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Abstract  Torsional guided waves have been widely utilized to inspect surface 

corrosion in pipelines due to their simple displacement behavior and the ability of 

long-range transmission. Especially, the torsional mode T(0,1), which is the first order of 

torsional guided waves, plays the irreplaceable position and role, mainly because of its 

non-dispersion characteristic property. However, one of the most pressing challenges 

faced in modern quality inspection is to detect surface defects in pipelines with a high 

level of accuracy. Taking into account this situation, a quantitative reconstruction method 

using the torsional guided wave T(0,1) is proposed in this paper. The methodology for 

defect reconstruction consists of three steps. Firstly, reflection coefficients of the guided 

wave T(0,1) scattered by different sizes of axisymmetric defects are calculated using the 

developed hybrid finite element method (HFEM). Then, applying the boundary integral 

equation and Born approximation, Fourier transform of the surface defect profile can be 

analytically derived as the correlative product of reflection coefficients of torsional 

guided wave T(0,1) and the fundamental solution of the intact pipeline in frequency 

domain. Finally, reconstruction of defects is precisely performed by inverse Fourier 

transform of the product in the frequency domain. Numerical experiments show that the 

proposed approach is suitable for the detection of surface defects with arbitrary shapes. 

Meanwhile, effects of the depth and width of surface defects on the accuracy of defect 

reconstruction have been investigated. It is noted that the reconstructive error is less than 

10%, providing the defect depth is no more than half of the pipe thickness. 
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1 Introduction 

    Pipelines, playing a significant role in the transportation of gases and liquids, usually expose in the 

natural environment for a long time and withstand corrosion from changes of the natural environment. 

Performance degradation of pipelines will undoubtedly affect normal operation and cause serious 

accidents like explosions and leakages. In order to check the working state of pipelines, many 

researchers have proposed various effective methods, by which defects have been successfully 

detected[1-8].  

    Ultrasonic inspection, as an effective and nondestructive evaluation method, has been applied to 

structural health monitoring and damage detection. According to the properties of elastic waves, 

ultrasonic inspection mainly includes bulk waves inspection[9-12], guided waves inspection[13-17], and 

nonlinear ultrasonic inspection[18-21]. Due to the non-dispersion characteristics, guided waves 

inspection[22] has a unique advantage over other methods for testing large structures and it is a 

promising method for detecting long-distance transportation pipelines. However, the interaction 

between guided waves of pipelines and defects is very complicated, and analytical solution of Green’s 

function, which is of great importance to reconstruct defects in pipelines, has still not been found. In 

1958, Gazis studied the propagation of free harmonic waves along a hollow circular cylinder [23-24] as 

well as the plane-strain vibration of thick-walled hollow cylinders[25]. In these articles, Bessel functions 

and Hankel functions were used, and the approximate numerical solution of guided waves was found 

for hollow circular cylinders. Meitzler[26] and Zemanek[27] denoted modes of guided waves propagating 

along axial direction were denoted with ‘L(0,𝑚)’, ‘T(0,𝑚)’ and ‘F(𝑛,𝑚)’ where ‘𝑛’ and ‘𝑚’ indicate 

circumferential modes and axial modes respectively. L(0,𝑚) and T(0,𝑚) denote longitudinal modes 

and torsional modes of axisymmetric guided waves, and F(𝑛,𝑚) means flexural modes of 

non-axisymmetric guided waves which are much more complicated. 

  Meanwhile, the finite element method (FEM) was untilized for the analysis of propagation waves 

and edge vibrations in anisotropic composite cylinders by Huang and Dong[28]. Based on the same 

principle, Rattanawangcharoen et al.[29] adopted 2D FEM to solve reflection and transmission 

coefficients of axisymmetric guided waves in jointed laminated cylinders, and Bai et al.[1] analyzed 

scattered fields of circumferential cracks in pipes for symmetry and anti-symmetry of structures using 

semi-analytical finite element (SAFE), which is able to effectively calculate forward problems of 

elastic waves in pipes. With SAFE, singularities’ discrepancies between no-flaw and flaw pipes 

proposed by Stoyko et al.[30] were used to detect and describe a notch in a pipe. In real experiments, 

James et al.[13] introduced an experimental platform for the construction of pipe models and obtained 

scattering signals of vary modes successfully. Similarly, an effective approach[31] for the excitation and 

propagation of torsional T(0,1) wave mode for detecting defects in a steel pipe by using finite element 

numerical simulations and experimental studies. A new two-dimensional localization algorithm based 

on the combination of detection theory and array processing is proposed to extract locations of 

multi-damage in a plate-like structure for structural health monitoring purpose[32]. The compressed 

sensing method for guided wave inspection is suggested to solve the problem of huge amounts of data 

and to maintain defect identification accuracy[33].  

    Generally, most inspection methods need a large number of experimental data as reference values 

and have no ability to describe geometric shape of defects for a large region. However, the method of 

boundary integral equation (BIE) considers the scattered fields of incident waves and is capable of 

reconstructing defects. Kitahara et al.[9] investigated two inverse scattering methods based on body 

waves to reconstruct the shape of flaws in the elastic solid, and Wang et al.[34-36] adopted guided waves 
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of scattered waves to reconstruct geometric properties of surface flaws and internal flaws in plates. The 

reflective method can be applied successfully to monitor structural health in industrial pipelines based 

on a single permanently installed source–receiver pair[37]. Though many efforts were devoted to defect 

detection, this method has not been applied to quantitatively reconstruct defects in pipelines using 

guided waves.  

    In this paper, quantitative reconstruction of axisymmetric surface defects in pipelines has been 

proposed using BIE technique. The methodology for analytical defect detection mainly consists of 

three parts. In the first part, an integrated method of 3D FEM with semi-analytical finite element 

(SAFE)[38-39], called Hybrid FEM (HFEM), is developed to solve the forward problem – determination 

of wave fields dependence on material and defect properties. Using HFEM, calculations of scattered 

fields for axisymmetric defects with different sizes are performed and reflection coefficients are 

obtained as functions of incident wave frequencies. Following that, the energy conservation principle is 

applied to verify the results obtained by HFEM. In the second part, the torsional mode T(0,1) of the 

guided wave is chosen to investigate the inverse problem – reconstruction of defects. Since Green’s 

function for the displacement field of  T(0,1) propagating in pipelines is linearly proportional to the 

radius of pipes, the integral equation of the defect boundary is derived using the reciprocity theorem. 

Then, Born approximation and the far-field solution of Green’s function in pipelines are applied to the 

integral equation to investigate the relationship between the defect depth and reflection coefficients. 

Finally, the defect depth is analytically obtained by Fourier transform of reflection coefficients in 

frequency domain. In order to demonstrate the correctness and accuracy of the proposed reconstruction 

method, three numerical examples including a single rectangular defect, a double rectangular defect 

and a double-stepped defect, are examined. Results show the location and shape of defects can be 

efficiently and precisely identified. Moreover, effects of the defect depth and width on the accuracy of 

the reconstruction are analyzed. It is noted that the reconstruction error of the defective structure 

becomes larger as the defect depth increases. When the defect depths are equal to 0.1667h, 0.3333h, 

0.50h and 0.6667h, where h means the pipeline thickness, the reconstruction errors are increased by 

1.5170%, 5.2453%, 10.2669% and 16.6218%, respectively. However, the construction error resulting 

from the increase of the defect width is less than 2% as the defect depth keeps constant. 

2 Calculations of scattered fields in pipelines using hybrid FEM 

 

Fig. 1 The diagram of a pipe with an axisymmetric defect. 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 represent inner and outer 

diameters, h is the wall thickness, and the width and depth of the axisymmetric defect are 

denoted as 𝑙𝑎𝑦  and 𝑑𝑎𝑦 , respectively. The truncated left and right cross sections are depicted 

as 𝑆1 and 𝑆2. Coordinates for left and right edges of the defect are denoted as 𝑧𝐿 and 𝑧𝑅 in 

z-axis. The incident wave propagates along the negative z-axis direction. 
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    The truncated part of a pipe including the defect has been modeled by 3D FEM shown in Fig.1 

and the displacements and tractions on the 𝑆1  and 𝑆2  can be written as the summation of the 

expansion modes[30,39], which is the principle of hybrid FEM used for solving the forward problem in 

this paper. Then, the equation of motion for an isotropic elastic medium is 

δ([𝐪]𝐻)𝐒𝐪 = δ([𝐪]𝐻)𝐏 (1) 

where  

𝐒 = 𝐊 − 𝜔2𝐌 (2) 

𝐊  and 𝐌  are global stiffness and mass matrices, 𝜔  is a circular frequency, 𝐪  is a nodal 

displacement vector and 𝐏 is a nodal force vector. The superscript 𝐻 represents conjugate transpose 

and δ means the first variation. For the model of a pipeline structure shown in Fig. 1, all nodes are 

divided into two categories: one includes boundary nodes on cross sections 𝑆1 and 𝑆2, which are 

indicated by the subscript B; the other contains interior nodes represented by the subscript I. Based on 

the previous work[40], Eq. (1) can be rewritten as  

[𝐆] [
𝐪I

�̃�
] = [𝐓] (3) 

where𝐆 = {[
𝐈 𝟎

𝟎 [�̃�]
𝐻] [

𝐒II 𝐒IB

𝐒BI 𝐒BB
] [

𝐈 𝟎
𝟎 �̃�

] − [
𝐈 𝟎

𝟎 [�̃�]
𝐻] [

𝟎 𝟎
𝟎 �̃�

]}, 

𝐓 = [
𝐈 𝟎

𝟎 [�̃�]
𝐻] {[

0
�̃�1] − [

𝐒II 𝐒IB

𝐒BI 𝐒BB
] [

0
�̃�1]}, �̃� =

[
 
 
 
 
 
 
�̃�01

tra

⋮
�̃�0M̃

tra

�̃�01
ref

⋮

�̃�0M̃
ref

]
 
 
 
 
 
 

，�̃� = [�̃�01
tra ⋯ �̃�0M̃

tra �̃�01
ref ⋯ �̃�0M̃

ref]，

�̃�1 = [
�̃�0𝑚

1

�̃�0𝑚
2

]，�̃�1 = [
𝐭0𝑚
1

𝐭0𝑚
2 ]，�̃� = [�̃�01

tra ⋯ �̃�0M̃
tra �̃�01

ref ⋯ �̃�0M̃
ref ]，𝐈 is an identity matrix, 𝐪I is the 

displacement vector of the interior nodes and �̃� is the modified coefficients for scattered fields.  

    Effects of the defect depth and width on reflection coefficients have been investigated using the 

developed HFEM. The material properties of the pipeline are shown as Table 1. For reconstruction of a 

single rectangular defect, a series of cases listed in Table 2 have been performed. Case 1 and Case 2 

represent different defect depths and widths, respectively. To discover the dependence of the phase 

velocity on the wavelength, the dispersion relation of guided waves in pipeline structures has been 

shown in Fig. 2. Results indicate the relationship between the number of guided waves and the 

corresponding frequency as well as the displacement distribution of guided waves along the pipe 

thickness. Using HFEM, reflection coefficients of different guided waves shown in Fig. 3 and Fig. 4 

have been calculated. It is noted that the reflection coefficients are defined as the ratio of incident 

displacements to reflected displacements for the same mode guided wave. In Fig. 3, the relationship 

between modes (L(0,1), L(0,2) and T(0,1)) of incident guided waves and the corresponding absolute 

values of the reflected coefficients has been demonstrated. When the defect length keeps constant (for 

example, 𝑑𝑎𝑦=0.568h), the absolute values of the reflected coefficients of all the guided waves become 

larger as the defect depths increase. When the defect depth remains constant, the similar conclusion can 

be drawn in Fig. 4. Therefore, either the depth or the length of the defect increases, which leads to the 

larger absolute values of reflected coefficients. Obviously, variations in defect depth have more impact 

on reflection coefficients of torsional guided waves in pipelines than those in defect length.  
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    To demonstrate the relation between the defect profile and reflection coefficients for complex 

defects in pipelines, the analytical derivation of the relation will be provided in the following section. 

 

Table 1 Material properties of the pipe model 

Density 

(𝜌, kg m3⁄ ) 

Inner radius 

(𝑟in, m) 

Outer radius  

(𝑟out, m) 

Wall thickness 

(h = 𝑟out − 𝑟in, m) 

Lame constants  

(𝜆 and 𝜇, Pa) 

7.932 × 103 3.881 × 10−2 4.440 × 10−2 5.590 × 10−3 
1.132 × 1011 and 

8.430 × 1010 

 

Table 2 The statement of defects’ size. In case 1 the defect depth 𝑑𝑎𝑦  is from 0.166h to 0.833h and 

the defect width 𝑙𝑎𝑦  equals to 0.568h; in case 2 the defect width is from 0.189h to 0.947h 

and the defect depth equals to 0.50h. h is thickness of the pipeline 

Case 1 
𝑑𝑎𝑦  0.166h 0.333h 0.50h 0.666h 0.833h 

𝑙𝑎𝑦  0.568h 0.568h 0.568h 0.568h 0.568h 

Case 2 
𝑑𝑎𝑦  0.50h 0.50h 0.50h 0.50h 0.50h 

𝑙𝑎𝑦  0.189h 0.379h 0.568h 0.757h 0.947h 

 

 

Fig. 2 Dispersion relations of the guided waves L(0,1), L(0,2) and T(0,1) in pipelines 
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    (c) 

Fig. 3 Absolute values of reflected coefficients of different guided waves varying with depth of the 

defects, when the defect width (length) identically equals to 0.568h: (a) L(0,1), (b) L(0,2), (c) 

T(0,1) 

 

   (a)                                   (b) 

 

     (c)                                    

Fig. 4 Absolute values of reflected coefficients of different guided waves varying with width (length) 

of the defects, when the defect depth identically equals to 0.50h: (a) L(0,1), (b) L(0,2), (c) 
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3 Analytical formulations for reconstruction of defects in pipelines  

   Wave fields in pipelines satisfy the Sommerfeld radiation conditions[41], thus boundary integral 

equations (BIE) of the incident waves can be formulated as Eq. (4)  

∫[𝒖𝑖𝑛𝑐(𝒙)𝑻(𝒙 − 𝑿) − 𝒑𝑖𝑛𝑐(𝒙)𝑼(𝒙 − 𝑿)]𝑑𝑆(𝒙)
 

𝑆

= {

           0             𝑿 ∉ 𝑉

−𝒖𝑖𝑛𝑐(𝑿) 2⁄    𝑿𝑜𝑛 𝑆

      −𝒖𝑖𝑛𝑐(𝑿)    𝑿 ∈ 𝑉 

 (4) 

where the time harmonic term e−i𝜔𝑡 is omitted; 𝒙 and 𝑿 represent the field point and source point, 

respectively; and 𝒖𝑖𝑛𝑐(𝒙) and 𝒑𝑖𝑛𝑐 is the displacement and traction of the incident guided wave on 

closed surface 𝑆  of the defect 𝑉 . This equation states 𝑼(𝒙 − 𝑿)  and 𝑻(𝒙 − 𝑿)  must be the 

displacement and traction of the fundamental solution to the current intact pipeline problem. Therefore, 

boundary integral equations of the scattered waves can be written in a form as Eq. (5) 

∫[𝒖𝑠𝑐𝑎(𝒙)𝑻(𝒙 − 𝑿) − 𝒑𝑠𝑐𝑎(𝒙)𝑼(𝒙 − 𝑿)]𝑑𝑆(𝒙)
 

𝑆

= {
 𝒖𝑠𝑐𝑎(𝑿)        𝑿 ∉ 𝑉

𝒖𝑠𝑐𝑎(𝑿) 2⁄    𝑿𝑜𝑛 𝑆
       0               𝑿 ∈ 𝑉 

 (5) 

𝒖𝑠𝑐𝑎(𝒙) and 𝒑𝑠𝑐𝑎(𝒙) means displacement and traction of scattered waves on surface S. Although the 

incident guided wave only contains T(0,1), in the inverse problem the scattered waves are rather 

complex, especially near the defect region.  

   Adding Eqs. (4) and (5) we obtain  

∫[𝒖𝑡𝑜𝑡(𝒙)𝑻(𝒙 − 𝑿) − 𝒑𝑡𝑜𝑡(𝒙)𝑼(𝒙 − 𝑿)]𝑑𝑆(𝒙)
 

𝑆

= {

           𝒖𝑠𝑐𝑎(𝑿)                          𝑿 ∉ 𝑉

(𝒖𝑠𝑐𝑎(𝑿) − 𝒖𝑖𝑛𝑐(𝑿)) 2⁄       𝑿𝑜𝑛 𝑆

      −𝒖𝑖𝑛𝑐(𝑿)                            𝑿 ∈ 𝑉 

 

(6) 

Where the total displacement 𝒖𝑡𝑜𝑡(𝒙) = 𝒖𝑖𝑛𝑐(𝒙) + 𝒖𝑠𝑐𝑎(𝒙)， and the total traction 𝒑𝑡𝑜𝑡(𝒙) =

𝒑𝑖𝑛𝑐(𝒙) + 𝒑𝑠𝑐𝑎(𝒙).  

   For 𝑿 ∉ 𝑉, Eq. (6) can be further simplified due to the free boundary condition 𝒑𝑡𝑜𝑡(𝒙) = 0,  

∫𝒖𝑡𝑜𝑡(𝒙)𝑻(𝒙 − 𝑿)𝑑𝑆(𝒙)
 

𝑆

= 𝒖𝑠𝑐𝑎(𝑿)     𝑿 ∉ 𝑉 (7) 

 Generally, the defect depth is much less than wall thickness of pipelines. Therefore, a weak 

scattering source is assumed and 𝒖𝑡𝑜𝑡(𝒙) is replaced by 𝒖𝑖𝑛𝑐 using Born approximation[34]. Then, 

one has 

∫𝒖𝑖𝑛𝑐(𝒙)𝑻(𝒙 − 𝑿)𝑑𝑆(𝒙)
 

𝑆

≈ 𝒖𝑠𝑐𝑎(𝑿)     𝑿 ∉ 𝑉 (8) 

Taking into account the relationship between the traction and the stress on the surface S, the traction of 

the fundamental solution satisfies 

𝑇𝑗
𝑚(𝒙 − 𝑿) = 𝜎𝑖𝑗

𝑚(𝒙 − 𝑿)𝑛𝑗(𝒙); 𝑖 = 𝑗 = 𝑚 = 1,2,3 (9) 

where 𝑛𝑗 is components of the normal vector of the surface S. Subscripts i, j and m represent three 

directions of 𝑟，𝜃，𝑎𝑛𝑑 𝑧 in the cylindrical coordinate system. The superscript m represents the 

direction of body force acting at the source point 𝑿. It is noted that for all of the equations, we adopt 

Einstein's summation convention.  

   Substituting Eq. (9) into Eq. (8), one has 

∫𝑢𝑖
𝑖𝑛𝑐(𝒙)𝜎𝑖𝑗

𝑚(𝒙 − 𝑿)𝑛𝑗(𝒙)𝑑𝑆(𝒙)
 

𝑆

≈ 𝑢𝑚
𝑠𝑐𝑎(𝑿)     𝑿 ∉ 𝑉 (10) 

   Furthermore, Eq. (11) can be obtained by applying the divergence theorem to Eq. (10) as follows, 
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∫∇𝑗[𝑢𝑖
𝑖𝑛𝑐(𝒙)𝜎𝑖𝑗

𝑚(𝒙 − 𝑿)]𝑑𝑉(𝒙)
 

𝑉

≈ 𝑢𝑚
𝑠𝑐𝑎(𝑿) =  𝑢𝑚

𝑟𝑒𝑓(𝑿)    𝑿 ∉ 𝑉 (11) 

where (∇1，∇2，∇3) = (
𝜕

𝜕𝑟
+

1

𝑟
，

1

𝑟

𝜕

𝜕𝜃
，

∂

∂z
)。 

   Using the discrete nodal displacement 𝐪𝑖𝑛𝑐  along the thickness, the displacement 𝒖𝑖𝑛𝑐(𝒙) can be 

written in a function as 𝒖𝑖𝑛𝑐(𝒙) = 𝐍𝐪𝑖𝑛𝑐, where 𝐍 is the shape function, and the details can be 

referred to SAFE[38]. It is obvious that 𝒖𝑖𝑛𝑐(𝒙) is a piecewise function and cannot be directly 

substituted into Eq. (11) for analytical derivation. However, the displacement inducted by the torsional 

wave T(0,1) is proportional to the pipeline radius 𝑟  and can be obtained by numerical fitting 

technique, one can have 

𝑢1
𝑖𝑛𝑐(𝒙) = 𝑢3

𝑖𝑛𝑐(𝒙) = 0 ;  𝑢2
𝑖𝑛𝑐(𝒙) = 𝐶0T1

(𝑘0T1
)𝑟𝑒−i𝑘0T1𝑧 (12) 

where 𝐶0T1
(𝑘0T1

) is defined as the fitting coefficient, which is only dependent on wave numbers; and 

𝑘0T1
 is wavenumber of T(0,1). 

   Applying the boundary conditions, stress components of fundamental solution can be written as  

𝜎11
2 = 𝜎22

2 = 𝜎33
2 = 0 ; 𝜎12

2 = 𝜎21
2 = 𝜎13

2 = 𝜎31
2 = 0 

𝜎23
2 = 𝜎32

2 = −i𝑘0T1
𝜇𝐶0T1

(𝑘0T1
)𝑟𝑒−i𝑘0T1

(𝑧−𝑧0) (13) 

where 𝑧0 is the z-axis coordinate of the source point, 𝜇 is shear modulus. Thus, the integrand on the 

left side of Eq. (11) is simplified as 

∇𝑗[𝑢𝑖
𝑖𝑛𝑐(𝒙)𝜎𝑖𝑗

𝑚(𝒙 − 𝑿)] =
∂

∂z
(𝑢2

𝑖𝑛𝑐𝜎23
2 ) (14) 

Furthermore, the displacement field of reflected waves can also be denoted as 

𝑢2
𝑟𝑒𝑓(𝒙) = 𝑅0T1

𝑟𝑒𝑓
conj[𝐶0T1

(𝑘0T1
)𝑟𝑒−i𝑘0T1𝑧0] (15) 

conj[ ] represents conjugate transform and 𝑅0T1

𝑟𝑒𝑓
 means reflection coefficient. Substituting Eqs. (12) – 

(15) into Eq. (11), one has 

∫ ∫ 2π(−2𝑘0T1

2 𝐶0T1

2 𝑟3)𝑒−2i𝑘0T1𝑧𝑑𝑟𝑑𝑧
𝑟2

𝑟1

+∞

−∞

≈ 𝑅0T1

𝑟𝑒𝑓
conj[𝐶0T1

𝑟𝑜𝑢𝑡] (16) 

where 𝑟𝑜𝑢𝑡 is the outer radius. 

  For a pipeline with surface axisymmetric defects, it is assumed that the depth of the defect is a 

function of z, and the integration bounds along the radial direction in Eq. (16) are determined by𝑟1 =

𝑟𝑜𝑢𝑡 − 𝑑𝑎𝑦(𝑧) and 𝑟2 = 𝑟𝑜𝑢𝑡 , where 𝑑𝑎𝑦(𝑧) is the defect depth function . Hence, one has 

∫ (𝑟4|
𝑟𝑜𝑢𝑡−𝑑𝑎𝑦(𝑧)
𝑟𝑜𝑢𝑡 ) 𝑒−2i𝑘0T1𝑧𝑑𝑧

+∞

−∞

≈
𝑅0T1

𝑟𝑒𝑓
conj[𝐶0T1

𝑟𝑜𝑢𝑡]

(−π𝑘0T1

2 𝐶0T1

2 )
 (17) 

where 𝑟4|
𝑟𝑜𝑢𝑡−𝑑𝑎𝑦(𝑧)
𝑟𝑜𝑢𝑡 = 4𝑟𝑜𝑢𝑡

3 𝑑𝑎𝑦(𝑧) − 6𝑟𝑜𝑢𝑡
2 [𝑑𝑎𝑦(𝑧)]

2
+ 12𝑟𝑜𝑢𝑡[𝑑𝑎𝑦(𝑧)]

3
− 12[𝑑𝑎𝑦(𝑧)]

4
. If 

𝑑𝑎𝑦(𝑧) ≪ h, 𝑟4|
𝑟𝑜𝑢𝑡−𝑑𝑎𝑦(𝑧)
𝑟𝑜𝑢𝑡 ≈ 4𝑟𝑜𝑢𝑡

3 𝑑𝑎𝑦(𝑧) is obtained. Therefore, Eq. (17) can be rewritten as 

∫ 𝑑𝑎𝑦(𝑧)𝑒−2i𝑘0T1𝑧𝑑𝑧
+∞

−∞

≈
𝑅0T1

𝑟𝑒𝑓
conj[𝐶0T1

𝑟𝑜𝑢𝑡]

4𝑟𝑜𝑢𝑡
3 (−π𝑘0T1

2 𝐶0T1

2 )
 (18) 
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Assuming 
𝑅0T1

𝑟𝑒𝑓
conj[𝐶0T1𝑟𝑜𝑢𝑡]

4𝑟𝑜𝑢𝑡
3 (−π𝑘0T1

2 𝐶0T1
2 )

= 𝐷𝑎𝑦(2𝑘0T1
), Eq. (18) is a standard Fourier transform formula. Its 

inverse transformation is given by  

𝑑𝑎𝑦(𝑧) =
1

2π
∫ 𝐷𝑎𝑦(2𝑘0T1

)𝑒2i𝑘0T1𝑧𝑑(2𝑘0T1
)

+∞

−∞

 (19) 

To solve 𝑑𝑎𝑦(𝑧) by IFFT (Inverse Fast Fourier Transform) technique, the longitudinal resolution ratio 

(∆𝑧 ) of defect reconstruction should satisfy the equation ∆𝑧 =
π

2Max|𝑘0T1|
. In order to clearly 

reconstruct, the single-rectangular defect, ∆𝑧 ≤ 𝑙𝑎𝑦 4⁄ , which implies that Max|𝑘0T1
| must be greater 

than 2π (𝑙𝑎𝑦)⁄ . It is certain that much higher resolution ratio is required for reconstruction of the 

defect with a complex shape. 

4 Numerical experiments for defect reconstruction 

    In this section, HFEM simulations and analytical analysis for reconstruction of defects have been 

examined by three examples including (a) a single-rectangular defect; (b) a step-structure defect; (c) a 

double-rectangular defect. The reconstructive results have been shown in Fig. 5 (a), (b) and (c), 

respectively. The frequency range of the incident wave in this research has been selected from 

9.2817 × 102Hz to 6.4972 × 105Hz. Based on dispersion characteristics of torsional guided wave 

modes shown in Fig. 6, three modes of  T(0,1) , T(0,2)  and T(0,3)  could be generated by 

continuously exciting ultrasonic waves along the circumference. Possessing the constant phase velocity, 

the torsional guided wave T(0,1)  is selected as the incident wave. Using HFEM, reflection 

coefficients of the guided wave T(0,1) propagating in three defective pipelines shown in Fig. 5 have 

been represented in Figs. 7(a), 8(a) and 9(a), respectively. The correctness of simulations is proved by 

conservation of energy during the reflection and transmission of torsional guided waves. It is obvious 

that the summation of transmission energy and reflection energy in Figs. 7(b), 8(b) and 9(b) is equal to 

one. 

 

Fig. 5 Pipe profiles with three types of defects: (a) single-rectangular defect, the depth 𝑑𝑎𝑦 =

9.317 × 10−4m  and width  𝑙𝑎𝑦 = 5.698 × 10−3m ; (b) stepped-defect, the depths 𝑑1𝑎𝑦 =

𝑑2𝑎𝑦 = 4.657 × 10−4m, and the widths 𝑙1𝑎𝑦 = 1.252 × 10−2m and 𝑙2𝑎𝑦 = 4.696 × 10−3m; 

(c) double-rectangular defect, the depths 𝑑𝐿𝑎𝑦 = 𝑑𝑅𝑎𝑦 = 9.317 × 10−4m , and the 

outr
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widths 𝑙𝐿𝑎𝑦 = 7.189 × 10−3m and 𝑙𝑅𝑎𝑦 = 4.790 × 10−3m. The inner and outer radius of the 

pipes are denoted as 𝑟in = 3.881 × 10−2m and 𝑟out = 4.440 × 10−2m 

 

Fig. 6 Dispersion characteristics of torsional guided wave modes in pipes 

 

 

（a）                                （b）    

Fig. 7 The numerical results of reflection guided wave T(0,1) for the single-rectangular defect: (a) 

reflection coefficients of T(0,1); (b) transmission energy and reflection energy  

 

(a)                                 (b) 

Fig. 8 The numerical results of reflection guided wave T(0,1) for the stepped-defect: (a) reflection 
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coefficients of T(0,1); (b) transmission energy and reflection energy 

 

(a)                                 (b) 

Fig. 9 The numerical results of reflection guided wave T(0,1) for the double-rectangular defect: (a) 

reflection coefficients of T(0,1); (b) transmission energy and reflection energy 

    Applying IFFT (Inverse Fast Fourier Transform) technique, the depth functions of the defective 

pipelines can be analytically reconstructed using Eq. (19). Both the defect locations and profiles have 

been successfully obtained, which are shown in Figs. 10, 11 and 12. It is noted that the defect width can 

be precisely determined, for example, the step-structure defect shown in Fig. 11. In this paper, each 

defect profile has been effectively reconstructed by more than four sampling points (the red dots). 

However, from the single-defect case to the double-defect case, the reconstruction error increases as the 

number of defects becomes larger. To address this problem, future work on the feasible resolution ratio 

(∆𝑧) should be investigated. Meanwhile, the reconstruction of the transmission region (along the 

negative direction of z-axis) is worse than the result in the reflection region (along the positive 

direction of z-axis) due to the incident guided waves propagating along the negative of z-axis in all the 

numerical experiments. Therefore, the Root Mean Square Error (RMSE) criterion is adopted to 

improve the accuracy of constructive results in this paper. 

  

Fig. 10 Reconstruction result of the single-rectangular defect 
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、  

Fig. 11 Reconstruction result of the step-structure defect 

 

Fig. 12 Reconstruction result of the double-rectangular defect 

    Numerical simulations and analytical analysis performed in the above three examples have 

demonstrated the capability of the developed method for reconstruction of different types of defect 

profiles. However, the assumption of Born approximation shown in Eq. (8) has restrained the defect 

size at the level of a shallow or surface scale. Therefore, it is necessary to investigate the effect of the 

defect size on the accuracy of defect reconstruction. In this research, the root mean square error (RMSE) 

criterion has been used to evaluate the difference between the reconstruction result and the real defect. 

The formulation of RMSE can be written as 

RMSE =
1

h
√∑ (𝑑𝑖 − �̃�𝑖)

2𝑁
𝑖=1

𝑁
 (20) 

where h means the wall thickness of a pipeline, N is the number of the sampling points to represent 

the defect geometry, and 𝑑𝑖 and �̃�𝑖 mean the real defect depth and reconstruction depth, respectively. 

For different defect sizes, errors between the reconstruction results and the real defects have been 
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given in Table 3. The wall thickness (h) of a pipeline is 0.0056m. When the defect depth equals to 

0.167 times the thickness, i.e. 9.319 × 10−4m, the error is 1.517%. As the defect depth increases to 

one half of the thickness, i.e. 2.80 × 10−3m, the error reaches up to 10.267%. Furthermore, when the 

defect depth is 0.667 times the thickness, i.e. 3.727 × 10−3m, the error is increased by approximately 

16.622%. However, when the defect width decreases, the reconstruction error increases. This is 

because the increase of the defect width results in the resolution enhancement for the given frequency 

interval of incident guided waves. Summarily, the shallower the defect depth becomes, the wider the 

defect width appears, and the smaller the reconstruction error is. 

 

Table 3 The reconstruction errors for different sizes of rectangular defects. The first column and row 

indicate defect depth and defect width 

      Defect width(m) 

Defect depth (m) 
4.347 × 10−3 7.826 × 10−3 1.131 × 10−2 1.478 × 10−2 

9.319 × 10−4 1.517% 1.084% 1.116% 1.106% 

1.863 × 10−3 5.245% 4.594% 3.731% 3.498% 

2.80 × 10−3 10.267% 9.592% 8.122% 7.959% 

3.727 × 10−3 16.622% 16.187% 15.087% 15.268% 

 

5 Conclusions 

In this paper, an efficient and analytical reconstruction method for surface axisymmetrical defects 

in pipelines is proposed. The hybrid FEM has been applied to solve the forward problem to calculate 

the reflection coefficients and SAFE has been used to obtain the analytical far-field fundamental 

solution of the torsional guided wave T(0,1) propagating in the pipeline structure. The analytical defect 

depth function has been formulated by Fourier transform of the product of the reflection coefficients 

and the far-field fundamental solution. Three numerical detection experiments for different defect 

shapes have been performed to demonstrate the accuracy of the developed method for reconstruction of 

defects in terms of the location and profile of the defect. It is concluded that the reconstruction profile 

in the reflection region of guided waves has been more precisely reconstructed than the result in the 

transmission region, which sheds light on the demand of sensor placements located in the reflection 

region of guided waves for receiving signals. Results show that the reconstruction accuracy is more 

sensitive to the defect depth than the defect width. The deeper the defect depth becomes, the larger the 

reconstruction error is. However, when the depth is less than the half of the wall thickness of the 

pipeline, the reconstruction error is no more than 10.3%, which demonstrates the proposed method with 

a high level of accuracy. As most surface defects in pipelines have been mainly caused by corrosion, 

the defect thinning is usually far less than the half of the thickness. Based on this observation, 

reconstruction precision of the developed approach is sufficient to justify engineering requirements. 

Therefore, the quantitative defect detection in this paper is a significant and effective ultrasonic 

non-destructive evaluation method applicable to a wide range of industrial processes. 
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