
Acc
ep

te
d 

M
an

us
cr

ipt

 

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for 
Experimental Biology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Fulvic acid increases forage legume growth inducing 

preferential upregulation of nodulation and 

signalling‐related genes 

 

Nicola M. Capstaff1, Freddie Morrison1, Jitender Cheema1, Paul Brett1, Lionel 

Hill1, Juan C. Muñoz-García2, Yaroslav Z. Khimyak2, Claire Domoney1, Anthony 

J. Miller1* 

1Department of Metabolic Biology, John Innes Centre, Norwich Research Park, 

NR4 7UH, UK 

2School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 

7TJ, UK.  

 

Email addresses of authors: nicola.capstaff@jic.ac.uk; freddiemorrison@rocketmail.com; 

Jitender.cheema@jic.ac.uk; paul.brett@jic.ac.uk; lionel.hill@jic.ac.uk; j.munoz-

garcia@uea.ac.uk; Y.Khimyak@uea.ac.uk; claire.domoney@jic.ac.uk; tony.miller@jic.ac.uk 

 

*Correspondence:  tony.miller@jic.ac.uk 

Metabolic Biology Department, John Innes Centre, Norwich Research Park, NR4 
7UH, UK 

Telephone: +44 (0)1603 450200 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/doi/10.1093/jxb/eraa283/5864882 by guest on 17 July 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/327078515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nicola.capstaff@jic.ac.uk
mailto:freddiemorrison@rocketmail.com
mailto:Jitender.cheema@jic.ac.uk
mailto:paul.brett@jic.ac.uk
mailto:lionel.hill@jic.ac.uk
mailto:j.munoz-garcia@uea.ac.uk
mailto:j.munoz-garcia@uea.ac.uk
mailto:Y.Khimyak@uea.ac.uk
mailto:claire.domoney@jic.ac.uk
mailto:tony.miller@jic.ac.uk
mailto:tony.miller@jic.ac.uk


Acc
ep

te
d 

M
an

us
cr

ipt

 

 
 

Abstract 

The use of potential biostimulants is of broad interest in plant science for 

improving yields. The application of a humic derivative called fulvic acid (FA) 

may improve forage crop production. FA is an uncharacterised mixture of 

chemicals, and although it has been reported to increase growth parameters in 

many species including legumes, its mode of action remains unclear. Previous 

studies of the action of FA have lacked appropriate controls, and few have 

included field trials. Here we report yield increases due to FA application in three 

European Medicago sativa cultivars, in studies which include the appropriate 

nutritional controls and hitherto unused. No significant growth stimulation was 

seen after FA treatment in grass species in this study at the treatment rate 

tested. Direct application to bacteria increased Rhizobium growth and in 

Medicago sativa trials root nodulation was stimulated. RNA transcriptional 

analysis of FA-treated plants revealed upregulation of many important early 

nodulation-signalling genes after only three days. Experiments in plate, 

glasshouse, and field environments showed yield increases, providing 

substantial evidence for the use of FA to benefit Medicago sativa forage 

production. 

 

 

Keywords – Forage crops, fulvic acid, humic substances, Medicago sativa, 

nodulation, transcriptomic analysis, yield. 

 

Highlight – Fulvic acid treatment increases yield and nodulation in Medicago sativa, 

in glasshouse and field experiments. De novo transcriptome analysis shows the 

upregulation of early nodulation genes in response to fulvic acid. 
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Introduction 

Forage grasslands represent 26 % of global land area, and 70 % of agricultural land (FAO and 

IFIF, 2010). In temperate climates forage crops are cultivated and these are usually grasses 

(Poaceae) or herbaceous legumes (Fabaceae). The globally important legume lucerne or 

alfalfa (Medicago sativa) is of prominence in temperate forage production. For forage growers, 

increasing the crop’s yield is a primary focus and new management practices to maintain or 

increase growth with lower nitrogen inputs are needed. The application of a humic substance 

(HS) derived biostimulant called fulvic acid (FA) may improve forage crop production. 

Extractable HS fractions are considered to be key soil components and their complex 

composition may be responsible for facilitating many complex chemical reactions in soil 

systems (Canellas et al., 2010; Lamar et al., 2013; Sutton and Sposito, 2005; Trevisan et al., 

2010a). Identification of the specific effects of HS requires the use of well-structured, specific 

methods. Research on FA is often limited by chemical characterisation and frequently uses 

samples which are not easily replicable, because their source is not unique (Pandeya et al., 

1998). This makes designing appropriate controls for experiments difficult.  Many studies often 

rely on a ‘no application’ or ‘water treatment’ as controls to determine the potential 

biostimulant effect of FA on a plant (Calvo et al., 2014). In the model plant Arabidopsis 

thaliana and many cereal crops, HS has been shown to have effects on plant growth including 

increased root growth, improved nutrient uptake and yield under stress and control conditions, 

and enhanced access to metals (Bezuglova et al., 2017; Dobbss et al., 2007; García et al., 2012; 

Pandeya et al., 1998; Pinto et al., 2004; Vaccaro et al., 2015; Zhang et al., 2015; Zhimang et 

al., 2001). A study of particular importance to forage crops is that of the legumes, soybean 

(Glycine max), peanut (Arachis hypogaea) and clover (Trifolium vesiculosum) (Tan and 

Tantiwiramanond, 1983). This study showed that a sand growth medium supplemented with 

FA reduced the number of nodules whilst increasing the nodule weight in a dose-dependent 

manner. Application of HS to Pisum sativum also increased root nodulation and mycorrhizal 

colonisation (Maji et al., 2017). If such increases were able to improve N fixation in legumes, 

then this could increase the N storage of the vegetative tissue and perhaps the protein content. 

The important forage crop Medicago sativa has been found to increase in vegetative biomass 

after FA application but with variable responses (Little et al., 2013; Little et al., 2014). Another 

study linked bulk soluble HS fractions to increased biomass of M. sativa and moreover 

nodulation with stimulated Sinorhizobium growth, but this study did not include nutritional 

controls and compared HS application to no addition (Xu et al., 2018). Studies using various 
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HS including FAs have been carried out in other important legumes and forage grasses (Aydin 

et al., 2012; Chang et al., 2016; Daneshvar Hakimi Maibodi et al., 2015; Traversa et al., 2014; 

Verlinden et al., 2010); however again no nutritional controls were used. Clearly, more detailed 

studies are required to fully assess the effect of FA on forage crops.  

In recent years, RNA-sequencing (RNA-seq) has transformed from an exclusive tool 

used in discrete studies (Marguerat and Bähler, 2010; Wang et al., 2009) to a critical technique 

accessible for many projects to investigate phenotypic changes occurring in specific conditions 

(Costa-Silva et al., 2017). Changes in transcriptional expression in plants following stimulus, 

stress, or treatment can reveal the downstream signalling and metabolic changes that cause a 

phenotype. RNA-seq is an incredibly robust and sensitive tool (Conesa et al., 2016; Martin et 

al., 2013; Mortazavi et al., 2008; 't Hoen et al., 2008), providing a wealth of data that can give 

an understanding of the underlying mechanisms underpinning a specific treatment. 

Although a potential link between HS application and increased biomass and legume 

root nodulation has been demonstrated, the mechanism for the condition remains unknown. 

Previous studies have suggested wide-ranging modes of action for this biostimulant, including 

a hormone-like response by plants following HS addition (Canellas and Olivares, 2014; Nardi 

et al., 1994; Russell et al., 2006; Trevisan et al., 2010a; Trevisan et al., 2010b), but there is a 

lack of transcriptional evidence to support this idea. Therefore, we have investigated the 

transcriptional changes that may occur in plants following FA treatment in both shoot and root 

tissues using RNA-seq analysis. 

Two commercial FA formulations were tested in a range of important temperate forage 

crops including legumes, with M. sativa cultivars showing a stimulatory response to the 

application. In order to include appropriate nutritional controls for FA, chemical analyses of 

the commercial products were carried out. Treatments were first assessed in the glasshouse and 

controlled environment room to establish growth effects on crops, and in M. sativa to establish 

a nodulation phenotype. Transcriptional changes were investigated for one FA treatment 

compared to its nutritional control, with de novo assembly and annotation of RNA-seq data, 

designed to provide evidence for the mode of action of FA linked to yield increases. Field trials 

were implemented at UK forage grower sites with applications and management using industry 

standard practices. The aim was to identify if a change in management practice including FA 

treatments can increase yield in forage cultivation under conventional farming methods. 
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Materials and methods 

Chemical analysis 

Two fulvic acid materials (FAs) were acquired, VitaLink Fulvic (sourced from Holland 

Hydroponics & Horticulture, UK (HydroGarden Wholesale Supplies Ltd., 2016)) and MPXA 

(F.A.R.M. Co., California, USA (F.A.R.M. Co., 2017)). These were termed VFA and MFA for 

subsequent work. The soluble dry weight of each FA was determined, and the elemental 

composition of solutions for total N, C and trace elements was measured using inductively 

coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma 

mass spectrometry (ICP-MS), performed for VFA at Computational and Analytical Sciences, 

Rothamsted Research, Harpenden, UK and for MFA at Biological Services, UEA, Norwich, 

UK. Samples (0.01 g/mL) were analysed by Gas Chromatography Mass Spectrometry (Agilent 

GC-MS Single Quad Mass Spectrometer (7890/5977), Agilent technologies, California, USA) 

and run information was as follows: samples were derivatised with MSTFA (Sigma-Aldrich 

394866) on Ultra 2 column (19091B-102; length 25 m, internal diameter 0.2 mm, film 0.33 

μm; Agilent technologies); carrier gas hydrogen at constant flow of 1.2 mL/min; inlet 

temperature 250 °C; injection volume 1 µL; injection mode split–splitless (30:1); oven 

temperature initial temperature 170 °C with ramp 10 °C/min to 300 °C and hold 300 °C for 5 

min, with equilibration time: 0.5 min and auxiliary temperature: 250 °C; acquisition mode: 

SCAN between 50-800 m/z. Data was acquired with Agilent Masshunter Qualitative Analysis 

(B.07.00) and peaks were identified with NIST Atomic Spectra database (v14, National 

Institute of Standards and Technology, Maryland, USA) (P.J. Linstrom and Mallard, 2018) 

(Guijas et al., 2018; Smith et al., 2005). Samples were run with standards to confirm contents. 

Data from this analysis are in Supplementary information: ICP in Supplementary Tables S1-

S2; GC-MS in Supplementary Figures S1-S2. Data was used to produce elemental controls for 

FAs to use in plant and microbial assays, called VC for VFA and MC for MFA as listed in 

Supplementary Tables S3-S4. 

Nuclear Magnetic Resonance (NMR) was carried out to elucidate the type and ratio of 

functional groups present in FAs. 1H‐ decoupled 1H‐ 13C cross polarization (CP) and CP single 

pulse (CPSP) solid state NMR experiments were performed at 20 °C using a 7.05 T Bruker 

Avance III spectrometer equipped with a 4 mm triple resonance probe operating at frequencies 

of 300.1 MHz (1H) and 75.5 MHz (13C). Each sample was packed into a zirconia rotor, sealed 

using a kel-f drive cap, and spun at 12 kHz. A CP contact time of 1 ms and relaxation delay of 

5 s were employed, with 90° pulses of 3.5 and 4.5 µs used for 1H and 13C, respectively. All 
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spectra were referenced with respect to TMS (Sigma-Aldrich, 87920). Peak areas were 

obtained from the CPSP experiments (i.e. containing both rigid and mobile components) using 

the automatic integration tool of TopSpin 3.6.1. Subsequently, they were normalised to relative 

areas and grouped into different functional groups according to the expected chemical shift 

regions for soil organic matter (Mathers et al., 2007; Mathers and Xu, 2003). This is, alkyl C 

(0-50 ppm), methoxyl C (50-60 ppm), carbohydrate C (60-90 ppm), di-O-alkyl C (90-110 

ppm), aryl C (110-142 ppm), phenolic C (142-160 ppm) and carbonyl C (160-200 ppm). Data 

from NMR analysis are available in Supplementary Figures S3-S4. 

 

Plant growth conditions 

Three cultivars of M. sativa were tested; cv. Daisy (DLF Forage Seeds, DK), cv. Luzelle 

(Oliver Seeds Ltd. (bred by INRA/Agri-Obtentions, FR, 1993)), and cv. Gea (DLF Forage 

Seeds, DK). The forage grass Lolium perenne cv. AberMagic (bred by IBERS - ABY-S562-

2016), was also included. 

M. sativa seeds were scarified prior to sterilisation with concentrated H2SO4 followed 

by six washes of sterilised deionised water (dH2O). Seeds were then sterilised with a 10% (v/v) 

sodium hypochlorite solution containing 0.05% (v/v) Triton X-100 (X100) followed by six 

dH2O washes. The final wash included Nystatin 5 µg/mL (Sigma-Aldrich N6261), Amoxicillin 

50 µg/mL (Sigma-Aldrich A8523) and was filter sterilised to reduce fungal or bacterial 

contamination. The seeds were imbibed in this solution at 30 ± 1 rpm for 2 h at 4 °C, and the 

wash replaced for a repeat imbibing period. L. perenne seeds were surface sterilised with 70% 

ethanol. All seeds were washed in dH2O and plated on water agar (3 g agar (AGA03, 

Formedium Ltd. Norfolk, UK) in 200 mL dH2O). Seeds plates were vernalised for two days at 

4 - 6 °C before being transferred to a controlled environment room with temperature at 23 °C 

and photoperiod of 16 h light (90 µmol m-2 s-1) / 18 h dark. Plants were germinated before 

transplantation to glasshouse. 

 

Additional vegetative growth experiments (larger screen and plate environment) 

The details of two additional vegetative yield experiments with FA treatment are available in 

Supplementary data. For all growth experiments, FA or elemental controls were applied at the 

FA manufacturer’s recommended rate (1% in distilled water, 10 mLs applied to the pot soil 

surface). This dosage rate was also used in the field trials and is therefore agriculturally 
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relevant. Firstly, a full screen of forage crops grown in glasshouse was undertaken for VFA 

and MFA in comparison to dH2O only, see Supplementary Figure S5. Secondly, a M. sativa 

cv. Daisy screen on plates (without transfer to soil), both with and without inoculation with 

Sinorhizobium meliloti was undertaken, see Supplementary Figure S6. 

 

Sinorhizobium colony forming unit counts 

Sinorhizobium meliloti 1021 kindly provided by Anne Edwards (Metabolic Biology, John 

Innes Centre), was preincubated in 100 mL TY media for 2 days at 28 °C shaking at 200 rpm 

to full cell density (OD 600 nm = ~ 2.5), and then diluted for exponentially growing cultures 

to inoculate flasks for OD 600 nm = 0.1. Treatment flasks of 100 mL TY were set up as follows: 

NA = no addition; dH2O = 10 mL dH2O; VFA/MFA = autoclaved 10 mL of 10 % VFA or 5 % 

MFA; VC/MC = 10 mL of 10 % VC or 5 % MC. Flasks were inoculated with 10 μL of strain 

and incubated at 28 °C. At timepoints of 0, 1, 2, 3, and 4 days dilutions from treatment flasks 

of 10-1 to 10-10 were taken in triplicate and 10 μL of diluted samples was spotted onto TY agar 

plates. Plates were incubated at 28 °C for one day until single colonies had formed in a dilution 

of ~ 20 – 200. Rhizobial cell density was calculated for dilution factor and total volume of 

culture. The whole experiment was repeated in triplicate. 

 

Statistical analyses  

Statistical analyses of measurements across triplicate experiments were calculated in Excel® 

2016, with Student t-Test for one-tailed distribution with homoscedastic data ran between 

VFA/VC and MFA/MC; p-value denoted with * < 0.05, ** < 0.01, *** < 0.001. Significance 

between treatments was shown with letters using one-way ANOVA with Tukey testing in 

GenStat® 18th Edition (VSN International). Graphs were designed in RStudio. 

 

RNAseq plant material 

Seeds of M. sativa cv. Daisy were sterilised and sown in full seed trays (36 x 22 x 6 cm) 

containing Church farm soil at a rate of 20 kg ha-1. Trays were watered every 3 - 4 days, and at 

day 12 were treated with autoclaved 1 % VFA or 1 % VC to the soil at the base of the plant; 

VFA was compared in transcriptome analysis to VC due to it large response in both greenhouse 

and field trials. Plants were sampled for RNA at days 12 and 15, referred to as day 0 and day 
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3, respectively in subsequent analysis. For each sample ten biological replicates were pooled, 

with shoot and root tissue separated to provide three experimental replicates from three trays. 

Tissue was immediately frozen in liquid N2 and stored at -80 °C. 

 

RNA extraction and sequencing  

Total RNA was extracted using the TRI Reagent (Sigma-Aldrich, 93289) method with phase 

separation using 1-bromo-3-chloropropane and precipitation with with 400 μL isopropanol and 

400 μL of High Salt Precipitation solution: 0.8 M sodium citrate and 1.2 M NaCl. After 

incubation for 5 min at ~ 23 - 26 °C, and centrifugation at 12 000 g at 4 °C for 15 min, the 

pellet washed with 1.5 mL EtOH 70 % (v/v). Samples were air-dried for 5 min and 

contaminated DNA removed using RNase-Free DNase Set (QIAGEN Ltd. 79254).  

Samples were purified using the RNeasy MinElute Cleanup Kit (QIAGEN Ltd., 74204) 

and initial quality checked (Supplementary Table S5). Samples were diluted to 50 – 500 ng/μL. 

Library construction (poly(A) mRNA) and sequencing was performed by Novogene 

(HK) Company Ltd. (Hong Kong) using Next® Ultra™ RNA Library Prep Kit (New England 

BioLabs Inc., E7530L) and sequenced on one lane of a HiSeq™ 2000 (Illumina, HWI-ST1276) 

in High Output mode using 150 bp paired end reads and V2 chemistry; sequencing quality 

check is shown in Supplementary Table S6. 

 

Read alignment and differential expression analysis 

De novo transcriptome assembly was performed with Trinity (Grabherr et al., 2011), which 

used all samples generated. A total of 630599 transcripts were preliminary identified, including 

isoforms (Supplementary Table S7). BUSCO (Kriventseva et al., 2015) was ran to check 

benchmarking of the assembly using Universal Single-Copy Orthologs. Kallisto (Bray et al., 

2016) was used to align the assembly which is less subjective than ballgown mapping, 

providing both Transcripts Per Million (TPM) and Reads Per Kilobase Million (RPKM) for 

subsequent analysis. 

Differential gene expression was performed for shoot and root tissue independently 

using Degust (Powell, 2014) with all read alignments. Tissue samples were grouped into 

treatment and timepoint. Transcripts with both an absolute log fold change of 0.585 (1.5 x fold 

change) and a false-discovery rate (FDR) adjusted p-value (q-value) < 0.05 were considered as 
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differentially expressed (DE) (Supplementary Figure S7). For every grouping of tissue 

samples, all 3 experimental replicates were required to fit these criteria, thus ensuring a very 

high benchmark. DE was checked using voom/Limma method (Law et al., 2014) for log Fold 

Change (logFC) between treatments (VC, VFA) at both timepoints (0, 3). Differential 

expression was then checked for individual treatments between timepoints. To eliminate any 

differences caused by random chance or plant development changes over the 3-day timescale, 

transcripts that were DE based on VFA treatment alone were calculated by subtracting 0VC vs 

0VFA and 0VC vs 3VC from 0VFA vs 3VFA (Supplementary Table S8).  

 

GO term identification, functional annotation and enrichment testing 

Root DE transcripts were imported into the Blast2GO v1.4.4 programme pipeline (Conesa et 

al., 2005; Gotz et al., 2008) as FASTA contigs for functional annotation. DE transcripts were 

checked against NCBI’s non-redundant NR database (Pruitt et al., 2005) with a BLAST 

expectation value cut-off of 1.0E-3, and hits excepted for no more than 20 sequences. Mapping 

was run with the EMBL-EBI InterPro library (Mitchell et al., 2019) using amino acid mapping 

(Carbon et al., 2009) with all families, domains, sites, and repeats available tested. Annotation 

of mapped results was run using Gene Ontology Annotation Version 2019 (The Gene Ontology 

Consortium, 2019; The Gene Ontology Consortium et al., 2000) with the strict parameters; 

Annotation cut off of 55; GO weight of 5 only; E-value-Hit-Factor restricted to 1.0E-6; Hit filter 

set to 500; Evidence Codes weighted from 0.5 to 1 depending on depth of evidence (default 

software parameters). The inbuilt statistical wizard in Blast2GO was used to generate 

distribution graphs for sequences and hit species, shown in Supplementary Figure S8. To 

quality check a manual BLAST algorithm was performed (Altschul et al., 1990; Altschul et 

al., 1997; Camacho et al., 2009) with NCBI database (Benson et al., 2013; Benson et al., 2005; 

NCBI Resource Coordinators, 2016; Zaretskaya et al., 2008) of the 20 most significantly up- 

or down-regulated genes. Any genes lacking a GO annotation through InterPro were checked 

for annotation in QuickGO (Binns et al., 2009) and UniProt (The UniProt Consortium, 2018) 

and added to the analysis; functional annotations can be found in Supplemental Table S9, with 

a graph representing top 20 Biological Process GO terms shown in Supplemental Figure S9. 

To test for enrichment of different categories of de novo M. sativa DE transcripts relative to all 

expressed transcripts found in M. truncatula (as the closest relative), the PANTHER 

Classification System v14.1 was used (Mi et al., 2010; Thomas et al., 2003). GO-Slim graphs 
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were generated for molecular function, biological process, and protein class, and then an 

Overrepresentation test was performed using the Fisher’s exact test (Thomas et al., 2006), see 

Supplemental Table S10. 

Following RNA-seq root analysis, qRT-PCR was used to measure expression of a subset of 

DE transcripts. A subset of seven genes was chosen to confirm with qRT-PCR. Primers were 

designed for genes using available M. truncatula sequences, and primer calculated to have 90 

– 115 % efficiencies were used in qRT-PCR. 

Root RNA underwent cDNA synthesis using SuperScript™ II Reverse Transcriptase 

(Invitrogen™ 18064022, Life Technologies Ltd.) with oligo(dT) (Invitrogen™ 18418012, Life 

Technologies Ltd.), and qRT-PCR was performed with SYBR® Green JumpStart Taq 

ReadyMix (Sigma-Aldrich); details can be found in Supplementary Table S11. Expression of 

the genes of interest were calculated using the arithmetic mean Ct according to analysis for 2^‐

ΔCT method (Livak and Schmittgen, 2001) using the reference gene ACTIN2,  as 

expression variance was comparable across all samples. Mean relative expression was 

calculated for experimental replicates and compared to RPKM logFC of DE transcripts. 

 

Field trials 

To assess if yield increases in M. sativa from VFA found in both plate and glasshouse 

experiments was applicable to growers, field trials were carried out over 2017 and 2018 

growing seasons. In 2017, trials were performed at Dengie Crops Ltd. (Southminster, Essex) 

with cv. Daisy and Fado. In 2018, the trials were at both Blankney Estates Ltd. (Blankney, 

Lincolnshire) and A Poucher and Sons (Bardney Dairies) Ltd. (Market Rasan, Lincolnshire) 

with the cv. Daisy and Gea respectively. 

Treatments to be tested were NA, dH2O, 1 % VFA and 1 % VC. Individual 

experimental design of each plot is shown in Supplementary Figure S10. Each trial contained 

4 - 6 plots per treatment of areas 4 - 10 m2 with buffer zones between plots. As in the glasshouse 

trials treatments were applied and at 21 days post treatment samples were taken for vegetative 

biomass measurements using a randomised 625 cm2 area. Samples were also taken for protein 

and chlorophyll for 2018 trial plots and analysis carried out at British Chlorophyll Company 

Limited (Blankney Estates, Navenby); protein was detected using the Kjeldahl method, and 

chlorophyll using a Soxhlet extraction (Supplemental Figure S11). 
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Results and discussion  

Analysis of FA found varying chemical composition 

FAs were analysed for their elemental content using a range of techniques, with results shown 

in Supplemental Tables S1-S2 and Figures S1-S4. The data show that the two FAs have very 

different compositions, despite being based on similar starting material and following the same 

extraction process. 1H-13C CPSP/MAS NMR experiments were carried out for the 

simultaneous quantification of mobile and immobile components of soils (Figures S3-S4), as 

it has been previously shown to be a powerful NMR methodology for the routine analysis of 

soils in the solid-state. MFA showed a predominant presence of alkyl groups (~75 %), followed 

by carbonyl (~ 16%), carbohydrate (~ 6%) and methoxyl (~ 3%) components (Figure S3). On 

the other hand, VFA is mostly composed by carbohydrates (~80%) and a small proportion of 

alkyl (~ 8%) components; it also contains some carbonyl (~ 7%), phenolic (~ 2%) and aryl (~ 

2%) groups (Figure S4). Controlling the inorganic contents of FAs in elemental controls was 

most feasible (as shown in Supplementary Table S3 and S4), and with the organic contents 

compensated for with biologically available carbon in the form of sucrose. Controlling where 

possible these contents were imperative in determining an effect in plant assays and by 

including nutritional controls we can begin to determine if FAs are acting through a specific 

pathway with one or two active ingredients or as a nutritional additive. The lack of such 

controls in previous work may be the reason for the range of responses reported and perhaps 

for the plant hormone-like stimulatory response after HS application (Canellas and Olivares, 

2014; Nardi et al., 1994; Russell et al., 2006; Trevisan et al., 2010a; Trevisan et al., 2010b). 

Changes such as altered root architecture and uptake may be a nutritional effect. More recently, 

the standardisation of HS analysis has been advocated, including the separation of C-containing 

groups (Lamar et al., 2013; Zherebker et al., 2018). Therefore, control solutions for plant and 

microbial were produced based on elemental analysis for MFA and VFA, termed MC and VC 

respectively; a description is found in Supplementary Tables S3-S4. Additional controls, as 

used in other studies, included dH2O and no application (NA). 

 

Fulvic acid increased growth of Medicago sativa and was not a nutritional effect 

Biomass yield assays in glasshouse conditions were carried out with M. sativa cultivars using 

applications of MFA and VFA alongside controls solutions MC, VC, NA, and dH2O. Figure 1 

shows vegetative biomass measurements recorded in three independent experiments for cv. 
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Daisy, Luzelle, and Gea, alongside the grass L. perenne cv. AberMagic. Both cultivars Daisy 

and Luzelle showed significantly increased vegetative growth after 3 weeks of FA treatment 

when compared to controls; cv. Gea also showed higher growth yields but this increase was 

not statistically significant. This may be due to more interexperimental variation (as shown in 

individual sample points) due to the different time period when cv. Gea was tested during 

colder months in the glasshouse, with more rapid temperature fluctuations.  The results in 

Figure 1 demonstrates how application of FA can increase vegetative yield at very low 

concentration. This information supports existing indications of a potential yield effect of HS 

in M. sativa and similar forage legumes (Little et al., 2013; Little et al., 2014; Tan and 

Tantiwiramanond, 1983; Xu et al., 2018). Figure 1 also shows how the grass species L. perenne 

did not have increased vegetative biomass from FA application. Importantly, comparing the 

nutritional controls to dH2O treatments shows there was no significant nutritional component 

to the effect of FA application (see Figure 1). Moreover, as shown in Supplementary Figure S5 

where FAs are tested with a larger screen of forage species, one can see how vegetative yield 

increases are found in legume species and not grasses when compared to dH2O only. 

 

Fulvic acid application caused an increased number of pink nodules 

Yield in legumes is known to be affected by the degree of root nodulation by symbiosis with 

Rhizobium, including Sinorhizobium. The number of nodules were investigated in cultivars 

Daisy and Luzelle with counts performed on plants grown in both FA and control condition. 

Figure 2 shows a representative visual scoring of cultivar Daisy nodules for each treatment. 

This includes labelling of early stage initiating nodules (EIN), established white nodules (WN), 

or mature pink nodules (PN). Only WN and PN are included in counts. 

Total counts are shown in Figure 3, with results from three coded experiments, 

alongside percentage of pink nodules. In MFA and VFA treatments mean total nodule number 

was only slightly increased (not significantly), but the number of PN at 21 days was 

significantly increased compared to all other treatments. The pink colour of large PNs is 

indicative that Rhizobium are actively N-fixing within the nodule, caused by the presence of 

leghaemoglobin (Liu et al., 2018a). Therefore, FA treatment may affect the rate of N-fixation 

and thus increase plant vegetative growth. In addition, testing of M. sativa on sterile agar plates 

with FA application alongside control treatments showed that the significant vegetative growth 

increase was found only when plates were inoculated with Sinorhizobium meliloti strain. Plate 
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experiment phenotypes of vegetative biomass, nodule number, and root biomass of cv. Daisy, 

showed that increases of the former two are specific to Rhizobium inoculation (Supplementary 

Figure S6). 

It is possible that FAs may also directly influence N-fixing bacteria such as 

Sinorhizobium. This has been reported in other studies (Little et al., 2014; Xu et al., 2018), 

however these papers did not include nutritional controls. Improved symbiotic association of 

leguminous crops with Rhizobium is important with the current emphasis on growing more 

leguminous crops globally, due to their N-fixing activity (Foyer et al., 2016; Iannetta et al., 

2016; Lüscher et al., 2014; Preissel et al., 2015; Reckling et al., 2016). For example, the fixing 

of atmospheric N2 in legume/grass pastures has been estimated as 13 – 682 kg N ha-1 yr-1 

(Ledgard and Steele, 1992). Medicago sativa itself has been estimated to fix up to 350 kg N 

ha-1 yr-1, providing an N fixation rate of 0.021 x vegetative dry matter + 16.9 (R2 = 0.91) 

(Carlsson and Huss-Danell, 2003), regardless of soil status or geographic location. Increased 

vegetative growth in Medicago sativa due to improved symbiosis with Rhizobium could have 

implications for the yields of other cultivated legumes. 

 

Microbial growth is affected by fulvic acid 

To determine if FAs affect growth of Sinorhizobium meliloti in the absence of plants, microbial 

growth in liquid culture was tested. Cultures of FAs or controls inoculated with S. meliloti were 

grown over 4 days with cell density tested using the standard microbial techniques of colony 

forming unit (CFU) counts. The mean cell density results of three independent experiments are 

shown in Figure 4. No effect of FAs on cell density was found at 0 – 1 days. At 2 days both 

FA treated cultures had a higher cell density than their nutritional controls; MFA measured 

6.56 x 109 compared to MC at 4.07 x 109; VFA measured 6.81 x 109 compared to VC at 4.26 

x 109. By 3 days the MFA treated culture did not differ in its cell density from any controls. 

Conversely, VFA had a significantly higher cell density of 1.88 x 1010. These results indicate 

that adding FAs to liquid cultures can increase growth of S. meliloti, with a similar result 

demonstrated in a study comparing the presence of a HS substance to no addition (Xu et al., 

2018). In addition, the effect of FAs on increasing microbial cell growth without the presence 

of a plant interaction agrees with other published studies; HS addition has been shown to 

increase growth of Bradyrhizobium liaoningense in liquid culture (Guo Gao et al., 2015) and 

increase general microbial population growth in soil microbial cells (Visser, 1985). In contrast, 
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a study of Candida utilis found no growth change with HS application, so the response may be 

specific to certain taxa (McLoughlin and Küster, 1972). It is possible that FA is able to affect 

the growth of other soil microbial populations which may also increase plant vegetative yields. 

This may include other important Rhizobium species for Medicago relatives, but moreover 

species of Streptomyces, Bacillus and arbuscular mycorrhiza fungi (Schirawski and Perlin, 

2018). Comparing the nutritional controls (MC, VC) to distilled water treatments (dH2O) 

showed that there was no significant nutritional component to the effect of FA application (see 

Figure 4). 

 

RNA-seq demonstrates high levels of transcriptional changes in roots following FA 

treatment after 3 days.  

Transcriptional changes were investigated using RNA-seq for M. sativa shoot and root tissues 

treated with either VFA or its nutritional control VC, on the day of treatment (day 0) or three 

days after the treatment (day 3). Differentially expressed (DE) transcripts were analysed with 

de novo transcriptome assembly, performed to negate for initial bias of other reference 

alignment such as M. truncatula in subsequent analysis. De novo transcriptome assembly was 

successful for building a scaffold, shown in Supplementary Table S7, with similar alignment 

rates of all transcripts for available M. truncatula references (data not shown).  

DE transcripts for VFA and VC between the two timepoints was investigated, with 

transcripts requiring both an absolute log fold change of 0.585 (1.5 x fold change) and a false-

discovery rate (FDR) adjusted p-value (q-value) < 0.05; Supplemental Figure S7 shows those 

between day 0 and day 3 for VFA application in root samples. Figure 5 shows the number of 

up-regulated (+) and down-regulated (-) DE transcripts in shoots and roots of M. sativa 

following either VFA and/or VC treatment. This result shows that most DE transcripts (1705 

upregulated and 241 downregulated) for VFA treatment occurred in the root tissue. This is 

compared to 140 upregulated and 209 downregulated DE transcripts in the shoot. This study 

shows that FA as VFA can induce substantial transcriptional changes in M. sativa after only 

three days, with the root showing far higher numbers of DE transcripts than shoots. 

Further analysis of DE transcripts is found in Supplemental data, with BLAST results 

descriptions and analysis of both tissue types, and functional annotation of GO terms and 

enrichment testing of root samples only. Most DE isoforms had homologues in closely related 

legume species (Supplementary Figure S8a). Many successful BLAST hits were recorded for 
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each transcript sequence (Supplementary Figure S8b), with significant hits shown in most 

having an extremely low E-values close to zero (Supplementary Figure S8c). Following 

annotation, the GO terms in Supplementary Table S9 and Figure S9 demonstrated that root FA-

induced transcriptional changes are wide-ranging for biological process. There are high GO 

term hits for processes affected by VFA treatment including those regulating transcription and 

translation, and those associated with oxidation-reduction, metabolism, and transport. The GO 

analysis provided evidence that VFA very quickly affects crucial pathways in both C and N 

metabolism, as well as cell wall modification. This rapid transcriptional effect is likely to 

induce the later yield effect in vegetative tissue. There was indication of changes in responses 

to defence, stress, and bacteria. These may be linked to response to symbiotic bacteria such as 

S. meliloti; at this developmental stage nodulation can begin to be established and it is well 

documented that important nodulation genes and factors are associated with defence responses 

through their evolution and function (Chen et al., 2017; Clúa et al., 2018; Kouchi et al., 2004; 

Libault et al., 2010; Lohar et al., 2006). 

Enrichment testing shown in Supplementary Table S10 further provides evidence that 

VFA particularly upregulated biological processes associated with N metabolism, alike to 

findings in Figure S9. Changes in N metabolism in legume species roots is associated with 

increases in nodulation-signalling during initiation of symbiosis (Liu et al., 2018a). The quick 

response in transcription in the roots suggests why there is a larger biomass increase after VFA 

treatment, likely through stimulated N supply to the legume via nodules or uptake by the roots. 

Responses to bacteria were enriched, providing further evidence from GO analysis that an 

effect on nodulation initiation may be the cause of such a change. Moreover, other important 

processes required for new root development and nodule growth showed enrichment, including 

cell wall biogenesis and organisation. Molecular function testing showed enrichment in root 

nutrient transporter activity following VFA treatment, as well as enrichment of serine hydrolase 

activity, which has wide-ranging catalytic activity in plants (Kaschani et al., 2012; Mindrebo 

et al., 2016). 

 

Transcriptome analysis shows preferential enrichment of nodulation regulation and 

signalling‐related genes 

The genes identified from the above analysis in the root which were significantly induced 

following VFA treatment were noted to overlap considerably with those in studies of early 
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initiation of nodulation in legumes (Alves-Carvalho et al., 2015; El Yahyaoui et al., 2004; 

Hayashi et al., 2012; Kant et al., 2016; Kouchi et al., 2004; Larrainzar et al., 2015; Moreau et 

al., 2011; O'Rourke et al., 2013). To further investigate this DE transcripts were compared to 

those which have been categorised as specific early symbiotic root nodulation genes in M. 

truncatula by Roux et al., (2014). In this study laser-capture microdissection of roots and 

nodules was coupled with RNA-seq (Roux et al., 2014). This provided a robust list of genes 

induced at various stages of nodulation especially in early initiation. Table 1 details those DE 

transcripts upregulated in the root following VFA treatment which are early genes required for 

the signalling and regulation of nodulation; annotations are available for many of these. These 

included an array of transcription factors and domains including Myb/SANT-like DNA-binding 

domain protein, AP2-like ethylene-responsive transcription factor, and zinc finger MYM-type 

protein 1-like; AP2/ERF transcription factors are known to control nodule number and 

differentiation (Middleton et al., 2007; Peng et al., 2017; Vernie et al., 2008; Wang et al., 

2010). Many leucine-rich repeat receptor-like kinases (LRR RLKs) and other receptor kinases 

were found to be highly enriched, for example LysM domain receptor-like kinase; many 

leucine-rich repeat receptor-like kinases including CLAVATA protein homologues signal root 

development and nodulation induction (Krusell et al., 2002; Lim et al., 2011; Mortier et al., 

2010; Oka-Kira and Kawaguchi, 2006; Reid et al., 2011; Schnabel et al., 2005), and LysM-type 

receptor-like kinases perceive early Rhizobium signals (Amor et al., 2003; Indrasumunar et al., 

2011; Kawaharada et al., 2015; Knogge and Scheel, 2006; Limpens et al., 2003; Madsen et al., 

2003; Popp and Ott, 2011; Radutoiu et al., 2003; Zipfel and Oldroyd, 2017). 

Genes required in bacteria and hormone induced plant responses were found to be 

upregulated, for example NDR1/HIN1-like protein 10, protein RRP6-like 2, and cytokinin 

hydroxylase-like transcripts; an increase of Pathogenesis-related proteins can be induced in 

early symbiotic infection, before adequate Rhizobium suppression, rather than being in relation 

to a pathogen response (Clúa et al., 2018; Kouchi et al., 2004; Libault et al., 2010; Lohar et 

al., 2006; Nakagawa et al., 2011; Oldroyd, 2013; Popp and Ott, 2011). Important chitin 

regulatory genes are also detected to be changed in their expression by VFA treatment. This 

may affect lipochitooligosaccharide recognition as the key signal in initiating legume-

Rhizobium symbiosis (Bozsoki et al., 2017; Dénarié et al., 1996; Liang et al., 2014; Muñoz et 

al., 2014; Reddy et al., 1998). 

Finally, many nodulation specific genes were enriched such as nodulation-signaling 

pathway (NSP) proteins, NSP-interacting kinases, and nodulins; nodulin is crucial in early 
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nodule development (Becker et al., 2001; Gamas et al., 1998; Kant et al., 2016; Kouchi and 

Hata, 1993; Legocki and Verma, 1980; Liu et al., 2018b; Marsh et al., 2007; Mathis et al., 

1999; Rivers et al., 1997; Roberts and Routray, 2017; Scheres et al., 1990; van de Wiel et al., 

1990) including in M. sativa (Cheng et al., 2000; Fang and Hirsch, 1998; Lafuente et al., 2010; 

Pringle and Dickstein, 2004). 

The increase in transcription of these genes upon VFA treatment is a strong indication 

that this HS is associated with inducing early nodulation in M. sativa. The effect could be by 

influencing the plant itself in its response to symbiosis, for example a priming effect of VFA 

for subsequently inducing infection by the symbiont (Alimadadi et al., 2010; Berg et al., 1989; 

Harris et al., 2005). Fulvic acid may be able to change the C:N metabolic balance of the plant 

and thus impact on the regulatory mechanisms of promoting symbiotic nodulation processes 

(Libault, 2014), or the effect could be a consequence of the treatment on the symbiont causing 

a nodule number increase. VFA may contain a specific nutritional aid, not adequately 

controlled for in VC application, which boosts symbiotic Sinorhizobium growth in soil and thus 

makes nodulation happen more rapidly (Singleton and Tavares, 1986; Thies et al., 1991). Or 

similarly, VFA may decrease the inhibitory role of N in soil on nodulation and thus also 

encourage nodulation to occur with symbiont and plant (Beauchamp et al., 2001; Zeijl et al., 

2018). This is unlikely due to the low N content of the soil used in testing but should be 

considered. 

 

Vegetative growth effect was recorded in independent field trials  

Figure 6 shows a comparison of the vegetative biomass of Medicago sativa cultivars in 

independent field trials following treatment with a fulvic acid or controls, in order to check if 

the FA treatment effect on M. sativa in glasshouse experiments could be demonstrated in the 

field. Over two years, four trials were conducted at three dedicated forage crop cultivation 

farms. Trial plots treatments were one of NA, dH2O, VFA, or VC at early establishment of M. 

sativa (April - June). These plots were grown in accordance with site standard management 

practices for UK forage crop cultivation. Prior to the first harvest of the season (May - July), 

vegetative biomass was recorded for a sample from each treatment plots, shown in Figure 6 for 

each experiment. Although different cultivars were tested at the various sites, for each 

experiment VFA treated plots had increased vegetative biomass. This increased growth 

compared to NA or VC was 135 – 165 %, which is only slightly lower than measurements from 
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glasshouse experiments of 167 – 185 %. The biomass increased for all vegetative tissues, both 

shoot and leaf.  

The nutritional content of M. sativa tissue from each treatment plot was also assessed 

for the 2018 trials. The results of one 2018 trial are shown in Supplemental Figure S11 with 

samples of total vegetative biomass measurements, total chlorophyll, and total protein of 

samples was recorded. Although there was a significant difference in vegetative biomass, no 

significant difference in either nutritional content was shown across any treatment. The other 

2018 trial had similar results with NA, dH2O, VFA, and VC plots having the average 

chlorophyll and total protein content as follows; 2.91 and 17.87 %; 2.61 and 17.96 %; 2.83 and 

18.21 %; 2.63 and 17.97 %. These measurements show that the yield effect of VFA treatment 

on M. sativa is not linked to changes in tissue nutritional content. The enhanced vegetative 

growth from nodule stimulation did not result in increased protein storage. It is possible that 

FA and other HS treatments in other studies may replicate C-containing exudates usually 

released by plants to aid in symbiosis initiation, which in turn stimulates activity of Rhizobium. 

This increases nodulation signalling which encourages symbiosis, and results of higher nodule 

activity and thus yield is increased. 

It has been suggested that HS have a crucial active ingredient or ‘hormone’, such as an 

auxin-like molecule (Canellas et al., 2010; Nardi et al., 1994; Nardi et al., 2002; Russell et al., 

2006; Trevisan et al., 2010a; Trevisan et al., 2010b). However, based on the analysis in this 

project, no such auxin-like molecule was detected and both commercial applications were 

found to be different from one another. It is possible that past studies lacking nutritional 

controls may have given auxin-like growth stimulation, as the plants may have been subjected 

to suboptimal nutritional supply before treatment and growth effects after application could be 

interpreted as due to a hormonal stimulus. Although FA did promote growth in legumes the 

response may be complicated by the mixture of many compounds in the product. By 

performing a chemical fractionation of FAs it may be possible to find several common 

components with synergistic effects on nodulation.  

In conclusion, we have demonstrated a specific stimulatory effect of FA treatment on 

the early stages of nodulation in M. sativa in both the glasshouse and the field. The FA 

treatment significantly enhanced biomass production and may be relevant for other legume 

crops.  
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Tables and Figures  

Table 1. Enriched DE transcripts in VFA roots which are putatively classed as highly 

preferential nodulation regulatory genes and nodule‐associated signalling‐related 

genes as in Roux et al., (2014) (Roux et al., 2014); this includes a description of the 

protein, available gene/protein IDs, the annotation type, and log fold change (logFC) 

and q-value for each DE transcript. 

Gene/Protein ID Description Annotation logFC q-value 

XP_024635034 
Myb/SANT-like DNA-binding 

domain protein 
TF MYB 5.35 1.90E-06 

PNX91228 
putative CC-NBS-LRR resistance 

protein 
LRR 4.98 1.23E-11 

ABD33274, AES59362, 

RHN77255 
RALF-like protein 

Calcium/lipid‐

binding 
4.74 4.63E-06 

RIA81513 calnexin 
Calcium/lipid‐

binding 
4.67 6.36E-09 

RHN49201 
wall-associated receptor kinase-like 

20 
RLK 4.60 3.35E-05 

KEH36571, RHN72042 
CLAVATA3/ESR (CLE)-related 

protein 

Ser/Thr protein 

kinase 
4.36 2.44E-07 

KEH28705, RHN58556 
putative LRR-domain, L domain-

containing protein 
LRR 4.29 6.43E-05 

XP_003612592, 

AES95550, RHN54652 
RING-H2 finger protein ATL52-like TF ZnFg C2H2 4.28 1.63-75 

XP_024641562 
AP2-like ethylene-responsive 

transcription factor 
TF AP2/ERF 4.08 1.74-04 

XP_003594815, 

AES65066, RHN73104 
COBRA-like protein 7 COBRA 4.00 1.78E--07 

XP_003598348, 

AES68599, RHN65475 

F-box protein interaction domain 

protein 
F‐box protein 3.75 4.90E-07 

AES76072, AES76110, 

RHN52304 
NDR1/HIN1-like protein 10 NHL 3.67 2.52E-04 

RHN60433 
disease resistance protein (TIR-

NBS-LRR class) 
LRR RLK 3.64 7.66E-06 

XP_013443270, 

KEH17295, RHN51739 
cytokinin hydroxylase-like CK activated 3.60 6.29E-06 

XP_013466350, 

KEH40391, RHN77806 
receptor-like protein kinase RLK 3.55 4.72E-06 

XP_003604023, 

AES74274 
COBRA-like protein 1 COBRA 3.53 7.35E-07 
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Gene/Protein ID Description Annotation logFC q-value 

RGB31681 calcium-binding protein 
Calcium/lipid‐

binding 
3.49 1.84E-06 

RHN72504 
probable inactive receptor kinase 

At2g26730 
RLK 3.42 1.32E-05 

XP_003613167, 
AES96125, RHN55010 

L-tryptophan--pyruvate 
aminotransferase 1 

TAA1‐like 3.39 2.54E
-04

 

AES69839 
LRR-P-loop containing nucleoside 

triphosphate hydrolase 
LRR 3.32 7.54E

-06
 

AES91737 F-box/kelch-repeat protein F-box protein 3.32 6.92E
-06

 

XP_024637477 
disease resistance protein (TIR-

NBS-LRR class) 
LRR 3.24 1.65E

-05
 

EXX59026 WD40 repeat-like protein TF WD 3.22 1.01E
-04

 

XP_024631685, 
RHN72543 

mitogen-activated protein kinase 
kinase kinase 18-like 

STY 3.14 2.55E
-05

 

ABD28520 protein RRP6-like 2 CK activated 3.09 9.33E
-05

 

XP_013451548, 
KEH25576, RHN50766 

ankyrin repeat/protein kinase 
domain-containing protein 1 

TF ERF 3.06 2.97E
-05

 

AES95938 
disease resistance protein (TIR-

NBS-LRR class), putative 
LRR RLK 3.01 1.91E

-05
 

RZB96753 
probable LRR receptor-like Ser/Thr-

protein kinase 
LRR RLK 2.99 5.78E

-05
 

KHN26259 zinc finger MYM-type protein 1-like TF Zn finger 2.95 1.31E
-04

 

XP_013451184, 
KEH25223, RHN50327 

protein NSP-interacting kinase 1 NSP 2.94 3.50E
-05

 

RHN42361 
kinase RLK-Pelle-WAK-LRK10L-1 

family 
RLK 2.89 1.29E

-04
 

RIA84146 Ca2+:H+ antiporter 
Calcium/lipid‐

binding 
2.87 8.02E

-05
 

AES60803 F-box plant-like protein F-box protein 2.78 1.71E
-04

 

XP_013457946, 
KEH31977, RHN63702 

putative LRR-containing protein LRR RLK 2.78 1.60E
-04

 

RIA97789 ARM repeat-containing protein E3 ligase 2.72 2.11E
-04

 

XP_013445632 
G-type lectin S-receptor-like 

Ser/Thr-protein kinase 
Ser/Thr protein 

kinase 
2.71 1.84E

-04
 

AES73438 Plant regulator RWP-RK NLP 2.70 1.87E
-04
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Gene/Protein ID Description Annotation logFC q-value 

KEH38435 Rpp4C3 CK activated 2.69 1.22E-04 

RIA81779 YIF1-domain-containing protein TF AP2/ERF 2.69 1.26E-04 

AES61923, RHN81250 
C3HC4-type RING zinc finger 

protein 
TF Zn finger 2.68 1.90E-04 

XP_024633471.1 
LysM domain receptor-like 

kinase 3 

LysM receptor 

kinase 
2.68 1.41E-04 

XP_024625794 
putative receptor-like protein 

kinase 
RLK 2.66 4.17E-05 

RHN81081 proline-rich protein 1-like PRP 2.63 5.03E-05 

PF04909 nodulin-6 NIP 2.56 2.00E-04 

XP_003615114, 

AES98072, RHN56135 
nodulin-26 NIP 2.56 6.80E-05 

XP_013450575, 

RHN49450 

L-type lectin-domain containing 

receptor kinase IX.1-like 
RLK 2.49 5.82E-05 

XP_013462891, 

KEH36925, RHN72571 

chitin elicitor receptor kinase 1-

like 

LysM receptor 

kinase 
2.48 9.25E-06 

XP_003601076.1, 

AES71327 

nodulation-signaling pathway 2 

protein 
NSP 2.11 1.43E-05 

XP_024641514, 

AES76606, RHN52721 

putative NF-X1-type zinc finger 

protein NFXL1-like protein 

NFX1-type zinc 

finger 
1.75 1.68E-05 

XP_013460228, 

KEH34259, RHN67624 
non-specific phospholipase 

Phospholipase 

A2 
1.52 4.71E-06 

XP_024625319 
U-box domain-containing 

protein 33 isoform X1 
MtPUB 1.37 1.14E-04 

XP_003631134, 

AET05610, RHN43936 

probable inactive receptor 

kinase At1g48480 
Kinase 1.15 1.75E-04 

XP_003616008, 

AES98966, RHN56723 

CBL-interacting 

serine/threonine-protein kinase 

11 

Calcium 

binding, Ser/Thr 

protein kinase 

1.04 1.40E-04 

RHN48771 NDR1/HIN1-like protein 1 NHL 0.88 3.71E-05 
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Figure legends 

 

Fig. 1. Vegetative biomass of Medicago cultivars and Lolium following treatment with 

fulvic acids or controls. Treatments were applied to seedlings at 7 days post 

germination and vegetative yields (dry weight in mg) were assessed at 21 days post 

treatment. Treatments were; NA in dark grey; dH2O in grey; 0.5 % MFA in blue; 0.5 % 

MC in light blue; 1 % VFA in orange; 1 % VC in yellow. Three cultivars of Medicago 

were tested, cv. Daisy (a), Luzelle (b), and Gea (c). One cultivar of Lolium was tested, 

cv. AberMagic (d). Individual seedling biomass was measured for three independent 

experiments, as shown in black data points (Exp. 1 = circles, Exp. 2 = triangles, Exp. 

3 = squares). Box plots show variation across experiments. Multiple comparisons 

between treatments were conducted using a one-way ANOVA Tukey test shown with 

letters, and one-tailed student t-tests were calculated for FAs and their controls, with 

p-value significance indicated left of graphs. 

 

 

Fig. 2. Medicago sativa cv. Daisy nodules following treatment with fulvic acids or 

controls. Treatments were applied to seedlings at 7 days post germination and 

photographs above were taken at 21 days post treatment. Treatments were; 1. NA in 

dark grey; 2. dH2O in grey; 3. 0.5 % MFA in blue; 4. 0.5 % MC in light blue; 5. 1 % 

VFA in orange; 6. 1 %  VC in yellow. Nodules are indicated as either early initiating 

nodules (EIN), white nodules (WN), or pink nodules (PN). Only white and pink nodules 

were counted as true nodules in for this analysis. Scale included is 1 mm. 

 

 

Fig. 3. Nodulation counts of two Medicago sativa cultivars following treatment with 

fulvic acids or controls. Treatments were applied to seedlings at 7 days post 

germination and nodules counted at 21 days post treatment. Treatments were; NA in 

dark grey; dH2O in grey; 0.5 % MFA in blue; 0.5 % MC in light blue; 1 % VFA in orange; 

1 % VC in yellow. Two cultivars of Medicago were tested, cv. Daisy (a), cv. Luzelle 

(b). Individual seedling nodules were counted for three independent experiments, as 
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shown in black data points (Exp. 1 = circles, Exp. 2 = triangles, Exp. 3 = squares). Box 

plots show variation across experiments. Multiple comparisons between treatments 

were conducted using a one-way ANOVA Tukey test shown with letters, and one-

tailed student t-tests were calculated for FAs and their controls, with p-value 

significance indicated left of graphs. 

 

 

Fig. 4. Growth effects of fulvic acid on the growth of Sinorhizobium meliloti in culture, 

compared to controls. TY cultures containing treatments as follows were inoculated 

with Sinorhizobium meliloti; NA in dark grey; dH2O in grey; 0.5 % MFA in blue; 0.5 % 

MC in light blue; 1 % VFA in orange; 1 % VC in yellow. Average colony forming unit 

(CFU) counts were obtained from triplicate samples on 0 - 4 days of incubation with 

shaking 220 rpm at 28 °C. Average counts for three separate experiments (3 individual 

experimental replicates (on separate days), each with 3 technical replicates) were 

calculated and shown above with standard deviation. Multiple comparisons between 

treatments were conducted using a one-way ANOVA Tukey test shown with letters. 

 

 

Fig. 5. Differentially expressed transcripts in Medicago sativa shoot and root tissue 

with treatments of either VFA (orange) or VC (yellow). RNA-seq was carried out on 

whole shoot and root RNA samples taken on day of treatment (day 0) or three days 

after treatment (day 3). Transcripts from de novo transcriptome assembly with both an 

absolute log fold change of 0.585 (1.5 x fold change) and a false-discovery rate (FDR) 

adjusted p-value (q-value) < 0.05 were considered as differentially expressed (DE); 

DE transcripts significantly expressed between treatments at day 0 were removed to 

negate for false positives due to experimental variance. The above Venn diagram 

shows upregulated (+) and downregulated (-) DE transcripts for both treatments 

between day 0 and day 3, including those which are shared (overlapping region). This 

difference in DE transcript number is emphasised by differing sizes of the circles in the 

plot. 
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Fig. 6. Vegetative biomass of Medicago sativa cultivars in independent field trials 

following treatment with a fulvic acid or controls. Treatments were applied to field plots 

at beginning of establishment and vegetative yields were assessed before 1st cut of 

growing season; an area of 625 cm2 was sampled and total vegetative tissue dried for 

biomass (in g). Treatments were; no addition (NA in dark grey); deionised water (dH2O 

in grey); 1 % VFA (VFA in orange); and 1 % VC (VC in yellow). Three trials of four 

cultivars were run over two years. In 2017 trials were performed at Dengie Crops Ltd. 

(Southminster, Essex) with four plots per treatment of both cv. Daisy and Fado. In 

2018 the trials were at both Blankney Estates Ltd. (Blankney, Lincolnshire) and A 

Poucher and Sons (Bardney Dairies) Ltd. (Market Rasan, Lincolnshire) with six plots 

per treatment of cv. Daisy and Gea respectively. Individual plot samples are shown in 

black data points as indicated, and boxplots are for individual cultivar trials. Relative 

average increase in yield of VFA treated plots compared to NA is shown as percentage 

above graph to the nearest 5 %.  
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Figure 1 
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Figure 2 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/doi/10.1093/jxb/eraa283/5864882 by guest on 17 July 2020



Acc
ep

te
d 

M
an

us
cr

ipt

 

 
 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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