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Summary

� Meiotic recombination rates vary considerably between species, populations and individu-

als. The genetic exchange between homologous chromosomes plays a major role in evolution

by breaking linkage between advantageous and deleterious alleles in the case of introgres-

sions. Identifying recombination rate modifiers is thus of both fundamental and practical inter-

est to understand and utilize variation in meiotic recombination rates.
� We investigated recombination rate variation in a large intraspecific hybrid population

(named HEB-25) derived from a cross between domesticated barley and 25 wild barley acces-

sions.
� We observed quantitative variation in total crossover number with a maximum of a 1.4-fold

difference between subpopulations and increased recombination rates across pericentromeric

regions. The meiosis-specific a-kleisin cohesin subunit REC8 was identified as a candidate

gene influencing crossover number and patterning. Furthermore, we quantified wild barley

introgression patterns and revealed how local and genome-wide recombination rate variation

shapes patterns of introgression.
� The identification of allelic variation in REC8 in combination with the observed changes in

crossover patterning suggest a difference in how chromatin loops are tethered to the chromo-

some axis, resulting in reduced crossover suppression across pericentromeric regions. Local

and genome-wide recombination rate variation is shaping patterns of introgressions and

thereby directly influences the consequences of linkage drag.

Introduction

Introgression is the transfer of genetic material between or
within species through hybridization followed by backcrossing.
Both interspecific and intraspecific introgressions are
widespread in nature, as revealed by recent genome-scale
sequence data (Mallet et al., 2016). As such, adaptive intro-
gressions have been found in plants, humans, butterflies and
birds (Heliconius Genome Consortium, 2012; Huerta-S�anchez
et al., 2014; Lamichhaney et al., 2015; Arnold et al., 2016).
Hybridization between wild and domesticated species is com-
monly used in plant breeding to develop new cultivars possess-
ing desirable traits (Hufford et al., 2012; Wendler et al., 2014;
Maurer et al., 2015; He et al., 2019). The genomic landscape
of introgressions is influenced by selection, drift and recombi-
nation (Martin & Jiggins, 2017). Introgressions may simulta-
neously introduce beneficial and deleterious alleles. In these
cases, the efficacy of selection depends partially on the local

recombination rate in order to break linkage between beneficial
and deleterious alleles. Linkage drag is of hindrance in plant
breeding, where deleterious alleles are introgressed along with a
desired beneficial allele (Young & Tanksley, 1989). Therefore,
both local and genome-wide recombination rate variation play
an important role in shaping the evolution of naturally occur-
ring hybrid genomes and the genetic gain achieved in plant
breeding (Schumer et al., 2018; Tourrette et al., 2019).

Meiotic recombination and the random segregation of chro-
mosomes are fundamental features of eukaryotic sexual reproduc-
tion and give rise to novel allelic combinations. Recombination
takes place during meiotic prophase and is initiated by a pro-
grammed formation of DNA double-strand breaks (DSBs) via
SPO11 complexes (Lam & Keeney, 2014). Meiotic DSBs are
processed by protein complexes to be repaired via synthesis-de-
pendent strand annealing (SDSA) or homologous recombination
(HR), which may result in crossovers or noncrossovers (Mercier
et al., 2015). Meiotic recombination takes place when
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chromosomes are associated with a proteinaceous structure, the
synaptonemal complex, which mediates DSB repair, chromo-
some pairing and segregation (Zickler & Kleckner, 1999; Page &
Hawley, 2003; B€orner et al., 2004). As such, meiotic recombina-
tion rates depend on chromatin context, are affected by crossover
interference (i.e. physical interference between neighbouring
crossovers along the chromosome), crossover assurance (i.e. one
obligatory crossover per chromosome to ensure correct pairing
and segregation), crossover homeostasis (i.e. maintenance of a
stable crossover number under varying levels of initial DSBs),
and are shaped by the spatiotemporal order of meiosis (Higgins
et al., 2012; Zhang et al., 2014; Yelina et al., 2015; Zelkowski
et al., 2019). Furthermore, the position of the centromere and
nucleolus organizer regions (NORs) were shown to locally sup-
press meiotic crossovers (Fernandes et al., 2019; Sims et al.,
2019). Although this process is essentially conserved across
eukaryotes, genome-wide recombination rates (GWRRs) are sur-
prisingly variable between species, populations, sexes and individ-
uals (Wang et al., 2012; Stapley et al., 2017; Haenel et al., 2018;
Kianian et al., 2018). At the chromosome scale, recombination
rates tend to be drastically reduced near centromeric regions
(K€unzel et al., 2000; Choi et al., 2013; Darrier et al., 2017;
Dreissig et al., 2019). This reduction across pericentromeric
regions is influenced by epigenetic information, such as DNA
methylation, histone modifications and nucleosome positions
(Mirouze et al., 2012; Melamed-Bessudo & Levy, 2012; Yelina
et al., 2012; Choi et al., 2013, 2018; Underwood et al., 2018).
Additionally, genetic divergence and structural variations are also
influencing recombination rates (Ziolkowski et al., 2015, 2017;
Crown et al., 2018; Rowan et al., 2019). At the population level,
recombination rates were shown to vary drastically depending on
variations in meiotic genes or environmental conditions (Brand
et al., 2018; Dreissig et al., 2019; Martin et al., 2019; Samuk
et al., 2019; Schwarzkopf et al., 2020).

In the present study, we explore the association of genotypes
with variation in recombination rates of the nested-association
mapping population HEB-25 (Maurer et al., 2015), which con-
sists of 25 intraspecific subpopulations derived from hybridiza-
tion between domesticated and wild barley (Hordeum vulgare (cv.
Barke)9Hordeum vulgare subsp. spontaneum). We investigate
how recombination rate variation directly affects genomic pat-
terns of introgression. By comparing genome-wide recombina-
tion landscapes among the 25 subpopulations, we observe
quantitative variation in the total number of crossovers as well as
crossover patterning, with an increase across pericentromeric
regions in high- vs low-recombining subpopulations. We identify
the meiosis-specific a-kleising cohesin subunit REC8 as a puta-
tive genome-wide recombination rate modifier. Utilizing
genome-wide recombination rate variation among the 25 sub-
populations, we provide empirical evidence regarding how the
size and distribution of introgressions is shaped by recombina-
tion. Together, our study links variation in recombination rate to
allelic variation in a meiotic gene involved in tethering chromatin
loops to the chromosome axis and provides experimental evi-
dence for the relationship between recombination rate variation
and patterns of introgression.

Materials and Methods

Plant material and SNP array genotyping

In this study, we used a large intraspecific hybrid population
(HEB-25) derived from a cross between the domesticated barley
cultivar ‘Barke’ (Hordeum vulgare L.) and 25 wild barley
(Hordeum vulgare subsp. spontaneum (K. Koch) Thell) accessions
previously developed by Maurer et al. (2015). This population is
composed of 25 subpopulations with between 21 and 72 BC1S3:8
lines per subpopulation (i.e. one backcross to the domesticated
barley parent and eight generations of selfing), resulting in a total
of 1340 lines. Plants were grown under field conditions from
2011 until 2018 in central Germany (Halle (Saale), 51°29045.6″
N, 11°59040.2″E). DNA of 12 pooled individual plants of each
BC1S3:8 line was extracted using the Qiagen BioSprint 96 DNA
Plant Kit and a BioSprint workstation following the manufac-
turer’s instructions. Single nucleotide polymorphism (SNP)
genotyping was performed by TraitGenetics (Gatersleben, Ger-
many) for all 1340 lines on the barley 50k iSelect SNP array
(Bayer et al., 2017). SNP markers that did not meet the quality
criteria (polymorphic in at least one HEB family, < 10% failure
rate, < 12.5% heterozygous calls) were removed from the dataset.
Furthermore, 256 redundant SNPs were removed as they showed
the exact same segregation among all HEB lines, indicating that
they were in complete linkage disequilibrium (LD). Only one of
these markers was kept. SNP raw data were deposited on e!DAL
under the following https://doi.org/10.5447/ipk/2019/20 (Arend
et al., 2014; Maurer & Pillen, 2019). Physical map positions of
all SNPs according to the most recent reference sequence of the
barley genome (TRITEX Morex V2) (Monat et al., 2019) were
downloaded from https://ics.hutton.ac.uk/50k/.

Crossover counting, recombination landscape and
introgression analysis

All the following analyses were done using basic functions of the
R statistical environment if not stated otherwise (R Core Team,
https://www.rproject.org/contributors.html). To count
crossovers, the entire SNP matrix containing raw data was first
converted into numerical format, where the ‘Barke’ allele is coded
as 0, heterozygous alleles are coded as 1 and wild barley alleles are
coded as 2. The entire SNP matrix was then split into subpopula-
tion matrices from which subpopulation-specific monomorphic
markers were removed, as well as markers with missing values.
Subpopulation SNP matrices were further filtered against a
minor allele frequency of <0.1. Finally, to avoid false positive
crossover counts caused by small structural variations or falsely
assigned physical positions, we aggregated SNPs by counting the
most common allele in sliding windows of a size of 20 consecu-
tive SNPs using the SlidingWindow() function of the EVOBIR

package (Blackmon et al., 2015) of the R statistical environment.
Thereby, single markers giving rise to suspicious double
crossovers were removed. Using the aggregated SNP matrix of
each subpopulation, crossovers were then counted as changes in
the allelic state along the physical length of the chromosome. The
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total crossover count (TCO) of each line was used to calculate
the mean crossover number per subpopulation, and lines showing
more than 60 crossovers (37 out of 1340 lines) were removed as
outliers. Outliers were removed based on strong deviations from
the population mean, that is outside the three-fold interquartile
range. The 37 outliers showed a mean TCO of 103.19 compared
to a population mean of 24.38, and an outlier-pruned population
mean of 22.17 (Supporting Information Fig. S2). ANOVA was
performed to test for differences among the entire population
and Tukey’s honest significant difference (HSD) test was per-
formed to test for multiple pairwise differences between subpop-
ulations. Crossover data are summarized in Dataset S1. To
analyse the recombination landscape of each subpopulation, we
summarized recombination frequencies between pairs of SNPs in
1Mb intervals multiplied by a factor of 100 to obtain cMMb�1

values along the physical length of the chromosome. Our ability
to detect recombination events decreased with each generation
due to a decrease in heterozygosity of 50% per generation caused
by self-pollination. Using this approach, we systematically under-
estimated the true per-generation recombination rate, because
individuals of our HEB-25 population were genotyped after nine
rounds of meiosis. Mitotic recombination events in the tissue
which gave rise to meiocytes could potentially have contributed
to the total number of crossovers detected as well. Therefore,
recombination rates reported here should not be interpreted as a
per-generation recombination rate. Recombination landscapes of
each chromosome of each subpopulation were visualized by plot-
ting recombination rates in 1Mb intervals (cMMb�1) against
their physical position. To compare the genome-wide recombina-
tion landscapes of selected subpopulations, we calculated the
mean recombination rate across all seven chromosomes in relative
chromosomal intervals of 0.5%, where the physical length of each
chromosome was normalized to range from 0 to 100%. We then
split the relative length of the chromosome into three intervals
(e.g. 0–25%, 25–75%, 75–100%) and used cMMb�1 values in
0.5% intervals to perform Welch’s two-sample t-tests to infer sig-
nificant differences between subpopulations. The same approach
was used to compare SNP densities between subpopulations, for
which SNPs were counted in 0.5% intervals (Fig. S1).

To analyse introgression size and distribution, we used the
same SNP matrix as for counting crossovers. Introgressions were
detected as contiguous homozygous wild barley alleles or
heterozygous positions along the chromosome. The mean dis-
tance between the first or last marker position of each contiguous
region and the previous or next marker, respectively, defined the
size of an introgression, and the mean of the first and last marker
defined its central position. We calculated Spearman’s rank corre-
lation coefficient (⍴) between the size of an introgression (Mb)
and the local recombination rate (LRR, cMMb�1) in a given
0.5% chromosomal interval to analyse the correlation between
introgression size and LRR. Similarly, we calculated Spearman’s
rank correlation coefficient (⍴) between genome-wide mean
introgression size (Mb) and GWRR (cMMb�1). GWRR was
calculated by summarizing recombination frequencies between
marker pairs along each chromosome (M, cM =M9 100) and
dividing by a total genome size of 5300Mb.

Genome-wide association analysis

Genome-wide association analysis was performed using the total
number of crossovers accumulated over nine meiotic divisions as
a quantitative phenotypic trait. SNPs which were monomorphic
in a specific subpopulation were coded as 0 (i.e. domesticated
‘Barke’ allele). Missing SNPs (0.77% of all SNPs) were imputed
using the mean score of polymorphic flanking markers (matrix E
(Maurer & Pillen, 2019), https://doi.org/10.5447/ipk/2019/20).

The scan for genome-wide marker trait associations followed a
robust three-step procedure performed in SAS 9.4 (SAS Institute
Inc., Cary, NC, USA). (1) The whole set of SNPs was included
in a multiple linear regression model to find potentially associ-
ated SNPs based on stepwise selection with SAS PROC GLMSE-

LECT. For this, 80% of phenotype data were randomly assigned
to the prediction set and 20% were assigned to the validation set.
SNPs were consecutively included in the final model as long as
they were able to decrease the average square error (ASE) of phe-
notype prediction in the validation set. This procedure was
repeated 100 times with independent random assignments and
the number of times an SNP was included in the final model was
recorded. Only those SNPs that were included in more than one
out of 100 models were treated as robust enough to be included
in the second step. (2) A second model fitting was performed
with the SNPs selected in step 1. This model included the whole
phenotype dataset and stepwise selection of SNPs based on mini-
mizing the Schwarz Bayesian Criterion (SBC (Schwarz, 1978))
with SAS PROC GLMSELECT. The list of selected SNPs, hereafter
called cofactors, was then included in the third step. (3) Each sin-
gle SNP was finally screened for significance by multiple linear
regression with the cofactors modelled in the background with
SAS PROC REG.

Additionally, we applied a second layer of cross-validation to
remove the effects of local recombination rate modifiers (Jordan
et al., 2018). Briefly, we screened only markers of a given chro-
mosome for associations with the number of crossovers on the
remaining chromosomes based on the procedure mentioned
above. Using this approach, the effects of local recombination
rate variation are reduced and trans-acting recombination rate
modifiers are identified.

Exome capture data analysis

Exome capture reads first passed a quality enrichment process to
remove sequence adapter remains and low-quality sequences
using TRIMGALORE (https://github.com/FelixKrueger/TrimGa
lore). Subsequently, quality-improved reads were aligned with
BWA MEM (Li, 2013) to the barley genome reference sequence
(version 2) of cv Morex (Monat et al., 2019). From the con-
structed alignments read duplicates were removed by SAMTOOLS

(Li et al., 2009). We then merged the 1420 HEB-25 lines across
the 25 families into a single BAM file. This file was used for SNP
calling using FREEBAYES (Garrison & Marth, 2012) applying
parameter ‘--min-alternate-count 3 --min-alternate-fraction 0.05
--min-coverage 10 --no-complex --dont-left-align-indels --no-
population-priors’. High-quality SNPs were filtered by BCFTOOLS
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(Li, 2011) in which each SNP is required to have a vcf quality
score above 1000. The respective REC8 gene
(HORVU.MOREX.r2.1HG0075790) was extracted using BED-

TOOLS ‘intersect’ (Quinlan & Hall, 2010). Constructed align-
ment files and the matrix of filtered SNPs (Data Citation
DOI_1) from 1420 HEB-25 lines are available for the REC8
candidate gene in the PGP repository (Arend et al., 2016).
Respective DOIs were generated using E!DAL (Arend et al.,
2014).

Candidate gene analysis

Candidate gene analysis was performed by manually screening all
annotated high-confidence genes in a � 0.5 cM window sur-
rounding the quantitative trait locus (QTL). Genetic map posi-
tions were derived from Maurer et al. (2015). Furthermore,
orthologues of known meiotic genes described by Mercier et al.
(2015) were identified using PLAZA (https://bioinformatics.psb.
ugent.be/plaza/versions/plaza_v4_5_monocots/) (Vandepoele
et al., 2013; Van Bel et al., 2018). The physical positions of puta-
tive orthologues of known meiotic genes were used to assist can-
didate gene analysis. A candidate gene located within the 0.5 cM
window surrounding the QTL was tested for allelic variation
within the entire population using SNPs identified by exome cap-
ture. SNPs within the candidate gene were then tested for their
association with the crossover phenotype, assuming that the wild
barley allele is dominant in the case of rare heterozygous geno-
types. First, a one-way ANOVA was performed followed by
Tukey’s honest significant difference test to analyse the effects of
each SNP. Gene models were retrieved from the EnsemblPlants
database (Release 46) (Cunningham et al., 2019). Gene expres-
sion data were retrieved from BARLEX (The Barley Genome
Explorer; Colmsee et al., 2015; Mascher et al., 2017).

Results and discussion

Recombination rate variation in 25 intraspecific hybrid
populations between wild and domesticated barley

To explore natural variation in meiotic recombination rates, we
took advantage of the barley population HEB-25 derived from a
cross between one domesticated barley cultivar (‘Barke’) and 25
wild barley accessions (Badr et al., 2000; Maurer et al., 2015).
Each of the 25 subpopulations was propagated for eight genera-
tions (BC11S3:8) via self-pollination resulting in a total of nine
meiotic divisions over the course of which recombination events
were accumulated. A total of 1340 lines (21–72 lines per subpop-
ulation) were subjected to high-resolution SNP genotyping on
the barley 50k iSelect array, yielding a total of 32 120 physically
mapped SNPs (Bayer et al., 2017; Monat et al., 2019). After
removing subpopulation-specific monomorphic SNPs and SNPs
with a minor allele frequency of <0.1, a total set of 7174–11 246
SNPs with a mean inter-SNP distance of 386–669 kb was used
to measure meiotic recombination events.

We measured an average of 22.17 crossovers (range 18.7–25.6)
across all subpopulations, indicating quantitative variation in

total crossover number almost resembling a normal distribution
(Fig. 1b, Shapiro–Wilk normality test, P = 0.043). The average
number of crossovers detected in population HEB-25 seemed
lower than would be expected over nine meiotic divisions assum-
ing an average of 10 crossovers per generation accumulated over
nine meiotic divisions (Phillips et al., 2015; Dreissig et al., 2017).
However, as heterozygosity decreased by 50% per generation in
inbreeding barley (Morrell et al., 2003; Abdel-Ghani et al.,
2004), so did our ability to detect crossovers.

Given the difference of 6.9 crossovers between the two sub-
populations at the ends of the scale, we looked at each subpopula-
tion’s recombination landscape to understand the nature of this
increase in crossover number (Tukey’s HSD test, P = 0.0068,
Fig. S3). Interestingly, comparing recombination rates
(cMMb�1) between the two most extreme subpopulations 23
and 24 along each chromosome showed a tendency towards an
increase across low-recombining pericentromeric regions as well
as distal subtelomeric regions in subpopulation 23 (Fig. 2a,c).
This difference was not explained by a higher number of SNPs in
one population, nor did we observe a correlation between differ-
ences in SNP number and the number of crossovers measured
across the entire population (Fig. 2e,f; Pearson’s r =�0.04,
P = 0.08). Our observation was confirmed by summarizing mean
recombination rates (cMMb�1) across the low-recombining
pericentromeric interval (25–75%) of all seven barley chromo-
somes, showing a difference of 0.13 cMMb�1 (Welch’s two-sam-
ple t-test, P = 0.042). Again, this increase in recombination rate
did not stem from a difference in SNP number (Welch’s two-
sample t-test, P = 0.513, difference in mean SNP number = 0.3
across the 25–75% interval). No significant increase was observed
in the 75–100% distal region (+ 0.319 cMMb�1, Welch’s two-
sample t-test, P = 0.089), and in the 0–25% region
(+ 0.27 cMMb�1, P = 0.28).

Regarding the underlying causes, a multitude of genetic, epige-
netic and structural factors influencing recombination rates have
been described in various organisms. Allelic variation in pro-
crossover factors, that is the ubiquitin E3 ligase HEI10
(Ziolkowski et al., 2017), or simultaneous mutation of anti-
crossover factors RECQ4a, RECQ4b and combination with
increased HEI10 copy number (Serra et al., 2018), was shown to
result in a massive increase in recombination rate in distal chro-
mosomal regions in Arabidopsis, but not across the pericen-
tromere. Between closely related Drosophila species, allelic
variation in a single gene (MEI17/MEI18) explained large differ-
ences in both the rate and the patterning of recombination events
(Brand et al., 2018). In plants, a shift in the patterning of recom-
bination events was shown to be linked to DNA methylation in
non-CG sequence contexts and histone 3 lysine 9 dimethylation
(H3K9me) (Underwood et al., 2018). A possibly confounding
factor in population HEB-25 may be structural variations, as
these were shown to affect crossover patterning at multiple scales,
that is SNPs inhibiting crossovers at base-pair resolution, juxta-
positioning of homozygous and heterozygous regions shifting
crossovers into heterozygous regions, and inversions inhibiting
crossovers at the megabase scale (Borts & Haber, 1987; Drouaud
et al., 2006; Ziolkowski et al., 2015; Rowan et al., 2019; Jiao &
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Schneeberger, 2020). As our SNP array data did not allow us to
identify structural variations such as inversions, we instead
focused on the possibly confounding effects of SNP density and
total number of SNPs. A higher number of SNPs may simply
increase the probability of detecting crossovers. Between the two
populations showing the highest and lowest number of
crossovers, the total number of SNPs was almost identical
(11 125 and 11 294, respectively). Across the entire population,
we did not observe a correlation between differences in SNP
number and crossovers (Pearson’s r =� 0.04, P = 0.85, Fig. 2f).
There was, however, a strong correlation between SNP density
and recombination frequency at the chromosome level (Fig. S4).
This is in strong agreement with previous studies reporting posi-
tive correlations between SNP density, recombination frequency
and gene density in other small- or large-genome plants (Mascher
et al., 2017; Darrier et al., 2017; Jordan et al., 2018; Kianian
et al., 2018; Gardiner et al., 2019; Rowan et al., 2019). Given the

suppressive effects of chromosomal inversions, their rather low
frequency and small size (few Mb) previously shown in barley
make them unlikely to contribute to genome-wide differences in
recombination patterning (Konishi & Linde-Laursen, 1988;
Keilwagen et al., 2019). Another possibly confounding factor is
the environment. Because population HEB-25 was propagated
under field conditions, differences in flowering time may result
in meiosis taking place at different temperatures, which would
affect recombination rates (Phillips et al., 2015; Lloyd et al.,
2018). To test this, we looked at the correlation between total
crossover number and flowering time data reported by (Maurer
et al., 2015). The absence of a correlation between flowering time
and crossover number indicated that differences in flowering time
probably did not result in meiosis taking place at extremely dif-
ferent temperatures (Pearson’s r =� 0.048, P = 0.084, Fig. S5).

Although the effects of structural variations and environmental
conditions could not be fully excluded in our population, we did
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Fig. 2 Comparison of recombination landscapes between two extreme HEB-25 subpopulations. (a) Comparison of chromosomal recombination landscapes
(1H to 7H) between high-recombining (red) and low-recombining (blue) subpopulations (subpopulation 23 vs 24, Hordeum vulgare L.9Hordeum vulgare
subsp. spontaneum (K. Koch) Thell). (b) Genome-wide mean recombination rate of the high- and low-recombining subpopulations showing a genome-
wide increase across pericentromeric regions. (c) Genome-wide mean SNP density of high- and low-recombining subpopulations. (d) Total number of
unfiltered SNPs of each subpopulation. (e) Correlation between total crossover number and total number of unfiltered SNPs for each subpopulation
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consider the presence of trans-acting recombination rate modi-
fiers.

Identification of trans-acting recombination rate modifiers

To identify genetically determined recombination rate modifiers
in our intraspecific hybrid population, we performed a genome-
wide association study (GWAS). We utilized quantitative varia-
tion in the total number of crossovers per line and associated
these with the genotype of each line. Using this approach, we
were associating the number of crossovers accumulated over nine
meiotic divisions with the genotypic constitution of the final gen-
eration (BC1S3:8), which did not allow us to determine whether a
recombination rate modifier was present/absent or homozygous/
heterozygous throughout previous meiotic divisions. Therefore,
as already argued by others, we are systematically underestimating
the effects of recombination rate modifiers and are only detecting
dominant modifiers with strong effects (Esch et al., 2007; Jordan
et al., 2018; Gardiner et al., 2019). Furthermore, to identify
trans-acting recombination rate modifiers rather than identifying
common recombination breakpoints, we applied a cross-valida-
tion step in which SNPs of a given chromosome were only
screened for associations with the number of crossovers on the
remaining six chromosomes (Jordan et al., 2018). Finally, only
those QTLs retained after cross-validation were considered trans-
acting recombination rate modifiers. Throughout both types of
cross-validation (Maurer et al., 2015; Jordan et al., 2018) we con-
sistently detected one significant QTL on chromosome 1H
(Fig. 3, �log10 P = 9.1, �log10 Bonferroni threshold = 6.5) with
an effect size of the wild barley allele of + 42% (i.e. + 7.84 total
crossovers, minor allele frequency of 0.03) that explained 3% of
the total variation observed across the entire population (hereafter
named 1H.recQTL1, Dataset S2).

By screening a total of 37 annotated high-confidence genes
(Mascher et al., 2017; Monat et al., 2019) in a � 0.5 cM
(2 243 219 bp) window surrounding 1H.recQTL1, we identified
the meiosis-specific kleisin cohesin subunit REC8 as a candidate
gene genetically linked within 0.3 cM and physically separated by
1.8Mb (Dataset S3). Hordeum vulgare REC8 (HvREC8) exists in
two copies, HORVU.MOREX.r2.1HG0050790 and
HORVU.MOREX.r2.1HG0075790, both located on chromo-
some 1H at 422 and 513Mb, respectively. However, only the
latter gene is closely linked to the significantly associated SNP
within a distance of 1.8 Mb. Both REC8 genes show expression
peaks in developing inflorescences (1–1.5 cm) and high similarity
to REC8 orthologues in related Triticeae species (Figs S6, S7;
Colmsee et al., 2015; Beier et al., 2017; Mascher et al., 2017). An
essential prerequisite for a putative candidate gene is to show
allelic variation within the population. Otherwise, if all individu-
als harboured the same variant of the gene, it would be unlikely
to be the cause of recombination rate variation. Therefore, we
used exome capture data of the entire population to search for
SNPs within the presumably causative HvREC8 paralogue (i.e.
HORVU.MOREX.r2.1HG0075790). We identified a total of
five high-confidence SNPs located within two exons and two
introns, which differentiate the HvREC8 variant of the

domesticated cultivar from those of the 25 wild barley accessions
(Fig. 3b,c). By looking at the effects of each SNP on total
crossover number, we identified three out of five SNPs showing a
significant effect on total crossover number (Fig. 3d, Tukey’s
HSD P < 0.05). Interestingly, both intron variants (SNP_2 and
SNP_5) were associated with an increase in crossover number
(+ 11.8 and + 6.8%, respectively) and occurred exclusively in dif-
ferent subpopulations (Fig. 3c). These intron variants may affect
mRNA splicing and could be of regulatory function (Pagani &
Baralle, 2004). In cattle, REC8 intron variants were also identi-
fied as trans-acting recombination rate modifiers, suggesting a
regulatory mode of action potentially conserved across kingdoms
(Sandor et al., 2012). Both intron variants seem to be located in
conserved intron regions in related Triticeae species (Fig. S7). By
contrast, a synonymous SNP (SNP_3) located in exon 9 of
HvREC8 was associated with a reduction in crossover number
(�24.3 %) and occurred in subpopulation 15 only (Fig. 3c). This
SNP is located in a region where the barley genomic sequence
differs from those of related Triticeae species. Whether these
SNPs have a causative role in recombination rate variation or
whether other not yet identified polymorphisms play a role can-
not be answered here and remains to be addressed in future stud-
ies. However, our data support the idea of different HvREC8
variants being present in wild barley.

Regarding the function of REC8, it was recently shown that
REC8 occupancy is enriched in gene bodies, exons, GC-rich
sequences and H3K27me3-modified genes in Arabidopsis
(Lambing et al., 2020). REC8 is involved in tethering chromatin
loops to the chromosome axis and its abundance is highest in
pericentromeric regions and correlates with crossover suppression
(Kugou et al., 2009; Ito et al., 2014; Sun et al., 2015; Folco et al.,
2017; Patel et al., 2019; Schalbetter et al., 2019; K€ohler et al.,
2020; Lambing et al., 2020). REC8 was also identified in sheep,
cattle and red deer as a factor mediating quantitative differences
in genome-wide recombination rates (Sandor et al., 2012; John-
ston et al., 2016, 2018). Interestingly, Sandor et al. (2012) also
identified REC8 intron variants associated with recombination
rate variation, suggesting alternative regulation of REC8 alleles as
the causative agent. A different variant of REC8, altered gene
expression or protein structure may have an effect on chromatin
loop structure and therefore result in a pericentromeric region
that is more permissive for crossovers to occur, as is evident in
population HEB-25.

Patterns of introgression are shaped by local and genome-
wide recombination rate variation

In intra- or interspecific hybrids, the minor parent genome (i.e.
the parental genome being introgressed) may introduce beneficial
or deleterious alleles into the major parent genome (Brown et al.,
1989; Martin & Jiggins, 2017; Schumer et al., 2018). Linkage
drag (i.e. the simultaneous introgression of deleterious alleles
along with beneficial alleles) is a result of alleles being genetically
linked by low local recombination rates, a universal genetic phe-
nomenon observed across kingdoms (Harris & Nielsen, 2016;
Juric et al., 2016). It is of great hindrance in plant breeding and
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HvREC8
HORVU.MOREX.r2.1HG0075790 (TRITEX Morex V2)

7.032 kb513,869,749 bp 513,876,780 bp
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(513,873,353 bp) 
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(513,873,423 bp)
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(513,875,271 bp)
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(513,875,285 bp)
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(513,875,979 bp)

TT GG TT AA AA Barke (domesticated)
TT GG TT AA AA HID003 | subpop. 1
TC GA TT AA AA HID004 | subpop. 2
TT GG TT AA TT HID055 | subpop. 3
TT GA TT AA AA HID062 | subpop. 4
TT GG TT AA AT HID065 | subpop. 5
TT GG TT AG AT HID069 | subpop. 6
TT GA TT AA AA HID080 | subpop. 7
TT GG TT AA AA HID099 | subpop. 8
TT GG TT AA AA HID101 | subpop. 9
TT GG TT AA TT HID102 | subpop. 10
TT GG TT AA AA HID109 | subpop. 11
TT GG TT AA AA HID114 | subpop. 12
TT GG TT AA AA HID138 | subpop. 13
TT GG TT AA AA HID140 | subpop. 14
TT GG TC AA TT HID144 | subpop. 15
TT AA TT AA AA HID219 | subpop. 16
TT GG TT AA TT HID249 | subpop. 17
TT GG TT AA TT HID270 | subpop. 18
CC AA TT AA AA HID294 | subpop. 19
TT GG TT AA AA HID295 | subpop. 20
TT AA TT AA AA HID357 | subpop. 21
TT GG TT GG AA HID358 | subpop. 22
TT GG TT AA TT HID359 | subpop. 23
TT GG TT AA AA HID380 | subpop. 24
TT GG TT AA AA HID386 | subpop. 25

0.012 0.032 0.006 0.016 0.069 wild allele frequency

(b)

(c)

(d)

*

*
*

1H.recQTL1
(a)

Fig. 3 Genome-wide association analysis for trans-acting recombination rate modifiers. (a) Manhattan-plot showing the trans-acting recombination rate
QTL 1H.recQTL1 (black dot outlined in red) identified after cross-validation (�log10 P = 9.1, effect size = + 42% (i.e. + 7.8 crossovers), r2 = 0.03, minor
allele frequency = 0.03). The Bonferroni threshold (6.507 =�log10(0.01/32,120)) is shown as a red line. (b) Exon and intron structure of HvREC8
(HORVU.MOREX.r2.1HG0075790 (TRITEX Morex V2 assembly)). Exons are shown as large black rectangles. Introns are represented by a black line
between exons. The 30-untranslated region is shown as a white rectangle. (c) Positions and alleles of five SNPs within HvREC8 identified among the 26
parents of the population. Alleles which deviate from the domesticated barley line are highlighted in colour. Allele frequencies of each SNP across the entire
population are shown below. (d) Effects of five individual SNPs of HvREC8 (HORVU.MOREX.r2.1HG0075790 (TRITEX Morex V2 assembly)) on total
crossover number compared to the domesticated barley allele (difference in per cent). Asterisks indicate significant effects determined by ANOVA followed
by Tukey’s honest significant difference test (P < 0.05).
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plays an important role in the evolution of hybrid genomes
(Brown et al., 1989; Schumer et al., 2018; Martin et al., 2019).
However, there is little empirical data exploring the relationship
between recombination rates and patterns of introgression in
intraspecific hybrid populations.

Given the amount of local and genome-wide recombination
rate variation we observed in population HEB-25, we investi-
gated how the size and position of introgressions were shaped
over relatively few generations. Wild barley (minor parent) intro-
gressions into the domesticated parent (major parent) genome
were detected as contiguous wild barley alleles along the chromo-
some. We detected a total of 19 635 wild barley introgressions of
varying size, ranging from < 1 to 670Mb (Fig. S8). By plotting
the size of each introgression against its position on the chromo-
some, we observed a striking relationship between local recombi-
nation rate and introgression size (Figs 4, 5a,b; Spearman’s rank
correlation ⍴ =� 0.9, P < 2.29 10�6).

As one would intuitively assume, introgressions were smaller
in regions of high recombination and larger in regions of low
recombination. Heterozygous introgressions were generally
smaller than homozygous introgressions, demonstrating that mei-
otic recombination events were continuously shrinking heterozy-
gous regions until fixed as homozygous regions. Along the
chromosome, introgressions in distal high-recombining regions
ranged from < 1 to 200Mb in size, whereas most introgressions
in pericentromeric low-recombining regions ranged from 400 to

600Mb. This shows how patterns of introgression were directly
shaped by local recombination rate in the absence of selection. As
a consequence, naturally occurring introgressions between wild
and domesticated species would exhibit varying deleterious bur-
dens on the major parent genome depending on local recombina-
tion rate. In strictly self-fertilizing species, such as barley,
introgressions are rapidly fixed in a homozygous state and thereby
permanently fixed in size as well. This is directly relevant to map-
ping genes or QTLs via LD (LD-mapping), as large introgres-
sions in low-recombining regions do not permit accurate
mapping.

In addition to local recombination rate variation, we also
observed genome-wide differences. A genome-wide increase in
recombination rate in a given population would predict smaller
introgressions and thereby reduced linkage drag and increase the
efficiency of selection (Martin & Jiggins, 2017). We summarized
the genome-wide recombination rate (cMMb�1) of each sub-
population and compared it to its average introgression size
(Fig. 5c,d).

However, we did not detect strong correlations between
genome-wide recombination rate and mean introgression size,
and only heterozygous introgressions were significantly correlated
with the genome-wide recombination rate (Spearman’s rank cor-
relation ⍴ =�0.41, P = 0.042). This probably reflects that local
recombination rate variation along the chromosome is usually
greater than genome-wide recombination rate variation between
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Fig. 4 Relationship between wild barley introgressions and recombination rates in intraspecific hybrid populations. (a) Mean recombination rate (cMMb�1,
y-axis) of the entire population along the physical length of each chromosome (Mb, x-axis). (b, c) Size (Mb, y-axis) and position (Mb, x-axis) of
heterozygous (b) and homozygous (c) wild barley introgressions for each chromosome. Each dot represents the centre of an introgression. Centromere
positions and nucleolus organizer regions (NORs) are indicated by dashed and dotted lines, respectively.
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subpopulations (i.e. 0–8 cMMb�1 along the chromosome and
0.35–0.55 cMMb�1 between subpopulations). As such, rather
small differences in genome-wide recombination rate do not
strongly explain differences in genome-wide mean introgression
size.

Taken together, we conclude that the effects of local recombi-
nation rate variation on patterns of introgression are stronger
than those exerted by genome-wide differences, at least in this
experimental population. This is expected due to stronger recom-
bination rate variation along the chromosome than between indi-
viduals or populations. However, as we did observe similar
tendencies for the effects of local and genome-wide recombina-
tion rate variation on patterns of introgression, we have been able
to provide empirical evidence for a genomic phenomenon that
was previously largely supported by intuition, rather than experi-
mental data.

Acknowledgements

We are very grateful to Florian Schnaithmann, Vera Draba,
Roswitha Ende, Jana M€uglitz, Diana Rarisch, Helga S€angerlaub,
Brigitte Schr€oder, Bernd Kollmorgen, Markus Hinz and all stu-
dent assistants who were involved in developing the HEB-25
population. We thank Raphael Mercier for sharing a list of mei-
otic genes described in Arabidopsis thaliana. This work was sup-
ported financially through ERA-CAPS (Expanding the European
Research Area in Molecular Plant Sciences) via the German
Research Foundation (DFG, grant Pi339/8-1 to KP) and the UK
Biotechnology and Biological Sciences Research Council
(BBSRC, grant BB/ M004856/1 to AJF), and via the DFG prior-
ity programme 1530: ‘Flowering time control – from natural
variation to crop improvement’ (grants Pi339/7-1 and Pi339/7-2
to KP). Open access funding was enabled and organized by

R = − 0.9 , P < 2.2e−16

0

100

200

300

400

0 1 2 3
Local recombination rate (cM MB–1)

Lo
ca

l h
et

er
oz

yg
ou

s 
 in

tro
gr

es
si

on
 s

iz
e 

(M
b)

(a)

R = − 0.9 , P < 2.2e−16

0

200

400

600

0 1 2 3
Local recombination rate (cM MB–1)

Lo
ca

l h
om

oz
yg

ou
s 

 in
tro

gr
es

si
on

 s
iz

e 
(M

b)

(b)

R = − 0.41 , P = 0.042

30

40

50

0.35 0.40 0.45 0.50 0.55
Genome-wide

 recombination rate (cM Mb–1)

G
en

om
e-

w
id

e 
he

te
ro

zy
go

us
 

 in
tro

gr
es

si
on

 s
iz

e 
(M

b)

(c)

R = − 0.093 , P = 0.66

90

100

110

120

130

0.35 0.40 0.45 0.50 0.55
Genome-wide

 recombination rate (cM Mb–1)

G
en

om
e-

w
id

e 
ho

m
oz

yg
ou

s 
 in

tro
gr

es
si

on
 s

iz
e 

(M
b)

(d)

Fig. 5 Correlation between recombination rate and introgression size. (a, b) Correlation between size of heterozygous (a) or homozygous (b) wild barley
introgressions (Mb, y-axis) and local recombination rate (cMMb�1, x-axis) determined in relative chromosomal intervals of 0.5%. (c, d) Correlation
between genome-wide recombination rate (cMMb�1, x-axis) and genome-wide mean size (Mb, y-axis) of heterozygous (c) or homozygous (d)
introgressions for each subpopulation.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Research 9



Project DEAL. The authors declare that they have no competing
interests.

Author contributions

SD analysed the data regarding recombination, candidate genes
and introgression, and conceptualized and wrote the manuscript.
AM analysed raw SNP data, performed the GWAS, and wrote
and edited the manuscript. RS, LM and AJF collected the exome
capture data and edited the manuscript. TS analysed the exome
capture data, and wrote and edited the manuscript. KP coordi-
nated the project and edited the manuscript. All authors read and
approved the final manuscript.

Data availability

Plant material is available from Klaus Pillen (klaus.pillen@
landw.uni-halle.de) upon request. Genotype data have been
deposited on e!DAL (https://doi.org/10.5447/ipk/2019/20).
Crossover data are available in Dataset S1. Exome capture data of
the rec8 candidate gene have been deposited on e!DAL (prelimi-
nary link for Data Citation DOI 1: https://doi.ipk-gaterslebe
n.de/DOI/f388f054-8d33-4cc7-9d45-6cf6ee34a872/4db2694f-
5962-4fd1-8661-eeaf0ed1d57d/2/1847940088). GWAS results
are available in Dataset S2. Genes surrounding 1H.recQTL1 and
relative expression values across 16 tissues are provided in Dataset
S3.

ORCID

Steven Dreissig https://orcid.org/0000-0002-4766-9698
Andreas Maurer https://orcid.org/0000-0002-2916-7475
Klaus Pillen https://orcid.org/0000-0003-4646-6351
Thomas Schmutzer https://orcid.org/0000-0003-1073-6719

References

Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH. 2004. Estimating the

outcrossing rate of barley landraces and wild barley populations collected from

ecologically different regions of Jordan. Theoretical and Applied Genetics. 109:
588–595.

Arend D, Junker A, Scholz U, Sch€uler D, Wylie J, Lange M. 2016. PGP

repository: a plant phenomics and genomics data publication infrastructure.

Database 2016: baw033.
Arend D, Lange M, Chen J, Colmsee C, Flemming S, Hecht D, Scholz U. 2014.

e!DAL – a framework to store, share and publish research data. BMC
Bioinformatics 15: 214.

Arnold BJ, Lahner B, DaCosta JM, Weisman CM, Hollister JD, Salt DE,

Bomblies K, Yant L. 2016. Borrowed alleles and convergence in serpentine

adaptation. Proceedings of the National Academy of Sciences, USA 113: 8320–
8325.

Badr A, M€uller K, Sch€afer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi

C, Rohde W, Salamini F. 2000.On the origin and domestication history of

barley (Hordeum vulgare).Molecular Biology and Evolution 17: 499–510.
Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J,

Ramsay L, Russell J, Shaw PD, Thomas W et al. 2017. Development and

evaluation of a barley 50k iSelect SNP array. Frontiers in Plant Science 8: 1792.

Beier S, Himmelbach A, Colmsee C, Zhang X-Q, Barrero RA, Zhang Q, Li L,

Bayer M, Bolser D, Taudien S et al. 2017. Construction of a map-based

reference genome sequence for barley, Hordeum vulgare L. Scientific Data 4:
170044.

Blackmon H, Adams RH, Anya. 2015. EvobiR: Tools for comparative analyses and
teaching evolutionary biology, v.1.1. Zenodo. [WWW document] doi: 10.5281/

zenodo.30938.

B€orner GV, Kleckner N, Hunter N. 2004. Crossover/noncrossover

differentiation, synaptonemal complex formation, and regulatory surveillance

at the leptotene/zygotene transition of meiosis. Cell 117: 29–45.
Borts RH, Haber JE. 1987.Meiotic recombination in yeast: alteration by

multiple heterozygosities. Science 237: 1459–1465.
Brand CL, Cattani MV, Kingan SB, Landeen EL, Presgraves DC. 2018.

Molecular evolution at a meiosis gene mediates species differences in the rate

and patterning of recombination. Current Biology 28: 1289–1295.
Brown AHD, Lawrence GJ, Jenkin M, Douglass J, Gregory E. 1989. Linkage

drag in backcross breeding in barley. Journal of Heredity 80: 234–239.
Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ,

Ziolkowski PA, Copenhaver GP, Franklin FCH et al. 2013. Arabidopsis
meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene

promoters. Nature Genetics 45: 1327–1336.
Choi K, Zhao X, Tock AJ, Lambing C, Underwood CJ, Hardcastle TJ, Serra H,

Kim J, Cho HS, Kim J et al. 2018. Nucleosomes and DNA methylation shape

meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory

regions. Genome Research. 28: 532–546.
Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher

M. 2015. BARLEX – the barley draft genome explorer.Molecular Plant 8:
964–966.

Corpet F. 1988.Multiple sequence alignment with hierarchical clustering.

Nucleic Acids Research 16: 10881–10890.
Crown KN, Miller DE, Sekelsky J, Hawley RS. 2018. Local inversion

heterozygosity alters recombination throughout the genome. Current Biology
28: 2984–2990.

Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM,

Bennett R, Bhai J, Billis K, Boddu S et al. 2019. Ensembl 2019. Nucleic Acids
Research 47: D745–D751.

Darrier B, Rimbert H, Balfourier F, Pingault L, Josselin A-A, Servin B, Navarro

J, Choulet F, Paux E, Sourdille P. 2017.High-resolution mapping of crossover

events in the hexaploid wheat genome suggests a universal recombination

mechanism. Genetics 206: 1373–1388.
Dreissig S, Fuchs J, Himmelbach A, Mascher M, Houben A. 2017. Sequencing

of single pollen nuclei reveals meiotic recombination events at megabase

resolution and circumvents segregation distortion caused by postmeiotic

processes. Frontiers in Plant Science. 8: 1620.
Dreissig S, Mascher M, Heckmann S. 2019. Variation in recombination rate is

shaped by domestication and environmental conditions in barley.Molecular
Biology and Evolution. 36: 2029–2039.

Drouaud J, Camilleri C, Bourguignon P-Y, Canaguier A, B�erard A, Vezon D,

Giancola S, Brunel D, Colot V, Prum B et al. 2006. Variation in crossing-over

rates across chromosome 4 of Arabidopsis thaliana reveals the presence of
meiotic recombination ‘hot spots’. Genome Research 16: 106–114.

Esch E, Szymaniak JM, Yates H, Pawlowski WP, Buckler ES. 2007. Using

crossover breakpoints in recombinant inbred lines to identify quantitative trait

loci controlling the global recombination frequency. Genetics 177: 1851–1858.
Fernandes JB, Wlodzimierz P, Henderson IR. 2019.Meiotic recombination

within plant centromeres. Current Opinion in Plant Biology 48: 26–35.
Folco HD, Chalamcharla VR, Sugiyama T, Thillainadesan G, Zofall M,

Balachandran V, Dhakshnamoorthy J, Mizuguchi T, Grewal SIS. 2017.

Untimely expression of gametogenic genes in vegetative cells causes uniparental

disomy. Nature 543: 126–130.
Gardiner L-J, Wingen LU, Bailey P, Joynson R, Brabbs T, Wright J, Higgins

JD, Hall N, Griffiths S, Clavijo BJ et al. 2019. Analysis of the recombination

landscape of hexaploid bread wheat reveals genes controlling recombination

and gene conversion frequency. Genome Biology 20: 69.
Garrison E, Marth G. 2012.Haplotype-based variant detection from short-read

sequencing. arXiv [q-bio.GN]: https://arxiv.org/abs/1207.3907.

New Phytologist (2020) � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist10

https://doi.org/10.5447/ipk/2019/20
https://doi.ipk-gatersleben.de/DOI/f388f054-8d33-4cc7-9d45-6cf6ee34a872/4db2694f-5962-4fd1-8661-eeaf0ed1d57d/2/1847940088
https://doi.ipk-gatersleben.de/DOI/f388f054-8d33-4cc7-9d45-6cf6ee34a872/4db2694f-5962-4fd1-8661-eeaf0ed1d57d/2/1847940088
https://doi.ipk-gatersleben.de/DOI/f388f054-8d33-4cc7-9d45-6cf6ee34a872/4db2694f-5962-4fd1-8661-eeaf0ed1d57d/2/1847940088
https://orcid.org/0000-0002-4766-9698
https://orcid.org/0000-0002-4766-9698
https://orcid.org/0000-0002-4766-9698
https://orcid.org/0000-0002-2916-7475
https://orcid.org/0000-0002-2916-7475
https://orcid.org/0000-0002-2916-7475
https://orcid.org/0000-0003-4646-6351
https://orcid.org/0000-0003-4646-6351
https://orcid.org/0000-0003-4646-6351
https://orcid.org/0000-0003-1073-6719
https://orcid.org/0000-0003-1073-6719
https://orcid.org/0000-0003-1073-6719
https://doi.org/10.5281/zenodo.30938
https://doi.org/10.5281/zenodo.30938
https://arxiv.org/abs/1207.3907


Haenel Q, Laurentino TG, Roesti M, Berner D. 2018.Meta-analysis of

chromosome-scale crossover rate variation in eukaryotes and its significance to

evolutionary genomics.Molecular Ecology 27: 2477–2497.
Harris K, Nielsen R. 2016. The genetic cost of Neanderthal introgression.

Genetics 203: 881–891.
He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest K, Fritz A,

Hucl P, Wiebe K et al. 2019. Exome sequencing highlights the role of wild-

relative introgression in shaping the adaptive landscape of the wheat genome.

Nature Genetics 51: 896–904.
Heliconius Genome Consortium. 2012. Butterfly genome reveals promiscuous

exchange of mimicry adaptations among species. Nature 487: 94–98.
Higgins JD, Perry RM, Barakate A, Ramsay L, Waugh R, Halpin C, Armstrong

SJ, Franklin FCH. 2012. Spatiotemporal asymmetry of the meiotic program

underlies the predominantly distal distribution of meiotic crossovers in barley.

Plant Cell 24: 4096–4109.
Huerta-S�anchez E, Jin X, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X,

He M, Somel M et al. 2014. Altitude adaptation in Tibetans caused by

introgression of Denisovan-like DNA. Nature 512: 194–197.
Hufford MB, Xu X, van Heerwaarden J, Pyh€aj€arvi T, Chia J-M, Cartwright

RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM et al. 2012. Comparative

population genomics of maize domestication and improvement. Nature
Genetics 44: 808–811.

Ito M, Kugou K, Fawcett JA, Mura S, Ikeda S, Innan H, Ohta K. 2014.Meiotic

recombination cold spots in chromosomal cohesion sites. Genes to Cells 19:
359–373.

Jiao W-B, Schneeberger K. 2020. Chromosome-level assemblies of multiple

Arabidopsis genomes reveal hotspots of rearrangements with altered

evolutionary dynamics. Nature Communications 11: 989.
Johnston SE, B�er�enos C, Slate J, Pemberton JM. 2016. Conserved genetic

architecture underlying individual recombination rate variation in a wild

population of soay sheep (Ovis aries). Genetics 203: 583–598.
Johnston SE, Huisman J, Pemberton JM. 2018. A genomic region containing

REC8 and RNF212B is associated with individual recombination rate variation

in a wild population of red deer (Cervus elaphus). G3 8: 2265–2276.
Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J,

Akhunova A, Blake NK et al. 2018. The genetic architecture of genome-wide

recombination rate variation in allopolyploid wheat revealed by nested

association mapping. The Plant Journal 95: 1039–1054.
Juric I, Aeschbacher S, Coop G. 2016. The strength of selection against

Neanderthal introgression. PLoS Genetics 12: e1006340.
Keilwagen J, Lehnert H, Berner T, Beier S, Scholz U, Himmelbach A, Stein N,

Badaeva ED, Lang D, Kilian B et al. 2019. Detecting large chromosomal

modifications using short read data from genotyping-by-sequencing. Frontiers
in Plant Science 10: 1133.

Kianian PMA, Wang M, Simons K, Ghavami F, He Y, Dukowic-Schulze S,

Sundararajan A, Sun Q, Pillardy J, Mudge J et al. 2018.High-resolution

crossover mapping reveals similarities and differences of male and female

recombination in maize. Nature Communications 9: 2370.
K€ohler S, Wojcik M, Xu K, Dernburg A. 2020. The interaction of crossover

formation and the dynamic architecture of the synaptonemal complex during

meiosis. BioRxiv. https://doi.org/10.1101/2020.02.16.947804
Konishi T, Linde-Laursen I. 1988. Spontaneous chromosomal rearrangements in

cultivated and wild barleys. Theoretical and Applied Genetics 75: 237–243.
Kugou K, Fukuda T, Yamada S, Ito M, Sasanuma H, Mori S, Katou Y, Itoh T,

Matsumoto K, Shibata T et al. 2009. Rec8 guides canonical Spo11
distribution along yeast meiotic chromosomes.Molecular Biology of the Cell 20:
3064–3076.

K€unzel G, Korzun L, Meister A. 2000. Cytologically integrated physical

restriction fragment length polymorphism maps for the barley genome based

on translocation breakpoints. Genetics 154: 397–412.
Lam I, Keeney S. 2014.Mechanism and regulation of meiotic recombination

initiation. Cold Spring Harbor Perspectives in Biology 7: a016634.
Lambing C, Tock AJ, Topp SD, Choi K, Kuo PC, Zhao X, Osman K, Higgins

JD, Franklin FCH, Henderson IR. 2020. Interacting genomic landscapes of

REC8-cohesin, chromatin, and meiotic recombination in Arabidopsis. Plant
Cell 32: 1218–1239.

Lamichhaney S, Berglund J, Alm�en MS, Maqbool K, Grabherr M, Martinez-

Barrio A, Promerov�a M, Rubin C-J, Wang C, Zamani N et al. 2015.
Evolution of Darwin’s finches and their beaks revealed by genome sequencing.

Nature 518: 371–375.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup.

2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:
2078–2079.

Li H. 2011. A statistical framework for SNP calling, mutation discovery,

association mapping and population genetical parameter estimation from

sequencing data. Bioinformatics 27: 2987–2993.
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with

BWA-MEM. arXiv [q-bio.GN]. https://arxiv.org/abs/1303.3997

Lloyd A, Morgan C, Franklin FC, Bomblies K. 2018. Plasticity of meiotic

recombination rates in response to temperature in Arabidopsis. Genetics 208:
1409–1420.

Mallet J, Besansky N, Hahn MW. 2016.How reticulated are species? BioEssays:
News and Reviews in Molecular, Cellular and Developmental Biology 38: 140–
149.

Martin SH, Davey JW, Salazar C, Jiggins CD. 2019. Recombination rate

variation shapes barriers to introgression across butterfly genomes. PLoS Biology
17: e2006288.

Martin SH, Jiggins CD. 2017. Interpreting the genomic landscape of

introgression. Current Opinion in Genetics & Development 47: 69–74.
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T,

Radchuk V, Dockter C, Hedley PE, Russell J et al. 2017. A chromosome

conformation capture ordered sequence of the barley genome. Nature 544:
427–433.

Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian

B, Reif JC, Pillen K. 2015.Modelling the genetic architecture of flowering

time control in barley through nested association mapping. BMC Genomics 16:
290.

Maurer A, Pillen K. 2019. 50k Illumina Infinium iSelect SNP Array data for the

wild barley NAM population HEB-25. https://doi.org/10.5447/ipk/2019/20

Melamed-Bessudo C, Levy AA. 2012. Deficiency in DNA methylation increases

meiotic crossover rates in euchromatic but not in heterochromatic regions in

Arabidopsis. Proceedings of the National Academy of Sciences, USA 109: E981–
E988.

Mercier R, M�ezard C, Jenczewski E, Macaisne N, Grelon M. 2015. The

molecular biology of meiosis in plants. Annual Review of Plant Biology 66: 297–
327.

Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J,

Reinders J, Paszkowski J. 2012. Loss of DNA methylation affects the

recombination landscape in Arabidopsis. Proceedings of the National Academy of
Sciences, USA 109: 5880–5885.

Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J,

Li C, Muehlbauer GJ, Schulman AH et al. 2019. TRITEX: chromosome-scale

sequence assembly of Triticeae genomes with open-source tools. Genome
Biology 20: 284.

Morrell PL, Lundy KE, Clegg MT. 2003. Distinct geographic patterns of genetic

diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum)
despite migration. Proceedings of the National Academy of Sciences, USA 100:

10812–10817.
Pagani F, Baralle FE. 2004. Genomic variants in exons and introns: identifying

the splicing spoilers. Nature Reviews. Genetics 5: 389–396.
Page SL, Hawley RS. 2003. Chromosome choreography: the meiotic ballet.

Science 301: 785–789.
Patel L, Kang R, Rosenberg SC, Qiu Y, Raviram R, Chee S, Hu R, Ren B, Cole

F, Corbett KD. 2019. Dynamic reorganization of the genome shapes the

recombination landscape in meiotic prophase. Nature Structural & Molecular
Biology 26: 164–174.

Phillips D, Jenkins G, Macaulay M, Nibau C, Wnetrzak J, Fallding D, Colas I,

Oakey H, Waugh R, Ramsay L. 2015. The effect of temperature on the male

and female recombination landscape of barley. New Phytologist 208: 421–429.
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 26: 841–842.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Research 11

https://doi.org/10.1101/2020.02.16.947804
https://arxiv.org/abs/1303.3997
https://doi.org/10.5447/ipk/2019/20


Rowan BA, Heavens D, Feuerborn TR, Tock AJ, Henderson IR, Weigel D.

2019. An ultra high-density Arabidopsis thaliana crossover map that refines the

influences of structural variation and epigenetic features. Genetics 213: 771–
787.

Samuk K, Manzano-Winkler B, Ritz KR, Noor MAF. 2019. Natural selection

shapes variation in genome-wide recombination rate in Drosophila
pseudoobscura. Current Biology. 30: 1517–1528.

Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M. 2012.

Genetic variants in REC8, RNF212, and PRDM9 influence male

recombination in cattle. PLoS Genetics 8: e1002854.
Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. 2019. Principles

of meiotic chromosome assembly revealed in S. cerevisiae. Nature
Communications 10: 4795.

Schumer M, Xu C, Powell DL, Durvasula A, Skov L, Holland C, Blazier JC,

Sankararaman S, Andolfatto P, Rosenthal GG et al. 2018. Natural selection

interacts with recombination to shape the evolution of hybrid genomes. Science
360: 656–660.

Schwarz G. 1978. Estimating the dimension of a model. Annals of Statistics 6:
461–464.

Schwarzkopf EJ, Motamayor JC, Cornejo OE. 2020. Genetic differentiation and

intrinsic genomic features explain variation in recombination hotspots among

cocoa tree populations. BMC Genomics. 21: 332.
Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC, Underwood CJ,

Ziolkowski PA, S�egu�ela-Arnaud M, Fernandes JB, Mercier R et al. 2018.
Massive crossover elevation via combination of HEI10 and recq4a recq4b
during Arabidopsis meiosis. Proceedings of the National Academy of Sciences,
USA 115: 2437–2442.

Sims J, Copenhaver GP, Schl€ogelhofer P. 2019.Meiotic DNA repair in the

nucleolus employs a nonhomologous end-joining mechanism. The Plant Cell
31: 2259–2275.

Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017.

Variation in recombination frequency and distribution across eukaryotes:

patterns and processes. Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences 372: 20160455.

Sun X, Huang L, Markowitz TE, Blitzblau HG, Chen D, Klein F, Hochwagen

A. 2015. Transcription dynamically patterns the meiotic chromosome-axis

interface. eLife 4: e07424.
Tourrette E, Bernardo R, Falque M, Martin OC. 2019. Assessing by modeling

the consequences of increased recombination in recurrent selection of Oryza
sativa and Brassica rapa. G3 9:4169–4181.

Underwood CJ, Choi K, Lambing C, Zhao X, Serra H, Borges F, Simorowski J,

Ernst E, Jacob Y, Henderson IR et al. 2018. Epigenetic activation of meiotic

recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and

non-CG DNA methylation. Genome Research 28: 519–531.
Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens

F, Vandepoele K. 2018. PLAZA 4.0: an integrative resource for functional,

evolutionary and comparative plant genomics. Nucleic Acids Research 46:
D1190–D1196.

Vandepoele K, Van Bel M, Richard G, Van Landeghem S, Verhelst B, Moreau

H, Van de Peer Y, Grimsley N, Piganeau G. 2013. pico-PLAZA, a genome

database of microbial photosynthetic eukaryotes. Environmental Microbiology
15: 2147–2153.

Wang J, Fan HC, Behr B, Quake SR. 2012. Genome-wide single-cell analysis of

recombination activity and de novo mutation rates in human sperm. Cell 150:
402–412.

Wendler N, Mascher M, N€oh C, Himmelbach A, Scholz U, Ruge-Wehling B,

Stein N. 2014. Unlocking the secondary gene-pool of barley with next-

generation sequencing. Plant Biotechnology Journal 12: 1122–1131.
Yelina NE, Choi K, Chelysheva L, Macaulay M, de Snoo B, Wijnker E, Miller

N, Drouaud J, Grelon M, Copenhaver GP et al. 2012. Epigenetic remodeling

of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase

mutants. PLoS Genetics 8: e1002844.
Yelina N, Diaz P, Lambing C, Henderson IR. 2015. Epigenetic control of

meiotic recombination in plants. Science China Life Sciences 58: 223–231.
Young ND, Tanksley SD. 1989. RFLP analysis of the size of chromosomal

segments retained around the Tm-2 locus of tomato during backcross breeding.

Theoretical and Applied Genetics 77: 353–359.

Zelkowski M, Olson MA, Wang M, Pawlowski WP. 2019. Diversity and

determinants of meiotic recombination landscapes. Trends in Genetics 35: 359–
370.

Zhang L, Liang Z, Hutchinson J, Kleckner N. 2014. Crossover patterning by the

beam-film model: analysis and implications. PLoS Genetics 10: e1004042.
Zickler D, Kleckner N. 1999.Meiotic chromosomes: integrating structure and

function. Annual Review of Genetics 33: 603–754.
Ziolkowski PA, Berchowitz LE, Lambing C, Yelina NE, Zhao X, Kelly KA,

Choi K, Ziolkowska L, June V, Sanchez-Moran E et al. 2015. Juxtaposition of

heterozygous and homozygous regions causes reciprocal crossover remodelling

via interference during Arabidopsis meiosis. eLife 4: e03708.
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ,

Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA et al. 2017.
Natural variation and dosage of the HEI10 meiotic E3 ligase control

Arabidopsis crossover recombination. Genes & Development 31: 306–317.

Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Dataset S1 Crossover counts across population HEB-25.

Dataset S2 Summary of GWAS for recombination rate modifiers

Dataset S3 List of genes surrounding 1H.recQTL1 and respec-
tive transcription profiles across 16 tissues

Fig. S1 SNP densities across all 25 subpopulations of HEB-25.

Fig. S2 Comparison of total crossover counts before and after
removing outliers.

Fig. S3 Recombination landscapes of all 25 subpopulations of
HEB-25.

Fig. S4 Genome-wide recombination frequency and SNP density
of the entire population HEB-25.

Fig. S5 Correlation between crossover number and flowering
time in population HEB-25.

Fig. S6 HvREC8 transcription profile.

Fig. S7 REC8 genomic sequence alignment across related mono-
cotyledonous plants.

Fig. S8 Wild barley introgression size frequency distribution in
population HEB-25.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.

New Phytologist (2020) � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist12


