i
0)∑

j∈I
1

u′j(c
j(σt))

pBMA(σt) =
∑
i∈I

pi(σt)ci0.

If the term
∑
j∈I 1/u′j(c

j(σt) were time and state-independent, the proportionality sign would

incorporate it with 1/u′j(c
j(σt) into a prior so that pNNL would map into a pBMA with different

prior. However, the time-dependence of
∑
j∈I 1/u′j(c

j(σt) makes pNNL time-inconsistent (to act

as if it had a prior distribution that depends on the predictions horizon), while its dependence

on states makes pNNL non-convex. Asymptotically, pNNL and pBMA are equivalent because
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the time and state dependence of this term becomes negligible since differences on prior distri-

butions have negligible effect compared to that of models’ likelihoods.

Theorem 2 does not justify the systematic use of time-inconsistent probabilities in every de-

cision problem. Time-inconsistent members ofM(P) are undesirable in many economic settings

because they do not rule out dynamic arbitrage (Lehrer and Teper, 2016).

Example 2: Let S = {a, b}, C0 = [.5 .5], and P = {p1, p2}, with p1, p2 i.i.d. measures:

∀t, p1(at) = 1/3 = p2(bt). It can be easily calculated that pNNL0 (σt) = maxi p
i(σt)/

∑
σ̂t maxi p

i(σ̂t)

attaches the following three of unconditional probabilities. Notably, these unconditional prob-

abilities cannot be reduced to a unique sequence of conditional probabilities because they are

time-inconsistent.

pNNL0 (σt)

1
2

1
3

1
5

1
10

a b

1
6

1
10

1
10

a b

a b

1
2

1
6

1
10

1
10

a b

1
3

1
10

1
5

a b

a b

a b

So, a risk-neutral agent with pNML
0 beliefs who does not discount the future is at time-zero

indifferent between:

• $1/3 and a lottery, L1, that pays $1 if {a, a} realizes, $0 otherwise;

• $2/10 and a lottery, L2, that pays $1 if {a, a, a} realizes, $0 otherwise;

• $1/10 and a lottery, L3, that pays $1 if {a, a, b} realizes, $0 otherwise.

Selling L1 to him for $1/3 and buying from him L2 and L3 for a total of $3/10 constitutes an

arbitrage: if {a, a} does not realize, I make a profit 1/3 − 3/10 > 0. If {a, a} does realize, I

make the same profit because I can use the market to pay the dollar I lose in t = 2 with the

dollar I win for sure in t=3 (because either {a, a, a} or {a, a, b} will happen for sure).

However, this arbitrage opportunity can be generated only if pNNL is used in markets that

allow for both time-zero and sequential trading. An arbitrage can be constructed against an

agent with pNNL beliefs only because his beliefs correspond to a state of mind in which trade

can only occur at time-zero. If he knew his final horizon t and he was given the possibility to

trade sequentially, then he could use his pNNL at t to construct a set of prequential conditional

probabilities via backward induction to avoid arbitrages.

20



5 Price probabilities are not Bayesian

In this section, I show that members of price probability are generically not Bayesian because

pNNL and pSNNL produce convex predictions if and only if all agents in the generating economy

have log utility (γ = 1).

Definition 7. A probability mixture p has convex predictions if in every application (i.e. for

every state space S, for every prior support P, prior distribution C0, and path) its predictions

belongs to Conv(P).

The Bayesian predictive distribution has convex predictions because in every application the

predictive distribution is a prior-weighted average of the models in the support. So, probabil-

ity mixtures that have non-convex predictions are fundamentally non-Bayesian. P-efficiency

of probability mixture with non-convex predictions shows that making convex prediction is

orthogonal to consistency, and thus not a fundamental property of rational learning.

Proposition 5. pSNNL and pNNL are convex if and only if all agents in the generating

economy have log utility.

Example 3 shows that pSNNLγ is not convex for γ 6= 1.

Example 3: Let S = {a, b, c}, C0 = [.5 .5], and P = {p1, p2}, with p1, p2 i.i.d. measures:

∀t, [p1(at) p
1(bt) p

1(ct)] = [.2 .6 .2] and [p2(at) p
2(bt) p

2(ct)] = [.2 .2 .6], . Consider pSNNLγ

obtained with γ0 = 0 and γ1 = 1 and γ2 = 2 , respectively.

pSNNLγ0
(a1) =

maxi=1,2 p
i(a1)∑

σ1
maxi=1,2 pi(σ1)

=
.2

.2 + .6 + .6
=

1

7
6= .2 ⇒ pSNNLγ0

6∈ Conv{p1, p2}

pSNNLγ1
(a1) =

p1(a1)c10 + p2(a2)c20∑
σ1
pi(σ1)ci0

= .2 ⇒ pSNNLγ0
∈ Conv{p1, p2}

pSNNLγ2
(a1) =

(
p1(a1).5c10 + p2(a2).5c20

)2∑
σ1

(p1(σ1).5c10 + p2(σ2).5c20)
2

=
.2

.2 + 2
(√
.6.5 +

√
.2.5
)2 ≈ .21 6= .2 ⇒ pSNNLγ0

6∈ Conv{p1, p2}

6 Conclusion

I use the standard machinery of dynamic general equilibrium models to generate a rich class

of probabilities and to discuss their properties. All members of price probability do as well as

Bayes’ when the learning problem is well-specified while some of them can significantly improve

on Bayes’ in misspecified settings. My result challenges the prevailing opinion that Bayes’ rule

is the only rational way to learn.

21



A Appendix

Proof of Lemma 1

Proof.

pSNNL(σt|) =By Def.3 q(σt|)∑
σ̂t
q(σ̂t|)

= q(σt|) ∗
q(σt−1)∑
σ̄t q(σ̄

t)
∗
∑
σ̄t q(σ̄

t)

q(σt−1)
∗ 1∑

σ̂t
q(σ̂t|)

=
q(σt)∑
σ̄t q(σ̄

t)
∗ 1∑

σ̂t
q(σt−1,σ̂t)∑
σ̄t q(σ̄

t)

=By Def.2 pNNL(σt)∑
σ̂t
pNNL(σt−1, σ̂t)

.

Lemma 2. In an economy that satisfies A0-A4, equilibrium prices are given by:

q(σt) =
βt
∑
i∈I p

i(σt) 1
ui(ci0)′∑

j∈I
1

uj(cjt(σ))′

(6)

Proof. The Lagrangian problem associated with each trader’s maximization problem is

Li = Epi
∞∑
t=0

βtui(cit(σ)) + λi

(∑
t=0

∑
σt∈St

q(σt)
(
cit(σ)− eit(σ)

))
.

By equating the derivatives of this Lagrangian to 0 I get, for all (t, σ),

∂Li
∂cit(σ)

= 0⇒ βtpi(σt)ui(cit(σ))′ = λiq(σ
t) (7)

Letting q0 = 1 (the price of one unit of consumption at t=0 equals 1) I find that λi = ui(ci0)′,
the result follows rearranging summing over traders and rearranging.

Proof of Proposition 1

Proof. By contradiction, assume H0 : there exists a non-log economy such that

∀σt−1,
∑
σ̂t∈St

p(σ̂t ∩ σt−1) = p
((
∪σ̂t ∈ St

)
∩ σt−1

)
= p(σt−1).
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Then, ∀σt ∈ St, q(σt)

q(σt−1)
=Eq. condition q(σt|)

⇔ ∀σt ∈ St, pNNL(σt)

pNNL(σt−1)
=

q(σt)∑
σ̂t q(σ̂

t)

q(σt−1)∑
σ̂t−1 q(σ̂t−1)

= q(σt|)
∑
σ̂t−1 q(σ̂t−1)∑
σ̂t q(σ̂

t)

⇔ ∀σt−1,
∑
σt

pNNL(σt−1, σt)

pNNL(σt−1)
=
∑
σt

q(σt|)
∑
σ̂t−1 q(σ̂t−1)∑
σ̂t q(σ̂

t)

⇔︸︷︷︸
If H0 is true

∀σt−1, 1 =
∑
σt

q(σt|)
∑
σ̂t−1 q(σ̂t−1)∑
σ̂t q(σ̂

t)

⇔ ∀σt−1,

∑
σ̂t q(σ̂

t)∑
σ̂t−1 q(σ̂t−1)

=
∑
σt

q(σt|)

⇔ ∀σ̃t−1, σ̄t−1,
∑
σt

q(σt|σ̃t−1) =

∑
σ̂t q(σ̂

t)∑
σ̂t−1 q(σ̂t−1)

=
∑
σt

q(σt|σ̄t−1);

the last equality tells us that the risk-free rate is independent of histories and thus of consumption
shares. In economies with heterogeneous beliefs (A5), this property can hold only if all agents
have log utility.

Proof of Proposition 2 and 3:

Proof. Substituting cit(σ)−γ for ui(σt)′ and ui(ci0) for λi in Equation 7,

βtpj(σt)cjt (σ)−γ = (cj0)−γq(σt) (8)

taking the ratio of traders i, j’ FOCs:
βtpi(σt)cit(σ)−γ

βtpj(σt)cjt(σ)−γ
=

(ci0)−γq(σt)

(cj0)−γq(σt)
; solving for ci(σt):

cit(σ) =

(
pi(σt)

pj(σt)

) 1
γ ci0

cj0
cjt (σ). (9)

Substituting Equation 9 in the market-clearing condition (which holds with equality because of

monotonicity of ui): 1 =
∑
i∈I c

i
t(σ) = cjt (σ)

∑
i∈I p

i(σt)
1
γ ci0

pj(σt)
1
γ cj0

; solving for cjt (σ):

cjt (σ) =
pj(σt)

1
γ cj0∑

i∈I p
i(σt)

1
γ ci0

. (10)

Substituting cjt (σ) in Equation 8 and rearranging, I obtain

q(σt) = βt

(∑
i∈I

pi(σt)
1
γ ci0

)γ
(11)

The result follows substituting Equations 11 in Definition 2 and 3, respectively.

Lemma 3. Under A0-A4, if agents’ utilities are CRRA, for all (t, σ),

∀i, γi ≥ 1⇒ 1
β

∑
σt
q(σt|) ≤ 1

∀i, γi ≤ 1⇒ 1
β

∑
σt
q(σt|) ≥ 1

,
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with equality if and only if ether the consumption share is degenerate, or γi = 1 for all agents,
or all agents have identical beliefs.

Proof. On every equilibrium path ∀(t, σ) and for all i,

cit(σ) =

(
βpi(σt|)
q(σt|)

) 1

γi

cit−1(σ).

Multiplying on both sides by q(σt|)
β ,

q(σt|)
β

cit(σ) = pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

cit−1(σ).

Summing on both sides over all the agents,

q(σt|)
β

∑
i∈I

cit(σ) =
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

cit−1(σ).

Dividing on both sides by the aggregate endowment (which is constant over t)

q(σt|)
β

=
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1,

where [φ1
t−1, ..., φ

I
t−1] is the consumption shares distribution in (t− 1, σt−1).

Summing on both sides over the states:

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1.

Multiplying the right-hand side by

∏
k∈I

(∑
σt

q(σt|)
β

)1− 1
γk

∏
j∈I

(∑
σt

q(σt|)
β

)1− 1
γj

= 1 we can express the left-hand side

as a function of pSNNL.

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi pSNNL(σt|)
1− 1

γi φit−1

∏
k∈I

(∑
σt

q(σt|)
β

)1− 1

γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

. (12)

• Let us focus on the case in which ∀i, γi ≥ 1.

Let i∗ := arg maxi∈I

(∑
σt

q(σt|)
β

)1− 1

γi

, so that ∀k, i ∈ I,
∏
k 6=i∗

(∑
σt

q(σt|)
β

)1− 1
γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1
γj
≤ 1.

It follows that

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1
γi pSNNL(σt|)

1− 1
γi φit−1

(∑
σt

q(σt|)
β

)1− 1

γi
∗
∏
k 6=i∗

(∑
σt

q(σt|)
β

)1− 1
γi

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1
γj

≤
∑
i∈I

∑
σt

pi(σt|)
1
γi pSNNL(σt|)

1− 1
γi φit−1

(∑
σt

q(σt|)
β

)1− 1

γi
∗

.
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Rearranging,(∑
σt

q(σt|)
β

) 1

γi
∗

≤
∑
i∈I

∑
σt

pi(σt|)
1

γi pSNNL(σt|)
1− 1

γi φit−1 (13)

≤(a)
∑
i∈I

∑
σt

(
1

γi
pi(σt|) +

(
1− 1

γi

)
pSNNL(σt|)

)
φit−1 = 1

⇒
∑
σt

q(σt|)
β
≤ 1.

(a) : ∀i ∈ I, γi ≥ 1⇒ ∀σt, pi(σt|)
1

γi pSNNL(σt|)
1− 1

γi ≤ 1
γi p

i(σt|) +
(

1− 1
γi

)
pSNNL(σt|),

because strict concavity of log ensures that

ln
(
pi(σt|)

1

γi pSNNL(σt|)
1− 1

γi

)
=

1

γi
ln pi(σt|) +

(
1− 1

γi

)
ln pSNNL(σt|)

≤ ln

(
1

γi
pi(σt|) +

(
1− 1

γi

)
pSNNL(σt|)

)
.

• Let’s focus on the case in which ∀i, γi ≤ 1.

Let i∗∗ := arg mini∈I

(∑
σt

q(σt|)
β

)1− 1

γi

; thus ∀k, i ∈ I,
∏
k 6=i∗∗

(∑
σt

q(σt|)
β

)1− 1
γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1
γj
≥ 1.

Proceeding as above, we obtain the opposite inequality:(∑
σt

q(σt|)
β

) 1

γi
∗∗

≥
∑
i∈I

∑
σt

pi(σt|)
1

γi pSNNL(σt|)
1− 1

γi φit−1. (14)

The result follows by showing that

γi ≤ 1 ∀i⇒ ln
∑
i∈I

∑
σt

pi(σt|)
1

γi pSNNL(σt|)
1− 1

γi φit−1 ≥ 0.

For convenience, let ∀i, ηi := 1
γi ; so that ∀i, ηi ∈ (1,∞).

ln
∑
i∈I

∑
σt

pi(σt|)
1

γi pSNNL(σt|)
1− 1

γi φit−1 = ln
∑
i∈I

∑
σt

pi(σt|)ηi
pSNNL(σt|)ηi−1

φit−1

≥(a)
∑
i∈I

φit−1 ln
∑
σt

pi(σt|)ηi
pSNNL(σt|)ηi−1

=
∑
i∈I

(ηi − 1)φit−1

(
1

ηi − 1
ln
∑
σt

pi(σt|)ηi
pSNNL(σt|)ηi−1

)
=(b)

∑
i∈I

(ηi − 1)φit−1Dηi(p
i
t||pRNt )

≥(c) 0.

(a): By concavity of log.
(b): Recognizing the definition of the Rényi divergence (Dηi(p

i
t||pRNt )) between pit and pRNt

(Rényi, 1961; Van Erven and Harremos, 2014).
(c): Rény divergence is weakly positive, it equals 0 if and only if pi = pSNNL (Van Erven
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and Harremos, 2014).

An inspection of Equation (12) shows that equality holds if and only if
— all agents have identical beliefs because

∀i, pit = pt = pSNNLt ⇒ ∀i,

(∑
σt

q(σt|)
β

)1− 1

γi

=
∑
i∈I

∑
σt

pt(σt|)
1

γi pt(σt|)
1− 1

γi φit−1 = 1;

— or the consumption share distribution is degenerate because

φit−1 = 1⇒ pit = pt = pSNNLt ⇒

(∑
σt

q(σt|)
β

)1− 1

γi

=
∑
i∈I

∑
σt

pt(σt|)
1

γi pt(σt|)
1− 1

γi φit−1 = 1;

— or γi = 1 for all agents because
∑
σt

q(σt|)
β =

∑
i∈I

∑
σt

pi(σt|) = 1.

Lemma 4. In an economy that satisfies A0-A4,

{
inf(t,σ)

∑
i∈I

1
u′i(c

i
t(σ))

> a > 0

sup(t,σ)

∑
i∈I

1
u′i(c

i
t(σ))

< b <∞ .

Proof.

• ∀(t, σ),
∑
i∈I

1
u′i(c

i
t(σ))

≥ min[c1,...,cI ]

∑
i∈I

1
u′i(c

i) > 0 because
∑
i∈I

1
u′i(c

i) = 0 if and only if

∀i, u′i(ci) =∞⇔A1 ∀i, ci = 0, which violates market-clearing
(
∀t,
∑
i∈I c

i =
∑
i∈I e

i =A3 1
)
.

• ∀(t, σ), sup
∑
i∈I

1
u′i(c

i(σ)) ≤ max[c1,...,cI ]

∑
i∈I

1
u′i(c

i) < |I|maxi
1

u′i(1) < ∞ because market

clearing and A3 implies maxi c
i = 1; and A1 implies ∀i,maxc≤1

1
ui(c)′=

1
ui(1)′<∞.

Proof of Theorem 1:

Proof. Definition 3 allows to rewrite ln pBMA(σt)
pSNNL(σt)

as follows:

ln
pBMA(σt)

pSNNL(σt)
=

t∑
τ=1

∑
στ

Iστ ln
pBMA(στ |)

q(στ |)∑
σ̂t
q(σ̂τ |)

= ln
βtpBMA(σt)

q(σt)
+

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)

=︸︷︷︸
by Massari (2017)

Corollary 1

O(1) +

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)

• pSNNL(σt) is P-efficient.
It follows from the above that I need to show that

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)
�P -a.s 1. (15)

Let i∗ denote the agent i with pi = P .
Taking ratio of the FOCs, in every equilibrium path and for every agent i 6= i∗ it holds

1
ui(cit(σ))′

1
ui∗ (ci

∗
t (σ))′

=
pi(σt)

P (σt)

1
ui(ci0)′

1
ui∗ (ci

∗
0 )′

;
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so, 1
ui∗ (ci

∗
t (σ))′

→P -a.s. 1
ui∗ (1)′

at an exponential rate.

By Equation 6 and the definition of q(·|) we have that for all (t, σ)

q(σt|) =
q(σt)

q(σt−1)
=

βt
∑
i∈I p

i(σt) 1

ui(ci0)′∑
j∈I

1

uj(c
j
t (σ))′

βt−1
∑
k∈P p

k(σt−1) 1

uk(ck0 )′∑
l∈I

1

ul(cl
t−1

(σ))′

= β
∑
i∈I

pi(σt|)
pi(σt−1) 1

ui(ci0)′∑
k∈P p

k(σt−1) 1
uk(ck0 )′

∑
l∈I

1
ul(clt−1(σ))′∑

j∈I
1

uj(cjt(σ))′

.

Thus, 1
β

∑
σ̂τ
q(σ̂τ |)→P -a.s. 1 at an exponential rate which is sufficient to bound the sum

in Equation 15.15

• pSNNLγi=1 is universal-efficient. By Lemma 3, γ = 1⇒ ∀(t, σ), 1
β

∑
σ̂τ
q(σ̂τ |) = 1, so that

∀(t, σ),

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)
= 0 � 1.

• pSNNLγi<(>)1 is sub-efficient (super-efficient).
We have to verify two conditions:

First : γi < (>)1⇒ ∀σ ∈ S∞, lim inf(lim sup)

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)
> (<)− (+)∞

The first claim follows from Lemma 3, which guarantees that

∀i ∈ I, γi < (>)1⇒ ∀(στ−1), ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)
≥ (≤)0.

Second : γi < (>)1⇒ ∃P̂ :

t∑
τ=1

ln

(
1

β

∑
σ̂τ

q(σ̂τ |)

)
→P̂ -a.s. +(−)∞.

To prove the second claim I proceed by steps:

i)
∑t
τ=1 ln

(
1
β

∑
σ̂τ
q(σ̂τ |)

)
→ ±∞ if consumption shares do not concentrate on one trader.

Proof : By Lemma 3, ∀i ∈ I, γi < (>)1⇔ ln
(

1
β

∑
σ̂τ
q(σ̂τ |)

)
≥ (≤)0, with equality if and

only if the consumption-share distribution is degenerate (or beliefs are identical). Thus,
if for all i ∈ I, γi < (>)1, all terms of the sum have the same sign. So, if consumption

shares do not concentrate on a unique trader, ∃η > 0 : | ln
(

1
β

∑
σ̂τ
q(σ̂τ |)

)
| > η infinitely

often and the sum diverges.

ii) pBMA(σt)’s prior, Ct,γ=1, does not eventually concentrate on a unique trader if and
only if, ∀γ ∈ (0,+∞), pSNNL(σt)’s generalized prior, Ct,γ , does not concentrate on a

15While the convergence results in section 7 of Sandroni (2000) imply that
∑
σ̂τ
q(σ̂τ |) → β, these results are too

weak to prove that pSNNL(σt) is P-efficient because they are mute about the convergence rate. The result proven
above is stronger than those of Sandroni (2000) in that it shows that the convergence rate to the rational expectation
equilibrium is exponentially fast.
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unique trader.16

Proof :Ct,γ=1 does not concentrate on a unique trader

⇔ ∃η > 0,∃i, j ∈ I : lim sup
pi(σt)∑
i∈I p

i(σt)
> η and lim sup

pj(σt)∑
i∈I p

i(σt)
> η

⇔ ∃ηγ > 0 : lim sup
pi(σt)

1
γ∑

i∈I p
iσt

1
γ

= ciγ,t(σ) > ηγ and lim sup
pi(σt)

1
γ∑

i∈I p
iσt

1
γ

= cjγ,t(σ) > ηγ

⇔ Ct,γ does not concentrate on a unique trader.

iii) ∃P̂ such that Ct,1 does not concentrate on a unique trader:
Proof : The proof is constructive. Letting i, j ∈ I be two orthogonal models, it is easy to
verify that the Bayesian posterior does not converge Pθ0-a.s. for Pθ0 defined recursively as
follows:

∀σt−1, Pθ0(σt|) :=

{
pi(σt|), if pj(σt−1) ∈ arg maxi∈I
pj(σt|), otherwise

.

Concentration cannot occur because j has maximal expected likelihood (thus highest ex-
pected survival index) whenever his likelihood is comparatively low; he cannot, however,
dominate since he cannot beat agent i, because i becomes the most accurate as soon as
agent j’s consumption share passes a threshold (i.e., his likelihood becomes comparative
large).

Proof of Theorem 2:

Proof. Substituting Equation 6 in the definition of pNNL.

pNNL(σt) =
q(σt)∑
σt q(σ

t)
=

βt
∑
i∈I p

i(σt) 1

u′
i
(ci0)∑

j∈I
1

u′
j
(cj(σt))

βt
∑
σ̂t∈St

(∑
k∈I p

k(σ̂t) 1

u′
k

(ci0)∑
l∈I

1
u′
l
(c(σ̂t))

) (16)

Let inf
∑
i∈I

1
u′i(c(σ̂

t)) = a and sup
∑
i∈I

1
u′i(c(σ̂

t)) = b; by Lem.4; 0 < a ≤ b <∞.

So, for all (t, σ),

pNNL(σt) ∈ [

βt
∑
i∈I p

i(σt) 1

u′
i
(ci0)

b

βt
∑
σ∈St

(∑
k∈I p

k(σt) 1

u′
k

(ck0 )

a

) , βt
∑
i∈I p

i(σt) 1

u′
i
(ci0)

a

βt
∑
σ∈St

(∑
k∈I p

k(σt) 1

u′
k

(ck0 )

b

) ]

⇒ pNNL(σt) ∈

[
a

b

∑
i∈I

pi(σt)

1
u′(ci0)∑
k∈I

1
u′(ci0)

,
b

a

∑
i∈I

pi(σt)

1
u′(ci0)∑
k∈I

1
u′(ci0)

]

⇒ ln
pBMA(σt)

pNNL(σt)
� 1.

Proof of Proposition 4:

16The proof slightly differs for γ = 0 because I need the stronger condition that the model with the highest likelihood

changes infinitely to ensure
∑t
τ=1 ln

(
1
β

∑
σ̂τ
q(σ̂τ |)

)
→ ±∞ (See Massari (2017)).
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Proof. As in the proof of Th.1: ln pBMA(σt)
pSNNL(σt)

= O(1) +
∑t
τ=1 ln

(
1
β

∑
σ̂τ
q(σ̂τ |)

)
.

• Part i) mimics the step of Theorem 1, except that non-concentration is now assumed.

• Part ii) mimics the proof of P-efficiency in Theorem 1, except that the exponential con-
centration rate is assumed rather than deduced from the fact that one agent knows the
truth. For an application, consider Example 1:

e
−
∑t
τ=1 ln(q(a|)+q(b|))

= EXP

−
t∑

τ=1

ln

(
1
2

(
2
3

) τ
γ + 1

2

(
1
3

) τ
γ

)γ
+

(
1
2

(
1
3

) 1
γ
(

2
3

) τ−1
γ + 1

2

(
2
3

) 1
γ
(

1
3

) τ−1
γ

)γ
(

1
2

(
2
3

) τ−1
γ + 1

2

(
1
3

) τ−1
γ

)γ


= EXP

−
t∑

τ=1

ln

((
2
3

) 1
γ +

(
1
3

) 1
γ
(

1
2

) τ−1
γ

)γ
+

((
1
3

) 1
γ +

(
2
3

) 1
γ
(

1
2

) τ−1
γ

)γ
(
1 +

(
1
2

) τ−1
γ

)γ


Taylor-expanding the two terms on the numerator around 2
3

1
γ and 1

3

1
γ and the term in

the denumerator around 1, respectively, it follows that ∃η ∈ (0, 1
2 ) :

EXP

−
t∑

τ=1

ln

((
2
3

) 1
γ +

(
1
3

) 1
γ
(

1
2

) τ−1
γ

)γ
+

((
1
3

) 1
γ +

(
2
3

) 1
γ
(

1
2

) τ−1
γ

)γ
(
1 +

(
1
2

) τ−1
γ

)γ
 ∈

[
e
−
∑t
τ=1

(
1
2

+η
)τ

; e
−
∑t
τ=1

(
1
2
−η

)τ ]
= O(1).

Proof of Proposition 5:

Proof. γ = 1⇒ pNNLγ = pSNNLγ = pBMA which is convex.

Generically, pSNNL is not convex: For intuition, let us start with the case of identical CRRA
economies. If the state space has at least 3 states and all models in P attach the same probability
to state ŝ, p(ŝ) then pSNNLγ is not convex in non-log economies because:

pSNNL(ŝt|)γ =

(∑
i∈I p

i(ŝt|)
1
γ ciγ,t−1(σ)

)γ
∑
σ̂t∈S

(∑
i∈I p

i(σ̂t)
1
γ ciγ,t−1(σ)

)γ
=

pi(ŝt)∑
σ̂t∈S

(∑
i∈I p

i(σ̂t)
1
γ ciγ,t−1(σ)

)γ
6= pi(ŝt)

where the last inequality follows because
∑
σ̂t∈S

(∑
i∈I p

i(σ̂t)
1
γ ciγ,t−1(σ)

)γ
6= 1 for all non de-

generate consumption shares.

For the general case, I first show that there are cases in which the normalizing factor in
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pSNNL is different from 1. Then generalize the above example.

∀σt, pSNNL(σt|) =︸︷︷︸
by

Lemma 1

pNNL(σt)∑
σ̂t
pNNL(σt−1, σ̂t)

=︸︷︷︸
by

Equation 16

∑
i∈I p

i(σt) 1

u′
i
(ci0)∑

j∈I
1

u′
j
(cj(σt))∑

σ̂t

∑
k∈I p

k(σt) 1

u′
k

(ck0 )∑
l∈I

1

u′
l
(cl(σt−1σ̂t))

=

∑
i∈I p

i(σt) 1
u′i(c

i
0)∑

σ̂t

∑
k∈I p

k(σt) 1
u′k(ck0 )

∑
j∈I

1

u′
j
(cj(σt−1σt))∑

l∈I
1

u′
l
(cl(σt−1σ̂t))

=

∑
i∈I p

i(σt|)gi(σt−1)∑
σ̂t

∑
k∈I p

k(σ̂t|)gk(σt−1)

∑
j∈I

1

u′
j
(cj(σt−1σt))∑

l∈I
1

u′
l
(cl(σt−1σ̂t))

;

where ∀i, gi(σt−1) :=

pi(σt−1)

u′
i
(ci0)∑

j∈I pj(σt−1)

u′
j
(c
j
0)

can be thought of as the weight of a prior distribution

G(σt−1). Suppose that the distribution of consumption is not degenerate and such that
∑
j∈I

1
u′j(c

j(σt−1σt))
∈

argmaxσ̂
∑
j∈I

1
u′j(c

j(σt−1σ̂t))
. It follows that

∑
σ̂t

∑
k∈I

pk(σ̂t|)gk(σt−1)

∑
j∈I

1
u′j(c

j(σt−1σt))∑
l∈I

1
u′l(c

l(σt−1σ̂t))

6= 1.

So, if the state space has at least 3 states and all models in P attach the same probability to
state ŝ, p(ŝ) then pSNNL is not convex in non-log economies because:

pSNNL(ŝt|) =

∑
i∈I p

i(ŝt|)gi(σt−1)∑
σ̂t

∑
k∈I p

k(σ̂t|)gk(σt−1)

∑
j∈I

1

u′
j
(cj(σt−1ŝt))∑

l∈I
1

u′
l
(cl(σt−1σ̂t))

6= p(ŝ).

Generically, pNNL is not convex because pSNNL(σ1) = pNNL(σ1).
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