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Humans can retain task-relevant visual information in working memory and use it to compare against 1 

visual information selected from the environment. Behaviorally, this speeds target detection (Desimone 2 

& Duncan, 1995). In the brain, this manifests as distinct target-related cortical activity patterns in 3 

visual cortex in preparation for visual stimulation (Gayet et al., 2017; Harrison & Tong, 2009). In 4 

recent years, it has been hotly contested whether, in addition to these “target templates”, the brain also 5 

makes use of “templates for rejection” – representations of distracting information to benefit 6 

subsequent target detection (Arita et al., 2012; Beck & Hollingworth, 2015; Beck et al., 2017; Moher & 7 

Egeth, 2012; Reeder et al., 2017). A difference in how distractor information is retained compared to 8 

target information would suggest the use of a different preparatory template. Our questions for the 9 

current paper focus on the nature of such preparatory representations of targets and distractors for 10 

search. Is a distractor represented distinctly like a target in visual working memory (VWM) with an 11 

additional “tag” that this should be rejected once it has been identified during search? Or is there no 12 

distinct representation, perhaps even suppression, of the distractor feature in sensory brain areas during 13 

the preparatory period? The current study is the first to provide evidence that visual features of 14 

anticipated distractors are not represented more distinctly than irrelevant features (that will not appear 15 

in the search display) in early visual cortex (EVC), supporting the hypothesis that a template for 16 

rejection is functionally different from a target template. 17 

 We asked subjects to detect a target in an array containing four items of one color and four 18 

items of a second color, while undergoing fMRI (see Figure S1 in the Supplementary Methods). One of 19 

the two colors was cued beforehand as positive (“the target will appear in this color”), negative (“only 20 

distractors will appear in this color”), or neutral (“this color will not appear in the search display”). The 21 

two colors that appeared in the search display on each trial were chosen from a selection of five colors. 22 

Each of the five colors appeared as a positive, negative, or neutral cue an equal number of times. Initial 23 

univariate analyses of the blood-oxygenation-level-dependent (BOLD) signal revealed a lower BOLD 24 

response for negative cues compared to positive and neutral cues in EVC, despite a behavioral benefit 25 
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to having foreknowledge of the upcoming distractor color (Reeder et al., 2017). This pattern is not 26 

predicted by the equal representation plus negative tag hypothesis, but rather supports the distractor 27 

inhibition hypothesis of templates for rejection. Nevertheless, the regional activation modulation that 28 

we reported previously is too unspecific to demonstrate differences in target and distractor feature 29 

representations. For instance, a stronger BOLD response following positive cues may reflect a global 30 

preparatory increase of neuronal activation instead of a selective increase of activation in those neurons 31 

representing the target feature. Likewise, a drop in the regional BOLD amplitude may reflect inhibition 32 

of preparatory attention rather than selective suppression of the cued feature. If these regional BOLD 33 

amplitude modulations are driven by feature-selective modulation of neuronal delay activity, we should 34 

see more distinct patterns of activity for target templates than for task-irrelevant features. If distractor 35 

templates are characterized by inhibition of the distractor feature rather than facilitation, they should 36 

lack the distinctiveness of target templates. Instead, distractor features should show comparable 37 

distinctiveness to irrelevant features (Figure 1) or even an anti-correlated pattern, i.e., decreased 38 

activation in voxels that show increased activation from baseline when the same feature is cued as a 39 

target.   40 

 41 

Figure 1. a.) An illustration of the study’s hypotheses: the activation of a target template (represented 42 

by “+” inside the colored bubble) leads to selective activation of EVC neurons representing the target 43 

color. This, in turn, leads to distinct activation patterns for the different target colors. Contrarily, the 44 

activation of a template for rejection (represented by “—” inside the colored bubble) leads to decreased 45 

activation of EVC neurons and therefore decreased variability in stimulus-related activity. Thus, 46 

different negatively cued colors will elicit weaker activity patterns that are more similar to those 47 

elicited by task-irrelevant colors. b.) A brain in MNI space showing the extent of the EVC region 48 

analyzed (in blue). Left hemisphere is displayed on the right. c.) A bar graph showing the average r to 49 

Z values across colors presented as positive, neutral, and negative cues. Error bars represent the 50 
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standard error of the mean. 51 

 52 

 To investigate how distinctly the cue colors were represented in preparation for search, we used 53 

representational similarity analysis (RSA; Kriegeskorte et al., 2008) combined with a searchlight 54 

method implemented in PyMVPA (Hanke et al., 2009) within EVC (see Supplementary Methods for a 55 

detailed description of the analysis pipeline). Correlation distance (1-r) between beta weights was 56 

calculated for 15 conditions of interest (3 cue types x 5 colors), serving as the “distinctiveness” metric. 57 
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The data expressing the non-transformed 1-r values associated with each color and cue type, as well as 58 

the mean 1-r value for each cue type collapsed across colors, are reported in Table 1. 1-r values were 59 

then transformed into r values and Fisher Z-transformed to ensure a normal distribution of the data for 60 

statistical hypothesis tests. Lower Z values therefore indicate smaller correlations (i.e., greater 61 

distinctiveness) between color representations (see Figure S2).  62 

 We first performed a 3 (cue type: positive, negative, neutral) x 5 (color) repeated-measures 63 

ANOVA to test for representational distinctiveness of the different colors for each cue type. This 64 

revealed a significant main effect of cue type (F(2,32)=4.960, p=0.013, η2
p=0.237), no main effect of 65 

color (F(2,32)=1.237, p=0.304, η2
p=0.072), and no interaction between the two (F(2,32)=0.812, 66 

p=0.593, η2
p=0.048). We then collapsed the data across color and conducted paired-samples t-tests to 67 

gauge the representational distinctiveness differences between cue types.  68 

 69 

Table 1 70 
Mean 1-r distinctiveness values for each color and their standard deviation (SD). The mean and SD of 71 
each cue type with all colors combined are shown in the last column 72 

 Light Pink Orange Chartreuse Cyan Orchid All colors 
Cue type Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Positive 1.004 0.212 0.989 0.109 1.018 0.115 0.949 0.153 0.872 0.143 0.966 0.109 
Negative 0.897 0.154 0.901 0.123 0.885 0.192 0.895 0.164 0.931 0.227 0.902 0.133 
Neutral 0.828 0.190 0.853 0.177 0.892 0.228 0.898 0.214 0.903 0.207 0.875 0.167 

Note. The SD for all colors combined was calculated as the between-subjects SD after obtaining the 73 
mean 1-r values collapsed across the 5 colors. Hex codes of each color are provided in the 74 
Supplementary Methods. 75 
 76 

To test for increased distinctiveness of cued target features, we first conducted a paired-samples 77 

t-test on positive > neutral cue distinctiveness in EVC. Positive cues were represented more distinctly 78 

than neutral cues (t(16)=-2.574, p=0.01, one-tailed, d=0.953; Cohen’s d is corrected for dependent 79 

samples; Morris & DeShon, 2002). We then conducted a paired-samples t-test on positive > negative 80 

cue distinctiveness, which also showed a significant difference between cue types (t(16)=-2.180, 81 

p=0.023, one-tailed, d=0.813). We then tested if cued distractor features were more distinctively 82 
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represented than neutral features. A paired-samples t-test showed no difference between negative and 83 

neutral cue distinctiveness (t(16)=-0.794, p=0.216, one-tailed, d=-0.198). We followed this up with a 84 

Bayes factor (BF) analysis1 (JASP Team, 2018). Bayes factors are particularly useful to test if the lack 85 

of a significant difference is due to equal distinctiveness or low power (see Dienes, 2014). With the 86 

Cauchy prior set to the default of 0.707, we found a BF01 = 3.04 (in favor of the null hypothesis), 87 

which provides moderate support for equal distinctiveness of negative and neutral cues (Schönbrodt & 88 

Wagenmakers, 2018). A BF robustness test on these data revealed that the likelihood of this lack of a 89 

difference increases when the Cauchy prior is increased, suggesting this effect survives variability in 90 

the prior width. 91 

These analyses looked at the distinctiveness of the five colors given a cue condition, but we can 92 

also look at the similarity of activation patterns across cue conditions for a given color. For example, a 93 

positive cue may facilitate firing in a neuron that codes a given color and inhibit firing in a neuron that 94 

codes a different color, whereas a negative cue may inhibit firing below baseline in the former and 95 

increase firing in the latter. This could lead to comparable distinctiveness in the above pattern analyses 96 

between colors, but a negative correlation for the same color across cue conditions. We therefore tested 97 

the correlation between positive and negative cue distinctiveness and found a moderate positive 98 

correlation (r=0.51, p=0.036), supporting the hypothesis that negative cue activation patterns are less 99 

distinct, but qualitatively similar to positive cue representations, rather than inverted (which would be 100 

suggested by a negative correlation). 101 

 These results show that only preparatory target feature representations in EVC are more distinct 102 

than neutral feature representations, whereas the preparatory representation of distractor features are 103 

not distinct from neutral feature representations. This pattern is incompatible with the hypothesis that 104 

target and distractor representations are both enhanced by attention during the preparatory period. The 105 

                                                 
1 For completeness, we report the other comparisons: positive vs. neutral cues BF01  = 0.33, and 
positive vs. negative cues BF01 = 0.62. 
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current results suggest that the lower univariate BOLD signal for negatively cued colors compared to 106 

positively cued colors in the previous analysis of this dataset (Reeder et al., 2017) was driven by a 107 

general suppression of visual processing in EVC, rather than color-specific suppression. 108 

While distractor colors and irrelevant colors showed similar levels of distinctiveness, we 109 

observed no negative correlation between positively and negatively cued colors that would have 110 

resulted if neuronal activation of the distractor feature was a mirror image of the pattern elicited by 111 

target features, i.e., distractor suppression in neurons where there is target facilitation, and vice versa. 112 

We think this did not occur because of the overall low level of activation during the delay between cue 113 

offset and search onset. While attention can cause clear increases and decreases during sensory 114 

stimulation (e.g. Treue & Martinez Trujillo, 1999), during the delay period (which we have analyzed 115 

here), neuronal activity is typically much reduced even if the cue matches the preferred feature of the 116 

neuron (Bichot et al., 2005; Chelazzi et al., 1993; see also decoding of working memory content in the 117 

absence of an elevated BOLD-response: Harrison & Tong, 2009; Serences et al., 2009). Inhibition of 118 

stimulus features would only reduce the neuronal firing rate from already low delay activity to zero, 119 

leaving much less room for distinctive differences in firing rate compared to the facilitatory modulation 120 

of firing rate by positive cues.  121 

At this point we cannot rule out that features cued as distractors may be represented by a 122 

negatively correlated pattern with target features, but our current methods lack the sensitivity to 123 

measure it. Increasing sensitivity, e.g., by using higher magnetic field strength fMRI, may lead to 124 

further insights. Moreover, note that our irrelevant feature baseline may itself represent inhibition of 125 

EVC. The facilitation of reaction times by negative cues compared to neutral cues yields no indication 126 

that inhibition was only present in the former. It may simply be due to the fact that distractor inhibition 127 

is useful for search whereas inhibition of irrelevant features is not. Thus, defining a different neutral 128 

baseline that is less likely to induce inhibition may also be a way to address the effects of distractor 129 

inhibition on EVC representations. Finally, it would be worthwhile to investigate whether the 130 
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modulation of representational distinctiveness depends on the features that are used as cues.  131 

The present results show that target templates were distinctly represented in EVC, whereas no 132 

distinct representation was observed for distractor templates, compared to baseline. Combined with the 133 

previous results showing region-wide preparatory target facilitation and distractor inhibition, we 134 

conclude that the representation of target templates and templates for rejection reflect differences in 135 

both global and feature-selective brain activity. 136 

 137 
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