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1 Introduction

The informational content of prices is a central issue in the analysis of equilib-

ria of competitive markets. In financial markets, in particular, asset prices are

often believed to be good predictors of the economic performance of the under-

lying fundamentals. Three different mechanisms have been proposed as possible

explanations for this remarkable property. The rational expectation and the learn-

ing from price literatures argue that equilibrium prices are accurate because they

reveal and aggregate the information of all market participants. The Market Se-

lection Hypothesis, MSH, proposes instead that prices become accurate because

they eventually reflect only the beliefs of the most accurate agent. The Wisdom

of the Crowd, WOC, suggests that market prices are accurate because individual,

opposite biases are averaged out by the price formation mechanism.

Although these theories aim to explain the same phenomenon, they rest on

different and somehow conflicting hypotheses. In the learning from price literature,

all agents are assumed to agree on the way to interpret information. In equilibrium,

when all private information gets revealed, all agents must hold the same belief

because they cannot “agree to disagree”. Therefore, the MSH and the WOC

arguments are void. By contrast, in the MSH and the WOC literatures, agents can

disagree on how to interpret information about fundamentals. However, existing

models of market selection are incompatible with the WOC because they do not

allow for belief heterogeneity in the long run: by selecting the most accurate agent,

the market destroys all accuracy gains that could be achieved by balancing out

agents’ opposite biases. Focusing on static settings, the WOC literature struggles

to justify the assumption that the joint distribution of consumption shares and

beliefs is such that the opposite biases of agents cancel out.

In this paper, we provide conditions for the WOC to occur in dynamic economies.

We extend the general equilibrium model of market selection of Sandroni (2000)
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and Blume and Easley (2006) by allowing the beliefs of some agents to depend

on an endogenous market consensus. The one-period-ahead beliefs of these agents

are formed by giving weight to two different models. The first model, market con-

sensus, is generated endogenously by the market and shared by all agents. The

second model, dogmatic probabilities, is agent-specific and represents their subjec-

tive probabilistic view.

We provide sufficient conditions on agents’ dogmatic probabilities, model weights,

and preferences such that the WOC occurs in equilibrium: irrespective of the

initial consumption share distribution, selection forces endogenously determine a

consumption share dynamics that makes the market consensus more accurate than

the most accurate agent in isolation. Furthermore, we show that if some agents

have dogmatic beliefs with opposite bias, the consensus becomes as accurate as

the truth in the limit of these agents relying only on the consensus.

The intuition for the occurrence of the WOC is as follows. Imagine two agents,

1 and 2, whose dogmatic probabilities have an opposite bias, e.g. agent 1 being too

optimistic about a state of the world, while the other is too pessimistic. Agents are

allowed to trade on these differences of opinion and, in equilibrium, the optimist

gains wealth when such a state is realized. If, due to a lucky initial draw, agent 1

accumulates a substantial wealth share, then the market consensus will converge

to his belief. Agent 2’s belief, being the weighted average of his pessimistic belief

and the market consensus (which is now optimistic), becomes closer to the truth.

Hence, agent 2 starts accumulating wealth, on average, and the market consensus

shifts toward his dogmatic belief. However, agent 2 cannot accumulate wealth

for too long, otherwise he makes agent 1 the most accurate. So, heterogeneity

is persistent and the WOC emerges because the market consensus is on average

closer to the truth than either of the two dogmatic beliefs.

The dynamics of our economy depends crucially on the definition of the con-

sensus. We propose two measures of consensus, the market probabilities and the
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risk-neutral probabilities. The rationale behind both measures is that they weight

the beliefs of agents with larger consumption shares more than those of agents

with smaller consumption shares so that the consensus obtained in an economy

with a unique agent coincides with his beliefs. The market probabilities make the

dynamics of beliefs and the occurrence of the WOC qualitatively independent of

risk attitudes and the aggregate endowment process, but require detailed informa-

tion about agents’ beliefs, preferences and consumption shares to be computed.

The risk-neutral probabilities can be calculated from state prices and knowledge

of the aggregate endowment process alone, but make the dynamics of beliefs and

the occurrence of the WOC dependent on risk attitudes.

The following describes the structure of the paper and our main findings. In

Section 2, we introduce the model of the economy, agents’ beliefs, the market

consensuses, belief and market accuracy, and define the WOC as the situation in

which the consensus is more accurate than all dogmatic probabilities.

In Section 3, we focus on the case in which the consensus is the market proba-

bility. We show that the WOC emerges when at least two agents with opposite bias

sufficiently weigh the consensus in forming their beliefs. In this case, the equilib-

rium path exhibits long-run heterogeneity, market probabilities never settle down,

and selection forces generate endogenously a dynamics of the joint distribution of

consumption shares and beliefs that determines the WOC. Moreover, we demon-

strate that market accuracy is a virtuous self-fulfilling prophecy. If some agents

with opposite bias are almost certain that the consensus is correct, the consensus

is indeed almost correct. In the limit, selection forces endogenously determine a

consumption share dynamics such that, in equilibrium, the consensus coincides

with the true probability.

Last, in Section 4, we extend our analysis to the case in which agents use

the risk-neutral probability for consensus and characterize how risk attitudes af-

fect the risk-neutral consensus accuracy and the beliefs dynamics. We consider
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economies in which all agents have CRRA utility and show that, ceteris paribus,

economies with more risk-averse agents generate a more accurate market consensus

than economies with less risk-averse agents. For economies populated by agents

(weakly) more risk-averse than log, we provide sufficient conditions for the occur-

rence of the WOC and for the self-fulfilling property of the consensus accuracy to

occur that takes agents’ risk attitudes into consideration.

Throughout the paper we use simulations for illustrative purposes; their length

varies to accommodate the different convergence rates; to ease comparison, we use

the same typical path for all simulations. Proofs are in Appendices.

1.1 Related literature

A very influential stream of literature argues that asset prices are accurate be-

cause financial markets are an efficient aggregator of private information (Gross-

man, 1976, 1978; Radner, 1979; Grossman and Stiglitz, 1980). Closely related to

the literature on information transmission (Aumann, 1976; Geanakoplos and Pole-

marchakis, 1982), this literature assumes typically that agents disagree solely due

to differences in their private information and provides conditions under which

the price formation mechanism reveals all private information to all agents in the

market. Because all agents have a common prior, agree on the way to interpret

information, and prices instantaneously reveal all available information, in equi-

librium all agents must hold the same beliefs and no WOC or selection based on

belief heterogeneity can occur.

An alternative explanation for market accuracy, the MSH, relies on the evolu-

tionary argument that markets become accurate because they select for accurate

agents (Alchian, 1950; Friedman, 1953). According to the MSH, agents with in-

accurate beliefs lose their wealth to accurate agents and, eventually, equilibrium

prices are accurate because they reflect only the beliefs of the most accurate agent

in the economy (Sandroni, 2000). In these models the market identifies the best
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model but does not work as an aggregator. By selecting for a unique most accu-

rate agent, the market “destroys” all the accuracy gains that could be achieved by

pooling the diverse opinions of the agents who vanish and no WOC can occur. Ac-

cordingly, market prices can only be as accurate as the most accurate agent (Blume

and Easley, 2009), even in knife-edge cases in which there are multiple survivors

(Jouini and Napp, 2011; Massari, 2013). In addition to our model, others in the

market selection literature allow for long-run survival of agents with heterogeneous

beliefs, but do not explicitly analyze the accuracy of the resulting prices. Survival

of agents with heterogeneous beliefs occurs in economies with incomplete mar-

kets (Beker and Chattopadhyay, 2010; Cogley et al., 2013; Cao, 2017), ambiguous

averse agents (Guerdjikova and Sciubba, 2015), exogenous saving rules (Bottazzi

and Dindo, 2014; Bottazzi et al., 2018), and recursive preferences (Borovička, 2020;

Dindo, 2019). A model that merges elements of rational learning from prices and

selection is Mailath and Sandroni (2003). This model does not endogenously gen-

erate the WOC because long-run heterogeneity is a consequence of the presence of

noise traders.

Finally, the WOC argument (initially proposed by Galton, 1907, and more re-

cently popularized by Surowiecki, 2005) hypothesizes that asset prices are accurate

because the opposite, idiosyncratic errors of individual agents are averaged out by

the price formation mechanism. The WOC hypothesis has inspired a growing

interest in prediction markets (Wolfers and Zitzewitz, 2004; Arrow et al., 2008)

and social trading platforms (Chen et al., 2014; Pelster et al., 2017). Within the

prediction markets literature, most of the attention has been focused on static

settings. However, there is no solid foundation to justify the WOC argument. The

WOC can occur only if the joint distribution of consumption shares and beliefs

is such that individual mistakes cancel out. The main limitation of the WOC is

the lack of theoretical arguments supporting this assumption (Ali, 1977; Manski,

2006). Further, even if agents had heterogeneous priors and were rationally pro-
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cessing unbiased signals, the aggregate beliefs might be biased nonetheless due to

wealth effects (Ottaviani and Sørensen, 2014). Works that also combine dynamic

elements such as ours in prediction markets are Kets et al. (2014) and Bottazzi

and Giachini (2016). The WOC has also been investigated within other contexts.

In the literature of social learning in networks, Golub and Jackson (2010) and Jad-

babaie et al. (2012) provide conditions under which agents imitating each other

and naively updating their beliefs — using a rule similar to ours — can achieve the

same outcome as rational learning models. In the literature on collective problem-

solving, Hong and Page (2004) explore the trade-off between opinion diversity and

the difficulty in identifying optimal solutions (see also Page, 2007).

2 The model

Time is discrete, indexed by t, and begins at date t = 0. In each period t ≥ 1,

the economy can be in one of S mutually exclusive states, S. The set of partial

histories until t is the Cartesian product Σt = ×tS and the set of all paths is

Σ := ×∞S. σ = (σ1, ...) is a representative path, σt = (σ1, ..., σt) is a partial

history until period t, and Ft is the σ-algebra generated by the cylinders with base

σt. By construction (Ft)
∞
t=0 is a filtration and F is the σ-algebra generated by their

union.

P denotes the true measure on (Σ,F). In particular, we assume that states of

nature are i.i.d. so that the one-step-ahead true probability Pt is constant for all

t ≥ 1. With abuse of notation, we denote with P ∈ ∆|S| also such measure.

For any probability measure ρ on (Σ,F), ρ(σt) := ρ({σ1× ...×σt×S×S× ...})

is the marginal probability of the partial history σt while ρt := ρ(σt|σt−1) =

ρ(σt)
/
ρ (σt−1) is the conditional probability of the generic state σt given σt−1, so

that ρ(σt) =
∏t

τ=1 ρ(στ |στ−1).

Next, we introduce a number of economic variables with time index t. All these
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variables are adapted to the information filtration (Ft)
∞
t=0.1

The economy contains a finite set of agents I. For all paths σ, each agent

i ∈ I is endowed with a stream of the consumption good, (eit(σ))∞t=0. We take the

consumption good in t = 0 as the numéraire of the economy. Each agent’s objective

is to maximize the stream of discounted expected utility he gets from consumption.

Expectations are computed according to agents’ beliefs pi, a measure on (Σ,F).

Beliefs are heterogeneous and agents agree to disagree. Beliefs may be endogenous

in that they may rely on a market consensus (see Definition 4, Section 2.2). Naming

q(σt) the date t = 0 price of the asset that delivers one unit of consumption in

event σt and none otherwise, agent i maximization reads:

max
(cit(σ))∞t=0

Epi

[
∞∑
t=0

βi
t
ui(cit(σ))

]
s.t.

∑
t≥0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ)

)
≤ 0.

In Appendix C, we give the formal definition of the competitive equilibrium

when agents’ beliefs depend on the endogenous consensus and prove its existence.

A competitive equilibrium is a sequence of prices and, for each agent, beliefs and

a consumption plan that is preference maximal on the budget set, and such that

markets clear in every period: for all (t, σ),
∑

i∈I e
i
t(σ) =

∑
i∈I c

i
t(σ). Assumptions

A1-A4 below are standard in the market selection literature: A1-A3 ensure the

existence of a competitive equilibrium, while A4 guarantees that the market selects

for the most accurate agent(s) rather than for those that save the most.

A1 For all agents i ∈ I the utility ui : R+ → [−∞,+∞] is C1, strictly concave,

increasing, and satisfies the Inada condition at 0; that is, limc↘0 u
i′(c) =∞.

A2 The aggregate endowment is uniformly bounded from above and away from

0:

∞ > F = sup
t,σ

∑
i∈I

eit(σ) ≥ inf
t,σ

∑
i∈I

eit(σ) = f > 0.

1Whenever there is no ambiguity about the path in question, adapted variables have only the
index t, so that xt = xt(σ).
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A3 (i) For all agents i ∈ I and for all (t, σ), pi(σt) > 0⇔ P (σt) > 0.

(ii)∃ε > 0 such that for all agents i ∈ I and for all (t, σ), pi(σt|σt−1) > ε.2

A4 All agents have common discount factor: ∀i ∈ I, βi = β ∈ (0, 1).

2.1 Agents’ accuracy and survival

In this section, we remind the reader of standard definitions and results from the

market selection literature. The asymptotic fate of an agent is characterized by

his consumption share as follows.

Definition 1. Agent i vanishes if limt→∞ c
i
t(σ) = 0 P -a.s., he survives if

lim supt→∞ c
i
t(σ) > 0 P -a.s., he dominates if limt→∞ c

i
t(σ)

/∑
j∈I c

j
t(σ) = 1 P -a.s..

Since it became the standard after Blume and Easley (1992), we rank agents’ ac-

curacy according to their average (conditional) relative entropies (Kullback-Leibler

divergences).

Definition 2. The average relative entropy from pi to the true probability P is

d̄(P ||pi) := lim
t→∞

1

t

t∑
τ=1

d(P ||piτ ),

where, for all τ , d(P ||piτ ) := EP

[
ln

P (στ )

pi(στ |στ−1)

]
.

The relative entropy is uniquely minimized at piτ = P, strictly convex, and

d(P ||π) = d̄(P ||π) P -a.s. whenever P and π are i.i.d. measures. We say that

Definition 3. Agent i is more accurate than agent j if d̄(P ||pi) < d̄(P ||pj), P -a.s..

Agent i is as accurate as agent j if d̄(P ||pi) = d̄(P ||pj), P -a.s..

2Lemma 4 in Appendix A guarantees that the endogenous beliefs in our model satisfy A3 on
every equilibrium path.
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This notion of accuracy is commonly adopted in the market selection literature

because of its straightforward implications for agents’ survival. Under A1-A4, the

pairwise comparison of agents’ accuracies delivers a sufficient condition for an agent

to vanish.

Proposition 1. (Sandroni, 2000). Under A1-A4, agent i vanishes if there exists

an agent j ∈ I who is more accurate:

d̄(P ||pj) < d̄(P ||pi) P -a.s.⇒ Agent i vanishes.

This fundamental result, together with known results in probability theory,

allows us to characterize survival of agents with exogenous beliefs. The difficulty

we have to overcome is to calculate the accuracy of agents whose beliefs depend

on an endogenous measure of consensus.

2.2 Agents’ beliefs

We assume that agents in our economy either have exogenous beliefs or form beliefs

for next-period states by giving constant weight to two different models. The first

model, pC , is endogenous and represents the market consensus, see Section 2.4.

The second model, dogmatic probabilities (πi), is exogenous and agent-specific.3

We assume that dogmatic probabilities are constant over time4 and in the strict

interior of the simplex, which ensures that A3 holds (Lemma 4 in Appendix A).

3The heterogeneity of dogmatic probabilities is taken as given and we are agnostic about its
source. Although all agents receive the same public information (Ft), on which they trade, they
could use it to learn on different models or they could learn on the same models but augment
the public information with different private signals.

4All results generalize verbatim to the case in which the πi probabilities evolve according to
Bayes’ rule. Agents who learn their dogmatic beliefs via Bayes’ rule can be treated WLOG as
agents with constant dogmatic beliefs because, in i.i.d. settings, the Bayesian posterior converges
generically to a unique model (the model with the lowest K-L divergence to the truth, Berk, 1966)
and our measure of accuracy (Definition 3) is an average measure.
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Definition 4. The beliefs of each agent i ∈ I are either exogenous such that A3

holds and d̄(P ||·) exists; or given by

∀(t, σ), pi(σt|σt−1) = (1− αi)pC(σt|σt−1) + αiπi(σt) (1)

with αi ∈ (0, 1) and πi ∈ ∆S strictly positive.

This rule describes the attitude of an agent who partially believes that mar-

kets are accurate. The parameter αi determines how much agent i believes in

the accuracy of the consensus. Having exogenous beliefs, equivalently αi = 1,

represents the extreme scenario in which agent i ignores the consensus. This is

the standard case in the market selection literature, where it is typically assumed

that agents’ beliefs are independent of each other and of equilibrium quantities.

Whereas αi = 0 represents the case in which agent i does not give any weight to

his dogmatic probabilities because he is certain that markets are accurate — with

a similar attitude to the economist who finds a $20 bill lying on the ground and

refuses to believe it. The intermediate cases of αi ∈ (0, 1) are those that generate

the most interesting results.5

Definition 4 describes a mental attitude that is consistent with known biases

including anchoring (Shiller, 1999) and herding (Lakonishok et al., 1992). Fur-

thermore, the beliefs formation rule of Definition 4 has been used to discuss the

effect of agents’ partial learning from equilibrium prices in the context of static

prediction markets (Manski, 2006); a similar rule is used in the learning literature

on networks (Jadbabaie et al., 2012; Golub and Jackson, 2010); and beliefs (1) de-

termine a portfolio that (assuming log utility) coincides with the fractional Kelly

rule proposed by MacLean et al. (2011) in the portfolio theory literature.

5We rule out αi = 0 because αi = 0 for all i ∈ I leads to an indeterminate equilibrium.
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2.3 A definition of the wisdom of the crowd

We say that the WOCC occurs if the market consensus, pC , is more accurate than

the beliefs of the most accurate agent in isolation. Two probabilities play a special

role in our definition: the Best Individual Probability (πBIP ), which is the most

accurate dogmatic probability, and the Best Collective Probability (πBCP ), which

is the most accurate combination of agents’ dogmatic probabilities. Moreover, we

say that dogmatic probabilities are diverse when the Best Collective Probability

differs from the Best Individual Probability, that is, if it is possible to combine

dogmatic probabilities into a prediction that is more accurate than that of all

dogmatic probabilities.

Definition 5. Given a set of dogmatic probabilities {π1, ..., πI}:

• the Best Individual Probability is πBIP = argminπ∈{π1,...,πI} d̄(P ||π);

• the Best Collective Probability is πBCP = argminp∈Conv(π1,...,πI) d̄(P ||p);

• Agents’ beliefs are diverse if it is possible to achieve accuracy gains by bal-

ancing the different opinions of market participants: πBIP 6= πBCP .

Given our definitions of agents’ beliefs and consensuses (below), when an agent

is alone in the market his beliefs, his dogmatic probabilities and the consensus

coincide (pi = πi = pC). Therefore, we can define the WOC as follows.

Definition 6. The WOCC occurs if pC is more accurate than πBIP :

d̄(P ||pC) < d̄(P ||πBIP ), P -a.s..

To gain intuition, consider a two-state, S = {u, d}, two-agent, I = {1, 2},

economy. The true probability of state u is P (u) = .5. Agent 1 is pessimistic

about u, while agent 2 is optimistic. Their dogmatic probabilities are π1(u) = .4

and π2(u) = .7, respectively. Clearly, agent 1 has the most accurate dogmatic

probabilities, thus πBIP = π1 = .4, while the most accurate way to combine the
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dogmatic probabilities of the two agents is (2/3)π1(u) + (1/3)π2(u) = pBCP = P .

The WOC occurs if market probabilities are more accurate than the dogmatic

probability of agent 1 (and thus 2) — in other words, if the market consensus is

more accurate than all market participants in isolation.

2.4 Market consensuses

A crucial point of our analysis is the definition of the market consensus pC . We

conduct our analysis using different measures of consensus. The rationale behind

these measures is that they weight more the beliefs of agents with larger consump-

tion shares than those of agents with smaller consumption shares, so that the

consensus obtained in an economy with a unique agent coincides with his beliefs.

All the measures of consensus we propose coincide in economies with constant

aggregate endowment in which all agents have log utility. However, under more

general assumptions they are not the same because they are differently affected by

agents’ risk attitudes and fluctuations of the aggregate endowment.

The first measure of consensus we propose is market probabilities : pM .

Definition 7. For all (t, σ), market probabilities are

pM(σt|σt−1) =
∑
i∈I

pi(σt|σt−1)
c̄it−1∑
j∈I c̄

j
t−1

, (2)

where c̄it = 1
/
ui′(cit(σ)).

If all agents have log utility and the aggregate endowment is constant, pM

coincides with the risk-neutral probabilities and can be calculated from equilibrium

prices alone. In these economies Rubinstein (1974) shows that a representative

agent exists and that his unconditional beliefs are
∑

i∈I p
i(σt)ci0

/∑
j∈I c

j
0. Lemma

1 shows that pM makes the analysis of general economies qualitatively equivalent

to that of a log economy with no aggregate risk, albeit a distortion of the initial
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weights.

Lemma 1. Under A1-A4, on a competitive equilibrium for all (t, σ) it holds

pM(σt) =
∑
i∈I

pi(σt)
c̄i0∑
j∈I c̄

j
0

.

For the general case, the calculation of pM requires knowledge of the preferences

and the consumption shares of all agents. While it is unlikely that an agent in

the market would have this degree of information, we use market probabilities

(equivalently log utility for all agents and constant aggregate endowment) to set

a benchmark for the results that follow.

Next, we propose measures of consensus that can be easily calculated from

equilibrium prices, also beyond the log utility case. When the aggregate endow-

ment is constant, we study the occurrence of the WOC when some of the agents

use the risk-neutral probabilities for consensus.

Definition 8. For all (t, σ), the risk-neutral consensus is

pRN(σt|σt−1) =
q(σt|σt−1)∑
σ̃t
q(σ̃t|σt−1)

, (3)

where q(σt|σt−1) := q(σt)
/
q(σt−1) is the equilibrium price of a claim that pays a

unit of consumption at period/event σt, in terms of consumption at period/event

σt−1.

The analysis of economies in which agents rely on the risk-neutral consensus

is more complex than it is for agents using pM because agents’ risk attitudes do

affect pRN accuracy and thus agents’ accuracy and survival. We show that, ce-

teris paribus, economies with more risk-averse agents generate more accurate risk-

neutral probabilities than economies with less risk-averse agents and the WOCRN

occurs under weaker conditions. Lemma 2 expresses the equilibrium value of pRNt

in a way that facilitates its comparison to pMt .
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Lemma 2. Under A1-A4, on a competitive equilibrium for all (t, σ) it holds

pRN(σt|σt−1) ∝
∑
i∈I

pi(σt|σt−1)
c̄it−1∑
j∈I c̄

j
t

.

The difference between pM and pRN becomes apparent in comparing the weights

given to agents’ beliefs in Definitions 7 with those in Lemma 2: c̄it−1

/∑
j∈I c̄

j
t−1 6=

c̄it−1

/∑
j∈I c̄

j
t . The first one is state independent because the ratio involves the

marginal utility of consumption in the same period. The second one is state

dependent because the ratio compares marginal utilities in two different periods.

Moreover, only pRN requires to be normalized.

In an economy with a unique agent and constant aggregate endowment, both

measures satisfy our desiderata to be an unbiased estimator of the beliefs of the

agent. However, pRN fails to satisfy this property in economies where the aggregate

endowment varies because there are some (t, σ) such that c̄t 6= c̄t−1. The last

measure of market consensus we study can be calculated from prices and aggregate

endowment alone and corrects for this bias in economies in which all agents have

common CRRA utility function u(c) = (c1−γ − 1)
/

(1− γ).

Definition 9. For all (t, σ), the γ-adjusted risk-neutral consensus is

pRNγ (σt|σt−1) =
q(σt|σt−1)et(σ)γ∑
σ̃t
q(σ̃t|σt−1)et(σ̃)γ

(4)

where et(σ) =
∑

i∈I e
i
t(σ) is the aggregate endowment.

Lemma 3 expresses the equilibrium value of pRNγ in economies in which all

agents have identical CRRA utilities in a way that facilitates its comparison with

pRN and pM . It shows that pRNγ is immune to biases due to fluctuations of the

aggregate endowment because it is a consumption share version of the pRN con-

sensus.
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Lemma 3. Under A1-A4, if all agents have common CRRA utility with param-

eter γ ∈ (0,∞), on a competitive equilibrium for all (t, σ) it holds that

pRNγ (σt|σt−1) ∝
∑
i∈I

pi(σt|σt−1)
φit−1(σ)

γ∑
j∈I φ

j
t(σ)

γ ;

where φit(σ) = cit(σ)
/∑

j∈I c
j
t(σ).

3 Main results related to pM

In this section, we characterize the accuracy of pM , provide necessary conditions

and sufficient conditions for the WOCM to occur, and demonstrate its self-fulfilling

property. If a diverse group of agents believes in the accuracy of pM , market

probabilities are indeed accurate.

3.1 Accuracy of pM

Here we provide bounds on the relative accuracy of pM with respect to that of

agents’ beliefs. Proposition 2 characterizes the relative accuracy of pM with respect

to that of agents without solving for the equilibrium and independently of how

agents form their beliefs. It shows that the dynamics of equilibrium consumption

shares is such that:

Proposition 2. Under A1-A4,

(a) no agent can be more accurate than pM :

∀i ∈ I, d̄(P ||pi) ≥ d̄(P ||pM), P -a.s.;

(b) agent i survives only if he is as accurate as pM :

Agent i survives⇒ d̄(P ||pi) = d̄(P ||pM), P -a.s..
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Proposition 2 simplifies our analysis because standard techniques to approxi-

mate market probabilities and the accuracy of agents’ beliefs cannot be used when

agents’ beliefs depend on the endogenous consensus. All the results in this section

are obtained by combining Propositions 1 and 2, and by taking advantage of the

convexity of the relative entropy.

Next, Proposition 3 shows that market probabilities provide a fundamental

hedging benefit to the agents. By believing in pM an agent weakly improves its

accuracy irrespectively of his dogmatic beliefs, of the beliefs of the other agents,

and of the true probability:

Proposition 3. Under A1-A4, if αi ∈ (0, 1) and i uses pM for consensus,

d̄(P ||pi) ≤ d̄(P ||πi) P -a.s.;

with strict inequality if there exists an ε > 0 such that ||pMt − πi|| > ε a positive

fraction of periods.

If πi is the true model, agent i’s average accuracy is not diminished by mixing

with market probabilities because market probabilities converge to πi exponentially

fast since he dominates. Otherwise, if agent i’s subjective probabilistic model

of the world is incorrect, mixing with the consensus improves agent i’s accuracy

whenever the consensus is different from his dogmatic beliefs because Proposition 2

guarantees that the consensus is more accurate than πi.

Furthermore, pM is at least as accurate as πBIP and at most as accurate as

πBCP , provided that all agents with αi ∈ (0, 1) use pM for consensus.

Corollary 1. Under A1-A4, if all agents with αi ∈ (0, 1) use pM for consensus,

pM is at least as accurate as πBIP and at most as accurate as πBCP :

d̄(P ||πBCP ) ≤ d̄(P ||pM) ≤ d̄(P ||πBIP ), P -a.s..
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Proof. d̄(P ||pM ) ≤By Prop.2 d̄(P ||pBIP ) ≤By Prop.3 d̄(P ||πBIP ).

d̄(P ||pM ) ≥ d̄(P ||πBCP ) =P -a.s. minp∈Conv(π1,...,πI) d(P ||p) because ∀(t, σ), pMt ∈By Lem.5 Conv(π1, ..., πI).

Corollary 1 is proven showing that in the long run either the agent with the

most accurate dogmatic probabilities dominates, and market probabilities are as

accurate as πBIP , or there is long-run heterogeneity, and market probabilities are

a convex combination of the surviving agents’ dogmatic probabilities — thus, at

most as accurate as πBCP by definition.

3.2 Necessary conditions for the WOCM

When the reference consensus is pM , we identify two necessary conditions for the

WOCM . First, it must be possible to achieve accuracy gains by balancing the

different opinions of market participants (diversity). Second, at least some of

the agents must believe in market accuracy — which is necessary for long-run

heterogeneity. Selection forces can induce a non-degenerate joint distribution of

consumption shares and beliefs that makes market probabilities more accurate

than the most accurate agent in isolation only if the economy is diverse and some

beliefs are endogenous.

Proposition 4. Under A1-A4, if all agents use pM for consensus, the WOCM

can occur only if beliefs are diverse and the beliefs of at least one agent depend on

pM .

The first requirement (diversity) tells us that the WOCM cannot occur if all

agents share the same bias. For example, in an economy with two states in which

all dogmatic probabilities overweight the same state, no WOCM can occur because

the most accurate combination of agents’ beliefs is the one obtained by giving all

wealth to the least biased among the agents (BIP). Furthermore, this condition
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tells us that the WOCM cannot occur if there is an agent who knows (or eventually

learns) the truth because P = πBCP = πBIP .

The second requirement (relevance of the market consensus) confirms the stan-

dard result in the selection literature that the WOC cannot occur when agents’

beliefs do not depend on endogenous quantities. For example, suppose the market

has an optimistic and a pessimistic agent. If the pessimistic agent is less accurate

than the optimist, then the pessimist vanishes, market probabilities reflect only

the beliefs of the optimist and no WOC occurs (Blume and Easley, 2009).

3.3 Sufficient conditions for the WOCM

While the market might be populated by many agents with arbitrary beliefs and

preferences, the next condition shows that to guarantee that the WOCM occurs it

suffices to verify a condition on only two agents. If agent BIP mixes with pM and

there is an agent i with αi ∈ (0, 1) that would be more accurate than BIP if BIP

were to dominate (pM = πBIP ), then at least two agents survive and the WOCM

occurs.

Proposition 5. Under A1-A4, the WOCM occurs and at least two agents survive

if agent BIP relies on pM with αBIP ∈ (0, 1) and

∃i ∈ I : d̄(P ||(1− αi)πBIP + αiπi) < d̄(P ||πBIP ). (5)

Proof. The condition on pi is sufficient to guarantee that agent BIP does not have a consump-

tion share arbitrarily close to one in most periods — otherwise, agent i would be more accurate

than agent BIP , violating Proposition 1. So, pMt 6= πBIP a positive fraction of periods and

d̄(P ||pM ) ≤Prop.2 d̄(P ||pBIP ) <by Prop.3 d̄(P ||πBIP ).

The rationale for these conditions is as follows. Equation (5) guarantees that
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Figure 1: Consumption shares [left] and market probabilities [right] dynamics in a two-state
log economy with dogmatic beliefs [πBIP (u), π2(u)] = [.4, .7] and mixing coefficient [αBIP , α2] =
[.2, .2]. Both conditions of Proposition 5 hold and the WOCM occurs. Consumption shares never
find a resting point, and market probabilities are more accurate than πBIP .

agent BIP cannot dominate, and αBIP ∈ (0, 1) guarantees that his beliefs pBIP

are more accurate than his dogmatic beliefs πBIP . If agent BIP were to dominate,

no WOCM could occur because pM would be as accurate as his dogmatic beliefs; if

agent BIP survived with αBIP = 1, then no WOCM could occur because pM would

be as accurate as πBIP by Proposition 2. We can focus on agent BIP’s fate alone

because he is the only agent that could survive in isolation and, if he vanished, the

WOCM would occur because pM would be at least as accurate as pBIP which, by

Proposition 3, would be strictly more accurate than πBIP .

Figure 1 illustrates Proposition 5 in a log economy with two states, S = {u, d},

and two agents I = {BIP, 2}. The true probability of state u is P (u) = .5. Agent

BIP is pessimistic about u, while agent 2 is optimistic. Their dogmatic prob-

abilities are πBIP (u) = .4 and π2(u) = .7, respectively. Because agents’ beliefs

are diverse (πBIP 6= πBCP = P ) it is possible to achieve accuracy gains by mix-

ing their opinions. With αBIP = α2 = .2 both conditions of Proposition 5 are

satisfied. Agents give enough weight to market probabilities to ensure that no

agent can dominate in the market. If an agent were to dominate, market proba-

bilities would coincide with his dogmatic beliefs, making the beliefs of the other

agent more accurate than his, in contradiction to Proposition 1. Furthermore,
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αBIP ∈ (0, 1) guarantees that pM is more accurate than πBIP because it ensures

that the pMt s stay closer than πBIP to P in most periods.6

Remark: If the economy has two agents, BIP and 2, the two conditions of Propo-

sition 5 are also jointly necessary. If agent 2’s beliefs violate equation (5), BIP

dominates and no WOCM occurs because pMt → πBIP . Whereas, if agent BIP

does not mix, he survives and no WOCM occurs because d̄(P ||pM) = d̄(P ||πBIP )

by Proposition 2. In general, the mixing requirement for agent BIP is not neces-

sary, what is necessary is to have at least two agents with an opposite bias who

rely on market probabilities. The stronger result of Theorem 1 (below) makes no

assumption on agent BIP’s beliefs.

3.4 Accurate markets: A self-fulfilling prophecy (pM)

Here we demonstrate that if there is a group of agents in the economy with beliefs

around the truth who are very confident that market probabilities are accurate,

then market probabilities are indeed (almost) accurate, irrespective of the beliefs

of the other agents. By relying strongly on market probabilities, agents generate a

virtuous interaction that makes their beliefs and the market both more accurate.

In equilibrium, the selection forces endogenously generate a joint distribution of

consumption share and beliefs such that market probabilities are (almost) correct

even if no agent knows the truth.

Theorem 1. Let (Eα) be a family of economies that satisfies A1-A4 with a subset

of agents Î that relies on pM with αi ∈ (0, ᾱ] and such that P ∈ Conv(Î). Name

each economy market probabilities process (pMt,ᾱ)∞t=0, then:

lim
ᾱ→0

d̄(P ||pMᾱ ) = 0, P -a.s..

6Formally, consumption shares are mean-reverting processes around the value φ̄BIP that
determines a market probability p̄M which makes agents BIP and 2 have equal relative entropy,
i.e. φBIPt R φ̄BIP ⇔ d(P ||pBIPt ) R d(P ||p2

t ). The WOCM occurs because p̄M is more accurate

than πBIP and π2, and market probabilities stay close to p̄M a large enough fraction of periods.
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For intuition, consider a two-state log economy with only two agents, one op-

timistic, io, and one pessimistic, ip. For ᾱ small enough, both agents survive by

Proposition 5 and are equally accurate by Proposition 2. Because ᾱ is small, their

beliefs are almost identical and consumption shares do not change much over time.

Accordingly, pMt,ᾱ must spend most periods close to a value p̂M(ᾱ) that makes the

relative entropies d(P |pipt ) and d(P |piot ) equal. As ᾱ goes to zero, p̂M(ᾱ) goes to P

because any other value would make one agent more accurate than the other. For

general economies, only agents in Î survive and the same intuition applies.7

Figure 2 illustrates Theorem 1. It shows [left] the dynamics of consumption

shares and [right] the frequency of market probabilities of four economies that

differ only in their value of ᾱ. All economies have two agents with dogmatic

probabilities πBIP (u) = .4 and π2(u) = .7, so that πBIP 6= P ∈ Conv(πBIP , π2)

and αBIP = α2 = ᾱ. As per Proposition 4, when ᾱ = 1, no WOC occurs:

prices are as accurate as πBIP . As per Proposition 5, for ᾱ low enough, no agent

dominates and market probabilities are more accurate than πBIP . In this specific

example, ᾱ = 0.2 is already small enough for agent BIP not to dominate. As

per Theorem 1, for ᾱ = .001 ≈ 0 the market probabilities distribution becomes

concentrated in a small interval around P , which makes pM almost as accurate as

the truth. If agents strongly believe that the market is accurate, then the market

is indeed accurate.

7Formally, the pM process is characterized by three parameters which depend on ᾱ. These
are its drift, its variance, and the threshold, p̂M , that determines a drift change. The effect of ᾱ
on p̂M is easy to obtain: p̂M →ᾱ→0 P . The theorem holds because for every interval around p̂M ,
ᾱ can be chosen small enough to ensure that the market belief process spends most of its periods
in that interval. The difficulty in proving the result is that a lower ᾱ implies a lower variance,
but also a weaker mean-reverting drift of the market probability process — the selection forces
are weaker because agents’ beliefs become more similar. Thus, we have to determine which
effect dominates when ᾱ is small. To make things worse, the per-period variances and drifts
change over time and are path-dependent. Our result implies that the accuracy gain for a
more accurate mean-reverting point and a lower variance of the market probability process more
than compensates for the accuracy loss due to weaker mean-reverting forces. Although market
probabilities might take a long time to reach p̂M when ᾱ is small, a low ᾱ makes pM accurate
because it forces pM to remain close to p̂M after reaching it.
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Figure 2: Consumption share dynamics [left] and pM frequencies [right] in four log economies
with true probability P (u) = .5, two agents with dogmatic probabilities πBIP (u) = .4 and
π2(u) = .7, αBIP = α2 = ᾱ and four different values of ᾱ = [1, .2, .05, .001]. The figure shows
that a smaller ᾱ determines frequencies of pM that are more concentrated around the truth.

4 Main results related to pRN and pRNγ

In this section, we study the long-run property of markets in which (some) agents

use either pRN or pRNγ for market consensus under the following assumption.

A5 Let Ī := BIP ∪ {i ∈ I : αi 6= 1}; either (i) the aggregate endowment is con-

stant and all agents in Ī have CRRA utility or (ii), the aggregate endowment

is not constant and all agents in Ī have identical CRRA utility.8

Because the results we derive under A5, (i) and (ii) are identical, we adopt the

abuse of notation pRN = pRNγ when the aggregate endowment is not constant.9

The equilibrium dynamics of an economy in which agents use pRN for consensus

differs from that of an economy in which the same agents use pM for consensus. For

example, it is possible that if agents use pRN for consensus there is a dominating

agent while, on the same path σ, long-run heterogeneity would appear if the same

agents were to use pM for consensus. Moreover, pRN does not satisfy the properties

of pM discussed in Section 3: the belief of every surviving agent is typically not

as accurate as pRN (see Proposition 6, below) and pRNt might not be a convex

8The reason why we need only to pose assumptions on agents in Ī is that Proposition 1
guarantees that the only agent with exogenous beliefs that might survive and have long-run
effect on the consensus is agent BIP .

9In the Appendix, we present proofs for the two settings separately, when needed.
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combination of agents’ dogmatic beliefs.

4.1 Accuracy of pRN

In this section, we characterize the relative accuracy of pRN and pM , and discuss

its dependence on agents’ risk attitudes. Proposition 6 illustrates how the RRA

parameters of the surviving agents affect the sign of d̄(P ||pRN)− d̄(P ||pM). Ceteris

paribus, economies with more risk-averse agents determine (weakly) more accurate

risk-neutral probabilities.

Proposition 6. Under A1-A5, let Î be the set of surviving agents, then,

(a) ∀i ∈ Î, γi ∈ (0, 1]⇒ pRN is at most as accurate as pM :

d̄(P ||pRN ) ≥ d̄(P ||pM ), P -a.s.

(b) ∀i ∈ Î, γi = 1⇒ pRN is as accurate as pM :

d̄(P ||pRN ) = d̄(P ||pM ), P -a.s.

(c) ∀i ∈ Î, γi ∈ [1,∞)⇒ pRN is at least as accurate as pM :

d̄(P ||pRN ) ≤ d̄(P ||pM ), P -a.s.;

where (a) and (c) hold with strict inequality if and only if there is long-run heterogeneity

in beliefs and at least one among the surviving agents has α ∈ (0, 1).

Looking at the proof of Proposition 6 we see that the differential in accuracy

between pM and pRN is due to the equation

d̄(P ||pRN) = d̄(P ||pM) + lim
t→∞

1

t

t∑
τ=1

ln
∑
σ̃τ

q(σ̃τ |στ−1)

β
P -a.s.,
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which allows for the following economic intuition for the difference between pM and

pRN accuracies (see also Massari, 2020). In every (t − 1, σ),
∑

σ̃t
q(σ̃t|σt−1) is the

cost of moving a unit of consumption for sure a period ahead, i.e., the reciprocal

of the risk-free rate. The effect of risk attitudes on the risk-free rate follows this

intuition. In every period most agents subjectively believe that assets are mispriced

and trade for speculative reasons because they disagree. When agents have log

utility (γ = 1), prices (and thus interest rates) do not affect optimal saving choices

(the substitution effect equals the income effect) and the reciprocal of the risk-free

rate is given by the discount factor: for all (t, σ), β =
∑

σ̃t
q(σ̃t|σt−1). However, if

γ < (>)1, the substitution effect is stronger (weaker) than the income effect, each

agent optimally chooses to save more (less) aggressively than if they had log utility,

and a lower (higher) risk-free rate arises: for all (t, σ),
∑

σ̃τ
q(σ̃τ |στ−1) > (<)β.

When there is heterogeneity in a positive fraction of periods, this effect renders

pRN less (more) accurate than pM . In the standard case of exogenous beliefs,

this effect is present but either disappears in the short run because one agent

dominates, or its magnitude is too small to be captured by an average measure of

accuracy (Massari, 2017).10

4.2 Sufficient conditions for the WOCRN

The sufficient conditions for the WOCRN to occur need to take into account how

the risk attitudes of the surviving agents affect pRN ’s accuracy. Proposition 6 tells

us that, with general preferences, pRN might be less accurate than pM or even πBIP

in equilibrium. This eventuality makes it harder for the WOCRN to occur when

agents rely on pRN rather than pM . Stronger conditions are needed to prevent

the system from entering a dynamics that has long-run heterogeneity but does not

deliver an accurate consensus and our proof technique cannot handle this case. In

10The same effect is present with exogenous beliefs when there is long-run heterogeneity, e.g.
with recursive preferences see Borovička (2020) and Dindo (2019).
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this paper, we focus on the case in which all agents in Ī have CRRA utility with

γi > 1 and leave the general case for future research.

If all agents in Ī have CRRA utility with γi > 1 Proposition 6 guarantees that

pRN is at least as accurate as pM and the sufficient condition we find is easier

to satisfy than that of Proposition 5. Specifically, Proposition 7 does not require

agent BIP ’s beliefs to depend on the consensus.

Proposition 7. Under A1-A5, the WOCRN occurs and at least two agents sur-

vive, if all agents j ∈ Ī have CRRA utility with γj > 1 and

∃i ∈ Ī : d̄(P ||(1− αi)πBIP + αiπi) < d̄(P ||πBIP ). (6)

Notably, Proposition 7 holds irrespective of the consensus used by the agents.

Figure 3 illustrates Proposition 7. [left] Agent 2 mixes with pRN , for γ = 2 > 1

and [αBIP , α2] = [1, .2] condition (6) is satisfied, agent BIP cannot dominate

and the WOCRN occurs. [right] The dynamics of pRN on the same path for an

economy with the same parameters but in which agent 2 mixes using pM , rather

then pRN . As discussed in the Remark following Proposition 5, this economy does

not generate the WOCM because BIP survives but does not mix. Nevertheless, it

does generate the WOCRN because there is long-run heterogeneity so that pRN is

more accurate than pM (Proposition 6) which is at least as accurate as pBIP = πBIP

(Proposition 3).

4.3 Accurate markets: A self-fulfilling prophecy (RN)

Here we give conditions under which the self-fulfilling prophecy discussed in Sec-

tion 3.4 holds when agents use pRN for market consensus. As for our sufficient

conditions, risk attitudes have an effect on the occurrence of the WOCRN and

we focus exclusively on the case in which all agents in Ī have CRRA utility with

γi ≥ 1. Under this assumption, the self-fulfilling prophecy condition we derive
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Figure 3: [left] pRNt dynamics in a two-state economy in which agents mix using pRN with
parameters [πBIP (u), π2(u)] = [.4, .7], [αBIP , α2] = [1, .2],γBIP = 2 = γ2. [right] pRNt dynamics
in an economy with the same parameters in which agent 2 mixes using pM , rather than pRN .

using pRN coincides with that of Theorem 1.

Theorem 2. Let (Eα) be a family of economies that satisfies A1-A5 with a subset

of agents Î that relies on pRN with αi ∈ (0, ᾱ] and such that P ∈ Conv(Î). Name

each economy risk-neutral probabilities process (pRNt,ᾱ )∞t=0; then, if all agents in Ī

have CRRA utilities,

∀i ∈ Ī, γi ≥ 1⇒ lim
ᾱ→0

d̄(P ||pRNᾱ ) = 0, P -a.s..

5 Conclusion

We provide conditions under which the MSH and the WOC can be reconciled

in a dynamic economy where agents naively learn from an endogenous measure

of consensus. Moreover, we show that if a group of agents strongly believe in

market accuracy and their beliefs can be combined to obtain the truth, a virtuous

self-fulling prophecy occurs. Although no agent knows the truth, and the initial

joint distribution of consumption shares and beliefs might be such that the initial

consensus is very inaccurate, market selection forces endogenously generate a joint

dynamics of consumption shares and beliefs such that consensuses are almost as

accurate as the truth. When agents use the risk-neutral probability for consensus,
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we show how risk attitudes affect the accuracy of market consensuses and beliefs,

and characterize their overall effect on the WOC.

A Appendix

In the proofs, we sometimes omit the conditioning notation for prices and probabilities
and adopt the more compact notation: for j ∈ I ∪M ∪ RN, pj(σt|) := pj(σt|σt−1) and
q(σt|) := q(σt|σt−1). Furthermore, we make use of the symbols � and O(·) with the
meanings:

f(x) = O(g(x)) if lim sup
x

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞.
f(x) � g(x) if ∀x, f(x) > 0, g(x) > 0 and

{
lim supx

f(x)
g(x) <∞

lim infx
f(x)
g(x) > 0

.

Proof of Lemma 1

Proof.

∀(t, σ), pM (σt) =
t∏

τ=1

pM (στ |στ−1)

=

(∑
i∈I

pi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

j
t−1(σ)

)
t−1∏
τ=1

pM (στ |στ−1)

=(a)

(∑
i∈I

pi(σt|σt−1)pi(σt−1|σt−2)
c̄it−2(σ)∑
j∈I c̄

j
t−2(σ)

)
1

pM (σt−1|σt−1)

t−1∏
τ=1

pM (στ |στ−1)

=
∑
i∈I

pi(σt|σt−1)pi(σt−1|σt−2)
c̄it−2(σ)∑
j∈I c̄

j
t−2(σ)

t−2∏
τ=1

pM (στ |στ−1)

...

=
∑
i∈I

t∏
τ=1

pi(στ |στ−1)
c̄i0∑
j∈I c̄

j
0

=
∑
i∈I

pi(σt)
c̄i0∑
j∈I c̄

j
0

(a) : by the FOC, for all (t, σ), ∀i ∈ I, c̄it−1(σ) = βpi(σt−1|σt−2)c̄it−2(σ)
/
q(σt−1|σt−2); so,

c̄it−1(σ)∑
j∈I c̄

j
t−1(σ)

=
pi(σt−1|σt−2)c̄it−2(σ)∑
j∈I p

j(σt−1|σt−2)c̄jt−2(σ)
=
pi(σt−1|σt−2)c̄it−2(σ)

pM (σt−1|σt−1)

1∑
j∈I c̄

j
t−2(σ)

.
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Proof of Lemma 2

Proof. From the FOC, for all (t, σ),

∀i ∈ I, c̄it(σ)q(σt|σt−1) = βpi(σt|σt−1)c̄it−1(σ),

summing over i and rearranging,

q(σt|σt−1) =
∑
i∈I

βpi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

i
t(σ)

⇒ pRN (σt|σt−1) : =
q(σt|σt−1)∑
σ̃t
q(σ̃t|σt−1)

∝
∑
i∈I

pi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

j
t (σ)

.

Proof of Lemma 3

Proof. In every equilibrium, for all (t, σ),

pRNγ (σt|σt−1) :=
q(σt|σt−1)et(σ)γ∑
σ̃t
q(σ̃t|σt−1)et(σ̃)γ

∝
∑
i∈I

pi(σt|σt−1)
c̄it−1(σ)∑
j∈I c̄

j
t (σ)

et(σ)γ

et−1(σ)γ

=
∑
i∈I

pi(σt|σt−1)
cit−1(σ)γ∑
j∈I c

j
t (σ)γ

(∑
k∈I c

k
t (σ)

)γ(∑
l∈I c

l
t−1(σ)

)γ
=
∑
i∈I

pi(σt|σt−1)
cit−1(σ)γ(∑
l∈I c

l
t−1(σ)

)γ 1∑
j∈I

cjt (σ)γ

(
∑
k∈I c

k
t (σ))

γ

=
∑
i∈I

pi(σt|σt−1)
φit−1(σ)

γ∑
j∈I φ

j
t (σ)

γ

Lemma 4. Under A1, A2 (A5) and A4, if agents’ beliefs are as in Definition 4 with
pC = pM (pRN ) and ∀i ∈ I, αi ∈ (0, 1] then A3 is satisfied.

Proof. By Definition 4, pi(σt|σt−1) = (1 − αi)pC(σt|σt−1) + αiπi(σt) with both πi and
αi strictly positive ∀ i ∈ I. Therefore, for all (t, σ), pi(σt|σt−1) ≥ αiπi(σt) > 0.

Lemma 5. Under A1-A4, if agents’ beliefs are as in Definition 4 with pC = pM , then

∀(t, σ),∀j ∈ I ∪M,pj(σt|σt−1) ∈ Conv(π1, ..., πI).
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Proof. Substituting pi(σt|σt−1) (Definition 4) in Definition 7,

∀(t, σ), pM (σt|σt−1) =
∑
i∈I

[
(1− αi)pM (σt|σt−1) + αiπi(σt)

] c̄it−1(σ)∑
j∈I c̄

j
t−1(σ)

.

Rearranging,

∀(t, σ), pM (σt|σt−1) =
∑
i∈I

πi(σt)
αic̄it−1(σ)∑
j∈I α

j c̄jt−1(σ)
∈ Conv(π1, ..., πI).

So, ∀i ∈ I : αi ∈ (0, 1), pi(σt|σt−1) ∈ Conv(π1, ..., πI) because it is the convex combina-
tion of two points in Conv(π1, ..., πI).

Proof of Proposition 2

Proof. (a) Let φ̄i0 :=
c̄i0∑
j∈I c̄

j
0

; for all (t, σ),

pM (σt) =By Lem. 1
∑
i∈I

pi(σt)φ̄i0

⇒ ∀i ∈ I, ln pM (σt) ≥ ln pi(σt) + ln φ̄i0

⇒(a)
t∑

τ=1

ln pM (στ |στ−1) ≥
t∑

τ=1

ln pi(στ |στ−1) + ln φ̄i0

⇒ 1

t

t∑
τ=1

ln
P (στ )

pM (στ |στ−1)
≤ 1

t

t∑
τ=1

ln
P (στ )

pi(στ |στ−1)
− 1

t
ln φ̄i0

⇒ lim
t→∞

[
1

t

[
t∑

τ=1

ln
P (στ )

pM (στ |στ−1)
−

t∑
τ=1

d(P ||pMτ )

]
+

1

t

t∑
τ=1

d(P ||pMτ )

]

≤ lim
t→∞

[
1

t

[
t∑

τ=1

ln
P (στ )

pi(στ |στ−1)
−

t∑
τ=1

d(P ||piτ )

]
+

1

t

t∑
τ=1

d(P ||piτ )− 1

t
ln φ̄i0

]
⇒(b) d̄(P ||pM ) ≤ d̄(P ||pi) P -a.s., by the SLLNMD.

(a) Remembering that for j = i,M and for all (t, σ),

pj(σt) :=

t∏
τ=1

pj(στ |στ−1).

(b) It follows from the Strong Law of Large Number for Martingale Differences (SLLNMD)(see
also Sandroni, 2000) that guarantees that for j = i,M ,

lim
t→∞

1

t

[
t∑

τ=1

ln
P (στ )

pj(στ |στ−1)
−

t∑
τ=1

d(P ||pjτ )

]
= 0, P -a.s.

(b): We proceed by proving the contrapositive statement: d̄(P ||pM ) < d̄(P ||pi) P -a.s. ⇒ agent
i vanishes — the opposite inequality is ruled out by (a).
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c̄it(σ) =
βtpi(σt)

q(σt)
c̄i0 �by Massari (2017), Th.1 pi(σt)∑

i∈I p
i(σt)

c̄i0 �by Lem.1 pi(σt)

pM (σt)
c̄i0

⇒ lim
t→∞

1

t
ln c̄it(σ) = lim

t→∞

1

t
ln

pi(σt)

pM (σt)
+

1

t
ln c̄i0

= lim
t→∞

1

t

[
ln

P (σt)

pM (σt)
− ln

P (σt)

pi(σt)

]
= d̄(P ||pM )− d̄(P ||pi) P -a.s., by the SLLNMD

Therefore, d̄(P ||pM ) < d̄(P ||pi) P -a.s.⇒ lim
t→∞

1

t
ln c̄it(σ) < 0, P -a.s.

⇒ ln c̄it(σ)→ −∞, P -a.s.

⇒ 1

ui′(cit(σ))
→ 0 P -a.s.

⇒ cit(σ)→ 0 P -a.s. by A1

⇒ agent i vanishes.

Proof of Proposition 3

Proof. ∀(t, σ),

d(P ||pit) = d(P ||(1− αi)pMt + αiπi))

≤(a) (1− αi)d(P ||pMt ) + αid(P ||πi) ; by strict convexity of d(P ||·)
⇒ d̄(P ||pi) ≤ (1− αi)d̄(P ||pM ) + αid̄(P ||πi) ; summing and averaging over t

⇒ d̄(P ||pi) ≤ d̄(P ||πi) P -a.s. ; because d̄(P ||pM ) ≤by Prop.2 d̄(P ||pi)

Moreover, if there exists an ε > 0 such that ||pMt − πi|| > ε a in positive fraction of
periods, then d̄(P ||pi) < d̄(P ||πi) because inequality (a) is strict in a positive fraction of
periods by continuity and strict convexity of d(P ||·).

Proof of Proposition 4

Proof. WOCM ⇒ beliefs must be diverse. We prove the contrapositive statement:

πBCP = πBIP ⇒ d̄(P ||pM ) ≥ d̄(P ||πBIP ) P -a.s. (i.e., no WOCM ).

∀(t, σ), pMt ∈By Lem.5 Conv(π1, ..., πI) and πBCP := argminp∈Conv(π1,...,πI) d(P ||p).
Thus, for every choice of αi ∈ (0, 1], ∀σ, d̄(P ||pM ) ≥ d̄(P ||πBCP ) =By H0 d̄(P ||πBIP ).

WOCM ⇒ ∃i : αi ∈ (0, 1). We prove the contrapositive statement:

∀i ∈ I, αi = 1⇒ d̄(P ||pM ) ≥ d̄(P ||πBIP ) P -a.s. (i.e., no WOCM ).
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∀i ∈ I, αi = 1⇒ ∀i ∈ I, pi = πi, and the result follows from Proposition 2, a).

The following two Lemmas are necessary for the proof of Proposition 6.

Lemma 6. Under A1-A5, if agents’ utilities are CRRA and the aggregate endowment
is constant, for all (t, σ),

∀i, γi ≥ 1⇒ 1
β

∑
σt
q(σt|) ≤ 1

∀i, γi ≤ 1⇒ 1
β

∑
σt
q(σt|) ≥ 1

,

with equality if and only if the consumption shares distribution is degenerate, or γi = 1
for all agents, or all agents have identical beliefs.

Proof. On every equilibrium path ∀(t, σ) and for all i,

cit(σ) =

(
βpi(σt|)
q(σt|)

) 1

γi

cit−1(σ).

Multiplying both sides of the equation by q(σt|)
/
β,

q(σt|)
β

cit(σ) = pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

cit−1(σ).

Summing on both sides of the equation over all the agents,

q(σt|)
β

∑
i∈I

cit(σ) =
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

cit−1(σ).

Dividing on both sides of the equation by the aggregate endowment (which is constant
over t)

q(σt|)
β

=
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1, (7)

where [φ1
t−1, ..., φ

I
t−1] is the consumption shares distribution in (t− 1, σt−1).

Summing on both sides of the equation over the states:

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1.

Multiplying the right-hand side by

∏
k∈I

(∑
σt

q(σt|)
β

)1− 1

γk

∏
j∈I

(∑
σt

q(σt|)
β

)1− 1

γj

= 1,
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we can express the left-hand side as a function of the risk-neutral probabilities:

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1

∏
k∈I

(∑
σt

q(σt|)
β

)1− 1

γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

. (8)

• Let us focus on the case in which ∀i, γi ≥ 1.

Let i∗ := argmaxi∈I
(∑

σt
q(σt|)

/
β
)1− 1

γi ; so that,

∀k, i ∈ I,

∏
k 6=i∗

(∑
σt

q(σt|)
β

)1− 1

γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

≤ 1.

It follows that

∑
σt

q(σt|)
β

=
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1

(∑
σt

q(σt|)
β

)1− 1

γi
∗
∏
k 6=i∗

(∑
σt

q(σt|)
β

)1− 1

γi

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

≤
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1

(∑
σt

q(σt|)
β

)1− 1

γi
∗

.

Rearranging,(∑
σt

q(σt|)
β

) 1

γi
∗

≤
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1 (9)

≤(a)
∑
i∈I

∑
σt

(
1

γi
pi(σt|) +

(
1− 1

γi

)
pRN (σt|)

)
φit−1 = 1

⇒
∑
σt

q(σt|)
β
≤ 1.

(a) : ∀i ∈ I, γi ≥ 1⇒ ∀σt, pi(σt|)
1

γi pRN (σt|)
1− 1

γi ≤ 1
γi
pi(σt|) +

(
1− 1

γi

)
pRN (σt|),

by the ordering of the arithmetic and geometric means.

• Let’s focus on the case in which ∀i, γi ≤ 1.

Let i∗∗ := argmini∈I
(∑

σt
q(σt|)

/
β
)1− 1

γi ; so that

∀k, i ∈ I,

∏
k 6=i∗∗

(∑
σt

q(σt|)
β

)1− 1

γk

∏
j 6=i

(∑
σt

q(σt|)
β

)1− 1

γj

≥ 1.
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Proceeding as above, we obtain the opposite inequality:(∑
σt

q(σt|)
β

) 1

γi
∗∗

≥
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1. (10)

The result follows by showing that

γi ≤ 1 ∀i⇒ ln
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1 ≥ 0.

For convenience, let ∀i, ηi := 1
/
γi; so that ∀i, ηi ∈ (1,∞).

ln
∑
i∈I

∑
σt

pi(σt|)
1

γi pRN (σt|)
1− 1

γi φit−1 = ln
∑
i∈I

∑
σt

pi(σt|)ηi
pRN (σt|)ηi−1

φit−1

≥(a)
∑
i∈I

φit−1 ln
∑
σt

pi(σt|)ηi
pRN (σt|)ηi−1

=
∑
i∈I

(ηi − 1)φit−1

(
1

ηi − 1
ln
∑
σt

pi(σt|)ηi
pRN (σt|)ηi−1

)
=(b)

∑
i∈I

(ηi − 1)φit−1Dηi(p
i
t||pRNt )

≥(c) 0.

(a): By concavity of log.
(b): Recognizing the definition of the Rényi divergence (Dηi(p

i
t||pRNt )) between pit

and pRNt (Rényi, 1961; Van Erven and Harremos, 2014).
(c): Rény divergence is weakly positive, it equals 0 iff pi = pRN (Van Erven and
Harremos, 2014).

An inspection of Equation (8) shows that equality holds if and only if
— either the consumption share distribution is degenerate because

φit−1 = 1⇒ pit = pt = pRNt ⇒

(∑
σt

q(σt|)
β

) 1

γi

=
∑
i∈I

∑
σt

pt(σt|)
1

γi pt(σt|)
1− 1

γi φit−1 = 1;

— or γi = 1 for all agents because
∑

σt
q(σt|)

/
β =

∑
i∈I
∑

σt
pi(σt|) = 1;

— or all agents have identical beliefs because

∀i, pit = pt = pRNt ⇒ ∀i,

(∑
σt

q(σt|)
β

) 1

γi

=
∑
i∈I

∑
σt

pt(σt|)
1

γi pt(σt|)
1− 1

γi φit−1 = 1.
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Lemma 7. Under A1-A5 , if all agents have identical CRRA utility then, for all (t, σ):

∀i, γi ≥ 1⇒ 1
β

∑
σt
q(σt|σt−1)

(
et(σ)

et−1(σ)

)γ
≤ 1

∀i, γi ≤ 1⇒ 1
β

∑
σt
q(σt|σt−1)

(
et(σ)

et−1(σ)

)γ
≥ 1

;

with equality if and only if the consumption shares distribution is degenerate, or γi = 1
for all agents, or all agents have identical beliefs.

Proof. This proof mimics that of Lemma 6. On every equilibrium path ∀(t, σ) and for
all i,

cit(σ) =

(
βpi(σt|)
q(σt|)

) 1
γ

cit−1(σ).

Multiplying both sides by
(
q(σt|)

/
β
) (
et(σ)

/
et−1(σ)

)γ−1
we have

q(σt|)
β

(
et(σ)

et−1(σ)

)γ−1

cit(σ) = pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

cit−1(σ).

Summing on both sides of the equation over agents, i,

q(σt|)
β

(
et(σ)

et−1(σ)

)γ−1∑
i∈I

cit(σ) =
∑
i∈I

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

cit−1(σ).

Noticing that et(σ) =
∑

i∈I c
i
t(σ) and et−1(σ) =

∑
i∈I c

i
t−1(σ), simplifying and rearrang-

ing

q(σt|)
β

(
et(σ)

et−1(σ)

)γ
=
∑
i∈I

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

φit−1(σ) (11)

where [φ1
t−1, ..., φ

I
t−1] is the consumption shares distribution in (t− 1, σt−1).

Summing on both sides of the equation over states:

∑
σt

q(σt|)
β

(
et(σ)

et−1(σ)

)γ
=
∑
i∈I

∑
σt

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

φit−1(σ).

Dividing both sides by

∑
σt

q(σt|)
(

et(σ)
et−1(σ)

)γ
β

1− 1
γ

, we obtain

35



∑
σt

q(σt|)
(

et(σ)
et−1(σ)

)γ
β


1
γ

=
∑
i∈I

∑
σt

pi(σt|)
1
γ pRN (σt|)1− 1

γ φit−1. (12)

The rest of the proof is now identical to that of Lemma 6, substituting Equation (12)
into Equations (9) and (10) to study the cases γ ≥ 1, γ ≤ 1, respectively.

Proof of Proposition 6

Proof. Let’s start from the case of constant aggregate endowment.

Note that ∀(t, σ), ln pRN (σt) = ln
t∏

τ=1

pRN (στ |) = ln
t∏

τ=1

q(στ |)∑
σ̂τ
q(σ̂τ |)

= ln
q(σt)

βt
−

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)

by Massari (2017), Th.1 � ln

(∑
i∈I

pi(σt)

)
−

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)
.

Therefore

d̄(P ||pM )− d̄(P ||pRN ) = lim
t→∞

1

t

(
ln pRN (σt)− ln pM (σt)

)
P -a.s., by the SLLNMD

= lim
t→∞

1

t

(
ln
∑
i∈I

pi(σt)− 1

t

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)
− ln pM (σt)

)

=By Lem.1 lim
t→∞

1

t

(
ln
∑
i∈I

pi(σt)− 1

t

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)
− ln

∑
i∈I

pi(σt)

)

=− lim
t→∞

1

t

t∑
τ=1

ln

(
1

β

∑
στ

q(στ |)

)

and Lemma 6⇒
{
≥ 0 if ∀i, γi ∈ [1,∞)
≤ 0 if ∀i, γi ∈ (0, 1]

;

where inequalities are strict if and only if there is long-run heterogeneity a positive
fraction of periods (that is, if and only if at least one surviving agent has α ∈ (0, 1)) and
not all the surviving agents have log utility (by Lemma 6).

• The proof of the case of common CRRA utility and aggregate risk, is obtained

by repeating the same steps but replacing
(∑

σt
q(σt|)

/
β
)

and Lemma 6 with(∑
σt
q(σt|)

/
β
(
et(σ)

/
et−1(σ)

)γ)
and Lemma 7, respectively.

Proof of Proposition 7
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Proof. The condition on pi is sufficient to guarantee that agent BIP does not dominate
— otherwise, agent i would be more accurate than agent BIP , violating Proposition.1.
With long-run heterogeneity, d̄(P ||pRN ) <Prop.6,(c) d̄(P ||pM ) and the result follows be-
cause:

d̄(P ||pRN ) <Prop.6,(c) d̄(P ||pM ) ≤Prop.2 d̄(P ||pBIP ) ≤ d̄(P ||πBIP ),

where the last inequality follows from Proposition 3, if agent BIP mixes with pM , and
from the following argument if agent BIP mixes with pRN . For all (t, σ),

d(P ||pBIPt ) = d(P ||(1− αBIP )pRNt + αBIPπBIP ))

≤ (1− αBIP )d(P ||pRNt ) + αBIP d(P ||πBIP ) ; by strict convexity of d(P ||·)
⇒ d̄(P ||pBIP ) ≤ (1− αBIP )d̄(P ||pRN ) + αBIP d̄(P ||πBIP ) ; summing and averaging over t

⇒ d̄(P ||pBIP ) <Prop.6,(c) (1− αBIP )d̄(P ||pM ) + αBIP d̄(P ||πBIP ) ; by lon-run heterogeneity

≤Prop.2 (1− αBIP )d̄(P ||pBIP ) + αBIP d̄(P ||πBIP )

⇒ d̄(P ||pBIP ) < d̄(P ||πBIP ).

B Theorems 1 and 2

The proof of Theorem 1 relies on Lemma 8.

Lemma 8. Under A1-A4, if ∃ Î ⊂ I: P ∈ Convi∈Î(π
i), ∀i ∈ Î, αi ∈ (0, ᾱ], and all

agents in Î use pM for consensus; then, ∃γ ∈ ∆|Î| such that

ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) = lim

t→∞

ᾱ

t

t∑
τ=1

EP

[
P

pMt
− 1

]
− |O(ᾱ)2|, (13)

Proof. By assumption, for all i ∈ Î, for all (t, σ), pi(σt|) = pM (σt|)+αi
(
πi(σt)− pM (σt|)

)
.

We start by using Taylor’s theorem to approximate

EP [ln
pit
pMt

] = EP

[
ln

(
1 + αi

(
πi(σt)

pM (σt|)
− 1

))]
around 1.

By Taylor’s theorem with Lagrange’s remainder, for some ξ ∈ (0, x),

ln(1 + x) = ln 1 +
1

1 + x

∣∣∣∣
x=0

x− 1

2(1 + ξ)2
x2.

For the purposes of our approximation, let xM (αi) := αi
(
πi(σt)

pM (σt|)
− 1

)
.
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Note that for all i ∈ Î:

i)

(
πi(σt)

pM (σt|)
− 1

)
≥ −1 uniformly in (t, σ) independently of the αi.

ii)

(
πi(σt)

pM (σt|)
− 1

)
is bounded above uniformly in (t, σ), independently of the αi:

∃K <∞ : ∀(t, σ), ∀i ∈ Î,

(
πi(σt)

pM (σt|)
− 1

)
< K.

Proof of ii) Let for all i ∈ I and for all (t, σ), φ̄it(σ) :=
c̄it(σ)∑
j∈I c̄

j
t (σ)

; then, for all (t, σ),

pM (σt|) =By Def.2
∑
i∈Î

(
(1− αi)pM (σt|) + αiπi(σt)

)
φ̄it−1(σ) +

∑
j∈I\Î

pj(σt|)φ̄jt−1(σ)

⇒ ∀(t, σ), pM (σt|) =

∑
i∈Î α

iπi(σt)φ̄
i
t−1(σ) +

∑
j∈I\Î p

j(σt|)φ̄jt−1(σ)∑
i∈Î α

iφ̄it−1(σ) +
∑
j∈I\Î φ̄

j
t−1(σ)

∈ Convi∈Î,j∈I\Î(π
i, pj).

⇒ ∀(t, σ), pM (σt|) ≥ min
i∈Î,j∈I\Î

(πi, pj)

Definition 4 (for i ∈ Î ) and A3 ( for j ∈ I \ Î ) ensure that ∃ε > 0, independent
of the αis of agents in Î : mini∈Î,j∈I\Î(π

i, pj) > ε. So,

for all (t, σ) and for all i ∈ Î,
πi

pM (σt|)
− 1 <

maxi∈Î π
i

ε
= K <∞.

Taylor’s theorem and the uniform bounds i) and ii) guarantee that for all (t, σ) and for

all i ∈ Î

− 1

2(1− αi)2
αi

2
(
πi(σt)

pM (σt|)
− 1

)2

≤ ln(1 + x(αi))− αi
(
πi(σt)

pM (σt|)
− 1

)
≤ − 1

2(1 + αiK)2
αi

2
(
πi(σt)

pM (σt|)
− 1

)2

,

which justifies the equality

∀(t, σ), ∀i ∈ Î, ln(1 + x(αi)) = αi
(
πi(σt)

pM (σt|)
− 1

)
−
∣∣O ((αi)2

)∣∣ .
Taking expectations,

EP

[
ln

pit
pMt

]
= EP

[
ln

(
1 + αi

(
πi

pMt
− 1

))]
= αi EP

[
πi

pMt
− 1

]
−
∣∣O ((αi)2

)∣∣ .
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So that d̄(P ||pM )− d̄(P ||pi) = lim
t→∞

1

t

t∑
τ=1

EP

[
ln

piτ
pMτ

]
(14)

= lim
t→∞

αi

t

t∑
τ=1

EP

[
πi

pMτ
− 1

]
−
∣∣O ((αi)2

)∣∣ .
Let ᾱ = maxi∈Î{α

i} < 1, let γ = [γ1, ..., γI ] ∈ ∆|Î| be such that ∀σt ∈ S,
∑

i∈Î γ
iπi(σt) =

P (σt) — this vector exists because we assumed P ∈ Convi∈Î(π
i)—, and let γα =

[γ1ᾱ
/
α1, ..., γI ᾱ

/
αI ].

Equation (14) holds for all agents in Î, therefore it holds for their γα weighted sum:

∑
i∈Î

γiᾱ

αi
d̄(P ||pM )−

∑
i∈Î

γiᾱ

αi
d̄(P ||pi) =

∑
i∈Î

γiᾱ

αi

(
lim
t→∞

αi
1

t

t∑
τ=1

EP

[
πi

pMτ
− 1

]
−
∣∣O ((αi)2

)∣∣)

= lim
t→∞

1

t

t∑
τ=1

ᾱ
∑
γi

EP

[
γi
πi

pMt
− γi

]
−
∑
i∈Î

γiᾱ

αi
∣∣O ((αi)2

)∣∣
= lim

t→∞

ᾱ

t

t∑
τ=1

EP

[
P

pMt
− 1

]
− |O(ᾱ2)|.

Proof of Theorem 1

Proof. In equilibrium, the following inequalities must hold P -a.s.

∀i ∈ Î, d̄(P ||pM )− d̄(P ||pi) ≤By Prop.2 a) 0

⇒ ∀γ ∈ ∆|Î|, ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) ≤ 0

⇒By Lem.8,a) lim
t→∞

ᾱ

t

t∑
τ=1

EP

[
P

pMt
− 1

]
≤ |O(ᾱ)2|

⇒ d̄(P ||pMᾱ )→ᾱ→0 0;

The last implication holds because pM = P is the only minimizer for both the continuous
non-negative functions d(P ||pMt ) and EP

[
P
/
pMt − 1

]
.

The proof of Theorem 2 is similar to that of Theorem 1 above, with Lemma 9 below
replacing Lemma 8. For the sake of clarity ancilllary results needed to prove Lemma 9,
Lemma 10 and Lemma 11, are presented after the proof of Theorem 2 at the end of this
section.

Lemma 9. Under A1-A5, if all agents in Ī have CRRA utility with γi ≥ 1 and use
pRN for consensus, and ∃ Î ⊂ I: P ∈ Convi∈Î(π

i), ∀i ∈ Î, αi ∈ (0, ᾱ]; then, there exists

γ ∈ ∆|Î|:
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−ᾱ
∑
i∈Î

γi

αi
d̄(P ||pi) = −ᾱ

∑
i∈Î

γi

αi
d̄(P ||pRN ) + lim

t→∞

ᾱ

t

t∑
τ=1

EP

[
P

pRNτ
− 1

]
− |O(ᾱ2)|. (15)

Proof. By assumption, for all i ∈ Ī and (t, σ), pi(σt|) = pRN (σt|)+αi
(
πi(σt)− pRN (σt|)

)
.

As we did in Lemma 8, we use Taylor’s theorem to exactly approximate

EP

[
ln

pit
pRNt

= EP ln

(
1 + αi

(
πi

pRNt
− 1

))]
around 1.

As before, we need to show that the following uniform bounds holds for all i ∈ Î:

i)

(
πi(σt)

pRN (σt|)
− 1

)
> −1 uniformly in (t, σ), independent of the αi.

ii)

(
πi(σt)

pRN (σt|)
− 1

)
is bounded above uniformly in (t, σ) independently of the αi:

∃K <∞ : ∀(t, σ), ∀i ∈ Î,

(
πi(σt)

pRN (σt|)
− 1

)
< K.

Proof of ii) By Proposition 1, all agents in I \ Ī vanish thus, WLOG, we can consider this
economy as being populated only by agents with CRRA utilities with γi ≥ 1. By
Lemma 11, for all (t, σ), pRN (σt|) ≥ mini∈Ī π

i(σt); thus

∀(t, σ), ∀i ∈ Î,
πi(σt)

pRN (σt|)
− 1 <

maxi∈Î π
i(σt)

mini∈Ī π
i(σt)

= K <by Def. 4 ∞.

Utilising conditions i) and ii) as done in Lemma 8, we obtain the exact approximation

EP

[
ln

pit
pRNt

]
= EP

[
ln

(
1 + αi

(
πi

pRNt
− 1

))]
= αi EP

[
πi

pRNt
− 1

]
−
∣∣O ((αi)2

)∣∣
⇒ −d̄(P ||pi) = −d̄(P ||pRN ) + lim

t→∞

αi

t

t∑
τ=1

EP

[
πi

pRNτ
− 1

]
−
∣∣O ((αi)2

)∣∣ P -a.s..

Equation (15) is obtained taking the γα weighted sum of the above expression, as in
Lemma 8.

Proof of Theorem 2
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Proof. In equilibrium, the following inequalities must hold P -a.s.

∀i ∈ Î, d̄(P ||pM )− d̄(P ||pi) ≤By Prop.2 a) 0

⇒ ∀γ ∈ ∆|Î|, ᾱ
∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pi) ≤ 0

⇒By Lem. 9

ᾱ∑
i∈Î

γi

αi
d̄(P ||pM )− ᾱ

∑
i∈Î

γi

αi
d̄(P ||pRN ) + lim

t→∞

ᾱ

t

t∑
τ=1

EP

[
P

pRNτ
− 1

] ≤ |O(ᾱ2)|

⇒By Prop.6, a) d̄(P ||pM )− d̄(P ||pRN ) ≥ 0 lim
t→∞

ᾱ

t

t∑
τ=1

EP

[
P

pRNτ
− 1

]
≤ |O(ᾱ2)|

⇒ lim
α→0

d̄(P ||pRNᾱ ) = 0.

The last implication holds because pRN = P is the only minimizer of the continuous
non-negative functions d(P ||pRNt ) and EP

[
P
/
pRNt − 1

]
.

Lemma 10. Under A1-A5, for all (t, σ),

pRN (σt|) =
∑
i∈I

ρi(σt|)ψit−1,

with ρi(σt|) :=
pi(σt|)

1

γi pRN (σt|)
1− 1

γi∑
σ̃t∈S p

i(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi

∈ ∆S and ψit−1 ∈ ∆I.

Proof. a) Constant aggregate endowment
Equation (7) in Lemma 6 tells us that, on every equilibrium path,

∀(t, σ),
q(σt|)
β

=
∑
i∈I

pi(σt|)
1

γi

(
q(σt|)
β

)1− 1

γi

φit−1,

By Defintion 8, pRN (σt|) = q(σt|)
/∑

σ̃t∈S q(σ̃t|). Thus, for all (t, σ)

pRN (σt|) =
∑
i∈I

pi(σt|)
1

γi pRN (σt|)
1− 1

γi

(
β∑

σ̃t∈S q(σ̃t|)

) 1

γi

φit−1

=
∑
i∈I

pi(σt|)
1

γi pRN (σt|)
1− 1

γi∑
σ̃t∈S p

i(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi

∑
σ̃t∈S

pi(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi

(
β∑

σ̃t∈S q(σ̃t|)

) 1

γi

φit−1

:=
∑
i∈I

ρi(σt|)ψit−1,

with ψt−1 :=
∑
σ̃t∈S

pi(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi

(
β∑

σ̃t∈S q(σ̃t|)

) 1

γi

φit−1.
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Note that ψit−1 ∈ ∆I because it is independent of σt and∑
σt∈S

pRN (σt|) = 1 and
∑
σt∈S

ρi(σt|) = 1.

b) General aggregate endowment and common CRRA parameter γ
Equation (11) in Lemma 7 tells us that on every equilibrium path,

∀(t, σ),
q(σt|)
β

(
et(σ)

et−1(σ)

)γ
=
∑
i∈I

pi(σt|)
1
γ

(
q(σt|)
β

(
et(σ)

et−1(σ)

)γ)1− 1
γ

φit−1p
i(σt|)

1

γi pRN (σt|)
1− 1

γi

By Defintion 8, pRNγ (σt|σt−1) = q(σt|σt−1)et(σ)γ
/∑

σ̃t
q(σ̃t|σt−1)et(σ̃)γ .

Thus, for all (t, σ),

pRNγ (σt|) =
∑
i∈I

pi(σt|)
1
γ pRNγ (σt|)1− 1

γ

(
β(et−1(σ))γ∑

σ̃∈S q(σ̃|)(et(σ̃))γ

) 1
γ

φit−1

=
∑
i∈I

pi(σt)
1
γ

pRNγ (σt|)1− 1
γ∑

σ̃t∈S p
i(σ̃t|)

1
γ pRNγ (σ̃t|)1− 1

γ

∑
σ̃t∈S

pi(σ̃t|)
1
γ pRNγ (σ̃t|)1− 1

γ

(
β(et−1(σ))γ∑

σ̃t∈S q(σ̃|)(et(σ̃t))
γ

) 1
γ

φit−1

=
∑
i∈I

ρi(σt|)ψit,

with ψt :=
∑
σ̃t∈S

pi(σ̃t|)
1
γ pRNγ (σ̃t|)1− 1

γ

(
β(et−1(σ))γ∑

σ̃t∈S q(σ̃t|)(et(σ̃))γ

) 1
γ

φit−1 ∈ ∆I, as shown above for a).

Lemma 11. Under A1-A5, if agents’ utilities are CRRA with γi ≥ 1 for all i ∈ I, then

∀(t, σ), pRN (σt|) ≥ min
i∈I
{πi(σt)}.

Proof. By Lemma 10, for all (t, σ), ∃ ψt ∈ ∆I such that

pRN (σt|) =
∑
i∈I

ρi(σt|)ψit−1, with ρi(σt|) =
pi(σt|)

1

γi pRN (σt|)
1− 1

γi∑
σ̃t∈S p

i(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi

.
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Notice that for all i ∈ I, γi ≥ 1 implies that:

∀i ∈ I,∀(t, σ), ρi(σt|) =
pi(σt|)

1

γi pRN (σt|)
1− 1

γi∑
σ̃t∈S p

i(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi

(16)

≥(a) pi(σt|)
1

γi pRN (σt|)
1− 1

γi

≥(b) min
{
pRN (σt|), pi(σt|)

}
= min

{
pRN (σt|), (1− αi)pRN (σt|) + αiπi(σt|)

}
≥ min

{
pRN (σt|), πi(σt|)

}
,

with equality if and only if pRN (σt|) = πi(σt).

(a) The ordering of geometric and arithmetic means implies

∀i ∈ I,∀(t, σ), pi(σt|)
1

γi pRN (σt|)
1− 1

γi ≤
(

1

γi

)
pi(σt|) +

(
1− 1

γi

)
pRN (σt|)

⇒
∑
σ̃t∈S

pi(σ̃t|)
1

γi pRN (σ̃t|)
1− 1

γi ≤ 1;

(b) A property of the geometric mean.

We continue by contradiction assuming that

H1 : ∃σ′t : pRN (σ′t|) < min
i∈I
{πi(σ′t|)}.

This is absurd because

pRN (σ′t|) =By Lem.10
∑
i∈I

ρi(σ′t|)ψit−1 ≥By H1 : and Eq. 16 pRN (σ′t|),

with equality if only if pRN (σt|) = pi(σt|) = πi(σt) for all i with positive weight ψit, a
contradiction to H1.

C Proof of competitive equilibrium existence

We define a competitive equilibrium with consensus as a 2I + 2-tuple of sequences of
consumption allocations (cit(σ))∞t=0, beliefs (pi(σt|))∞t=0, consensus beliefs (pC(σt|))∞t=0

and prices (q(σt))∞t=0, one for each σ ∈ Σ, such that

1. Each agent i ∈ I consumption solves the utility maximization given endogenous
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beliefs pi and prices (q(σt))(t,σt)

max
(cit(σ))∞t=0

Epi

[ ∞∑
t=0

βtui(cit(σ))

]
s.t.

∑
t≥0

∑
σt∈Σt

q(σt)
(
cit(σ)− eit(σ)

)
≤ 0. (17)

2. All good markets clear:∑
i∈I

cit(σ) =
∑
i∈I

eit(σ) for all (t, σ). (18)

3. Each agent i ∈ I beliefs pi are as in Definition 4 for a given choice of consensus
belief pC and idiosyncratic belief πi.

4. The consensus belief pC is pM as in Definition 7 or pRN as in Definition 8 or pRNγ
as in Definition 9.

The competitive equilibrium with consensus differs from the standard one in that agents’
beliefs are endogenously determined.

In what follows, we prove that under A1-A4 (A5) there exists a competitive equi-
librium with consensus. In the first step, we assign an initial consumption share distri-
bution φ0 and derive sequences of consumption, prices, individual beliefs, and consensus
beliefs consistent with the First Order Conditions (FOC) of agents’ utility maximiza-
tion problem, with market clearing, and with the definition of individual and consensus
beliefs. This step is similar to the computation of a Pareto optimal allocation given a
set of Pareto weights but, due to the endogeneity of beliefs, involves an additional fixed
point argument for each iteration. The Brouwer fixed point theorem, together with the
smoothness of our maps, guarantees the existence of such a fixed point for each iteration.
The details of this step are different for pM , pRN , and pRNγ because of their different
analytic form.

In the second step, we show that there exists an initial distribution of consumption
shares such that each agent’s budget constraint is satisfied. The main difference between
this step and the standard proof of the existence of the competitive equilibrium with
exogenous beliefs is that in our case the initial consumption shares distribution affects
prices also via its effect on beliefs. This further complication does not change the typical
argument. Even in this case, Brouwer’s fixed point theorem guarantees the existence of
a fixed point.

Remark Our proof ensures existence, not uniqueness. Multiplicity of equilibria is
not problematic because our results hold in all the equilibria that exist.

Let us start from the system of FOCs. Having defined c̄it(σ) = 1
/
ui′(cit(σ)), the
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system of agent i FOC and his budget constraint is
c̄i0 = 1

λi
,

c̄it(σ) = βpi(σt|)
q(σt|) c̄

i
t−1(σ) for all (t, σ),∑

t≥0

∑
σt∈Σt q(σ

t)
(
cit(σ)− eit(σ)

)
= 0,

(19)

where λi is the multiplier associated with agent i’s budget constraint.

First step - pM is the consensus used by all i ∈ I
By Lemma 5 for all (t, σ)

pM (σt|) =
∑

i∈I π
i αic̄it−1(σ)∑

j∈I α
j c̄jt−1(σ)

, (20)

so that, using Definition 4,

pi(σt|) = (1− αi)
∑
j∈I

πj
αj c̄jt−1(σ)∑
k∈I α

k c̄kt−1(σ)
+ αiπi. (21)

Thus, for each given initial consumption distribution {φi0}Ii=1 we can compute initial
marginal utilities {c̄i0}Ii=1, consensus beliefs pM1 , and individual beliefs {pi1}Ii=1.

Having determined beliefs, we can proceed to compute equilibrium consumption in
date t = 1 as follows. From the second equation of (19), the ratio of agent i = 1 to agent
j FOC between t = 0 and (t = 1, σ1) gives

(uj ′)−1

(
c̄1

0

c̄j0

p1(σ1|)
pj(σ1|)

u1′(φ1
1(σ1)e1(σ1))

)
= φj1(σ1)e1(σ1).

Aggregating over agents we find

∑
j∈I

(uj ′)−1

(
c̄1

0

c̄j0

p1(σ1|)
pj(σ1|)

u1′(φ1
1(σ1)e1(σ1))

)
= e1(σ1). (22)

Agent i = 1 consumption share φ1
1(σ1) can be derived from the above. A solution φ1

1(σ1)
of (22) always exists in (0, 1) because, by A1, A3, the l.h.s. is continuous in φ1

1(σ1) = x,
goes to 0 < e1(σ1) for x→ 0, and is larger than e1(σ1) in x = 1.11 Repeating the same
argument for all the agents we find {φi1(σ1)}Ii=1 and, repeating for all σ1 ∈ S, we find
{φi1}Ii=1. Iterating these steps for all t and for all σt gives the stream of individual

11For the latter note that

∑
j∈I

(uj ′)−1

(
c̄10

c̄j0

p1(σ1|)
pj(σ1|)

u1′(φ1
1(σ1)e1(σ1))

)∣∣∣∣∣∣
φ1
1(σ1)=1

=
∑
j 6=1

(uj ′)−1

(
c̄10

c̄j0

p1(σ1|)
pj(σ1|)

u1′(e1(σ1))

)
+e1(σ1).
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consumptions, individual beliefs, and consensus beliefs for each choice of path σ ∈ Σ
and for each choice of {φi0}Ii=1.

First step - pRN is the consensus used by all i ∈ I
By Lemma 2, in t = 0 the consensus pRN in (t = 1, σ1) defined in (8) can be written as

pRN (σ1|) =

∑
i∈I p

i(σ1|)
c̄i0∑

j∈I c̄
j
1(σ1)∑

σ̃1∈S
∑

i∈I p
i(σ̃1|)

c̄i0∑
j∈I c̄

j
1(σ̃1)

∀σ1 ∈ S, (23)

where pRN (σ1|) is also on the r.h.s. in each individual belief pi(σ1|), for all i ∈ I. The
above and (22) for all σ1 define a map from ∆S to ∆S as follows. For each given ρ ∈ ∆S ,
(22) for all σ1 and all i allows to compute {ci1(ρ)}Ii=1 when individual beliefs {pi1}Ii=1 are
built using ρ as the consensus, {pi1(ρ)}Ii=1. Then, having consumption {ci1(ρ)}Ii=1 and
beliefs {pi1(ρ)}Ii=1, (23) gives the consensus beliefs pRN1 (ρ).

The equilibrium consensus ρ solves pRN1 (ρ) = ρ. Its existence follows from Brouwer’s
fixed point Theorem: the map built composing (22) and (23) goes from ∆S to ∆S and
is continuous. To prove continuity note that, given ρ, for each i and σ1 (22) defines a
function F i(ρ, φi1(σ1)) such that the solution of

Fi(ρ, φ
i
1(σ1)) = 0 determines ci1(σ1)(ρ) = e1(σ1)φi1(σ1) .

Continuity of ci1(σ1)(ρ) in ρ follows from the Implicit Function Theorem because, by
A1,A3, Fi(ρ, x) is the sum of compositions of monotone functions, and thus monotone,
implying that the derivative ∂Fi/∂x is different from zero in the solution φi1(σ1) of
Fi(ρ, x) = 0. Continuity of the composed map follows from continuity of ci1(σ1)(ρ) for
all i and σ1 and from continuity of (23).

Having found the date t = 0 consensus beliefs pRN1 , the corresponding date t = 1
consumption distribution and individual beliefs are {ci1(pRN1 )}Ii=1 and {pi1(pRN1 )}Ii=1,
respectively. Iterating these steps for all t and for all σt gives a sequence of consumptions,
individual and consensus beliefs as a function of the initial consumption distribution φ0.

First step - pRNγ is the consensus used by all i ∈ I

When the consensus beliefs is pRNγ , as in (9), this first step of the proof is the same

provided that map (23) is replaced by the corresponding expression of pRNγ as a function
of equilibrium consumption derived in Lemma 3.

First step - different agents use different consensuses
The computation of streams of consumption, individual beliefs, and consensus beliefs
given an initial consumption distribution φ0 can be performed also when different agents
use different consensuses. We consider two cases: i) agents use either pM or pRN ; ii)
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agents use either pM or pRNγ .12

When agents use either pM or pRN the proof proceeds similarly to when all agents
use only pRN . In t = 0, given a candidate consensus beliefs ρ ∈ ∆S , initial individual
beliefs of those mixing with pRN are computed directly from ρ while individual beliefs
of those mixing with pM are computed using (21) with πj = pj if j chooses pRN as
consensus. Having all agents’ individual beliefs for a given ρ, the combination of (22)
and (23) for all s ∈ S determines the fixed point ρ such that pRN1 (ρ) = ρ. From here we
proceed as above.

The case when agents use either pM or pRMγ proceeds along the same way provided

that the map (23) is replaced by the corresponding expression of pRNγ as a function of
equilibrium consumption as in Lemma 3.

Second step
As shown in the first step, we can derive a stream of individual consumption and beliefs
for each given initial consumption distribution φ0. Using the FOC, to such consumption
streams there corresponds a sequence of state contingent prices (q(σt))(t,σt). We have an
equilibrium when φ0 is chosen such that all agents’ budget constraints, third equation
in (19), are satisfied.

Equivalently, define

fi(φ0) =
∑
t≥0

∑
σt∈Σt

q(σt)eit(σ
t)−

∑
t≥0

∑
σt∈Σt

q(σt)et(σ
t)φit(σ

t),

... =
... =

...

fI(φ0) =
∑
t≥0

∑
σt∈Σt

q(σt)eIt (σ
t)−

∑
t≥0

∑
σt∈Σt

q(σt)et(σ
t)φIt (σ

t);

we have a competitive equilibrium with consensus if we can find φ ∈ ∆I such that
f(φ) = 0. The existence of (at least) one of these points follows from Brouwer’s fixed
point theorem, as follows.

First note that each function is well defined and continuous in φ0. Well defined
because the aggregate endowment is bounded (A2) and state prices go to zero as fast
as βt (FOC and A1-A4). Continuous because, as shown in the proof of the first step
for pRN , the equilibrium consumption that solves (22) for all i, t, and σt is continuous
in its parameters (we have proved continuity with respect to ρ but the argument is the
same for continuity in φ0, monotonicity in the unknown consumption allows to use the
Implicit Function Theorem).

Define the function f+ : ∆I → [0,∞)I as

f+
i (φ) = max{fi(φ), 0} for all i ∈ I.

12In each case the definition of competitive equilibrium with consensus should be changed
accordingly. In 3. each agent should be allowed to use the consensus he chooses. In 4. both
consensuses, pM or pRN in i) and pM or pRNγ in ii), should be determined in equilibrium.
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Denote
ν(φ) = 1 +

∑
i∈I

f+
i (φ) .

By construction ν(φ) ≥ 1 for all φ ∈ ∆I . Define the function F : ∆I → ∆I as

F (φ) =
φ+ f+(φ)

ν(φ)
.

Continuity of fi for all i ∈ I imply that the function F is continuous on the compact
convex set ∆I and thus has a fixed point φ̄ by Brouwer’s fixed point theorem. Showing
that f(φ̄) = 0 ends the proof.

F (φ̄) = φ̄ implies

φ̄+ f+(φ̄)

1 +
∑

i∈I f
+
i (φ̄)

= φ̄ ⇒ f+(φ̄) = φ̄

(∑
i∈I

f+
i (φ̄)

)
. (24)

Assume first that
∑

i∈I f
+
i (φ̄) > 0. If φ̄i = 0, then, by construction, the budget constraint

does not hold for i and fi(φ̄) > 0, so that f+
i (φ̄) > 0 too, leading to a contradiction

with (24). Then it must be φ̄i > 0 for all i, implying f+
i (φ̄) > 0 for all i, by (24), and

leading to a contradiction with
∑

i∈I fi(φ) = 0 for all φ (Walras’ Law). It follows that∑
i∈I f

+
i (φ̄) = 0 and thus, being the sum of non-negative functions, f+

i (φ̄) = 0 for all
i, implying fi(φ̄) ≤ 0 for all i. The latter together with

∑
i∈I fi(φ̄) = 0 (Walras’ Law)

implies fi(φ̄) = 0 for all i ∈ I.
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