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Summary  26 

The underlying health-driving mechanisms of Bifidobacterium during early life are not well 27 

understood, particularly how this microbiota member may modulate the intestinal barrier via 28 

programming of intestinal epithelial cells (IECs). We investigated the impact of 29 

Bifidobacterium breve UCC2003 on the transcriptome of neonatal murine IECs. Small IECs 30 

from two-week-old neonatal mice administered B. breve UCC2003 or PBS (control) were 31 

subjected to global RNA-Seq, and differentially expressed genes, pathways and affected cell 32 

types determined. We observed extensive regulation of the IEC transcriptome with ~4,000 33 

genes significantly up-regulated, including key genes linked with epithelial barrier function. 34 

Enrichment of cell differentiation pathways were observed, along with an overrepresentation 35 

of stem cell marker genes, indicating an increase in the regenerative potential of the epithelial 36 

layer. In conclusion, B. breve UCC2003 plays a central role in driving intestinal epithelium 37 

homeostatic development during early life and suggests future avenues for next-stage clinical 38 

studies. 39 

Key words: RNA-Seq, in vivo, Bifidobacterium breve, intestinal epithelial cells, differential 40 

gene expression, early life 41 

 Introduction 42 

Bifidobacterium represents a keystone member of the early life gut microbiota (Arrieta et al., 43 

2014, O'Neill et al., 2017, Derrien et al., 2019). Certain species and strains are found at high 44 

levels in vaginally delivered breast-fed infants including; Bifidobacterium longum subsp. 45 

infantis, B. longum subsp. longum, B. bifidum, B. pseudocatenulatum and B. breve  46 

(Dominguez-Bello et al., 2010, Mikami et al., 2012, Nagpal et al., 2017, Stewart et al., 2018). 47 

As a dominant member of the neonatal gut microbiota, Bifidobacterium is associated with 48 

metabolism of breast milk, modulation of host immune responses, and protection against 49 

infectious diseases (Fukuda et al., 2012, Ling et al., 2016, Robertson et al., 2019, Lawson et 50 

al., 2020, Patole et al., 2016, Baucells et al., 2016, Jacobs et al., 2013, Plummer et al., 2018). 51 

However, the mechanisms driving improved health outcomes during early life are largely 52 

underexplored and are likely strain dependent.  53 

A key interface between Bifidobacterium and the host is the intestinal epithelial cell (IEC) 54 

barrier (Thoo et al., 2019, Groschwitz and Hogan, 2009). Previous studies have indicated that 55 

certain strains of Bifidobacterium specifically modulate IEC responses during inflammatory 56 
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insults, which may help protect from certain gut disorders (Hsieh et al., 2015, Srutkova et al., 57 

2015, Grimm et al., 2015). In murine experimental models, previous work by our group has 58 

shown that infant-associated B. breve UCC2003 modulates cell death-related signalling 59 

molecules, which in turn reduces the number of apoptotic IECs (Hughes et al., 2017). This 60 

protection from pathological IEC shedding appeared to be via the B. breve exopolysaccharide 61 

(EPS) capsule and the host-immune adaptor protein MyD88. Another strain of B. breve, 62 

NumRes 204 (commercial strain) has also been shown to up-regulate the tight junction 63 

proteins Claudin 4 and Occludin in a mouse colitis model (Zheng et al., 2014, Plantinga et al., 64 

2011).  65 

Many of the studies to date have focused on the role of Bifidobacterium and modulation of 66 

IECs in the context of acute or chronic gut inflammation, with expression profiling limited to 67 

specific immune or apoptosis signalling targets (Plaza-Diaz et al., 2014, Riedel et al., 2006, 68 

Liu et al., 2010, Hsieh et al., 2015). As many of these studies have involved pre-colonisation 69 

of the gut with Bifidobacterium strains, followed by inflammatory insult, this suggests that 70 

initial priming during normal ‘healthy’ conditions may modulate subsequent protective 71 

responses. Furthermore, these studies have often been performed in adult mice rather than 72 

exploring effects during the early life developmental window, where Bifidobacterium effects 73 

are expected to be most pronounced. Previous work has indicated that there is significant 74 

modulation of the neonatal IEC transcriptome in response to gut microbiota colonisation, but 75 

to date no studies have probed how particular early life associated microbiota members, like 76 

Bifidobacterium may modulate neonatal IEC responses (Pan et al., 2018). Thus, to understand 77 

if and how Bifidobacterium may modulate IEC homeostasis during the early life 78 

developmental window, we administered B. breve UCC2003 to neonatal mice and profiled 79 

transcriptional responses in isolated small intestine IECs using global RNA-Seq. Our analysis 80 

indicated whole-scale changes in the transcriptional programme of IECs (~4,000 significantly 81 

up-regulated genes) that appear to be linked to cell differentiation/proliferation and immune 82 

development. Notably the stem cell compartment of IECs seemed to elicit the strongest gene 83 

signature. These data highlight the role of B. breve UCC2003 in driving early life epithelial 84 

cell differentiation and maturation; impacting intestinal integrity and immune functions, 85 

which provides a mechanistic basis for understanding associated health-promoting effects.  86 
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 Results 87 

To examine the effects of B. breve UCC2003 on the transcriptional profiles of host IECs 88 

under homeostatic conditions, we extracted RNA from isolated IECs of healthy two-week old 89 

neonatal mice (control group) and mice gavaged with B. breve UCC2003 for three 90 

consecutive days (n=5 per group). Isolated RNAs from IECs were subjected to RNA-Seq to 91 

determine global mRNA expression (Figure 1). Subsequently, Differential Gene Expression 92 

(DGE) analysis was performed to understand B. breve-associated gene regulation.  93 

Minimal impact of B. breve UCC2003 on the wider neonatal gut microbiota 94 

Initially, we examined for the presence of B. breve UCC2003 in the gut microbiome and 95 

impact on the wider microbiota using culture and 16S rRNA microbiota profiling approaches 96 

(Figures 2a-b). We observed high levels of B. breve UCC2003 across the four days in faecal 97 

samples, with higher levels of viable B. breve UCC2003 within the colon (~108 CFU/g), 98 

when compared to the small intestine (~105 CFU/g; Figure 2b). Based on 16S rRNA analysis, 99 

relative abundance of Bifidobacterium increased significantly in the UCC2003 group 100 

(P=0.012) following bacterial administration, while the control group displayed very low 101 

relative Bifidobacterium abundance (~0.01%; Figure 2c). Principal component analysis 102 

(PCA) on gut microbiota profiles (control vs UCC2003) showed a distinct change in 103 

microbial community composition in the UCC2003 group primarily driven by increased 104 

relative abundance of Bifidobacterium, which may also correlate with increased overall 105 

microbial diversity in the UCC2003 group (Figure 2d-e). Linear Discriminant Analysis 106 

(LDA) also indicated that Bifidobacterium was uniquely enriched in UCC2003 group, and 107 

low relative abundance (<2%) microbiota members such as Streptococcus, Ruminococcus, 108 

Prevotella and Coprococcus were significantly lower (Figure 2f-g). Overall, administration 109 

of B. breve UCC2003 appeared to minimally impact the wider gut microbiota, without 110 

significantly altering relative abundance of other major resident taxa including Lactobacillus, 111 

Bacteroides and Blautia compared to the control group.  112 

Impact of B. breve UCC2003 on the neonatal intestinal epithelial transcriptome  113 

To understand the distribution of samples based on IEC gene expression profiles we 114 

performed PCA analysis (Figure 3a; Table S1). All samples clustered according to group 115 

(control vs UCC2003), suggesting a significant impact of B. breve UCC2003 on gene 116 

expression profiles, with distance-wise clustering (Jensen-Shannon) also supporting 117 

separation of experimental groups (Figure 3b). To define Differentially Expressed Genes 118 
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(DEG), we employed a filter of absolute log2(fold change) > 1.0 (with adjusted p < 0.05), 119 

which equates to a minimum two-fold change in gene expression (Figure 3c-e; Table S2). 120 

After analysis, a total of 3,996 DEGs were significantly up-regulated, while 465 genes were 121 

significantly down-regulated in B. breve UCC2003 supplemented animals when compared to 122 

controls (Figure 3c and 4a). Notably, we also performed the same experimental protocol on 123 

healthy mice aged 10-12 weeks, and we did not observe any significant DEGs, suggesting B. 124 

breve UCC2003 modulation of IECs is strongest within the early life window under 125 

homeostatic conditions.  126 

To determine the functional role of the DEGs, we examined the most significantly regulated 127 

genes ranked by False Discovery Rate (FDR) adjusted p values (or, q values). We first looked 128 

at the top 20 up-regulated DEGs in the B. breve UCC2003 experimental group (Figure 4b). 129 

Most genes annotated with known biological processes were cell differentiation and cell 130 

component organisation functions including Ccnb1ip1, Hist1h4b, Vps13b and Fgd4 131 

(annotated in the PANTHER Gene Ontology [GO] Slim resource). Two genes were involved 132 

in cell death and immune system processes, namely Naip6 and Gm20594 (Table S3). When 133 

we ranked the top-regulated genes using log2-fold change, we observed increased expression 134 

of Creb5, which is involved in the regulation of neuropeptide transcription (cAMP response 135 

element binding protein; CREB) (Figure 4c). CREB is also known to regulate circadian 136 

rhythm, and we also identified additional circadian-clock-related genes that were 137 

significantly up-regulated including Per2 and Per3. We noted that several top down-138 

regulated DEGs were annotated as genes involved in metal binding, or metal-related genes 139 

including Mt1, Mt2, Hba-a1, Hbb-bt and Ftl1-ps1 (Figure 4d; Table S4).  140 

Regulation of intestinal epithelial barrier-associated genes 141 

As B. breve strains have been previously shown to modulate certain tight junction/barrier-142 

related proteins, we next investigated DEGs associated with intestinal epithelial barrier 143 

development/intestinal structural organisation (Figure 4e). Several tight-junction (TJ) 144 

structural-associated DEGs were observed, including Claudin-encoding gene Cldn34c1 145 

(Log2 fold-change [LFC] 3.14), Junction Adhesion Molecules-encoding genes Jam2 (LFC 146 

2.9), and Tight Junction protein (also called Zonula Occludens protein; ZO) -encoding gene 147 

Tjp1 (LFC 1.49). Genes that encode integrins (involved in regulation of intracellular 148 

cytoskeleton) also exhibited a trend of increased expression (13/14; 92.8%). Both Piezo 149 

genes, which assist in tight junction organisation, Piezo1 (LFC 1.25) and Piezo2 (LFC 1.9), 150 

were significantly up-regulated in the B. breve UCC2003 treated group.  151 
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Over 90% of cadherins, proteins associated with the assembly of adherens junctions (Figure 152 

4e) were up-regulated; including Pcdhb14 (LFC 2.8), Pcdhgb4 (LFC 2.7), Pcdh8 (LFC 1.3), 153 

Fat1 (LFC 1.5) and Dsg2 (LFC 1.1). Interestingly, several genes (4/7; 57.1%) involved in 154 

mucus layer generation were significantly up-regulated in the UCC2003 experimental group 155 

including Muc2 (LFC 2.2), Muc6 (LFC 3.7), Muc5b (LFC 2.9), and Muc4 (LFC 1.24). Genes 156 

Gja1 (LFC 3.59) and Gjb8 (LFC 2.63) that encode gap junction proteins were also up-157 

regulated. In addition, we also investigated differential expression of genes associated with 158 

integrin assembly and downstream integrin signalling pathways (Figure 4f). Over 70% 159 

(16/21) of these genes were up-regulated, with 52.3% (11/21) significantly increased in gene 160 

expression in the UCC2003 group (LFC >1.0). 161 

We observed increased expression of genes associated with IEC barrier development 162 

including cadherins, gap junctions, integrins, mucus layer-associated genes, and several key 163 

tight junction proteins. These strongly induced gene expression profiles suggest that B. breve 164 

UCC2003 is involved in enhancing epithelial barrier development in neonates. 165 

Modulation of cell maturation processes 166 

We next sought to understand the biological functions of up-regulated DEGs by employing 167 

PANTHER GO-Slim functional assignment, and process/pathway enrichment analysis (see 168 

Figure S1; Table S5 and S6). DEGs were predominantly involved in general biological 169 

processes including cellular process (901 genes) and metabolic process (597 genes; Table 170 

S7). At the molecular function level, DEGs were primarily assigned to binding (868 genes) 171 

and catalytic activity (671 genes; Table S8), with Olfactory Signalling Pathway and Cell 172 

Cycle (biological) pathways also found to be enriched (Table S9). 173 

To delve further into the data, we constructed a signaling network based on up-regulated 174 

DEGs (n=3,996) with the aim of identifying specific gene networks involved in important 175 

signalling pathways (Figure 5a). Overall, 1,491 DEGs were successfully mapped (37.3%) to a 176 

signalling network that comprised 8,180 genes. Four individual clusters of genes were 177 

detected, with functional assignment and pathway analysis implemented on these clusters 178 

(Figure 5a). All gene clusters were associated with cell differentiation and maturation, with 179 

cluster 1 (68 genes) linked specifically with DNA replication and transcription, cluster 2 (26 180 

genes) with cell growth and immunity, cluster 3 (11 genes) with cell replication, and cluster 4 181 

(72 genes) related to cell cycle and cell division (Table S10). 182 
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Intestinal cell type analysis on DEGs identifies significant enrichment of epithelial stem 183 

cells 184 

IECs include several absorptive and secretory cell types, namely enterocytes, Paneth cells, 185 

goblet cells, enteroendocrine cells, tuft cells and stem cells. As these cells perform different 186 

functions in the gut, it was important to understand whether B. breve UCC2003 had a cell 187 

type specific effect on the intestinal epithelium. Using known cell type specific gene markers 188 

(Haber et al., 2017), we identified cell type gene signatures modulated within the UCC2003 189 

group (Figure 5b-c). Importantly, all cell type markers were well represented in the expressed 190 

genes of the whole IEC transcriptomics data from both groups (control + UCC2003), thus 191 

validating the presence of all IEC types in our study data (Figure 5b). Cell type analysis of 192 

genes differentially expressed after B. breve UCC2003 supplementation, revealed that stem 193 

cell marker genes were significantly enriched (30%; P < 0.05) among the six IEC types 194 

(Table S11). Signatures of other cell types were also present (linking to marker genes in the 195 

DEG list) but not significantly overrepresented: Tuft cells (22%), enteroendocrine cells 196 

(18%), goblet cells (15%), Paneth cells (15%) and enterocytes (13%; Figure 5c). These data 197 

indicated that intestinal epithelial stem cells, cells primarily involved in cell differentiation, 198 

were the primary cell type whose numbers and transcriptomic programme were regulated by 199 

B. breve UCC2003. 200 

Further investigation of this stem cell signature revealed that of the 37 differentially 201 

expressed marker genes, 35 are up-regulated in the presence of B. breve UCC2003. This 202 

indicates an increase in the quantity of stem cells or semi-differentiated cells in the 203 

epithelium, consistent with the overrepresentation of cell cycle and DNA replication 204 

associated genes observed in the whole differential expression dataset. Functional analysis of 205 

the 37 stem cell signature genes revealed only one overrepresented process – Regulation of 206 

Frizzled by ubiquitination (P < 0.05), which is a subprocess of WNT signalling. WNT 207 

signalling is important in maintaining the undifferentiated state of stem cells (Nusse, 2008). 208 

Finally, we employed a network approach to predict key transcription factor (TF) regulators 209 

of the differentially expressed stem cell marker genes, through which B. breve UCC2003 may 210 

be acting (Figure 5d). Using the TF-target gene database, DoRothEA, we identified expressed 211 

TFs known to regulate these genes (Garcia-Alonso et al., 2019, Holland et al., 2019). Five 212 

genes had no known and expressed regulator, thus were excluded. Hypergeometric 213 

significance testing was used to identify which of these TFs are the most influential (see 214 

Methods for details). This analysis identified 32 TF regulators (Figure 5d). Of these 215 
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regulators, 12 were differentially expressed in the IEC dataset (all up-regulated): Fos, Gabpa, 216 

Rcor1, Arid2, Tead1, Mybl2, Mef2a, Ahr, Pgr, Kmt2a, Ncoa2 and Tcf12. Functional analysis 217 

of all the TF regulators and their targeted genes together, revealed overrepresented functions 218 

relating to WNT signalling, histone methylation for self-renewal and proliferation of 219 

hematopoietic stem cells and nuclear receptor (incl. estrogen) signalling (Table S12). These 220 

data provide evidence that B. breve UCC2003 directly affects key transcriptomic programmes 221 

regulating drives specific signalling processes, particularly within stem cells.  222 

 Discussion 223 

The early life developmental window represents a crucial time for microbe-host interactions 224 

that impacts health both in the short- and longer-term. Understanding how specific 225 

microbiota members modulate host responses in pre-clinical models may help the design and 226 

development of next-stage targeted microbiota therapies in humans. Here we investigated 227 

how B. breve UCC2003 induces genome-wide transcriptomic changes in small intestine IECs 228 

of neonatal mice. We observed that B. breve had a global impact on the IEC transcriptome, 229 

evidenced by the large number of significantly up-regulated genes and pathways related to 230 

cell differentiation and cell proliferation, including genes associated with epithelial barrier 231 

function. We propose that B. breve may act as a key early life microbiota member driving 232 

fundamental cellular responses in murine IECs, particularly within the stem cell 233 

compartment, and thus drives epithelial barrier development and maintenance during 234 

neonatal life stages. However, further clinical studies would be required to determine if our 235 

findings extrapolate to the human setting.  236 

B. breve is known to confer beneficial effect on gut health, however our knowledge related to 237 

the mechanisms underlying these responses are limited. Most studies have focused on 238 

targeted immune cells or pathways (during disease and/or inflammation), and to our 239 

knowledge no studies have probed global transcriptomic changes within IECs - the frontline 240 

physical barrier between bacteria and host (Turroni et al., 2014, Gann, 2010). Our presented 241 

findings in a pre-clinical model: ~4,000 up-regulated DEGs and ~450 down-regulated DEGs 242 

within the B. breve group indicate that this Bifidobacterium strain modulates whole-scale 243 

changes within this critical single cell layer. Notably, we also examined how B. breve 244 

modulates adult IEC responses, however, we did not observe any significantly differentially 245 

regulated genes when compared to control animals. The striking differences in DEGs 246 

between these two life points indicates that B. breve-modulation of IECs is limited to the 247 
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neonatal window. Dominance of Bifidobacterium in early life (including strains of B. breve) 248 

overlaps with the development and maturation of many host responses, including epithelial 249 

barrier integrity. Therefore, presence of these strains would be expected to play an over-sized 250 

role in this initial homeostatic priming, that may afford protection against inflammatory 251 

insults in later-life, as has been shown previously in a mouse model of pathological epithelial 252 

cell shedding (Hughes et al., 2017). Further clinical studies would be required to probe these 253 

findings in detail to determine their importance during healthy infant development.  254 

Exploring the murine transcriptional responses in more detail revealed that expressions of key 255 

genes associated with formation of epithelial barrier components were up-regulated, 256 

including major cell junction protein encoding genes (75%; 42/56 genes). More specifically, 257 

several integrin-associated genes were up-regulated in the presence of UCC2003. Integrins 258 

facilitates cell-cell and cell-extracellular matrix ECM adhesion and binding, and assembly of 259 

the fibronectin matrix that is pivotal for cell migration and cell differentiation (Harburger and 260 

Calderwood, 2009, Qin et al., 2004, Mosher et al., 1991). Integrins also play an important 261 

role in downstream intracellular signalling that controls cell differentiation, proliferation and 262 

cell survival, including the Raf-MEK-ERK signalling pathway (we also observed enrichment 263 

of genes involved in this pathway) (Chernyavsky et al., 2005, Li et al., 2016). Another key 264 

intestinal barrier component is represented by tight junctions; linking complexes between 265 

intercellular spaces, and comprise transmembrane proteins including occludins, claudins, 266 

zona occludens and junctional adhesion molecules (Edelblum and Turner, 2009, Groschwitz 267 

and Hogan, 2009). Dysfunctional tight junctions may lead to a ‘leaky’ gut, which is 268 

characteristic of numerous intestinal disorders including inflammatory bowel diseases (Krug 269 

et al., 2014). Notably, previous work has suggested early life microbiota disruptions (via 270 

antibiotic usage) and reductions in Bifidobacterium are correlated with increased risk and/or 271 

symptoms of ulcerative colitis and Crohn’s disease (Kronman et al., 2012, Hildebrand et al., 272 

2008, Favier et al., 1997, Shaw et al., 2010, Ng et al., 2011). Several clinical studies have 273 

indicated that supplementation with certain Bifidobacterium strains positively modulate 274 

gastrointestinal symptoms of patients, which is corrected with reductions of inflammatory 275 

markers in colonic IEC-containing biopsies, however B. breve UCC2003 has not been used 276 

clinically in this patient setting (Furrie et al., 2005, Steed et al., 2010). Similar findings have  277 

also been reported in different animal models of intestinal inflammation (Philippe et al., 278 

2011, Grimm et al., 2015, Zuo et al., 2014). A wide range of TJ-related genes were up-279 

regulated after UCC2003 supplementation, particularly Tjp1 (that encodes ZO-1), Jam2 and 280 
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Claudin34c1, with a previous study indicating other Bifidobacterium species (i.e. B. bifidum) 281 

also modulate TJ expression via ZO-1 (Din et al., 2020). These data indicated that specific 282 

strains of Bifidobacterium may modulate key barrier integrity systems during the neonatal 283 

period, and therefore absence of this key initial bacterial-host crosstalk may correlate with 284 

increased risk of chronic intestinal disorders in later-life (Shaw et al., 2010). Intestinal mucus, 285 

encoded by Muc genes (up-regulated due to B. breve UCC2003 in this study), plays a crucial 286 

role in colonic protection via formation of a physical barrier between the gut lumen and IECs, 287 

and deficiencies in MUC-2 has been linked with experimental colitis and increased 288 

inflammation in IBD patients (Shirazi et al., 2000, Van der Sluis et al., 2006). We have also 289 

observed that B. breve UCC2003 significantly increases goblet cell numbers and mucus 290 

production (in gnotobiotic and SPF mice; data not shown). Although the mucus layer may 291 

impact direct Bifidobacterium-IEC interactions, previous studies have indicated that B. breve 292 

UCC2003 surface molecules, such as EPS and the Tad pilus may modulate IEC function via 293 

signaling through TLRs (O'Connell Motherway et al., 2019, Hughes et al., 2017).  Moreover, 294 

bifidobacterial metabolites, such as short-chain fatty acids may also act to modulate the IEC 295 

transcriptome, with previous studies indicating enhanced expression of TJs and cadherins via 296 

acetate (Hsieh et al., 2015, Ling et al., 2016, Ewaschuk et al., 2008, Lewis et al., 2017).  297 

Further network and functional analysis indicated clusters of up-regulated DEGs were 298 

associated with cell maturation and cell differentiation (as confirmed by cell type specific 299 

analysis), suggesting neonatal B. breve exposure positively modulates IEC cell 300 

differentiation, growth and maturation. Somewhat surprisingly, we did not observe the same 301 

type of striking responses in immune pathways, which may be masked by the sheer number 302 

of DEGs involved in cellular differentiation and processes. However, pathways such as Toll-303 

like Receptor TLR1 or TLR2 pathways do appear to be enriched (cluster 2 of signalling 304 

network analysis). This may link to previous work indicating that the UCC2003 EPS directly 305 

signals via TLR2 to induce MyD88 signalling cascades to protect IECs during intestinal 306 

inflammation (Hughes et al., 2017). B. breve M-16V was also shown to interact with TLR2 to 307 

up-regulate ubiquitin-editing enzyme A20 expression that correlated with increased tolerance 308 

to a TLR4 cascade in porcine IECs, further supporting the involvement of B. breve in 309 

programming key host immunoregulation receptors (Tomosada et al., 2013). 310 

Cell type specific analysis of DEGs revealed stem cells as the IEC type most affected by B. 311 

breve, with absorptive enterocytes least affected despite being most accessible to bacteria in 312 

the gut. It could be hypothesised that B. breve or their secreted metabolites may reach the 313 
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crypts of the small intestinal epithelium. This has been previously suggested by in situ 314 

hybridisation histology in vivo and by Bifidobacterium-conditioned media altering the 315 

expression of hundreds of host epithelial genes linked to immune response, cell adhesion, cell 316 

cycle and development in IECs in vitro  (Hughes et al., 2017, Guo et al., 2015). However, the 317 

direct impact of bifidobacterial-associated metabolites on these responses would require 318 

further studies to confirm metabolic activity of B. breve within the small intestine (via 319 

transcriptomics and metabolomics), although daily supplementation with live bacteria may 320 

also provide a source of these metabolites in our model. Interestingly, certain Bifidobacterium 321 

and Lactobacillus strains that have been heat-killed have also been shown to induce host 322 

responses, indicating that surface structures alone may play a role in downstream effects 323 

(Pique et al., 2019). All but two of the 37 differentially expressed stem cell marker genes 324 

were up-regulated in the presence of B. breve UCC2003, indicating an activating effect 325 

resulting in increased pluripotency of stem cells, increased quantity of stem cells and/or an 326 

increased quantity of semi-differentiated cells. Single cell sequencing of IECs could be used 327 

to further investigate this finding. Thirty-two TFs were predicted to regulate these stem cell 328 

signature genes, providing possible targets for future investigation of the mechanisms 329 

underlying these responses. Functional analysis of the stem cell signature genes and their 330 

regulators suggests B. breve increases pluripotency of stem cells and/or semi-differentiated 331 

epithelial cells through WNT signalling and nuclear hormone signalling (Jeong and 332 

Mangelsdorf, 2009). Furthermore, the overrepresentation of the process “RUNX1 regulates 333 

transcription of genes involved in differentiation of HSCs” indicates a possible role for 334 

histone methylation in response to B. breve UCC2003 (Imperato et al., 2015). Further 335 

determination of host and bacterial metabolome and proteome after B. breve exposure, may 336 

allow identification of the specific underlying molecular mechanisms (Guo et al., 2015).  337 

In conclusion, B. breve UCC2003 plays a central role in orchestrating global neonatal IEC 338 

gene responses in a distinct manner as shown in our murine model; modulating genes 339 

involved in epithelial barrier development, and driving universal transcriptomic alteration 340 

that facilitates cell replication, differentiation and growth, particularly within the stem cell 341 

compartment. This study enhances our overall understanding of the benefits of specific early 342 

life microbiota members in intestinal epithelium development, with prospective avenues to 343 

probe further health-promoting mechanisms of Bifidobacterium in humans. Further work 344 

exploring time-dependent transcriptional responses, impact of other Bifidobacterium species 345 

and strains (and use of mutants and transcriptionally active strains as positive controls), in 346 
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tandem with metabolomic and proteomic approaches are required to advance our 347 

understanding on the key host pathways and bifidobacterial molecules governing 348 

development and maturation of the intestinal barrier during the early life window. 349 

Nevertheless, further clinical studies would be essential to explore if these responses and 350 

findings are similar to those observed in humans. 351 

 Limitations of the Study 352 

As we only observed low relative abundance of Bifidobacterium in our control neonatal 353 

animals this may suggest induction of responses may be linked to ‘introduction’ of a new 354 

microbiota member (i.e. B. breve UCC2003), therefore results should be carefully interpreted. 355 

However, we did not observe associated global transcriptional inflammatory immune changes 356 

that would be expected if this was the case, but rather global changes in barrier function 357 

transcripts and pathways. Furthermore, Bifidobacterium has previously been isolated from 358 

C57BL/6 mice (including from our mouse colony), and therefore appears to be a resident 359 

rodent gut microbiota member, although it is found at varying abundances in different animal 360 

units and suppliers (Grimm et al., 2015, Hughes et al., 2020). Indeed, one particular study has 361 

shown that high levels of resident Bifidobacterium in mice directly correlated with improved 362 

immune responses to cancer immunotherapies (Sivan et al., 2015). In addition, we did not 363 

explore if B. breve UCC2003 is potentially driving more nuanced microbe-microbe 364 

interactions, and that, in-directly, these may also be stimulating IEC responses. Therefore, 365 

further studies probing these aspects in more detail, and comparing other Bifidobacterium 366 

strains, to compare and contract responses, would be of interest.   367 

B. breve UCC2003 is a model strain that was previously isolated from the stool of a breast-368 

fed infant (National Collection of Industrial Food and Marine Bacteria (NCIMB), 2020, 369 

Sheehan et al., 2007). Although a human-associated strain, it has not been used in clinical 370 

studies, so directly extrapolating to human-specific settings should be cautiously considered. 371 

Further large-scale clinical studies would be required to confirm any positive strain-level 372 

impacts, however in-depth analysis of e.g. small IECs would be unethical in a healthy infant 373 

cohort, which emphasises the importance of preclinical models. 374 

Previous studies have shown this strain can efficiently colonise (long-term) the mouse 375 

gastrointestinal tract, however, we could not confirm this in our short-term, daily 376 

supplementation study (Cronin et al., 2008, O'Connell Motherway et al., 2011). Therefore, 377 

the IEC responses observed may occur as a result of transient interactions with B. breve 378 
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UCC2003 as it passes through the small intestine. Nevertheless, although at lower levels 379 

(~105 CFU/g), we did observe viable B. breve UCC2003 in the small intestine, linking to our 380 

subsequent observations of significant impacts on the IEC transcriptome from this intestinal 381 

region.  382 

Very low abundance microbiota members (<2% relative abundance) including Streptococcus, 383 

Ruminococcus, Prevotella, and Coprococcus were significantly reduced in relative 384 

abundance compared to controls, raising the question whether supplementation of 385 

Bifidobacterium could have reduced these taxa. Regrettably, we could not determine if this is 386 

a bifidobacterial effect due to the lack of longitudinal samples, and we did not quantify 387 

bacterial titres, which is an important consideration for future work. We also did not profile 388 

microbial community composition within the small intestines which is known to differ from 389 

fecal samples.  390 

 Resource Availability 391 

Lead Contact 392 

Further information and requests for resources and reagents should be directed to and will be 393 

fulfilled by the Lead Contact, Lindsay J. Hall (Lindsay.Hall@quadram.ac.uk). 394 

Materials Availability 395 

This study did not generate new unique reagents. 396 

Data and Code Availability 397 

The code generated for RNA-Seq analysis during this study are available at GitHub 398 

https://github.com/raymondkiu/Bifidobacterium-IEC-transcriptomics. The raw sequencing 399 

reads (both RNA-Seq and 16S rRNA amplicon sequencing) are available at European 400 

Nucleotide Archive (ENA) accession number PRJEB36661.  401 

 Methods 402 

All methods can be found in the accompanying Transparent Methods supplemental file. 403 

 Ethics Approval 404 

All experiments were performed under the UK Regulation of Animals (Scientific Procedures) 405 

Act of 1986. The project licence (PPL 80/2545) under which these studies were carried out 406 
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sacrificed by CO2 and cervical dislocation. 408 
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 660 

 Figure and Scheme Legends 661 

Figure 1. Schematic representation of the study design and in silico analysis workflow 662 
 663 
Figure 2. 16S rRNA amplicon sequencing analysis of murine intestinal microbiota  664 
(A) Genus-level 16S rRNA gene profiling of mice gut microbiota on Day 4 (control vs 665 
UCC2003).  666 
(B) Dynamics of B. breve UCC2003 load (CFU/g) from Day 1 (prior to B. breve 667 
administration) through Day 4. B. breve was present in intestines throughout (small intestines 668 
and colon; on Day 4). ND: Non-detectable. Data are represented as mean ± SD.  669 
(C) Relative abundance of genus Bifidobacterium in UCC2003 group is significantly 670 
increased.  671 
(D) Principal Component Analysis on mice gut microbiota (control vs UCC2003 based on 672 
genus-level metataxonomics).  673 
(E) Shannon diversity index on mice gut microbiota (control vs UCC2003). Data are 674 
represented as mean ± SD. Significance test: t-test (* p<0.05; two-sided).  675 
(F) Linear Discriminant Analysis (LDA) showing enriched taxa in each group (control vs 676 
UCC2003).  677 
(G) Relative abundance comparison of all genera. * p<0.05 (LDA). 678 
 679 
Figure 3. RNA-Seq analysis and statistics  680 
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(A) Principal component analysis showing distinct overall gene expression profiles across all 681 
individual samples based on 12,965 highly-expressed genes. See also Table S1. 682 
(B) Clustering of individual RNA-Seq samples based on Jensen-Shannon distance. Distinct 683 
gene expression profiles were demonstrated between these two groups of samples (control vs 684 
UCC2003). 685 
(C) Total number of differentially expressed genes (DEGs) in UCC2003 group. 686 
(D) Volcano plot on global gene expression. Up-regulated DEGs are labelled as red dots 687 
whilst down-regulated DEGs in blue. 688 
(E) MA plot on global gene expression. 689 
 690 
Figure 4. Gene expression analysis  691 
(A) Heatmap comparison of gene expression profiles of 4,461 DEGs (control vs UCC2003). 692 
See also Table S2. 693 
(B) Top 20 DEGs ranked by FDR-adjusted p values (q values). 694 
(C) Top 20 up-regulated DEGs ranked by log2FC values. 695 
(D) Top 20 down-regulated DEGs ranked by log2FC values.  696 
(E) Expression of epithelial integrity associated genes in UCC2003 group (q<0.05). 697 
(F) Expression of integrin-associated genes in UCC2003 group. Grey dotted lines in the bar 698 
charts indicate the threshold of absolute Log2FC>1.0. Data are represented as Mean ± SE. 699 
 700 
Figure 5. Signalling network analysis, IEC subtyping and key regulator analysis 701 
(A) Cluster analysis of signaling network for significantly up-regulated genes (n=3,996). 702 
Representative enriched pathways (Reactome) and GO terms (Biological Process) identified 703 
in each individual cluster were listed alongside. See also Table S10. 704 
(B) Heat plot showing percentage of cell type signature genes in DEG and expressed genes 705 
(both control and UCC2003 groups). All expressed genes are well represented in IEC cell 706 
type signature genes.  707 
(C) Cell type analysis on IEC DEGs using known cell-specific signature genes. Stem cells 708 
were statistically over-represented in DEGs. * p<0.05. See also Table S11. 709 
(D) Key regulators of stem cell DEGs. 710 
 711 

 Supplemental table titles 712 

Table S1. Highly expressed genes (n=12,965 genes). Related to Figure 3. 713 
 714 
Table S2. Significantly regulated genes (n=4,461 genes). Related to Figure 4. 715 
 716 
Table S10. Cluster analysis on DEGs and related genes. Related to Figure 5. 717 
 718 
Table S11. Overlap between cell type signature genes and differentially expressed genes. 719 
Related to Figure 5. 720 
 721 
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 723 













Highlights are 3–4 bullet points of no more than 85 characters in length, including spaces, and they summarize 
the core results of the paper in order to allow readers to quickly gain an understanding of the main take-home 
messages. 
 

• B. breve administration significantly alters the murine neonatal IEC transcriptome  

• Genes/pathways involved in epithelial barrier function are particularly impacted 

• Bifidobacterium may target the IEC stem cell compartment to induce regeneration 


