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Summary

The underlying health-driving mechanismsBofi dobacterium during early life are not well
understood, particularly how this microbiota meminay modulate the intestinal barrier via
programming of intestinal epithelial cells (IEC#Je investigated the impact of
Bifidobacterium breve UCC2003 on the transcriptome of neonatal murir@slESmall IECs
from two-week-old neonatal mice administeBdreve UCC2003 or PBS (control) were
subjected to global RNA-Seq, and differentially egsed genes, pathways and affected cell
types determined. We observed extensive regulafitime IEC transcriptome with ~4,000
genes significantly up-regulated, including key egehnked with epithelial barrier function.
Enrichment of cell differentiation pathways weresetved, along with an overrepresentation
of stem cell marker genes, indicating an increadbe regenerative potential of the epithelial
layer. In conclusionB. breve UCC2003 plays a central role in driving intestiaplthelium
homeostatic development during early life and satgiture avenues for next-stage clinical

studies.

Key words: RNA-Seq,in vivo, Bifidobacterium breve, intestinal epithelial cells, differential

gene expression, early life

I ntroduction

Bifidobacterium represents a keystone member of the early lifergertobiota (Arrieta et al.,
2014, O'Neill et al., 2017, Derrien et al., 201@¢rtain species and strains are found at high
levels in vaginally delivered breast-fed infantslurding; Bifidobacterium longum subsp.
infantis, B. longum subsplongum, B. bifidum, B. pseudocatenulatum andB. breve
(Dominguez-Bello et al., 2010, Mikami et al., 20Nagpal et al., 2017, Stewatrt et al., 2018).
As a dominant member of the neonatal gut microbRifedobacterium is associated with
metabolism of breast milk, modulation of host imrawasponses, and protection against
infectious diseases (Fukuda et al., 2012, Lind.e2@16, Robertson et al., 2019, Lawson et
al., 2020, Patole et al., 2016, Baucells et all,620acobs et al., 2013, Plummer et al., 2018).
However, the mechanisms driving improved healtlt@uies during early life are largely
underexplored and are likely strain dependent.

A key interface betweeBifidobacterium and the host is the intestinal epithelial cellG)E
barrier (Thoo et al., 2019, Groschwitz and Hog&99). Previous studies have indicated that

certain strains oBifidobacterium specifically modulate IEC responses during inflaaony
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insults, which may help protect from certain guadders (Hsieh et al., 2015, Srutkova et al.,
2015, Grimm et al., 2015). In murine experimentaldels, previous work by our group has
shown that infant-associat&lbreve UCC2003 modulates cell death-related signalling
molecules, which in turn reduces the number of sgaplECs (Hughes et al., 2017). This
protection from pathological IEC shedding appedoeoe via theB. breve exopolysaccharide
(EPS) capsule and the host-immune adaptor protgid@4. Another strain oB. breve,
NumRes 204 (commercial strain) has also been showp-regulate the tight junction
proteins Claudin 4 and Occludin in a mouse cafitedel (Zheng et al., 2014, Plantinga et al.,
2011).

Many of the studies to date have focused on theeafBifidobacterium and modulation of
IECs in the context of acute or chronic gut inflaation, with expression profiling limited to
specific immune or apoptosis signalling targetafBiDiaz et al., 2014, Riedel et al., 2006,
Liu et al., 2010, Hsieh et al., 2015). As manyhw#de studies have involved pre-colonisation
of the gut withBifidobacterium strains, followed by inflammatory insult, this gi@gts that
initial priming during normal ‘healthy’ conditioneay modulate subsequent protective
responses. Furthermore, these studies have ofeangaformed in adult mice rather than
exploring effects during the early life developnantindow, whereBifidobacterium effects
are expected to be most pronounced. Previous wagkndicated that there is significant
modulation of the neonatal IEC transcriptome irpogse to gut microbiota colonisation, but
to date no studies have probed how particular di#lwssociated microbiota members, like
Bifidobacterium may modulate neonatal IEC responses (Pan et d18)20hus, to understand
if and howBifidobacterium may modulate IEC homeostasis during the early life
developmental window, we administer®doreve UCC2003 to neonatal mice and profiled
transcriptional responses in isolated small inbestiECs using global RNA-Seq. Our analysis
indicated whole-scale changes in the transcriptipr@gramme of IECs (~4,000 significantly
up-regulated genes) that appear to be linked talidrentiation/proliferation and immune
development. Notably the stem cell compartmenE@fd seemed to elicit the strongest gene
signature. These data highlight the rol&obreve UCC2003 in driving early life epithelial
cell differentiation and maturation; impacting isti@al integrity and immune functions,

which provides a mechanistic basis for understapdssociated health-promoting effects.



87 Results

88 To examine the effects & breve UCC2003 on the transcriptional profiles of hoSC{

89 under homeostatic conditions, we extracted RNA freolated IECs of healthy two-week old
90 neonatal mice (control group) and mice gavaged Rithreve UCC2003 for three

91 consecutive day€b per group). Isolated RNAs from IECs were sulgddb RNA-Seq to
92 determine global mMRNA expression (Figure 1). Subsatly, Differential Gene Expression

93 (DGE) analysis was performed to understBndreve-associated gene regulation.

94  Minimal impact of B. breve UCC2003 on the wider neonatal gut microbiota
95 Initially, we examined for the presencekforeve UCC2003 in the gut microbiome and
96 impact on the wider microbiota using culture an® TtBNA microbiota profiling approaches
97 (Figures 2a-b). We observed high level8obreve UCC2003 across the four days in faecal
98 samples, with higher levels of viatBe breve UCC2003 within the colon (~f@FuU/g),
99  when compared to the small intestine -C&U/g; Figure 2b). Based on 16S rRNA analysis,
100 relative abundance @&ifidobacteriumincreased significantly in the UCC2003 group
101 (P=0.012) following bacterial administration, whileetcontrol group displayed very low
102 relativeBifidobacterium abundance (~0.01%; Figure 2c). Principal compoasatysis
103 (PCA) on gut microbiota profiles (control vs UCC3)@howed a distinct change in
104  microbial community composition in the UCC2003 grqarimarily driven by increased
105 relative abundance @&ifidobacterium, which may also correlate withcreased overall
106  microbial diversity in the UCC2003 group (Figure@d Linear Discriminant Analysis
107 (LDA) also indicated thaBifidobacterium was uniquely enriched in UCC2003 group, and
108 low relative abundance (<2%) microbiota members s.8Streptococcus, Ruminococcus,
109 Prevotella andCoprococcus were significantly lower (Figure 2f-g). Overalfjrainistration
110 of B. breve UCC2003 appeared to minimally impact the widerrgidrobiota, without
111 significantly altering relative abundance of oth@jor resident taxa includirigactobacillus,

112 Bacteroides andBlautia compared to the control group.

113 Impact of B. breve UCC2003 on the neonatal intestinal epithelial transcriptome

114 To understand the distribution of samples basellE@ngene expression profiles we

115 performed PCA analysis (Figure 3a; Table S1). Athples clustered according to group
116 (control vs UCC2003), suggesting a significant ictpe B. breve UCC2003 on gene

117 expression profiles, with distance-wise clustefibgnsen-Shannon) also supporting

118 separation of experimental groups (Figure 3b). &iiné Differentially Expressed Genes
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(DEG), we employed a filter of absolute log2(folthage) > 1.0 (with adjusted<0.05),

which equates to a minimum two-fold change in gexgression (Figure 3c-e; Table S2).
After analysis, a total of 3,996 DEGs were sigmifity up-regulated, while 465 genes were
significantly down-regulated iB. breve UCC2003 supplemented animals when compared to
controls (Figure 3c and 4a). Notably, we also pend the same experimental protocol on
healthy mice aged 10-12 weeks, and we did not ebsary significant DEGs, suggestiBg
breve UCC2003 modulation of IECs is strongest within ¢éaely life window under
homeostatic conditions.

To determine the functional role of the DEGs, wamined the most significantly regulated
genes ranked by False Discovery Rate (FDR) adjystedues (org values). We first looked
at the top 20 up-regulated DEGs in Bhéoreve UCC2003 experimental group (Figure 4b).
Most genes annotated with known biological processere cell differentiation and cell
component organisation functions includi@gnblipl, Hist1h4b, Vps13b andFgd4

(annotated in the PANTHER Gene Ontology [GO] Slesaurce). Two genes were involved
in cell death and immune system processes, naNaehp andGm20594 (Table S3). When
we ranked the top-regulated genes using log2-fo&hge, we observed increased expression
of Creb5, which isinvolved in the regulation of neuropeptide transion (CAMP response
element binding protein; CREB) (Figure 4c). CRERIs0 known to regulate circadian
rhythm, and we also identified additional circad@dock-related genes that were
significantly up-regulated includinger2 andPer3. We noted that several top down-
regulated DEGs were annotated as genes involvettial binding, or metal-related genes
includingMt1, Mt2, Hba-al, Hbb-bt andFtl1-psl (Figure 4d; Table S4).

Regulation of intestinal epithelial barrier-associated genes

As B. breve strains have been previously shown to modulat@icetight junction/barrier-
related proteins, we next investigated DEGs assatiaith intestinal epithelial barrier
development/intestinal structural organisation (iFégde). Several tight-junction (TJ)
structural-associated DEGs were observed, inclu@iagdin-encoding gen@ldn34cl
(Log2 fold-change [LFC] 3.14), Junction AdhesionIbtules-encoding gendam2 (LFC
2.9), and Tight Junction protein (also called ZanQkcludens protein; ZO) -encoding gene
Tjpl (LFC 1.49). Genes that encode integrins (invoiwegulation of intracellular
cytoskeleton) also exhibited a trend of increasquassion (13/14; 92.8%). Both Piezo
genes, which assist in tight junction organisatRiezol (LFC 1.25) andPiezo2 (LFC 1.9),
were significantly up-regulated in tie breve UCC2003 treated group.
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Over 90% of cadherins, proteins associated witraisembly of adherens junctions (Figure
4e) were up-regulated; includifgdhbl4 (LFC 2.8),Pcdhgb4 (LFC 2.7),Pcdh8 (LFC 1.3),
Fatl (LFC 1.5) andDsg2 (LFC 1.1). Interestingly, several genes (4/7; %@).involved in
mucus layer generation were significantly up-retpdan the UCC2003 experimental group
includingMuc2 (LFC 2.2),Muc6 (LFC 3.7),Mucbb (LFC 2.9), andMuc4 (LFC 1.24). Genes
Gjal (LFC 3.59) and5jb8 (LFC 2.63) that encode gap junction proteins vedse up-
regulated. In addition, we also investigated ddferal expression of genes associated with
integrin assembly and downstream integrin signglpathways (Figure 4f). Over 70%
(16/21) of these genes were up-regulated, with%ZB1/21) significantly increased in gene
expression in the UCC2003 group (LFC >1.0).

We observed increased expression of genes assbuidktel EC barrier development
including cadherins, gap junctions, integrins, nalayer-associated genes, and several key
tight junction proteins. These strongly inducedegerpression profiles suggest tBabreve

UCC2003 is involved in enhancing epithelial barderwelopment in neonates.

Modulation of cell maturation processes

We next sought to understand the biological fumstiof up-regulated DEGs by employing
PANTHER GO-Slim functional assignment, and progesivay enrichment analysis (see
Figure S1; Table S5 and S6). DEGs were predominantblved in general biological
processes including cellular process (901 genak)ratabolic process (597 genes; Table
S7). At the molecular function level, DEGs werenmatrily assigned to binding (868 genes)
and catalytic activity (671 genes; Table S8), vdlifactory Signalling Pathway and Cell
Cycle (biological) pathways also found to be ergttiiTable S9).

To delve further into the data, we constructedjaaling network based on up-regulated
DEGs 0=3,996) with the aim of identifying specific genetworks involved in important
signalling pathways (Figure 5a). Overall, 1,491 BB@re successfully mapped (37.3%) to a
signalling network that comprised 8,180 genes. hadividual clusters of genes were
detected, with functional assignment and pathwayyais implemented on these clusters
(Figure 5a). All gene clusters were associated eathdifferentiation and maturation, with
cluster 1 (68 genes) linked specifically with DNéptication and transcription, cluster 2 (26
genes) with cell growth and immunity, cluster 3 {fehes) with cell replication, and cluster 4

(72 genes) related to cell cycle and cell divigidable S10).
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Intestinal cell type analysis on DEGs identifies significant enrichment of epithelial stem
cells

IECs include several absorptive and secretorytgpdls, namely enterocytes, Paneth cells,
goblet cells, enteroendocrine cells, tuft cells atain cells. As these cells perform different
functions in the gut, it was important to underdtarnetheiB. breve UCC2003 had a cell

type specific effect on the intestinal epitheliddsing known cell type specific gene markers
(Haber et al., 2017), we identified cell type gsmmatures modulated within the UCC2003
group (Figure 5b-c). Importantly, all cell type rkars were well represented in the expressed
genes of the whole IEC transcriptomics data from lgooups (control + UCC2003), thus
validating the presence of all IEC types in oudgtdata (Figure 5b). Cell type analysis of
genes differentially expressed aferbreve UCC2003 supplementation, revealed that stem
cell marker genes were significantly enriched (362 0.05) among the six IEC types
(Table S11). Signatures of other cell types wese present (linking to marker genes in the
DEG list) but not significantly overrepresentedftlaells (22%), enteroendocrine cells
(18%), goblet cells (15%), Paneth cells (15%) ameémcytes (13%; Figure 5c). These data
indicated that intestinal epithelial stem celld|lscprimarily involved in cell differentiation,
were the primary cell type whose numbers and trgsteenic programme were regulated by
B. breve UCC2003.

Further investigation of this stem cell signatueeaaled that of the 37 differentially
expressed marker genes, 35 are up-regulated préisence oB. breve UCC2003. This
indicates an increase in the quantity of stem eellsemi-differentiated cells in the
epithelium, consistent with the overrepresentatibeell cycle and DNA replication
associated genes observed in the whole differeenialession dataset. Functional analysis of
the 37 stem cell signature genes revealed onlywaegepresented process — Regulation of
Frizzled by ubiquitinationK < 0.05), which is a subprocess of WNT signallM{NT

signalling is important in maintaining the undiéatiated state of stem cells (Nusse, 2008).

Finally, we employed a network approach to prekigt transcription factor (TF) regulators

of the differentially expressed stem cell markemneg through whicB. breve UCC2003 may
be acting (Figure 5d). Using the TF-target genaluzde, DoRothEA, we identified expressed
TFs known to regulate these genes (Garcia-Alonah,2019, Holland et al., 2019). Five
genes had no known and expressed regulator, thnesexeluded. Hypergeometric
significance testing was used to identify whichlase TFs are the most influential (see

Methods for details). This analysis identified 32 fegulators (Figure 5d). Of these
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regulators, 12 were differentially expressed inlt@ dataset (all up-regulatedhos, Gabpa,
Rcor1, Arid2, Teadl, Mybl2, Mef2a, Ahr, Pgr, Kmt2a, Ncoa2 andTcf12. Functional analysis

of all the TF regulators and their targeted gengsther, revealed overrepresented functions
relating to WNT signalling, histone methylation &elf-renewal and proliferation of
hematopoietic stem cells and nuclear receptor.(estfogen) signalling (Table S12). These
data provide evidence tht breve UCC2003 directly affects key transcriptomic prograes
regulating drives specific signalling processesti@aarly within stem cells.

Discussion

The early life developmental window representsugiat time for microbe-host interactions
that impacts health both in the short- and longemt Understanding how specific
microbiota members modulate host responses inlprieat models may help the design and
development of next-stage targeted microbiota fhiesan humans. Here we investigated
how B. breve UCC2003 induces genome-wide transcriptomic chamgsshall intestine IECs
of neonatal mice. We observed tBabreve had a global impact on the IEC transcriptome,
evidenced by the large number of significantly egulated genes and pathways related to
cell differentiation and cell proliferation, inclundy genes associated with epithelial barrier
function. We propose th& breve may act as a key early life microbiota memberidgv
fundamental cellular responses in murine IECs jqadrly within the stem cell
compartment, and thus drives epithelial barrieretlgyment and maintenance during
neonatal life stages. However, further clinicabsts would be required to determine if our

findings extrapolate to the human setting.

B. breve is known to confer beneficial effect on gut healtbywever our knowledge related to
the mechanisms underlying these responses aredinitost studies have focused on
targeted immune cells or pathways (during diseadéoa inflammation), and to our
knowledge no studies have probed global transarit@ehanges within IECs - the frontline
physical barrier between bacteria and host (Turebad., 2014, Gann, 2010). Our presented
findings in a pre-clinical model: ~4,000 up-regehDEGs and ~450 down-regulated DEGs
within theB. breve group indicate that thiBifidobacterium strain modulates whole-scale
changes within this critical single cell layer. Hbly, we also examined hdsv breve
modulates adult IEC responses, however, we didlbstrve any significantly differentially
regulated genes when compared to control animals striking differences in DEGs

between these two life points indicates tBabreve-modulation of IECs is limited to the
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neonatal window. Dominance Bffidobacteriumin early life (including strains d3. breve)
overlaps with the development and maturation ofyrtest responses, including epithelial
barrier integrity. Therefore, presence of thesairssrwould be expected to play an over-sized
role in this initial homeostatic priming, that mafford protection against inflammatory
insults in later-life, as has been shown previouslg mouse model of pathological epithelial
cell shedding (Hughes et al., 2017). Further clihstudies would be required to probe these
findings in detail to determine their importanceidg healthy infant development.

Exploring the murine transcriptional responses orerdetail revealed that expressions of key
genes associated with formation of epithelial lB@rtomponents were up-regulated,
including major cell junction protein encoding ger{é5%; 42/56 genes). More specifically,
several integrin-associated genes were up-reguilating presence of UCC2003. Integrins
facilitates cell-cell and cell-extracellular matBBCM adhesion and binding, and assembly of
the fibronectin matrix that is pivotal for cell majion and cell differentiation (Harburger and
Calderwood, 2009, Qin et al., 2004, Mosher etl&91). Integrins also play an important
role in downstream intracellular signalling thahtrols cell differentiation, proliferation and
cell survival, including the Raf-MEK-ERK signallingathway (we also observed enrichment
of genes involved in this pathway) (Chernyavskglet2005, Li et al., 2016). Another key
intestinal barrier component is represented byt figictions; linking complexes between
intercellular spaces, and comprise transmembrasteips including occludins, claudins,
zona occludens and junctional adhesion moleculdslium and Turner, 2009, Groschwitz
and Hogan, 2009). Dysfunctional tight junctions nead to a ‘leaky’ gut, which is
characteristic of numerous intestinal disordertuigiag inflammatory bowel diseases (Krug
et al., 2014). Notably, previous work has suggestety life microbiota disruptions (via
antibiotic usage) and reductionsBifidobacterium are correlated with increased risk and/or
symptoms of ulcerative colitis and Crohn’s dise@®nman et al., 2012, Hildebrand et al.,
2008, Favier et al., 1997, Shaw et al., 2010, Nagj.eR011). Several clinical studies have
indicated that supplementation with certBifidobacterium strains positively modulate
gastrointestinal symptoms of patients, which igsected with reductions of inflammatory
markers in colonic IEC-containing biopsies, howdaseoreve UCC2003 has not been used
clinically in this patient setting (Furrie et &005, Steed et al., 2010). Similar findings have
also been reported in different animal models t#stinal inflammation (Philippe et al.,

2011, Grimm et al., 2015, Zuo et al., 2014). A widege of TJ-related genes were up-
regulated after UCC2003 supplementation, partibulgpl (that encodes ZO-1Jam?2 and
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Claudin34cl, with a previous study indicating othBifidobacterium speciegi.e. B. bifidum)

also modulate TJ expression via ZO-1 (Din et &12@). These data indicated that specific
strains ofBifidobacterium may modulate key barrier integrity systems durlmgneonatal
period, and therefore absence of this key initadterial-host crosstalk may correlate with
increased risk of chronic intestinal disordersaitet-life (Shaw et al., 2010). Intestinal mucus,
encoded byluc genes (up-regulated dueBobreve UCC2003 in this study), plays a crucial
role in colonic protection via formation of a phgel barrier between the gut lumen and IECs,
and deficiencies in MUC-2 has been linked with expental colitis and increased
inflammation in IBD patients (Shirazi et al., 208@n der Sluis et al., 2006). We have also
observed thaB. breve UCC2003 significantly increases goblet cell nunslserd mucus
production (in gnotobiotic and SPF mice; data aven). Although the mucus layer may
impact direcBifidobacterium-IEC interactions, previous studies have indicakedB. breve
UCC2003 surface molecules, such as EPS and theillsdnay modulate IEC function via
signaling through TLRs (O'Connell Motherway et aD19, Hughes et al., 2017). Moreover,
bifidobacterial metabolites, such as short-chaity facids may also act to modulate the IEC
transcriptome, with previous studies indicatingamded expression of TJs and cadherins via
acetate (Hsieh et al., 2015, Ling et al., 2016, $ohak et al., 2008, Lewis et al., 2017).

Further network and functional analysis indicatksters of up-regulated DEGs were
associated with cell maturation and cell differatiin (as confirmed by cell type specific
analysis), suggesting neonaBalbreve exposure positively modulates IEC cell
differentiation, growth and maturation. Somewhapssingly, we did not observe the same
type of striking responses in immune pathways, Wwinay be masked by the sheer number
of DEGs involved in cellular differentiation andogesses. However, pathways such as Toll-
like Receptor TLR1 or TLR2 pathways do appear tefréched (cluster 2 of signalling
network analysis). This may link to previous wanklicating that the UCC2003 EPS directly
signals via TLR2 to induce MyD88 signalling cascatteprotect IECs during intestinal
inflammation (Hughes et al., 201 B. breve M-16V was also shown to interact with TLR2 to
up-regulate ubiquitin-editing enzyme A20 expresslat correlated with increased tolerance
to a TLR4 cascade in porcine IECs, further suppgrtine involvement dB. breve in

programming key host immunoregulation receptorsi(@sada et al., 2013).

Cell type specific analysis of DEGs revealed stefts@s the IEC type most affected By
breve, with absorptive enterocytes least affected desy@ieg most accessible to bacteria in

the gut. It could be hypothesised tBabreve or their secreted metabolites may reach the

10



314 crypts of the small intestinal epithelium. This l&®n previously suggestedilysitu

315 hybridisation histologyn vivo and byBifidobacterium-conditioned media altering the

316 expression of hundreds of host epithelial gendstirnto immune response, cell adhesion, cell
317 cycle and development in IE@svitro (Hughes et al., 2017, Guo et al., 2015). Howether,
318 direct impact of bifidobacterial-associated metabslon these responses would require
319 further studies to confirm metabolic activity Bfbreve within the small intestine (via

320 transcriptomics and metabolomics), although dailyptementation with live bacteria may
321 also provide a source of these metabolites in axdeah Interestingly, certaiBifidobacterium
322 andLactobacillus strains that have been heat-killed have also brewn to induce host

323 responses, indicating that surface structures atmmeplay a role in downstream effects
324 (Pique et al., 2019). All but two of the 37 diffatally expressed stem cell marker genes
325 were up-regulated in the presencdBobreve UCC2003 indicating an activating effect

326 resulting in increased pluripotency of stem cefisreased quantity of stem cells and/or an
327 increased quantity of semi-differentiated cellsigi cell sequencing of IECs could be used
328 to further investigate this finding. Thirty-two Tksgere predicted to regulate these stem cell
329 signature genes, providing possible targets farr&investigation of the mechanisms

330 underlying these responses. Functional analydiseo$tem cell signature genes and their
331 regulators suggesk breveincreases pluripotency of stem cells and/or sefffém@intiated
332 epithelial cells through WNT signalling and nucléarmone signalling (Jeong and

333 Mangelsdorf, 2009). Furthermore, the overrepresientaf the process “RUNX1 regulates
334 transcription of genes involved in differentiatiohHSCs” indicates a possible role for

335 histone methylation in responseBobreve UCC2003 (Imperato et al., 2015). Further

336 determination of host and bacterial metabolomepoteome afteB. breve exposure, may
337 allow identification of the specific underlying nealular mechanisms (Guo et al., 2015).

338 In conclusionB. breve UCC2003 plays a central role in orchestrating gloteonatal IEC
339 gene responses in a distinct manner as shown imotne model; modulating genes

340 involved in epithelial barrier development, andvadrg universal transcriptomic alteration
341 that facilitates cell replication, differentiatiamd growth, particularly within the stem cell
342 compartment. This study enhances our overall utal@isg of the benefits of specific early
343 life microbiota members imtestinal epithelium development, with prospectwenues to
344  probe further health-promoting mechanism8idifdobacteriumin humans. Further work
345 exploring time-dependent transcriptional responisegact of otheBifidobacterium species

346 and strains (and use of mutants and transcriptpaative strains as positive controls), in
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347 tandem with metabolomic and proteomic approachesesuired to advance our
348 understanding on the key host pathways and bifickelial molecules governing
349 development and maturation of the intestinal badiging the early life window.
350 Nevertheless, further clinical studies would besasial to explore if these responses and

351 findings are similar to those observed in humans.

352 Limitations of the Study

353 As we only observed low relative abundanc@&idifdobacterium in our control neonatal

354 animals this may suggest induction of responseshadinked to ‘introduction’ of a new

355 microbiota member (i.. breve UCC2003), therefore results should be carefullgrppreted.
356 However, we did not observe associated global ¢rgstonal inflammatory immune changes
357 that would be expected if this was the case, liberaglobal changes in barrier function

358 transcripts and pathways. Furthermdiidobacterium has previously been isolated from
359 C57BL/6 mice (including from our mouse colony), dhdrefore appears to be a resident
360 rodent gut microbiota member, although it is foatearying abundances in different animal
361 units and suppliers (Grimm et al., 2015, Hughea.e020). Indeed, one particular study has
362 shown that high levels of resideBifidobacterium in mice directly correlated with improved
363 immune responses to cancer immunotherapies (Shaln 2015). In addition, we did not
364 explore ifB. breve UCC2003 is potentially driving more nuanced mi@ahicrobe

365 interactions, and that, in-directly, these may &lsstimulating IEC responses. Therefore,
366 further studies probing these aspects in moreldatad comparing othdifidobacterium

367 strains, to compare and contract responses, weutd imterest.

368 B. breve UCC2003 is a model strain that was previouslyaitaal from the stool of a breast-
369 fed infant (National Collection of Industrial Foadd Marine Bacteria (NCIMB), 2020,

370 Sheehan et al., 2007). Although a human-assocstaith, it has not been used in clinical
371 studies, so directly extrapolating to human-speaéttings should be cautiously considered.
372  Further large-scale clinical studies would be regplito confirm any positive strain-level

373 impacts, however in-depth analysis of e.g. smalldivould be unethical in a healthy infant

374  cohort, which emphasises the importance of presdinnodels.

375 Previous studies have shown this strain can efffiieolonise (long-term) the mouse
376 gastrointestinal tract, however, we could not aonfihis in our short-term, daily
377 supplementation study (Cronin et al., 2008, O'Ctmvietherway et al., 2011). Therefore,

378 the IEC responses observed may occur as a resuiinsient interactions witB. breve

12



379 UCC2003 as it passes through the small intestiegeNheless, although at lower levels
380 (~10° CFU/g), we did observe viabR breve UCC2003 in the small intestine, linking to our
381 subsequent observations of significant impactdhenEC transcriptome from this intestinal
382 region.

383 Very low abundance microbiota members (<2% relativendance) includingreptococcus,
384  Ruminococcus, Prevotella, andCoprococcus were significantly reduced in relative

385 abundance compared to controls, raising the questiether supplementation of

386 Bifidobacterium could have reduced these taxa. Regrettably, wiel cand determine if this is
387 a bifidobacterial effect due to the lack of longitual samples, and we did not quantify
388 bacterial titres, which is an important considenatior future work. We also did not profile
389 microbial community composition within the smaltastines which is known to differ from

390 fecal samples.

391 Resour ce Availability

392 Lead Contact
393 Further information and requests for resourcesraagents should be directed to and will be
394 fulfilled by the Lead Contact, Lindsay J. Hall (disay.Hall@guadram.ac.uk).

395 Materials Availability

396 This study did not generate new unique reagents.

397 Dataand Code Availability

398 The code generated for RNA-Seq analysis duringstiidy are available at GitHub

399 https://github.com/raymondkiu/Bifidobacterium-IE@tscriptomics. The raw sequencing
400 reads (both RNA-Seq and 16S rRNA amplicon sequeheire available at European

401 Nucleotide Archive (ENA) accession number PRJEB3666

402 M ethods

403 All methods can be found in the accompanying Traraput Methods supplemental file.
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405 All experiments were performed under the UK Regaoiabf Animals (Scientific Procedures)
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Figure and Scheme L egends

Figure 1. Schematic representation of the study design and in silico analysis wor kflow

Figure 2. 16SrRNA amplicon sequencing analysis of murineintestinal microbiota

(A) Genus-level 16S rRNA gene profiling of mice guicrobiota on Day 4 (control vs
UCC2003).

(B) Dynamics ofB. breve UCC2003 load (CFU/g) from Day 1 (prior B> breve
administration) through Day 8. breve was present in intestines throughout (small intesti
and colon; on Day 4). ND: Non-detectable. Datareapgesented as mean * SD.

(C) Relative abundance of gerisidobacteriumin UCC2003 group is significantly
increased.

(D) Principal Component Analysis on mice gut mi¢adé (control vs UCC2003 based on
genus-level metataxonomics).

(E) Shannon diversity index on mice gut microbi@antrol vs UCC2003). Data are
represented as mean + SD. Significance tdsst (* p<0.05 two-sided).

(F) Linear Discriminant Analysis (LDA) showing edinied taxa in each group (control vs
UCC2003).

(G) Relative abundance comparison of all genep0.05 (LDA).

Figure 3. RNA-Seg analysis and statistics
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(A) Principal component analysis showing distineei@ll gene expression profiles across all
individual samples based on 12,965 highly-expregeeds. See also Table S1.

(B) Clustering of individual RNA-Seq samples basedlensen-Shannon distance. Distinct
gene expression profiles were demonstrated betiiese two groups of samples (control vs
UCC2003).

(C) Total number of differentially expressed ge(i@EGs) in UCC2003 group.

(D) Volcano plot on global gene expression. Up-tatpd DEGs are labelled as red dots
whilst down-regulated DEGs in blue.

(E) MA plot on global gene expression.

Figure 4. Gene expression analysis

(A) Heatmap comparison of gene expression profife§461 DEGs (control vs UCC2003).
See also Table S2.

(B) Top 20 DEGs ranked by FDR-adjusted p valueg{ges).

(C) Top 20 up-regulated DEGs ranked by,FQ values.

(D) Top 20 down-regulated DEGs ranked by,FQ values.

(E) Expression of epithelial integrity associateses in UCC2003 group (q<0.05).

(F) Expression of integrin-associated genes in UlBroup. Grey dotted lines in the bar
charts indicate the threshold of absolute JE6¢>1.0. Data are represented as Mean + SE.

Figureb5. Signalling network analysis, |EC subtyping and key regulator analysis

(A) Cluster analysis of signaling network for sifjcently up-regulated genés=3,996)
Representative enriched pathways (Reactome) antef®t3 (Biological Process) identified
in each individual cluster were listed alongsidee &lso Table S10.

(B) Heat plot showing percentage of cell type sigragenes in DEG and expressed genes
(both control and UCC2003 groups). All expressetkgeare well represented in IEC cell
type signature genes.

(C) Cell type analysis on IEC DEGs using known-sekcific signature genes. Stem cells
were statistically over-represented in DEGs. * #80See also Table S11.

(D) Key regulators of stem cell DEGs.

Supplemental tabletitles
Table S1. Highly expressed genes (n=12,965 genes). Related to Figure 3.
Table S2. Significantly regulated genes (n=4,461 genes). Related to Figure 4.
Table S10. Cluster analysison DEGs and related genes. Related to Figure5.

Table S11. Overlap between cell type signature genes and differentially expressed genes.
Related to Figure5.
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Highlights are 3—4 bullet points of no more thanc8aracters in length, including spaces, and theysarize
the core results of the paper in order to allovdess to quickly gain an understanding of the makethome
messages.

e B. breve administration significantly alters the murine neonatal IEC transcriptome
* Genes/pathways involved in epithelial barrier function are particularly impacted
e Bifidobacterium may target the IEC stem cell compartment to induce regeneration



