
 1 

Metallo--lactamases: structure, function, epidemiology, treatment options, and the 1 

development pipeline 2 

 3 

Sara E Boyd1, David M Livermore2, David C. Hooper3, William W Hope1 4 

 5 

1 Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical 6 

Pharmacology, University of Liverpool, Liverpool, L69 3GE 7 

2 Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ 8 

3 Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, 9 

Boston, MA 02114 10 

 11 

Corresponding author: 12 

Dr Sara E Boyd MRCP DTMH MBChB 13 

 Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical 14 

Pharmacology, University of Liverpool, Liverpool, L69 3GE 15 

Telephone: +441517945941  16 

Email: s.e.boyd@liverpool.ac.uk 17 

 18 

Key words: metallo--lactamase, treatment, pharmacology, drug development 19 

Running title: Treatment options for infections caused by bacteria that produce metallo -20 

lactamases 21 

 22 

 23 

 24 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/327078398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s.e.boyd@liverpool.ac.uk


 2 

Abstract 25 

Modern medicine is threatened by the global rise of antibiotic resistance, especially among  -26 

negative bacteria. Metallo-β-lactamase (MBL) enzymes are a particular concern and are 27 

increasingly disseminated worldwide, though particularly in Asia. Many producers have 28 

multiple further drug resistances, leaving few obvious treatment options. Nonetheless, and 29 

more encouragingly, MBLs may be less effective agents of carbapenem resistance in vivo, 30 

under zinc limitation, than in vitro. Owing to their unique structure and function, and their 31 

diversity, MBLs pose a particular challenge for drug development. They evade all recently 32 

licensed β-lactam- β-lactamase inhibitor combinations, although several stable agents and 33 

inhibitor combinations are at various stages in the pipeline. These potential therapies, along 34 

with the epidemiology of producers and current treatment options, are the focus of this 35 

review. 36 

  37 
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Introduction 38 

Antimicrobial therapy is threatened by the global rise of resistance, especially in gram-negative 39 

bacteria (1), where resistance to β-lactams is largely mediated by β-lactamases (2). 40 

Carbapenems evade most β-lactamases but are hydrolyzed by metallo-β-lactamases (MBLs) as 41 

well as by a few active-site serine β-lactamases (SBLs), notably members of the KPC and OXA-42 

48-like groups.  MBLs are chromosomal and ubiquitous in some non-fermenters, including 43 

Stenotrophomonas maltophilia, Aeromonas spp. and Chryseobacterium spp., which are of 44 

modest clinical concern. A minority of Bacteroides fragilis strains have a chromosomal MBL, 45 

CfiA or CcrA, but this is uncommon and only expressed strongly if an upstream insertion 46 

sequence provides an efficient promoter (3). More important are the acquired MBLs that are 47 

spreading among Enterobacterales and Pseudomonas aeruginosa (4); these are associated 48 

with extremely-drug-resistant (XDR) phenotypes, with the producers generally also resistant 49 

to multiple aminoglycosides, fluoroquinolones, and other agents as well as to β-lactams.  50 

 51 

Classification and diversity of metallo--lactamases 52 

β-Lactamases are classified by two major systems. The first is based on substrate profiles and 53 

vulnerability to inhibitors (5), and places MBLs into its Group 3, whereas Groups 1 and 2 54 

comprise SBLs. The second classifies β-lactamases according to their amino acid sequences, 55 

recognising four enzyme classes (6). MBLs form class B whilst SBLs divide among classes A, C 56 

and D (7). The MBLs are structurally and mechanistically dissimilar from SBLs, suggesting a 57 

separate evolutionary origin.  58 

Class B is further divided into three subclasses, B1, B2 and B3, based on differences in 59 

amino acid sequence at the active site, zinc ligands, zinc stoichiometry, loop architecture, and 60 

substrate profiles (8). The important acquired MBLs, comprising the IMP, NDM and VIM types 61 
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fall into subclass B1. They hydrolyze all currently available β-lactam antibiotics except 62 

monobactams (e.g. aztreonam) (9), as do most or all other sub-class B1 or B3 enzymes. In 63 

contrast, the CphA (subclass B2) MBLs of Aeromonas spp. have narrow-spectrum activity 64 

directed exclusively against carbapenems. Irrespective of subclass, MBLs are not inhibited by 65 

clavulanic acid, sulbactam, tazobactam, avibactam or by developmental penicillanic acid 66 

sulfones and diazabicyclooctanes.    67 

The important acquired subgroup B1 MBLs (Table 1) are mostly named based on where 68 

they were first described; thus, for example, Verona Integron-encoded Metallo β-lactamase 69 

(VIM) and New Delhi Metallo β-lactamase (NDM). The first acquired MBL (‘imipenemase’, IMP-70 

1), was reported from clinical isolates of P. aeruginosa and Serratia marcescens in Japan in the 71 

1990s (10) and its family now includes over 85 sequence variants (11). The first VIM enzyme 72 

was found in P. aeruginosa in 1997 (12), with over 69 variants since described (11). NDM – 73 

now the most prevalent MBL in Enterobacterales and A. baumannii – was first identified in 74 

2008 in Klebsiella pneumoniae and Escherichia coli isolates from a patient who had travelled 75 

to Sweden from New Delhi, India (13). Twenty-nine NDM variants have since been described, 76 

(11).  77 

It is easy to be dismissive of the chromosomal subclass B2 and B3 MBLs, but recent 78 

reports highlight Stenotrophomonas maltophilia as a multidrug-resistant pathogen in 79 

immunocompromised hosts (14). S. maltophilia carries a subclass B3 MBL (L1 enzyme), which 80 

is unique among MBLs in having four identical subunits (15),  in addition to a chromosomally-81 

mediated SBL (L2 enzyme). This combination confers resistance to almost all β-lactams, 82 

although minimum inhibitory concentrations (MICs) vary with methodology, because media 83 

affect the expression and/or function of these enzymes (16). Elizabethkingia meningoseptica 84 
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has two chromosomal MBLs, a B1 enzyme (BlaB) and a B3 type (GOB) with the former making 85 

the dominant contribution to resistance (17). 86 

 87 

Genetic support of acquired MBLs 88 

Acquired IMP and VIM enzymes generally are encoded by gene cassettes within class 1 or class 89 

3 integrons. These may be embedded within transposons, allowing insertion into the bacterial 90 

chromosome or plasmids (18). By contrast, the blaNDM gene is not integron-associated and has 91 

been observed on narrow-host-range plasmids belonging to incompatibility group IncF, in 92 

addition to wide-host-range plasmids belonging to IncA/C, IncL/M, IncH and IncN (19–22). K. 93 

pneumoniae and E. coli are the frequent hosts of these plasmids, and  there are particular 94 

associations with K. pneumoniae sequence types (STs) ST11, ST14, ST15 or ST147 and E. coli 95 

ST167, ST410 or ST617 (23). These should not, however, be seen as global epidemic strains 96 

along the lines of K. pneumoniae ST258 variants with KPC carbapenemases, for many are 97 

common STs without carbapenemases. In A. baumannii the blaNDM-1 gene is generally located 98 

within the composite transposon Tn125 and embedded between two copies of a strong 99 

promoter gene ISAba125 (24, 25); it is much less prevalent in this genus than are OXA 100 

carbapenemases (Class D).  101 

B2 and B3 MBLs are generally chromosomally encoded, ubiquitous in their host species 102 

and not transmissible. However, exceptions exist, with horizontal transfer observed. Thus, the 103 

AIM-1 MBL (B3) was initially reported, in 2012, to be encoded by a gene inserted in (and 104 

atypical of) the chromosome of a P. aeruginosa isolate; subsequently, in 2019, it was reported 105 

from K. pneumoniae (26). The blaLMB-1 gene, encoding another subclass B3 enzyme, was 106 

reported to be located on a plasmid in Rheinheimera pacifica where it was flanked by ISCR 107 
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mobilization sequences, implying transfer from some other (unknown) source organism. (27). 108 

Mobilization of blaSMB-1 , encoding a third sub-class B3 enzyme, has occurred similarly (28).  109 

 110 

Structure and catalytic function of MBLs 111 

Irrespective of subgroup, MBLs contain the αβ/βα fold typical of the metallo-hydrolase / 112 

oxidoreductase superfamily (29). The S. maltophilia enzyme has four identical subunits (15), 113 

whereas other MBLs are monomeric. 114 

B1 and B3 MBLs have a shallow active-site groove containing 1 or 2 catalytically 115 

functional divalent zinc ions, flanked by flexible loops (29). In contrast, the B2 enzymes have 116 

an active site that is less accessible and flanked by a helix (30). Except for these consistencies, 117 

MBLs are highly divergent even within subclasses, and have as little as 20% sequence identity 118 

between subclasses (7). 119 

Mechanistically, the zinc ion(s) activate a water molecule, which acts to open the β-120 

lactam ring (31). There is no covalent intermediate, as with SBL-mediated catalysis. Anionic 121 

intermediates have been characterized when MBLs hydrolyze carbapenems (32), but not when 122 

NDM-1 enzymes hydrolyze penicillins or cephalosporins (33). In general, imipenem and 123 

meropenem are similarly good substrate for MBLs: for example, NDM-1 enzyme displays 124 

similar catalytic activity, reflected in values of kcat/Km ratio, for imipenem (0.09M -1 s-1) and 125 

meropenem (0.06M -1 s-1) (34); biapenem is a weaker substrate, owing to high Km values, but 126 

seems unsuitable for high-dose development (35).   127 

Figure 1 illustrates the amino acid residues that bind zinc at the active sites of B1, B2, 128 

and B3 MBLs (8). Crystal structures of B1 enzymes, including IMP-, VIM-, NDM-, and B. fragilis 129 

CcrA, (panel A) reveal two zinc-binding sites (Zn1 and Zn2). The Zn1 site contains three histidine 130 

residues (His116, His118, and His196), whereas the ligands for the Zn2 site are aspartic acid 131 
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(Asp120), cysteine (Cys221), and histidine (His263) (8). There is only one zinc ion in the active 132 

site of the A. hydrophila enzyme (subclass B2, panel B), and two in the active site of the S. 133 

maltophilia enzyme (subclass B3, panel C).  134 

Differences in assay methodology between workers make it difficult to compare 135 

hydrolytic efficiencies for different MBLs. Variation within e.g. the VIM, IMP, SPM and GIM 136 

family appears largely inconsequential (36). Nevertheless, subtle but important evolution 137 

may be ongoing, as illustrated in the NDM family.  Here, experimental data do not define 138 

major differences in the catalytic efficiencies among NDM -1, -3, -4, -5, -6, -7 and -8 enzymes  139 

(37) under standard conditions, but differences are seen under zinc deprivation. Thus, 140 

studies comparing NDM-1, NDM-4 (Met154Leu) and NDM-12 (Met154Leu, Gly222Asp) 141 

demonstrate that the Met154Leu substitution, present in 50% of clinical NDM variants in 142 

some locales, enhances the ability to confer resistance at low Zn++ concentrations (38, 39). 143 

This is potentially important because, as discussed later, zinc is restricted in infection (40) and 144 

its scarcity may impede the ability of classical NDM-1 enzyme to confer clinical resistance.  145 

NDM variants that have increased affinity for zinc (up to ~10-fold decreased Kd, Zn2) display 146 

selective advantages in experiments that mimic zinc scarcity imposed by the host immune 147 

system (41). Perhaps driven by similar pressures, the NDM-15 variant has evolved to function 148 

efficiently as a mono- rather than a bi-zinc enzyme (41). In addition, there are suggestions 149 

that NDM enzymes are evolving to develop greater thermodynamic stability (37). 150 

 151 

Epidemiology and distribution of acquired MBLs 152 

Bacteria with IMP, VIM and NDM enzymes have been identified in a range of community, 153 

hospital, and environmental settings (42).  Their prevalence, and importance relative to serine 154 

carbapenemases varies greatly by country. 155 
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 156 

Indian Subcontinent, Asia and Russia.  The greatest burden of acquired, plasmid-mediated, 157 

MBLs lies in south and south-east Asia (43), where NDM types are prevalent. As already noted, 158 

blaNDM-1 was first identified in bacteria isolated in 2008 from a patient who had travelled to 159 

Sweden from India (44). NDM variants have subsequently been spread worldwide via patient 160 

transfers and travel (45). Epidemiological surveillance has confirmed that NDM-1 and its 161 

variants are widely disseminated throughout India, Pakistan and Bangladesh (46, 47); 162 

moreover, a review of 39 carbapenem-resistant Enterobacterales (CRE) collected in India in 163 

2006-2007 by the SENTRY Antimicrobial Surveillance Program found that 15 harboured blaNDM-164 

1 (48), indicating that it was circulating prior to its ‘discovery’ in 2008. Enterobacterales with 165 

blaNDM were isolated from public tap water in India (49) and in river systems around pilgrimage 166 

sites (42) demonstrating the gene has become established beyond healthcare environments.  167 

In India there is frequent co-carriage with other carbapenemases in Enterobacterales 168 

(50); thus, in 2012, among 113 non-clonal CRE isolates at a Mumbai hospital, 106 produced 169 

NDM enzymes and 21 of these also have a second carbapenemase, most often an OXA-48-like 170 

(n=17) or VIM-type (n=4). Surprisingly, given that most international reports of NDM enzymes 171 

relate to Enterobacterales, P. aeruginosa was the most common MBL host (24%) among 3414 172 

carbapenem-resistant gram-negative bacteria collected from community and hospital settings 173 

in North India (51), with blaNDM-1 (36%) the most prevalent carbapenemase gene followed by 174 

blaVIM (18.4%). 175 

Although KPC is the principal carbapenemase among Enterobacterales (CPE) in China, 176 

a survey across 25 provinces showed that 32% of phenotypic carbapenem resistance in 177 

Enterobacterales was linked to blaNDM-1 (52) whilst a study (2012-16) of clinical Enterobacter 178 

cloacae across three tertiary hospitals found blaNDM-1 to be the most common carbapenemase 179 
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gene (80%), followed by blaIMP-26 (8%) and blaIMP-4 (6%) (53). The importance of IMP MBLs, 180 

particularly IMP-4, in China has been underscored by others; thus, multiple Enterobacterales 181 

species carrying a plasmid encoding IMP-4 enzyme were identified from patients with 182 

epidemiological links to China (54), and surveillance at a Beijing hospital highlighted both IMP-183 

4 and NDM-1 in K. pneumoniae (55). Co-localisation of blaNDM-9 and the plasmid-mediated 184 

colistin resistance gene mcr-1 was seen in an E. coli strain recovered from retail chicken meat 185 

in Guangzhou, China (56). Having been recognized 30 years ago in Japan, IMP-type enzymes 186 

are now endemic there, though not highly prevalent (57). 187 

NDM MBLs are the second-most-prevalent carbapenemases after OXA-48  in the 188 

Middle East, excepting Israel (58, 59). This probably reflects extensive interactions with the 189 

Indian subcontinent. As in India, there is significant penetration of blaNDM into P. aeruginosa, 190 

where a much greater proportion of carbapenem resistance appears to be carbapenemase-191 

mediated than in Europe or the USA. Thus, in the Gulf Cooperation Council countries, blaVIM 192 

was found in 39% of carbapenem-resistant P. aeruginosa isolates (60), with most hosts 193 

belonging to internationally-disseminated high risk clones, including ST235, ST111, ST233, 194 

ST654 and ST357 (60). These lineages seem unusually adept at acquiring extrinsic resistance 195 

genes. In Dubai, 32% of resistant P. aeruginosa isolates produced VIM-type MBLs (61), though 196 

a larger proportion had outer membrane impermeability.   197 

The proportion of carbapenem-resistant P. aeruginosa harboring MBLs in Russia rose 198 

from 4.5% between 2002-04 to 28.7% between 2008-10 (62), largely reflecting the spread of 199 

an XDR blaVIM-2-positive ST235 high-risk clone, also present in Belarus and Kazakhstan (62). 200 

NDM is reported as the predominant carbapenemase among Enterobacterales in St Petersburg 201 

(63, 64), whereas OXA-48 is predominant in Moscow (65). 202 

 203 
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Europe. Although Italy had earlier reported both IMP and VIM enzymes (66), Greece was the 204 

first European country to report extensive dissemination of Enterobacterales with MBLs. 205 

Specifically , K. pneumoniae with VIM carbapenemases were reported from multiple hospitals 206 

in 2003–7,  and multi-locus sequence typing identified three major clonal complexes (CCs); 207 

CC147, CC18 and CC14 among the producers (67). By 2006, 20% of K. pneumoniae isolates 208 

collected from hospital wards and 50% of those from ICUs monitored by the Greek System for 209 

the Surveillance of Antimicrobial Resistance were carbapenem-resistant, largely owing to the 210 

spread of the blaVIM-1 cassette (68). By 2010, KPC had displaced VIM to become the dominant 211 

carbapenemase in Greece, largely through the spread of a K. pneumoniae ST258 variant (69). 212 

Nonetheless, VIM-types remained scattered, and may now be re-emerging due to suppression 213 

of the KPC carbapenemases via the use of ceftazidime-avibactam (70).  214 

Elsewhere in Europe concern about carbapenemases grew following a flurry of press 215 

interest in NDM enzymes from 2008-10, and with the spread of K. pneumoniae ST258/512 216 

lineages with KPC carbapenemases in Italy from 2010. The UK, taken as an exemplar, recorded 217 

a few P. aeruginosa and Enterobacterales with IMP and VIM MBLs before 2008. Thereafter, 218 

Enterobacterales with NDM enzymes increased (46). Most early cases were imports via 219 

patients who had travelled to (and often been hospitalized in) the Indian sub-continent. 220 

Multiple NDM variants have subsequently been reported in the UK, with NDM-1 the most 221 

frequent among Enterobacterales, followed by NDM-5 and NDM-7 (71). In contrast, VIM 222 

variants account for 91% of the (uncommon) MBLs in P. aeruginosa, again associated with 223 

international high-risk clones ST235, ST111, ST233 and ST357 (72).  224 

While referral of CPE isolates to the national reference laboratory has increased 100-225 

fold since 2008, many producers are from screening rather than clinical samples. OXA-48 is 226 

now the fastest-spreading carbapenemase but isolates with NDM enzymes account for 20-25% 227 
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of CPE submitted. A growing minority of these, particularly E. coli, have both NDM- and OXA-228 

48-like enzymes (71, 73). 229 

 In 2012, the European Centre for Disease Prevention and Control launched its 230 

‘European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE)’ project. The 231 

geographic distribution of enzyme types were estimated by national experts across 38 232 

European countries in 2015 (74). A random sample of carbapenem-susceptible and -non-233 

susceptible K. pneumoniae and E. coli subsequently were collected prospectively to determine 234 

the occurrence of carbapenemases (75). The results, published in 2017, revealed SBLs (KPC or 235 

OXA-48 enzymes) were more prevalent than MBLs in most countries but that MBLs were 236 

widely scattered and were the most prevalent carbapenemases among Enterobacterales in a 237 

few countries. Thus, VIM enzymes were the dominant carbapenemases in Hungary and NDM 238 

in Serbia and Montenegro. The prevalence of NDM enzymes in the latter countries tallies with 239 

early descriptions of producers linked to these Balkan states. It is unclear whether these 240 

originated as imports from India or as independent local gene escapes from the unknown 241 

source organism (76).  242 

  243 

North America.  Infections due to Enterobacterales carrying blaVIM-2,  blaVIM-7,  blaIMP-4 and blaIMP-244 

18 genes were recorded in the USA prior to 2005 but, in general, MBLs remained extremely rare 245 

(1, 77).  In 2010, Enterobacterales harboring NDM-1 were isolated from three patients in 246 

different states (78) and, as with many contemporaneous cases in the UK and elsewhere, the 247 

source patients had all recently been in India or Pakistan (21). Subsequent expansion of NDM 248 

enzymes in the US has been less marked than the UK, with KPC carbapenemases becoming 249 

considerably more prevalent. Nevertheless, up to December 2017, 379 CPE with NDM 250 
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carbapenemases were reported to the CDC from 34 States, with just under a third (109) from 251 

Illinois (79), where an outbreak was associated with contaminated endoscopes.  252 

 Enterobacterales with NDM enzymes have been increasing in Canada since 2008 and 253 

these MBLs are now the second-most-common carbapenemases in the country, with a higher 254 

prevalence in the Western Provinces (80). Surveillance conducted between 2007-2015 in 255 

Toronto revealed that, among 291 clinical CPE, 51% had NDM enzymes, and 24% of these 256 

patients had never received healthcare abroad nor travelled to high-risk areas (81), suggesting 257 

the enzymes are established locally. In 2019 a novel MBL, blaCAM-1, was identified from isolates 258 

that were collected in 2007 (82). No subsequent isolates harboring this gene have been 259 

reported. 260 

 261 

Africa.  Paucity of data means the prevalence of CPE carrying MBLs in Africa is difficult to 262 

estimate.  Apparent infrequency may reflect true rarity, limited sampling, or a lack of 263 

infrastructure for accurate detection.  CPE with VIM MBLs nonetheless have been identified in 264 

Nigeria, Morocco, Algeria, Tunisia, Tanzania, and South Africa; and those with NDM enzymes 265 

in Kenya, Nigeria, Morocco, Algeria, Tunisia, Tanzania, and South Africa (83, 84). Infections 266 

caused by Enterobacterales producing MBLs are reported from both imported and local cases, 267 

raising concerns regarding emerging endemicity (85). Those with IMP-type enzymes have been 268 

identified in small numbers in Morocco, Tunisia, and Tanzania, and appear genuinely 269 

uncommon (84). An outbreak caused by Klebsiella spp. carrying blaNDM-5 was reported from a 270 

neonatal unit in Nigeria (86). A concern is that African patients are strongly represented in 271 

medical tourism to India, which is a risk factor for colonisation with Enterobacterales producing 272 

MBLs (87). 273 

 274 
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Rest of the world.  KPC enzymes dominate among carbapenemases from Enterobacterales in 275 

Latin America, with (unusually) some penetration also into P. aeruginosa. Nonetheless, 276 

Enterobacterales with NDM enzymes are endemic in Brazil, with several outbreaks reported 277 

(88). Early case reports of MBL-producing Enterobacterales in Latin America often concerned 278 

Proteeae, including Providencia spp. and Morganella (89, 90), which are infrequent hosts of 279 

blaNDM elsewhere. This creates a treatment issue since these genera are inherently resistant to 280 

polymyxins and newer-generation tetracyclines, which remain options against other MBL-281 

producing Enterobacterales (below).  282 

Unique to South America is the wide distribution in Brazil of P. aeruginosa with SPM-1 283 

MBL (91), principally associated with an ST277 clone. Outcomes of severe infections with this 284 

clone are often poor, reflecting a lack of good treatment options (92). 285 

 Carbapenemases are rare in Australasia, but there is spread of blaIMP-4 among 286 

Enterobacterales (93), as in parts of China. E. cloacae is a major host, with dissemination 287 

mediated by an IncHI2 plasmid (94). Production of IMP-4 enzyme has also been recorded in 288 

Salmonella spp. from domestic pets (95) and seagulls (96), but the significance of this is 289 

uncertain. 290 

  291 

MBL function in resistance, in vitro and in vivo 292 

For many years MBLs were perceived as clinically unimportant chromosomally-encoded 293 

enzymes from non-pathogenic organisms, notably Bacillus cereus (97, 98). This perception 294 

changed with recognition that MBLs confer much of the resistance seen in Chryseobacterium 295 

spp. and E. meningoseptica (99) and with heightened awareness of the morbidity and mortality 296 

associated with S. maltophilia bacteraemia (100, 101). Interest then escalated with the 297 
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discovery and proliferation of acquired MBLs, especially NDM-1, which drew extensive press 298 

coverage in 2010.  299 

Many MBL producers are broadly resistant in vitro and, on this basis, real concern exists 300 

about lack of treatments. On the other hand, there is evidence that in vivo resistance to 301 

carbapenems may be less than it appears in vitro, because susceptibility tests are 302 

conventionally done in media (e.g. cation-adjusted Mueller-Hinton broth) with high zinc 303 

concentrations (102), whereas the host immune system imposes a state of zinc deprivation in 304 

infection (40, 103). This lack of zinc may not only impede the catalytic function of MBLs but 305 

may also interfere with their protein folding (102) and may promote degradation of the 306 

enzyme in the periplasm (104).  307 

Several preclinical studies suggest a disconnect between high-level in-vitro resistance 308 

to carbapenems associated with NDM-1 enzymes, but a weak ability to protect against 309 

carbapenems in standard murine infection models (105). Moreover, NDM enzymes appear less 310 

effective than other carbapenemases in causing resistance to carbapenems in patients (106, 311 

107). Thus, mortality in severe infections due to Enterobacterales with blaNDM appears 312 

relatively low, ranging from 13% (108) - 55% (109), when compared to that seen with bacteria 313 

expressing other MBLs  (18% to 67%) (13), or KPC carbapenemases (41% to 65%) (110, 111). 314 

Good clinical outcomes have been reported despite treatment with agents to which NDM 315 

enzymes confer resistance in vitro (106, 107, 112). As yet, there are no studies that confirm or 316 

refute whether the higher numbered NDM alleles, encoding variants with their greater affinity 317 

for zinc (above), are better able to cause clinical resistance than NDM-1 (39, 41).   318 

Finally, it should be underscored that whilst these indications that NDM MBLs are less 319 

potent in vivo are intriguing, they should be approached with caution. Double-blinded 320 

randomized-controlled trials have not been conducted, and existing outcome data are subject 321 
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to various biases (113, 114). For VIM MBLs, clinical outcomes correlate with carbapenem MICs, 322 

implying little or no such in vitro/in vivo discordance (115).  323 

 324 

Current treatment options  325 

Limited data exist to inform clinicians on the optimal treatment for infections caused by MBL-326 

producing gram-negative bacteria (106). Co-trimoxazole remains the standard of care for 327 

infections due to S. maltophilia, but most Enterobacterales with acquired MBLs also have sul 328 

and dfr genes, conferring resistance. Resistances to fluoroquinolones and aminoglycosides are 329 

often present alongside genes encoding acquired MBLs. In particular, blaNDM genes are often 330 

linked to the genes encoding ArmA or RmtB methyltransferases, which modify ribosomes to 331 

block binding of aminoglycosides, including plazomicin; blaIMP and blaVIM generally occur within 332 

integrons that often also carry aac(6’), encoding an acetyltransferase that compromises 333 

amikacin and tobramycin, though not gentamicin or plazomicin (116). A thorough review of 334 

treatment options for MDR and XDR Enterobacterales is available (117). This highlights 335 

observational studies comparing monotherapy to combination therapy for bloodstream 336 

infection (BSI) involving CRE, although few of these were specifically identified as having MBLs 337 

(118, 119).  338 

 339 

Colistin.  Colistin is the current mainstay of treatment for infections due to MBL-producers. A 340 

multinational survey of MBL-producing Enterobacterales and P. aeruginosa conducted from 2012-341 

2014 found >97% susceptibility among MBL-producing P. aeruginosa (variously with IMP-, VIM- 342 

and NDM- enzymes), and >85% for MBL-producing Enterobacterales (>86.1% NDM-type, 343 

>88.9% IMP-type >88.9% IMP-type) (83). Exceptions are Proteeae and Serratia spp., which 344 

have intrinsic polymyxin resistance.  345 
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For bacteria harboring KPC and OXA-48 carbapenemases, colistin has recently been 346 

shown less effective than microbiologically-active β-lactamases inhibitor combinations (120), 347 

making it plausible that an active β-lactam likewise would be more efficacious than colistin 348 

against MBL producers. Of note, the emergence of colistin resistance during treatment, with 349 

secondary transmission of resistant variants is a concern (121, 122).   350 

 351 

Tigecycline, omadacycline and eravacycline.  These tetracyclines have strong in vitro activity 352 

against many MBL-producing Enterobacterales, except Proteeae, although not against P. 353 

aeruginosa. During November 2018, 275 unique Enterobacterales isolates carrying blaNDM 354 

collected by the US Centers for Disease Control were tested with tigecycline (86.5% 355 

susceptible, based on a ≤2 g/ml FDA breakpoint), eravacycline (66.2% susceptible, based on 356 

a ≤0.5 g/ml FDA breakpoint) and omadacycline (59.6% susceptible, based on a ≤4 g/ml 357 

breakpoint) (123). The higher susceptibility rate  for tigecycline than eravacycline reflects the  358 

higher FDA breakpoint for Enterobacterales; in Europe both agents have an identical 0.5 g/ml 359 

breakpoint and eravacycline is the more active on a simple gravimetric basis, though it is 360 

unclear whether this confers clinical advantage (124). Merits of omadacycline are its minimal 361 

known drug interactions and that it can be administered orally (125), however, it has the least 362 

relevant license (for community-acquired bacterial pneumonia and acute bacterial skin and 363 

skin structure infections) in relation to the clinical burden of MBL producers. 364 

  Whilst the in vitro activity of these tetracyclines is encouraging, there are multiple 365 

caveats. First, tigecycline carries an FDA ‘black box’ warning of increased mortality when the 366 

drug was used as monotherapy (126); second, both tigecycline and eravacycline have failed to 367 

achieve non-inferiority to comparators in one or more clinical trials (VAP and diabetic foot 368 

infection for tigecycline, cUTI for eravacycline); third, there is little provenance for tetracyclines 369 
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as monotherapy in the severely-ill patients who commonly develop infections due to MBL-370 

producing opportunists; fourth, particularly for tigecycline, the disparity between EUCAST (S 371 

<0.5 g/ml) and FDA (S <2 g/ml) breakpoints creates categorization uncertainty; last, the lack 372 

of anti-Proteeae activity is important in Latin America, where Providencia spp. are frequent 373 

hosts of blaNDM (127). Given these uncertainties, the best advice is to consider these 374 

tetracyclines in combination against MBL producers, not as monotherapy.   375 

 376 

Aztreonam.  Aztreonam is stable to MBLs, though activity is lost against organisms that co-377 

produce ESBLs or AmpC enzymes (128), which are common in MBL-producing 378 

Enterobacterales. Clinical experience as monotherapy is lacking for MBL producers, although 379 

some success has been recorded when aztreonam was used in combination with ceftazidime-380 

avibactam (129, 130), with avibactam serving to inhibit ESBLs. Six out of ten patients survived 381 

following treatment with this combination during an outbreak of K. pneumoniae with NDM-1, 382 

OXA-48, and CTX-15 β-lactamases in Barcelona (129). Although no adverse events were 383 

reported, the safety is unclear, and it is difficult to match the 1.5g +0.5g q6h regimen of 384 

aztreonam-avibactam that is presently being developed (below). 385 

 386 

Fosfomycin.  Fosfomycin commonly retains full in vitro activity against MBL-producing 387 

Enterobacterales, and has been successful trialed, very recently, as an IV agent in cUTI (131). 388 

It may be an option against MBL producers - particularly E. coli, which is more susceptible than 389 

other Enterobacterales - but it is mainly advocated for use in combination due to concerns 390 

about emergence of resistance, particularly in Klebsiella spp. (132). Fosfomycin has little direct 391 

antipseudomonal activity, with typical MICs above breakpoints. However, in vitro synergy is 392 
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seen when fosfomycin is combined with meropenem against MBL-producing P. aeruginosa 393 

strains (133), suggesting a need for in-vivo exploration. 394 

 395 

Development Pipeline 396 

The development pipeline represents four main strategies against MBL producers: (i) 397 

protection of MBL-stable-monobactams from other co-produced β-lactamases, as e.g. with 398 

aztreonam-avibactam; (ii) development of β-lactams stable to MBLs as well as SBLs, as with 399 

e.g. cefiderocol and BOS-228, (iii) combinations of cephalosporins and carbapenems with 400 

triple-action diazabicyclooctanes (DBOs), and (iv) direct inhibition of MBLs with cyclic 401 

boronates, thiols, chelators, dicarboxylic acids, and other agents.  402 

 403 

Aztreonam-avibactam  404 

Aztreonam-avibactam is the first antibiotic to be developed under a public-private partnership 405 

agreement (134, 135), with partial finance from the European Union’s Innovative Medicine’s 406 

Initiative and, latterly, also the US Biomedical Advanced Research and Developmental 407 

Authority (BARDA).  A prospective randomized phase 3 study (NCT03580044) begins in 2020 408 

to determine efficacy, safety, and tolerability versus best available therapy (BAT) for 409 

hospitalized adults with complicated intra-abdominal infections (cIAI), nosocomial pneumonia 410 

(NP), complicated UTI, or BSI due to MBL-producing gram-negative bacteria (135).  411 

Aztreonam evades hydrolysis by MBLs (128) but is compromised by the ESBL and AmpC 412 

enzymes that are co-produced by many MBL-positive CPE. These SBLs are inhibited by 413 

avibactam, a diazabicyclooctane (DBO) (136, 137) and, consequently, MBL-producing 414 

Enterobacterales that also carry ESBLs or AmpC are susceptible to aztreonam-avibactam in 415 
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vitro (138) and in vivo (139). The combination is less reliably active against MBL-producing P. 416 

aeruginosa (140), because aztreonam has weak anti-pseudomonal activity.  417 

Considerable interest exists, because the safety and efficacy of aztreonam are well 418 

established, and because avibactam was established to be effective at inactivating ESBLs and 419 

AmpC enzymes during trials with ceftazidime. Moreover, case reports suggest success against 420 

infections caused by MBL producers when aztreonam was co-administered with ceftazidime-421 

avibactam (see aztreonam section above) (129, 130).  422 

 423 

MBL-stable -lactams 424 

Cefiderocol (S-649266).  Cefiderocol (S-649266) is a novel parenteral siderophore 425 

cephalosporin designed by Shionogi & Co. Ltd., with a catechol linked to its 3-position side 426 

chain. It is licensed in the USA for cUTI and in the EU and UK for ‘treatment of infections due 427 

to aerobic gram-negative organisms in adults with limited treatment options’ (141). It is 428 

retained among developmental agents here, rather than being included in the established 429 

treatments, because there is little published experience with MBL producers to date (142, 430 

143).  431 

Critically, the catechol moiety forms a chelation complex with ferric iron and this 432 

complex is actively accumulated by gram-negative bacteria, which are forced to scavenge this 433 

essential element (144). Cefiderocol has good activity in vitro under iron starvation, against 434 

gram-negative bacteria, including CPE, P. aeruginosa and A. baumannii (145). It is relatively 435 

stable to both SBLs and MBLs (144), however, the MICs for Enterobacterales and non-436 

fermenters with NDM carbapenemases tend to be slightly higher than those for isolates of the 437 

same species with other carbapenemase types (146). Cefiderocol proved effective against 438 

carbapenem-resistant P. aeruginosa (expressing IMP-1 enzymes), A. baumannii (expressing 439 
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OXA-51-like enzymes) and K. pneumoniae (expressing NDM-1 enzymes) in immunocompetent 440 

rat respiratory tract infection models, achieving a ≥3-log reduction in the number of viable 441 

bacteria in the lungs when dosed over 4 days so as to recreate the human exposures of a 2g 442 

q8h 3h-IV infusion regimen (147). Efficacy reduced when the infusion time was reduced to 1h, 443 

owing to a lower percentage of the dosing interval during which free-drug concentrations were 444 

above the MIC (% Tf >MIC) (147). Interestingly, the mean % Tf >MIC required for a 1-log10 445 

reduction was 18-24%  greater for A. baumannii isolates (expressing OXA-23 or OXA-24) in the 446 

murine lung infection model than for Enterobacterales expressing NDM-1, NDM-4 or KPC-2 447 

enzymes and for P. aeruginosa isolates expressing IMP-1 or VIM-10 MBLs (148). 448 

 In humans, the 2g IV q8h 3h-infusion regimen provided >90% probability of target 449 

attainment (PTA) with 75% Tf >MIC for MICs of ≤4g/ml for patients with normal renal function 450 

(149). A phase 3 trial (NCT03032380) has shown non-inferiority to meropenem in nosocomial 451 

pneumonia (150). Less encouragingly, another trial (NCT02714595), found excess deaths in the 452 

cefiderocol arm, compared with ‘best available therapy,’ for patients with severe infections 453 

caused by carbapenem-resistant gram-negative pathogens (151). Full analysis is awaited but, 454 

notably, deaths were mostly associated with Acinetobacter infections (152), not 455 

Enterobacterales.   456 

  457 

BOS-228 (formerly LYS228).  BOS-228 is a monobactam and, like aztreonam, is stable to MBLs 458 

(153). Unlike aztreonam, it is also stable to many potent SBLs, including carbapenemases, 459 

ESBLs, and AmpC types (154); moreover it binds strongly to PBPs1a and 1b of Enterobacterales 460 

as well as to PBP3, which is the sole target of aztreonam (155). BOS-228 had an MIC90 of 2 461 

g/ml for a clinical panel of 88 Enterobacterales isolates expressing ESBLs, KPCs and MBLs 462 

(153) and no single-step mutants were selected from 12 β-lactamase-expressing 463 
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Enterobacterales exposed to the drug at 8 x MIC, though mutants were selected from 2/12 464 

strains, neither of which expressed MBLs, at 4 x MIC (155).   465 

A randomized evaluator-blinded multi-center phase 2 trial (NCT03354754) to evaluate 466 

pharmacokinetics, clinical responses, safety, and tolerability of BOS-228 in cIAI commenced in 467 

2018. The drug is being administered as IV monotherapy (without metronidazole) q6h for at 468 

least 5 days and compared to standard of care, with outcomes evaluated at day 28. A 469 

randomized controlled evaluator-blinded multi-center trial (NCT03377426) in cUTI has also 470 

been initiated.  471 

 472 

Cephalosporins or carbapenems combined with triple-action DBOs 473 

Zidebactam and nacubactam. Unlike with cyclic boronates (see below), it has not been possible 474 

to discover DBOs that directly inhibit MBLs. However, nacubactam and zidebactam are DBO 475 

analogs that combine inhibition of SBLs with direct antibacterial activity by inhibiting PBP2 476 

(156). When combined with PBP3-targetted β-lactams, this attack on PBP2 leads to an 477 

‘enhancer’ effect, with further β-lactamase-inhibition-independent synergy observed (156, 478 

157). Consequently, cefepime-zidebactam and cefepime- or meropenem- nacubactam 479 

combinations are active in vitro against >75% of MBL-producing Enterobacterales and, in 480 

cefepime-zidebactam’s case, also against many MBL-producing P. aeruginosa (158).  481 

Although the direct antibacterial activity of nacubactam and zidebactam  is readily lost 482 

via mutations compensating for inhibition of PBP2 (159), the enhancer effect is retained, with 483 

many of the mutants consequently remaining susceptible to e.g. cefepime-zidebactam or  484 

meropenem-nacubactam at low concentrations (156, 157). Cefepime-zidebactam is currently 485 

the most advanced of these combinations, with a phase 3 trial due to commence (160). 486 

 487 
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Direct inhibitors of MBLs. 488 

Cyclic boronates - VNRX-5133 (taniborbactam) and QPX7228.  Inhibitors that target both SBLs 489 

and MBLs are of great interest but have proved difficult to obtain owing to structural and 490 

functional differences between and among these enzymes. This combination of inhibitory 491 

activities nonetheless has recently been achieved with several cyclic boronates, notably 492 

taniborbactam and QPX7228. These mimic the tetrahedral anionic intermediate common to 493 

SBL and MBL catalysis (161) and additionally inhibit some penicillin-binding proteins (e.g. PBP-494 

5, which is non-essential) by the same mechanism (162). They represent a considerable 495 

expansion in spectrum over vaborbactam, their progenitor, which inhibits only few class A β-496 

lactamases, notably KPC types (163).  497 

 Taniborbactam (VenatoRx) is the more advanced of these two ‘second-generation’ 498 

boronates, and is in Phase III trials combined with cefepime (164). It irreversibly inhibits class 499 

A, C, and D SBLs, and is a reversible competitive inhibitor of VIM and NDM MBLs, though not 500 

of IMP types (165). Safety has been established in healthy volunteers (NCT02955459), and the 501 

FDA has allowed cefepime-taniborbactam to proceed via fast track pathway for the clinical 502 

indications of cUTI and cIAI.   QPX7728 (QPEX) likewise inhibits both SBLs and MBLs: 50% 503 

inhibitory concentrations [IC50], for KPC enzymes are around 2.9 ± 0.4 nM, compared with 22 504 

± 8 nM for the class C cephalosporinase of E. cloacae P99, 55 ± 25 nM for the NDM-1 MBL and 505 

14 ± 4 nM for VIM-1 enzyme. As with taniborbactam, the IC50 for IMP-1 enzyme is considerably 506 

higher, at 610 ± 70 nM) (166). An IV combination of QPX7728 with meropenem is being 507 

explored. This significantly lowered bacterial counts in murine thigh and lung infection models 508 

with carbapenem-resistant K. pneumoniae, P. aeruginosa and A. baumannii when compared 509 

to meropenem alone, although strain genotypes were not reported. Unlike taniborbactam, 510 
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QPX7228 is orally bioavailable and combinations with ceftibuten and tebipenem were 511 

evaluated in vitro against CPE, including those with MBLs (167).  512 

 513 

Thiol-containing MBL inhibitors and chelating agents.  Small molecules that bind and/or 514 

chelate zinc ions include thiols, dicarboxylates, hydroxamates, and tetrazoles; these are widely 515 

reported to inhibit MBLs, but human metallo-proteases are vulnerable too, so toxicity may 516 

preclude clinical development.  517 

Thiol-containing compounds inhibit all MBL subtypes (B1, B2 and B3) (168), with strong 518 

competitive inhibition of IMP-1 by thioester derivatives first reported in 1999 (169). The 519 

dipeptide L-captopril deserves mention in context. It is used as an ACE inhibitor in the 520 

treatment of hypertension and is reported also to inhibit MBLs by chelating the active site zinc 521 

ions via its thiol group (170); the corresponding  D- stereoisomer is a more potent inhibitor and 522 

can potentiate meropenem against strains with VIM-2 MBLs (170). Both captopril isomers act 523 

via zinc chelation and repurposing is attractive given the known safety of the L-isomer at its 524 

licensed dose; however the economic model for development is yet to be established and 525 

safety issues for the D-isomer need exploration. Other thio-carbonyl compounds, such as 526 

thiomandelic acid, exhibit synergy with meropenem against Enterobacterales with VIM, NDM, 527 

and IMP enzymes (171).  528 

Bisthiazolidines are carboxylate-containing bicyclic compounds, considered to be 529 

penicillin analogs that inhibit MBLs through a zinc-bridging thiol group and a carboxylate that 530 

interacts with K224 (172). The orientation of the carboxylate and thiol moieties create diverse 531 

binding that is observed on X-ray crystal structures and has been shown to inhibit all MBL types 532 

(173). The bisthiazolidine scaffold inhibits NDM-1 enzymes in vitro, with Ki values in the low 533 
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micromolar range (from 7 ± 1 to 19 ±3 M); they restore imipenem activity against E. coli 534 

producing NDM-1 (172). 535 

The divalent cation chelator EDTA has raised interest, too, both as an inhibitor of MBLs, 536 

and also because it disrupts the gram-negative outer membrane and neutralizes various 537 

bacterial enzymes and toxins (174, 175). It is widely used in identification tests for MBLs.  538 

Sodium calcium EDTA, which is licensed for use for treatment of lead poisoning, reportedly 539 

restored imipenem’s activity in vivo against P. aeruginosa producing IMP- and VIM- enzymes 540 

and against  E. coli producing NDM-1 enzyme (176, 177), raising the issue of whether it might 541 

be used to potentiate carbapenems in human infections.  Elores®, which is marketed in India, 542 

combines ceftriaxone, sulbactam and EDTA (178, 179) and reportedly achieved cures of 543 

infections due to MBL producers in multiple patients, with no serious adverse events (178). 544 

However, prospective and controlled studies are lacking, the dose of EDTA is low, and there 545 

remains uncertainty (above) about the function of NDM-1 enzyme in vivo. More negatively, 546 

the FDA has placed strict limits on the amount of EDTA permissible even in food (180) and 547 

sodium calcium EDTA is capable of producing toxic effects that can be fatal (181). High 548 

concentrations of EDTA are likely to strip divalent cations from human metalloenzymes, 549 

including matrix metalloproteinases, carbonic anhydrase and carboxypeptidases, thus limiting 550 

clinical applicability.   551 

Aspergillomarasmine A (AMA) is a fungal natural product discovered in the 1960s (182), 552 

and re-evaluated in the 1980s as an inhibitor of the human metalloproteinase angiotensin-553 

converting enzyme (ACE). AMA inhibits MBLs via a metal ion sequestration mechanism and 554 

displays rapid and potent inhibition of NDM-1 and VIM-2 enzymes in vitro (183). It restored 555 

the activity of meropenem against a K. pneumoniae strain expressing NDM-1 enzyme in an 556 
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intraperitoneal murine infection model (184).  Again, the hazard of inhibiting human metallo-557 

enzymes requires careful investigation. 558 

 559 

Challenges for the development of inhibitors of MBLs 560 

One of the biggest challenges in designing MBL inhibitors is the diversity among these enzymes, 561 

which share less than one third sequence identity at their active sites. Thus, for example, 562 

taniborbactam and QPX7728 target NDM and VIM enzymes, but not IMP types (185). 563 

Development of inhibitors that bind remotely from the active site might overcome this 564 

limitation, but possible target areas also vary within class B1 and seem even better able to 565 

tolerate mutations than the active site (29). Another challenge is the shallow binding site in B1 566 

enzymes, meaning that inhibitors can only make limited interactions (29). Specificity for 567 

bacterial MBLs is a further recurring challenge; interactions with human metallo-enzymes and 568 

contingent toxicity are major concerns. Molecules that solely inhibit MBLs are limited by the 569 

fact that many MBL producers also co-produce SBLs, including carbapenemases, meaning that 570 

the partner β-lactam must evade these enzymes, that the inhibitor must inactivate both MBLs 571 

and SBLs, or that a second inhibitor is required. 572 

Preclinical development is challenging, too, because it is difficult to establish reliable 573 

animal models in which MBL-mediated resistance is expressed, perhaps owing to the already-574 

mentioned lack of essential zinc at infection sites.  Moreover bacteria are prone to lose MBL-575 

encoding plasmids, or fail to reliably express them, in murine models, resulting in 576 

pharmacodynamic data that suggest meropenem susceptibility (186, 187). Consequently it is 577 

difficult to establish the efficacy of candidate MBL-stable drugs or inhibitor combinations. It is 578 

unclear if the same phenomena occur in patients (188), and this requires further research. 579 

Irrespective of this aspect, it is also challenging to find and recruit the required number of 580 
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patients with MBL-producing pathogens to clinical trials. Rapid diagnostics should help, but 581 

their use is complicated by cost and the need to deploy them to all trial sites, including in 582 

countries where they are not licensed or are licensed only to inform infection control, not 583 

treatment. 584 

 585 

Conclusion 586 

MBLs are disseminating internationally, particularly in Asia, and often are produced by gram-587 

negative bacteria with extremely broad spectra of in vitro resistance. Unlike for KPC and OXA-588 

48-like carbapenemases, producers are typically not susceptible to recently licensed β-589 

lactamase inhibitor combinations such as ceftazidime-avibactam, meropenem-vaborbactam, 590 

imipenem-relebactam, although cefiderocol may be a potential answer. The ability of MBLs to 591 

confer resistance to carbapenems may not be so great in vivo as in vitro, though this is 592 

uncertain and may vary by enzyme type even within MBL subclasses.    593 

 Inhibitors are known, and the developmental boronates, taniborbactam and QPX7728 594 

are of particular interest. Nonetheless, the quest for effective inhibitors is complicated by 595 

differences in active site structure and zinc ligand interactions among MBLs, and by difficulties 596 

in the design of appropriate preclinical and clinical trials. Non-boronate inhibitors face toxicity 597 

issues, particularly if they interact with other metallo-enzymes or are general chelators. Other 598 

approaches to overcoming MBLs include, avibactam-protected aztreonam; stable β-lactam, 599 

notably BOS-228 as well as cefiderocol, and combinations of β-lactams with-triple action DBOs, 600 

notably cefepime-zidebactam and meropenem-nacubactam.   601 

And that is the positive aspect on which to close: there is now a diverse and exciting 602 

pipeline of potential agents for the treatment of infections caused by bacteria that produce 603 

MBLs. It remains to be seen what will be the most effective of these agents. 604 
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Table 1 Examples of chromosomal and plasmid-associated MBLs (11) 1284 

 1285 

Chromosomal MBLs Plasmid-associated MBLs  

Species Enzyme Subclass Enzyme Subclass 

Bacillus cereus  BcII B1 Verona integron-

encoded (VIM)  

B1 

Chryseobacterium 

indologenes  

IND B1 New-Delhi metallo-

-lactamase (NDM) 

B1 

Elizabethkingia 

meningoseptica 

BlaB 

 

B1 Imipenemase (IMP)  B1 

Myroides 

odoratimimus 

MUS/ 

MYO 

B1 Sao Paulo metallo-

-lactamase (SPM) 

B1 

Bacteriodes fragilis* CfiA / 

CcrA 

B1 German 

imipenemase (GIM)  

B1 

Aeromonas spp.  CphA B2 KHM B1 

Stenotrophomonas 

maltophilia  

L1 B3 Dutch imipenemase 

(DIM)  

B1 

Elizabethkingia 

meningoseptica 

GOB B3 Adelaide 

Imipenemase (AIM) 

B1 

 1286 

*Unlike most other chromosomal MBLs, the Bacteroides fragilis enzyme is rare in the species 1287 

 1288 

 1289 
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Figure 1. Structure of amino acid residues in metallo-β-lactamase enzyme subclasses (8) 1290 

(Reproduced with permission from John Wiley and Sons Publishers, sourced from Palzkill T et 1291 

al. 2013. Metallo-β-lactamase structure and function. Ann N Y Acad Sci 1277:91–104) 1292 

 1293 

Figure 1 illustrates the amino acid residues that bind zinc at the active sites of B1, B2, 1294 

and B3 MBLs. Crystal structures of B1 enzymes, including IMP-, VIM-, NDM-, and B. fragilis 1295 

CcrA, (panel A) reveal two zinc-binding sites (Zn1 and Zn2). The Zn1 site contains three histidine 1296 

residues (His116, His118, and His196), whereas the ligands for the Zn2 site are aspartic acid 1297 

(Asp120), cysteine (Cys221), and histidine (His263). There is only one zinc ion in the active site 1298 

of the A. hydrophila enzyme (subclass B2, panel B), and two in the active site of the S. 1299 

maltophilia enzyme (subclass B3, panel C).  1300 

 1301 

 1302 

 1303 

 1304 

 1305 

 1306 

 1307 

 1308 
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