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Abstract: This work describes the development, optimisation and validation of an 23 

analytical method for the rapid determination of 17 priority pharmaceutical compounds 24 

and endocrine disrupting chemicals (EDCs). Rather than studying compounds from the 25 

same therapeutic class, the analyses aimed to determine target compounds with the 26 

highest risk potential with regard to Scotland, providing a tool for further monitoring in 27 

different water matrices. Prioritisation was based on a systematic environmental risk 28 

assessment approach, using consumption data; wastewater treatment removal efficiency; 29 

environmental occurrence; toxicological effects; and pre-existing regulatory indicators. 30 

This process highlighted 17 compounds across various therapeutic classes, which were 31 

then quantified, at environmentally relevant concentrations, by a single analytical 32 

methodology. Analytical determination was achieved using a single-step solid phase 33 

extraction (SPE) procedure followed by high-performance liquid chromatography with 34 

tandem mass spectrometry (HPLC-MS/MS). The fully optimised method performed well 35 

for the majority of target compounds, with recoveries >71% for 15 of 17 analytes. The 36 

limits of quantification for most target analytes (14 of 17) ranged from 0.07 ng·L-1 to 1.88 37 

ng·L-1 in river waters. The utility of this method was then demonstrated using real water 38 

samples associated with a rural hospital/setting. Eight compounds were targeted and 39 

detected, with the highest levels found for the analgesic, paracetamol (at up to 105910 40 

ng·L-1 in the hospital discharge). This method offers a robust tool to monitor high priority 41 

pharmaceutical and EDC levels in various aqueous sample matrices. 42 
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Introduction 52 

The discovery and use of pharmaceuticals is one of society’s greatest advances, leading 53 

to increased human lifespan and promoting improved health (Johansson, 1998). An 54 

unintended consequence of the widespread use of human pharmaceuticals has however 55 

been their inadvertent and now ubiquitous introduction into the aquatic environment. This 56 

commonly occurs as a result of the excretion (in urine/faeces) of unmetabolised parent 57 

compounds and the improper disposal of unused or expired medicinal products – both of 58 

which pass into sewage networks (where these are present) and then remain in treated 59 

wastewater discharges (Cahill et al., 2004; Charuaud et al., 2019; Fekadu et al., 2019; 60 

Kallenborn et al., 2018). Numerous studies have now demonstrated the incomplete 61 

removal of pharmaceuticals by sewage treatment systems, with as much as 80% of the 62 

total load of any particular pharmaceutical entering the treatment network ultimately 63 

being released into the receiving aquatic environment (Botero-Coy et al., 2018; Östman 64 

et al., 2018; Ruan et al., 201; Yuan et al., 2014). 65 

The potential effects of pharmaceutical pollution may include the promotion of multi-66 

drug resistant bacterial strains and/or deleterious acute or chronic ecotoxicological 67 

impacts on non-target organisms (Brodin et al., 2013; Hernando-Amado et al., 2019; 68 

Kumar et al., 2019). For example, fluoxetine has been shown to cause reproductive delay 69 

in leopard frogs (Foster et al., 2010; Fursdon et al., 2019; Hellström et al., 2016), while 70 

ciprofloxacin can cause genotoxic effects in plankton and algae (Carusso et al., 2018) 71 

(Dionísio et al., 2020). Further, certain pharmaceuticals are also endocrine disrupting 72 

chemicals (EDCs), and have been shown to exert significant reproductive effects even at 73 

trace environmental levels. For example, 17α-ethinylestradiol (a synthetic hormone 74 

commonly used in birth control pills) has been extensively studied in fish and shown to 75 

cause delays in embryonic development (Almeida et al., 2020; Huff et al., 2018), 76 

vitellogenin induction (Zhang et al., 2019; Zhou et al., 2019), intersex development 77 

(Jackson et al., 2019; Ujhegyi and Bókony, 2020) and thus reduced reproductive success 78 

(Colman et al., 2009; Roy et al., 2018). 79 

The ongoing discharge of pharmaceuticals and EDCs into the wider environment 80 

potentially poses a risk to human health and as such there remains a need to evaluate their 81 

presence, fate and behaviour in various environmental compartments. This requires the 82 

development of robust, sensitive and accurate analytical methods for the simultaneous 83 

extraction, detection and quantification of these chemicals at low, environmentally 84 



relevant levels. The most common analytical approach to determine pharmaceuticals and 85 

EDC levels in aqueous samples first involves a pre-concentration step (i.e., using solid 86 

phase extraction; SPE), and then the use of liquid chromatography with mass 87 

spectrometric detection (LC-MS) (Buchberger, 2011;.Hong et al., 2019; Peng et al., 2019). 88 

However, many methods focus on compounds that are simply most commonly found (i.e., 89 

in water), or, that belong to specific drug classes, i.e., antibiotics (Gurke et al., 2015a, 90 

2015b; Rossmann et al., 2014; Scheurer et al., 2009). As such, there remains a need to 91 

develop techniques specifically focussed on those substances thought to pose the greatest 92 

risk potential within the aquatic environment. Such methods can be informed by existing 93 

prioritisation systems such as those which have led to the creation of “Watch Lists” within 94 

the EU Water Framework Directive (WFD, EU) and the UK’s Chemical Investigation 95 

Program (CIP, UK) (European commission, 2015; UKWIR, 2015). Such regulatory 96 

indicators act to highlight those compounds thought to be of most concern and/or 97 

requiring more detailed research.  98 

In this study, we describe the development of an SPE protocol combined with subsequent 99 

HPLC-MS/MS (high performance liquid chromatography with tandem mass 100 

spectrometry) analysis for the routine determination of selected pharmaceuticals and 101 

EDCs (first prioritised based on their high environmental risk potential). The work 102 

presented involves: (1) prioritisation of compounds across a range of therapeutic classes 103 

– all with significant potential to pose risks to the aquatic environment; (2) development 104 

of a rapid and sensitive method to measure these compounds at environmentally relevant 105 

concentrations (ng·L-1); (3) an evaluation of possible matrix effects using different water 106 

types; and (4) application of the methodology to real samples collected from a range of 107 

sites as part of a hospital discharge focused monitoring study.  108 

1. Methodologies and chemicals 109 

1.1 Chemicals and reagents 110 

All prioritised compound standards were of the highest purity available (>98%) and 111 

supplied by Sigma-Aldrich (UK). Isotopically labelled internal standards were purchased 112 

from Qmx. Both individual compound stock standards and isotopically labelled internal 113 

standards (ILIS) were prepared in methanol, except for ciprofloxacin, which was 114 

dissolved in methanol containing 1 µM NaOH to enhance solubility. Mixed compound 115 

standards and calibration standards were prepared using appropriate dilutions of 116 



individual stock solutions, in 50:50 v/v methanol:Milli-Q® water. All solutions were 117 

stored in amber glass vials at −20℃ in the dark. 118 

HPLC-grade acetonitrile, ethyl acetate, acetone and methanol were provided by VWR 119 

Chemicals (Poole, England). Formic acid, acetic acid, ammonium acetate and ammonium 120 

hydroxide were all analytical grade and supplied by Sigma–Aldrich. Oasis HLB 6cc (200 121 

mg) and Oasis HLB Prime 6cc (200 mg) SPE cartridges were obtained from Waters 122 

Corporation (Milford, MA, USA).  123 

1.2 Instrumentation  124 

The quantification of target analytes was performed using a HPLC-MS/MS system, 125 

consisting of an Agilent 1100 HPLC with a CTC PAL auto-sampler coupled to a 126 

Micromass Quattro Ultima Platinum mass spectrometer (Manchester, UK) equipped with 127 

an electrospray ionisation source (ESI). Ions were acquired in multiple reaction 128 

monitoring (MRM) mode. Precursor ions for each compound were determined by direct 129 

infusion of individual compound standards whilst in full-scan mode (at m/z 50-1000). 130 

During infusion the optimum cone voltage (CV) to achieve maximum signal response for 131 

each ion was selected. Product ion scanning was then performed to obtain product ions, 132 

and collision energy (CE) was optimised for each individual analyte. The highest intensity 133 

characteristic precursor to product ion MRM transition was used for quantification 134 

(quantifier), while a second was used for confirmation (qualifier). To sustain an adequate 135 

signal response for every compound, analytes were measured within optimised time 136 

windows. Data acquisition and analysis were carried out using MassLynx 4.1 software 137 

(Micromass, Manchester, UK).  138 

1.3 Sample preparation 139 

SPE was employed for sample enrichment and clean-up, and several stationary phases 140 

were tested under a range of elution conditions to optimise compound recovery (see Fig. 141 

S1 for schematic of the process). All SPE experiments were conducted in triplicate, using 142 

20 mL of Milli-Q water spiked to a starting concentration of 10 µg·L-1 for each analyte 143 

(ultimately 500 µg·L-1 in final extract/following the SPE process, assuming 100% 144 

recovery). For the final protocol, SPE cartridges were preconditioned with methanol (6 145 

mL) and then Milli-Q water (6 mL), both at a flow rate of 1 mL·min-1. 20 mL spiked 146 

water samples were passed through the cartridges at a flow rate of 1 mL·min-1 and then 147 

cartridges were rinsed with Milli-Q water once (1 mL). Cartridges were then dried under 148 



vacuum for >30 min to remove excess water. Then, the analytes were eluted with two 149 

consecutive 6 mL elution’s using methanol (MEOH), or, acetone (ACE) and ethyl acetate 150 

(EAC) at 50:50 v/v (depending on desired recoveries for certain compounds), at 1 151 

mL·min-1. The eluates were then evaporated under a gentle stream of high purity nitrogen 152 

at 40℃ until they were almost dry, then reconstituted with 0.4 mL of 50:50 v/v 153 

MEOH:Milli-Q. Absolute recoveries were determined compared to quality-control (QC) 154 

standards of 500 µg·L-1. 155 

1.4 Method quantification  156 

Compound selectivity was verified by measuring two MRM transitions per analyte. 157 

Calibration linearity was studied by analysing standards in triplicate at nine 158 

concentrations in the range from 2 to 500 µg·L-1. Satisfactory linearity using weighed 159 

(1/x) least squares regression was assumed when the correlation coefficient (R2) was > 160 

0.99. Method accuracy and precision (expressed as recovery and repeatability, using 161 

relative standard deviation) were studied with recovery experiments (using Milli-Q water 162 

spiked with analytes). Instrumental limits of detection (LOD) for each compound were 163 

determined as the minimum detectable amount of analyte giving a signal-to-noise (S/N) 164 

ratio of 3 (using the quantification transition).  165 

For the investigation regarding matrix effects, a known amount of analyte (10 µg·L-1) and 166 

ILIS (1 µg·L-1) was added to tap water and river water (filtered and unfiltered). Taking 167 

into account an enrichment factor of 50 (whereby 20 mL of water sample was 168 

reconstituted into 0.4 mL for analysis following SPE), quality-control (QC) standards of 169 

500 µg·L-1 (for the analytes) and 50 µg·L-1 (for the ILIS) were then used for quantification.  170 

1.5 Application to real samples  171 

A range of water samples were collected from sites associated with/in the vicinity of a 172 

rural UK hospital (in Caithness, Scotland). These were (1) the local potable untreated 173 

surface water source, (2) the hospital water inflow, (3) the hospital combined wastewater 174 

effluent discharge, (4) the combined local municipal WWTP influent and (5) the 175 

combined effluent from the same municipal WWTP (for Wick town, Caithness). A sub-176 

set of 8 target compounds were monitored over 4 weeks at these sites. Water samples (2 177 

L) were collected in amber glass bottles and 1 L was filtered through 0.7 µm glass 178 

microfiber filters (47 mm, MF300, Fisher Scientific, UK). Filtrates were spiked with 0.25 179 

mL of ILIS mixed standard working solution (at 100 µg·L-1; equivalent to a 25 ng·L-1 180 



concentration in 1 L of sample). SPE cartridges were preconditioned with MEOH and 181 

Milli-Q water, then 1L water samples were passed through the cartridges at a flow rate of 182 

1 mL·min-1. The SPE extract was eluted with 2×6 mL MEOH and reconstituted with 0.5 183 

mL of 50:50 v/v MEOH:Milli-Q, leading to an enrichment factor of 2,000 and a final 184 

concentration of 100 µg·L-1 ILIS in the analysed sample. Quantification was made using 185 

external QC standards and calibration standards, with recovery assessed based on relative 186 

responses. To ensure the precision and accuracy of the data required, all targeted 187 

compounds in real water analysis have been assigned with their own ILIS standards to 188 

correct possible quantification errors. All samples were stored at 4℃ in the dark until SPE 189 

extraction, which was performed within 48 hr of sample collection.  190 

2. Results and Discussion 191 

2.1 Prioritisation of target compounds  192 

As there are > 3,000 pharmaceuticals registered for use in the European Union (EU), it is 193 

necessary to prioritise these whilst accounting for risk (Boxall et al., 2012). Many 194 

prioritisation schemes have been proposed in recent years, commonly based on 195 

consumption data, environmental occurrence and/or toxicological effects (Kötke et al., 196 

2019; Li et al., 2020; Mansour et al., 2016; Pereira et al., 2016; Roos et al., 2012). 197 

However, many field monitoring studies still focus on compounds that are most 198 

commonly found in water (López-Serna et al., 2011; Rossmann et al., 2014) – many of 199 

which may (or may not) be likely to elicit toxicological effects.  200 

Here, a systematic prioritisation approach was first used to identify compounds that may 201 

pose the greatest risk in the aquatic environment. For the evaluation of the environmental 202 

risk of pharmaceuticals and EDCs, it is difficult to estimate if adverse effects (both acute 203 

and chronic toxicity as well as other potentially more subtle biological and behavioural 204 

effects) on non-target organisms occur at environmentally relevant concentrations. In this 205 

study, a risk score was used as a primary prioritisation parameter to characterize 206 

substances that pose potential ecological risks to the aqueous environment by comparing 207 

their environmental occurrence with their known toxicologically relevant concentrations. 208 

The risk score - hazard quotient (HQ) value was calculated as the ratio between measured 209 

environmental concentration (MEC) and the predicted no effect concentration (PNEC; 210 

i.e., the environmental level at which no adverse effect on relevant non-target 211 



organisms/ecosystem function is expected) (Booth et al., 2020). When the HQ ≥ 1, a high 212 

risk of adverse effects is expected (De Souza et al., 2009; Ccanccapa et al., 2016). 213 

Although there are (as yet) no legally binding discharge limits set in the EU for 214 

pharmaceuticals and EDCs, multiple compounds have been highlighted as ‘priority 215 

substances’ for further investigation by EU and UK regulatory frameworks, i.e., through 216 

‘Watch Lists’ created as part of the EU Water Framework Directive (WFD) and the 217 

priority lists created through the UK’s Chemical Investigation Programme (CIP) 218 

(European commission, 2018; UKWIR, 2019). These result in increased monitoring and 219 

research and may ultimately lead to statutory discharge limits for certain compounds 220 

(Brack et al., 2017; Miarov et al., 2020; Nijsingh et al., 2019; Petrie et al., 2015; 221 

Voulvoulis et al., 2017). As such, these regulatory indicators have also been taken into 222 

account here. 223 

 224 

Fig.1. Decision tree of compound prioritisation 225 

Here, the first step in our prioritisation process was to consider prescription rates within 226 

Scotland. As shown in Fig.1, pharmaceuticals were first grouped by therapeutic class, 227 

and within each class, compounds prescribed >100,000 times per year (ISD Scotland, 228 

2016) were highlighted. Substances prescribed below this value were only highlighted if 229 

they had been listed as existing priorities within the EU’s WFD Watch List(s) and/or the 230 

UK’s CIP Programme. Analytes highlighted were then evaluated further by considering 231 

WWTP removal efficiency, reported environmental concentrations (in water) and 232 

toxicological risk. Combining the reviewed range of pharmaceutical and EDC monitoring 233 

data (MEC) and their PNEC values, the risk scores were calculated to characterize 234 



substances that have pose potential adverse effects to the aqueous environment at current 235 

detection levels. All preliminarily prioritised substances were then considered in terms of 236 

their physico-chemical properties – and where these had very similar molecular structures 237 

(which may then result in similar environmental fate), a single substance was selected as 238 

representative of a certain group.  239 

The prioritisation selection criteria applied here were, in summary: a) prescription 240 

statistics (ISD Scotland, 2016); b) legislative indicators, i.e., WFD ‘Watch List’ and/or 241 

UK CIP listed; c) removal efficiency in WWTP; d) environmental occurrence in water; 242 

e) biological toxic effects (informed by HQ calculated with PNEC and MEC); and f) 243 

physico-chemical properties. Table 1 shows a summary regarding the prioritised list of 244 

compounds targeted in this study (Li et al., 2019).   245 



Table 1. Prioritised compounds in this study and the criteria and data used 

Class Compounds 
Use statistics1 

(items) 

Legislative 

indicator 

WWTP 

removal 

efficiency (%) 

Environmental 

occurrence 

(ng·L-1) 

PNEC2 

(ng·L-1) 

HQ3 

(>1?) 
Log Kow pKa 

Antibiotic 

(anti-infective) 
Trimethoprim 487128 No 0-50 10-28000 500 56 0.9 7.1 

Antibiotic 

(macrolide) 
Clarithromycin 268489 EUa,b+UK4 0-24 3.5-621 250 2.5 3.2 8.9 

Antibiotic 

(Fluoroquinolone) 
Ciprofloxacin 99441 EUb+UK 45-78 6–2500 100 25 0.3-0.7 

5.9; 

8.9 

Antimicrobial Triclosan 10-1000 t/yr5 UK 45-89 3.9-434 50 8.68 4.2-4.8 7.9 

Analgesic Paracetamol 5482031 No 0-90 160-65000 1000 65 0.5-0.9 9.5 

NSAID6 Ibuprofen 915788 UK 72-90 44–990000 1650 600 4.0 4.9 

NSAID Diclofenac 595709 EUa+UK 9-60 10–510000 3310 154 4.5 4.2 

SSRI7 Fluoxetine 816346 UK 3-60 2.1-2000 110 18.2 1.2 10.1 

Antiepileptic Carbamazepine 223601 UK 0-53 290–4596 420 10.9 2.47 13.9 

Metabolite 
Carbamazepine-

10-11-epoxide 
N/A8 UK N/A 8-2100 N/A N/A 1.26 13.9 

β-blocker Propranolol 557628 UK 34-80 108-1130 244 4.63 0.78 9.5 

Blood lipid regulator Atorvastatin 1637000 UK 40-80 10-210 86 2.44 6.36 4.46 

Anti-diabetic Metformin 1140162 UK 0-85 100-47000 13450 3.49 1.3 12.4 

Steroid hormone 

(Natural) 
Estrone (E1) N/A EUab+UK 0-61 1.8-60 6 10 2.45-3.43 10.5 

Steroid hormone 

(Natural) 

17β-Estradiol 

(E2) 
N/A EUab+UK 0-87 0.72-51 2 25.5 3.94-4.01 10.7 

Steroid hormone 

(Synthetic) 

17α-ethynyl 

estradiol (EE2) 
298045 EUab+UK 0-85 0.36-4.3 0.35 12.3 3.67–4.15 10.4 

Steroid hormone 

(Natural) 9 
Estriol (E3) N/A No 0-90 0.11-18 60 0.3 2.55-2.81 10.4 

1. Prescription statistics for Scotland 2014-15 (ISD Scotland, 2016); 2. Predicted no-effect concentration (PNEC); 3. Hazard quotient (HQ) incorporating MEC with PNEC; 4. EU a. 

Commission Implementing Decision 2015/495 (European commission, 2015); b. 2018/840 (European commission, 2018); UK, Chemical Investigation Programme (UKWIR, 2019); 5. 

Triclosan usage in EU per year; 6. Nonsteroidal anti-inflammatory drugs (NSAIDs); 7. Selective serotonin reuptake inhibitors (SSRIs); 8. N/A, not applicable/available. 9. References 

used for the prioritisation data are listed in Table. S1 (supporting information). 



Ultimately, 17 compounds were identified as priority substances here, belonging to a wide 246 

range of compound classes (11), i.e., antibiotics, antimicrobials, analgesics, non-steroidal anti-247 

inflammatory drugs, psychoactive drugs, β-blockers, blood lipid regulators, antidiabetics, anti-248 

ulcer agents and estrogens (as well as associated metabolites). Fifteen compounds were 249 

associated with high potential risk (HQ>1) within the aqueous environment, including 250 

ibuprofen, diclofenac, paracetamol, trimethoprim, E2, ciprofloxacin, fluoxetine, EE2, 251 

carbamazepine, E1, propranolol, metformin, clarithromycin, atorvastatin and triclosan (in HQ 252 

value order from high to low). This largely aligns with key legislative indicators (given these 253 

were also one of our criteria), with the only pharmaceutical compounds in addition to CIP/WFD 254 

indicators being trimethoprim and paracetamol. These two compounds have been highlighted 255 

as their current occurrence levels outstrip its known toxicologically relevant concentrations 256 

(PNEC) as shown in Table 1, the high HQ scores of trimethoprim (56) and paracetamol (65) 257 

indicated that the adverse effects on non-target organisms may occur in the aquatic environment. 258 

Trimethoprim is the second most commonly prescribed antibiotic in Scotland, and reports show 259 

that up to 80% of this is excreted unmetabolised by the human body (De Liguoro et al., 2012; 260 

Kasprzyk-Hordern et al., 2009). It has been found to be resistant to the biological wastewater 261 

treatment (Lindberg et al. 2006), one of the most frequently occurring antibiotics found in UK 262 

wastewaters, being detected in 65% of effluent samples with a maximum concentration of 1,300 263 

ng·L-1 (Ashton, Hilton & Thomas 2004). Similarly, paracetamol is one of the most commonly 264 

prescribed drugs globally, due to its antipyretic and analgesic properties. Even though the 265 

reported removal efficiencies in WWTPs are relatively high (up to 90%), it is often found at 266 

high levels in the aquatic environment (e.g., maximum 10,000 ng·L-1 in US natural waters and 267 

at 65,000 ng·L-1 in the River Tyne, UK) (Kolpin et al., 2002; Roberts and Thomas, 2006). Such 268 

high levels of paracetamol continuously introduced into the aquatic environment have been 269 

found to cause negative ecological effects in various wild organisms (Nunes et al., 2014), the 270 

high HQ scores of these compounds in this study reinforced the necessity of further 271 

investigation of such pollutants.  272 

UK CIP (UKWIR, 2019) identified a wide range of substances that may pose a significant risk 273 

to the environment in the UK. Following the prioritisation procedure used here, fourteen 274 

compounds on CIP were prioritised for investigation. At EU level, priority substances were first 275 

introduced under the WFD Commission Implementing Decision (EU) 2015/495, which listed 276 

ten watch list substances, and required this list to be updated every two years according to 277 

Commission Implementing Decision (EU) 2008/105 (European commission, 2008). 278 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/freshwater-organism


Accordingly, diclofenac was originally prioritised in the first WFD watch list (European 279 

commission, 2015) and monitored intensively. On the basis of sufficient high-quality 280 

monitoring data available for this compound, diclofenac has since been removed from the watch 281 

list in June 2018 (European commission, 2018). Meanwhile, the antibiotic ciprofloxacin has 282 

been added due to its potential to drive antimicrobial resistance in the environment. Macrolide 283 

antibiotics (clarithromycin, erythromycin and azithromycin) have been retained in the watch 284 

list, while, clarithromycin, the highest prescribed macrolide, was chosen as the representative 285 

compound, based on the fact that these substances have similar molecular structures and 286 

physico-chemical properties.  287 

As well as ‘parent’ pharmaceutical compounds, one of the 17 compounds listed here is a 288 

metabolite. While most studies tend to focus on primary pharmaceuticals, there is now 289 

increased recognition that excreted metabolites may also pose risks in the environment (Roberts 290 

and Thomas, 2006). Carbamazepine, one of the most prominent anti-epileptic drugs with annual 291 

worldwide usage of 1,014 tons and 223,601 prescription in Scotland has been targeted in this 292 

study due to the poor removal in WWTP, high detection levels and potential risks in the 293 

environment (ISD Scotland, 2016; Radjenović, Petrović & Barceló 2009). As well as ‘parent’ 294 

pharmaceutical compound, the metabolite of carbamazepine, carbamazepine-10-11-epoxide 295 

has been found to be biologically active and shows similar or higher toxicity relative to its 296 

parent compound (Calisto and Esteves, 2009; Miao and Metcalfe, 2003). Therefore, 297 

carbamazepine-10-11-epoxide has been included as a representative metabolite. Moreover, 298 

there are several potent natural estrogens of concern (estrone (E1), 17 β-estradiol (E2) and 299 

estriol (E3)), which are not dissimilar to the synthetic xenoestrogen - 17α-ethynyl estradiol 300 

(EE2) which has been of concern for many years (Burkhardt-Holm, 2010; Czarny et al., 2019; 301 

Qin et al., 2020; Yu et al., 2019). Three of these four EDCs (E1, E2 and EE2) have also been 302 

highlighted by both the EU’s WFD Watch List schemes and the UK’s CIP system. As estriol 303 

(E3) poses ecotoxicological effects similar to E1, E2, and EE2, this estrogen has also been 304 

targeted for investigation here. 305 

2.2 Detection method development  306 

2.2.1 HPLC separation and MS/MS optimisation  307 

To optimise compound separation and sensitivity, methanol and acetonitrile along with 308 

different buffers (ammonium acetate, ammonium hydroxide, formic acid and acetic acid at 309 



various concentrations) were tested as mobile phases. MS parameters were optimised to attain 310 

maximum sensitivity and selectivity. Of the 17 substances, 10 showed a higher response using 311 

the protonated [M+H]+ ions and positive ion (PI) mode while 7 were better using negative mode 312 

(detecting the deprotonated [M−H]− ions). For both modes, several HPLC columns and various 313 

operational parameters/gradient designs (i.e., different flow rates and slopes) were tested in 314 

order to optimise peak separation, signal response and minimise run time. Good peak shape and 315 

sensitivity were achieved in PI mode using a reverse-phase Waters XBridge BEH C18 column 316 

(2.1 mm I.D. x 100 mm, 2.5 µm) with 0.1% formic acid as the aqueous phase and acetonitrile 317 

at 45℃. For the 7 NI compounds, sufficient separation was obtained using 0.025% ammonium 318 

hydroxide (in water) and acetonitrile and a Phenomenex Kinetex EVO C18 column (3.0 mm 319 

I.D x 100 mm, 2.6 µm) at 25℃. The optimised gradient elution programs used are shown in 320 

Table S2 (Supporting Information) alongside representative chromatograms for pure standard 321 

mixtures monitored in both modes (Fig. S2). Optimised mass spectrometry parameters, 322 

precursor and product ions, retention times (RT) and instrumental LODs in both PI and NI 323 

modes are summarised in Table 2 and 3, respectively. 324 

325 



Table 2. Mass spectrometry parameters for target compounds analysed in positive ionisation (PI)  326 

Compound 

Mol. 

Weight 

(g·mol-1) 

Precursor 

ion 

CV1 

(V) 

Product 

ions 

CE2 

(eV) 
RT3 (min) 

Corresponding 

ILIS 
Molecular structure 

LODs4 

(µg·L-1) 

Metformin 129 130 45 
60 

71 

8 

10 
1.22 Paracetamol -D4 

 

0.072 

Paracetamol 151 152 45 
110 

93 

10 

16 
3.78 Paracetamol -D4 

 

0.213 

Parcetamol-D4 155 156 45 
114 

97 

10 

16 
3.81 - 

 

- 

Trimethoprim 290 291 60 
230 

261 

20 

20 
7.69 

Trimethoprim -

D9 

 

0.049 

Trimethoprim-

D9 
299 300 60 

264 

234 

20 

20 
7.64 - 

 

- 

Ciprofloxacin 331 332 55 
288 

245 

14 

20 
7.99 

Trimethoprim -

D9 

 

0.107 

Carbamazepine-

10-11-epoxide 
252 253 40 

236 

180 

6 

16 
11.29 

Carbamazepine 

-D10 

 

0.054 

Carbamazepine 

-D10 
246 247 60 

204 

201 

14 

16 
13.34 - 

 

- 

Propranolol 259 260 50 
116 

183 

14 

14 
11.81 

Carbamazepine 

-D10 

 

0.143 

Carbamazepine 236 237 60 
194 

192 

14 

16 
13.39 

Carbamazepine 

-D10 

 

0.057 

Clarithromycin 748 749 60 
158 

590 

26 

16 
15.11 Roxithromycin 

 

0.039 

Roxithromycin 837 838 60 
679 

158 

26 

16 
15.16 - 

 

- 

Fluoxetine 309 310 35 
44 

148 

8 

6 
15.42 FLX-D5 

 

0.052 

Fluoxetine-D5 314 315 35 
44 

153 

8 

6 
15.37 - 

 

- 

Atorvastatin 559 560 50 
440 

466 

18 

14 
19.71 Fluoxetine-D5 

 

0.059 

327 



Table 3. Mass spectrometric parameters for target compounds analysed in negative ionisation (NI) 328 

Compound 

Mol. 

Weight 

(g·mol-1) 

Precursor 

ion 

CV1 

(V) 

Product 

ion 

CE2 

(eV) 

RT3 

(min) 

Corresponding 

ILIS 
Molecular structure 

LODs4 

(µg·L-1) 

Ibuprofen 206 205 35 161 4 2.21 Diclofenac-D4 

 

0.272 

Diclofenac 296 294 35 
250 

214 

8 

18 
4.14 Diclofenac-D4 

 

0.428 

Diclofenac-D4 300 298 35 
254 

217 

8 

18 
4.15 - 

 

- 

Estriol 288 287 115 
171 

145 

30 

30 
5.64 E1-D2 

 

2.177 

Estrone-D2 272 271 105 
145 

159 

28 

28 
11.49 - 

 

- 

17β-Estradiol 272 271 125 
145 

183 

28 

30 
10.46 E1-D2 

 

0.771 

17α-

ethynylestradiol 
296 295 125 

145 

159 

28 

30 
11.17 E1-D2 

 

1.082 

Estrone 270 269 125 
145 

159 

28 

28 
11.44 E1-D2 

 

0.376 

Triclosan 289 
289 

287 
35 

35 

35 

4 

4 
13.72 Triclosan-D3 

 

0.891 

Triclosan-D3 292 290 35 
35 

37 

4 

4 
13.72 - 

 

- 

1. CV - cone voltage; 2. CE - collision energy; 3. RT - retention time; 4. LOD - limit of detection. 329 

All compounds had two abundant product ions, except ibuprofen, for which only one was 330 

monitored due to poor fragmentation. Transitions identified here are in agreement with those 331 

from other studies (Löffler and Ternes, 2003; Jelić et al., 2009; Ferrer et al., 2010; Golet et al., 332 

2001). 333 

2.2.2 Optimisation of Solid Phase Extraction (SPE) procedure 334 



A number of SPE protocols (different cartridges, elution solvents, pH conditions, etc.) were 335 

evaluated for pharmaceutical and EDC recovery. The choice of SPE stationary phase can play 336 

a crucial role in enhancing recovery of analytes and SPE selection is frequently based on the 337 

physico-chemical properties of target compounds. Here, the lipophilic-hydrophilic-balanced, 338 

reverse-phase polymeric sorbent Oasis HLB cartridge was used to accommodate the wide range 339 

of physico-chemical characteristics exhibited by the prioritised pharmaceuticals and EDCs 340 

(with pKa ranging from 4.2 to 13.9, and Log Kow from 0.28-6.36). This cartridge has also been 341 

shown to be less susceptible to matrix effects than other media (Gorga et al., 2013; Van De 342 

Steene et al., 2006; Vazquez-Roig et al., 2010). Two HLB cartridges (Oasis HLB and Oasis 343 

HLB Prime) were evaluated using methanol and acetone:ethyl acetate at 50:50 v/v as solvents. 344 

To study any pH related recovery effects, different solution pH values were tested (i.e., no pH 345 

adjustment or pH = 2). The average absolute recoveries (and relative standard deviations (SD)) 346 

for each target compound are shown in Table 4. 347 

To evaluate possible quantification errors introduced by analyte loss during sample processing 348 

and fluctuations in instrument sensitivity, 1 µg·L-1 of ILIS was added as a surrogate to samples 349 

prior to extraction (ILIS = 50 µg·L-1 post-SPE, assuming 100% recovery). The ILIS compounds 350 

applied in this study were selected based on the following criteria: (i) a 2H-isotope or a 13C 351 

labelled isotope compound - which shared the same (or very similar) physico-chemical 352 

properties to the analyte; (ii) with a chromatographic retention time close to that of the analyte; 353 

(iii) and similar SPE recovery and ionisation response to the analyte. Given the large number 354 

of compounds targeted here it was unfeasible to correct each analyte with its own individual 355 

ILIS, hence, ILIS analogues were used for certain groups (i.e., E1-D2 for the four estrogens) 356 

on the basis of compound similarity, retention time and recovery. Relative recoveries 357 

(calculated using the recovery data for the ILIS compounds), and the ILIS compounds used, are 358 

presented in Table 5. 359 



Table 4. Absolute mean SPE recoveries of prioritised pharmaceuticals and EDCs using different SPE protocols 

No. 
Recoveries 

% and (±%RSD) 

Analytes detected in -ve mode Analytes detected in +ve mode No. >75% 

and 

<125% IBU DCF E3 E2 EE2 E1 TCS MET PARA CFX TMP CBZE PPL CBZ CTM FLX ATV 

1 MEOH 

HLB 
35 67 38 36 41 44 34 45 90 2 38 59 39 51 49 35 10 

1 
(±17) (±4) (±10) (±6) (±5) (±6) (±2) (±16) (±6) (±0) (±1) (±1) (±3) (±1) (±6) (±0) (±1) 

HLB Prime 
71 83 65 75 87 56 67 74 93 2 56 90 68 83 45 45 12 

6 
(±10) (±3) (±4) (±4) (±0) (±10) (±11) (±6) (±2) (±0) (±1) (±1) (±4) (±2) (±1) (±5) (±2) 

2 ACE:EAC 

HLB 
56 77 37 33 40 49 59 11 90 3 38 65 6 52 26 1 11 

2 
(±5) (±2) (±10) (±14) (±13) (±3) (±2) (±12) (±4) (±3) (±2) (±7) (±1) (±3) (±5) (±0) (±3) 

HLB Prime 
90 91 97 111 101 107 98 11 99 1 42 98 28 102 26 0 27 

10 
(±6) (±2) (±3) (±9) (±3) (±4) (±8) (±3) (±2) (±0) (±1) (±0) (±6) (±4) (±7) (±0) (±5) 

3 

pH 2 

 

 MEOH 

HLB 
29 30 29 30 38 53 53 3 72 195 34 5 47 49 26 45 10 

0 
(±2) (±3) (±72) (±1) (±1) (±0) (±3) (±1) (±2) (±21) (±1) (±1) (±1) (±0) (±3) (±0) (±4) 

HLB Prime 
43 46 63 66 63 104 77 3 96 145 74 22 81 85 27 84 11 

6 
(±7) (±10) (±7) (±8) (±3) (±7) (±4) (±0) (±4) (±6) (±9) (±2) (±1) (±0) (±6) (±5) (±4) 

4 

pH 2 

 

ACE:EAC 

HLB 
57 36 27 29 37 49 62 2 81 36 42 20 40 54 9 32 6 

1 
(±1) (±1) (±3) (±4) (±5) (±0) (±10) (±0) (±1) (±11) (±8) (±1) (±8) (±6) (±1) (±2)  (±1) 

HLB Prime 
58 63 73 77 75 121 91 1 88 144 56 25 91 94 14 46 14 

7 
(±6) (±0) (±1) (±4) (±3) (±19) (±8) (±1) (±6) (±2) (±0) (±1) (±4) (±11) (±1) (±1) (±3) 

 
Table 5. Mean SPE recoveries of prioritised pharmaceuticals and EDCs calculated using the ILIS recovery data to correct responses 

No 

Recoveries 

% and (±%RSD) 

Analytes detected in -ve mode Analytes detected in +ve mode No. >75% 

and 

<125% 
IBU DCF E3 E2 EE2 E1 TCS MET PARA CFX TMP CBZE PPL CBZ CTM FLX ATV 

Applied ILIS DCF-D4 E1-D2 TCS-D3 TMP-D9 CBZ-D10 RTM FLX-D5 

1 MEOH 

HLB 
48 77 66 60 56 88 101 49 64 1 51 94 60 85 129 45 39 

5 
(±21) (±3) (±13) (±5) (±4) (±2) (±6) (±5) (±1) (±0) (±6) (±10) (±2) (±4) (±4) (±1) (±3) 

HLB Prime 
64 92 112 103 96 97 92 102 210 4 117 95 63 88 126 85 113 

12 
(±6) (±3) (±8) (±6) (±5) (±3) (±4) (±26) (±19) (±1) (±3) (±1) (±0) (±1) (±4) (±1) (±5) 

2 ACE:EAC 

HLB 
69 77 77 91 104 91 97 3 85 3 45 126 3 89 127 83 80 

10 
(±5) (±1) (±4) (±10) (±7) (±10) (±1) (±0) (±18) (±2) (±9) (±7) (±0) (±0) (±11) (±24) (±17) 

HLB Prime 
80 94 96 99 93 96 99 31 227 2 113 99 29 90 135 82 123 

12 
(±2) (±1) (±6) (±4) (±3) (±3) (±3) (±7) (±6) (±1) (±2) (±1) (±7) (±0) (±16) (±5) (±7) 

3 

pH 2 

 

 MEOH 

HLB 
56 77 46 57 83 71 93 1 40 62 95 3 77 80 104 95 9 

8 
(±3) (±0) (±2) (±2) (±11) (±4) (±2) (±0) (±2) (±4) (±2) (±1) (±8) (±3) (±4) (±1) (±0) 

HLB Prime 
147 101 66 83 92 103 110 4 126 221 134 33 116 120 133 95 67 

8 
(±28) (±2) (±6) (±4) (±1) (±5) (±1) (±2) (±18) (±5) (±6) (±3) (±3) (±3) (±2) (±0) (±16) 

4 

pH 2 

 

ACE:EAC 

HLB 
79 80 64 74 100 67 103 1 63 61 92 21 79 86 111 88 10 

9 
(±6) (±1) (±7) (±9) (±3) (±17) (±4) (±0) (±4) (±9) (±7) (±0) (±1) (±2) (±0) (±2) (±1) 

HLB Prime 
161 101 98 117 116 99 107 2 98 186 110 28 109 102 130 95 114 

12 
(±13) (±1) (±25) (±46) (±36) (±14) (±2) (±1) (±5) (±11) (±1) (±4) (±2) (±1) (±8) (±2) (±56) 

Where particular low/high recoveries have been observed, these are shaded grey for ease of noting (<35% / >135% - dark grey; <75%/ >125% - light grey). Metformin MET; Paracetamol PARA; 

Trimethoprim TMP; Ciprofloxacin CFX; Carbamazepine-10-11-epoxide CBZ; Propranolol PPL; Carbamazepine CBZ; Clarithromycin CTM; Fluoxetine FLX; Atorvastatin ATV; Ibuprofen IBU; 

Diclofenac DCF; Estriol E3; 17β-Estradiol E2; 17α-ethynylestradiol EE2; Estrone E1; Triclosan TCS. Trimethoprim-D9 TMP-D9; Carbamazepine-D10 CBZ-D10; Roxythromycin RTM; Fluoxetine-D5 

FLX-D5; Diclofenac-D4 DCF-D4; Estrone-D2 E1-D2; Triclosan-D3 TCS-D3. Methanol MEOH; acetone ACE; ethyl acetate EAC.



 

Recoveries obtained varied markedly between compounds and SPE conditions used (as 360 

may be expected given the physico-chemical diversity of the prioritised compounds). It 361 

is evident that data corrected for ILIS recovery (Table 5) provided better results for most 362 

target compounds (as compared to absolute recovery data; Table 4). This was most 363 

evident for the analytes clarithromycin, fluoxetine, trimethoprim and the estrogens. This 364 

indicated that analyte losses occurred throughout the analytical procedure and that ILIS 365 

correction helped ensure better quantification (compensating for any losses).  366 

In terms of SPE, higher recovery values were achieved using the Oasis HLB Prime 367 

cartridges under the tested conditions. The Oasis HLB Prime provided satisfactory 368 

recoveries (>75% and <125%) for more analytes (Table 4 and 5), which may be attributed 369 

to the strong hydrophobic interaction between analytes and retention sorbent of HLB 370 

prime cartridges (Beltran et al., 2010). For the extremely polar compound metformin, 371 

which was previously reported as not recoverable using an SPE procedure, satisfactory 372 

recoveries (102% ± 26%) were observed in condition 1 (Cahill et al., 2004). 373 

A dependency on SPE pH was observed for certain substances. For instance, the ILIS 374 

corrected recovery for propranolol and trimethoprim was enhanced at pH 2, while for 375 

carbamazepine-epoxide and metformin it was reduced. Notably, ciprofloxacin was 376 

overestimated when using acidified conditions, which may be attributed to pH-induced 377 

molecular conformation changes. Ciprofloxacin has a zwitterionic nature and exists in 378 

cation, zwitterion, and/or anion species under different pH conditions (see Fig. S3). We 379 

postulate that the acidification of the SPE process to pH 2 charged the cationic amine 380 

moiety positively, resulting in an increased number of ions entering the MS. The 381 

dependency of substances with a zwitterionic nature on pH has also been reported by 382 

other authors (Rossmann et al., 2014).  383 

Regarding the optimal SPE conditions, 12 of 17 compounds were recovered at >75% and 384 

<125% in tested conditions 1, 2 and 4 based on the ILIS correction (Table 5). Using 385 

absolute recoveries (Table 4), condition 2 was found to be most effective (>75% recovery 386 

for 10 compounds with HLB Prime). The ILIS corrected values (Table 5) were generally 387 

in agreement with the absolute recoveries (Table 4), with the enhancement of recoveries 388 

(Table 5) in conditions 1 and 4 suggesting the ILIS correction appropriately ensured 389 

successful quantification by compensating for losses of compounds.  390 



 

The ‘optimal’ SPE condition that provided the best recovery for each compound varied 391 

due to the variety of physico-chemical properties represented in the priority list. For most 392 

target compounds, condition 2 was found the most effective based on the high values of 393 

both absolute and ILIS corrected recoveries, therefore was selected for further study. 394 

Meanwhile, low recovery was noted for certain substances (metformin, ciprofloxacin and 395 

propranolol <35%) in this condition. To reach a compromise, that gives an acceptable 396 

recovery for most compounds with the least loss, condition 1, retaining 16 out of 17 397 

compounds, with the exception of ciprofloxacin, was also selected for further 398 

investigation.  399 

Although quantitation with ILIS assured sufficient recoveries, under certain 400 

circumstances, the use of ILIS can be a complicated approach for analytes from a diverse 401 

range of chemical classes (Gracia-Lor et al., 2011). Quantitation with ILIS needs to be 402 

well characterised when it does not ensure an adequate correction. For instance, 403 

undesirable enhancement of ILIS recovery was observed for paracetamol while 404 

satisfactory absolute values (72-99%) were obtained under tested conditions. Similar 405 

inadequate ILIS recovery was found for ibuprofen. This was attributed to the mass loss 406 

of its ILIS analogue not coinciding with the analyte under the same conditions so that the 407 

ILIS calculation exaggerated the process efficiency, making the ILIS correction 408 

unnecessary (Marín et al., 2009; Renew and Huang, 2004). Therefore, the absolute 409 

recoveries of paracetamol and ibuprofen have been adopted for evaluation.  410 

2.3 Matrix effect study 411 

The influence of environmental matrix on accurate quantitative LC-MS/MS analysis has 412 

been widely discussed (Frigerio et al., 2019; Fu et al., 2018; Huang et al., 2020). Non-413 

target components present in samples can have a significant impact on analyte recovery 414 

and ionisation which may deplete or enhance MS signal intensity and thus affect accurate 415 

quantification (Irlam et al., 2019; Meerpoel et al., 2018; Tran et al., 2020). The assessment 416 

of matrix effect has been conducted in a number of approaches during the development 417 

of quantitative analytical method, the most commonly used one may refer to the “absolute” 418 

matrix effect, comparing the signal response of a standard present in an extract containing 419 

co-eluting components to the response of a standard in a “not contaminated” neat solvent 420 

(Matuszewski et al., 2003). Although the presence of this absolute matrix effect (which 421 

is often obtained by a comparison of the response of analyte spiked after extraction to the 422 



 

response in the neat solution) is of some concern, the more important parameter in the 423 

evaluation of an analytical method is the demonstration of the absence of a “relative” 424 

matrix effect in different sources of environmental water matrices. To validate the overall 425 

performance of the analytical method in this study, the effects of water matrices were 426 

evaluated by comparing recoveries of analytes in different water matrices (spiked before 427 

extraction). The suppression or enhancement of recoveries in Table 6 demonstrated the 428 

overall effects of matrices (undetected coeluting components reacting with primary ions 429 

formed in the HPLC−MS/MS interface) and recoveries (competition with matrix 430 

components, which can largely be compensated by isotope-labeled internal standards) 431 

from different water sources. All values presented were corrected using ILIS, except for 432 

paracetamol and ibuprofen, where absolute recoveries are given (due to inadequate ILIS 433 

correction as discussed above). 434 

With a number of exceptions, fairly limited effects of matrix were observed for many of 435 

these pharmaceuticals and EDCs, which is consistent with previous findings (Cha et al., 436 

2006; Tong et al., 2009; Tuc Dinh et al., 2011). Some effects were noted for 6 compounds, 437 

with >50% recovery suppression for two (atorvastatin and ibuprofen), ~20-40% 438 

suppression for three (metformin, paracetamol and clarithromycin) and <20% 439 

enhancement for trimethoprim. This was likely due to ion suppression in the MS ESI 440 

source due to matrix components (Gómez et al., 2006; Kasprzyk-Hordern et al., 2008). 441 

The lack of ILIS correction for paracetamol and ibuprofen likely made these effects more 442 

obvious and meant effective correction could not be achieved. For atorvastatin, its high 443 

Log Kow (6.36) suggests the compound would tend to bind with organic matter present in 444 

water – and the SPE process presumably failed to overcome this. For several analytes 445 

(e.g., E3, paracetamol, trimethoprim, clarithromycin), a filtered river water matrix 446 

resulted in lower recovery versus unfiltered, indicating no filtration is beneficial to remain 447 

pharmaceutical compounds when recovering them from environmental water matrices. 448 

This may be attributed to the pharmaceutical analytes sorbed onto suspended particular 449 

matter present in the river samples, which was then removed during membrane filtration, 450 

causing the concentrations of freely dissolved analytes to be lower for further detection. 451 

The co-extracting components in river water matrix may also mask the analyte peaks by 452 

raising the chromatogram baseline, leading to underestimated integrated peak areas. 453 

Meanwhile, the co-extracting matrix may reduce ionisation efficiency of the analytes by 454 

taking up some of the limited number of excess charged sites on the surfaces of 455 



 

electrosprayed droplets (Gómez et al., 2006).This is consistent with other studies and may 456 

suggest that analysing samples without filtration may sometimes be more appropriate 457 

(depending on the analytes concerned and aims of the study) (Berset and Ochsenbein, 458 

2012; Tran et al., 2013). For filtered river samples, methanol elution provided better 459 

recoveries for most target compounds in this study. In terms of limits of quantification 460 

(LOQs) calculated when processing 1 L of water - these were in the range of 0.07 ng·L-1 461 

to 9.07 ng·L-1 (as shown in Table 6). For 14 out of 17 compounds (excluding ibuprofen, 462 

ciprofloxacin and E3), method LOQs were 0.07 ng·L-1 to 1.88 ng·L-1 , which is somewhat 463 

lower than those previously reported in other studies (Choi et al., 2007; Ding et al., 2009; 464 

Tuc Dinh et al., 2011).  465 



 

Table 6. Recoveries of prioritised pharmaceuticals and EDCs in different water matrices (using ILIS correction, except for paracetamol and ibuprofen) 
Recoveries 

% and (±%RSD) 

Analytes detected in -ve mode Analytes detected in +ve mode No. >75% 

and 

<125% 
IBU DCF E3 E2 EE2 E1 TCS MET PARA CFX TMP CBZE PPL CBZ CTM FLX ATV 

Applied ILIS  DCF-D4 E1-D2 TCS-D3 TMP-D9  TMP-D9 CBZ-D10 RTM FLX-D5 

MEOH 

Milli-Q 
71 92 112 103 96 97 92 102 93 4 117 95 63 88 126 85 113 13 

(±10) (±3) (±8) (±6) (±5) (±3) (±4) (±26) (±2) (±1) (±3) (±1) (±0) (±1) (±4) (±1) (±5) 

Tap  

Water 

32 100 129 116 115 95 96 47 51 26 137 112 60 101 105 100 43 9 

(±3) (±1) (±9) (±5) (±21) (±1) (±0) (±11) (±5) (±10) (±2) (±3) (±4) (±2) (±9) (±3) (±0) 

River water 

Unfiltered 

5 99 112 98 102 96 109 44 62 6 131 110 65 97 108 93 14 10 

(±4) (±2) (±14) (±10) (±15) (±3) (±1) (±2) (±3) (±5) (±8) (±1) (±6) (±3) (±3) (±4) (±5) 

River water  

Filtered 

14 100 81 103 104 96 107 60 55 10 124 111 73 97 89 95 55 11 

(±5) (±6) (±2) (±24) (±20) (±0) (±2) (±1) (±14) (±3) (±1) (±1) (±1) (±1) (±4) (±1) (±4) 

 

ACE:EAC 

Milli-Q 
90 94 96 99 93 96 99 31 99 2 113 99 29 90 135 82 123 13 

(±6) (±1) (±6) (±4) (±3) (±3) (±3) (±7) (±2) (±1) (±2) (±1) (±7) (±0) (±16) (±5) (±7) 

Tap  

Water 

40 97 96 99 92 90 105 2 67 1 130 101 21 96 103 94 6 10 

(±2) (±1) (±4) (±2) (±12) (±4) (±4) (±1) (±5) (±0) (±7) (±2) (±5) (±2) (±5) (±5) (±3) 

River water 

Unfiltered 

13 97 96 98 93 98 106 3 57 1 121 107 33 88 107 97 4 11 

(±4) (±1)  (±23) (±6) (±4) (±3) (±2) (±0) (±9) (±2) (±8) (±3) (±9) (±0) (±5) (±2) (±2) 

River water  

Filtered 

13 105 81 97 98 95 100 3 56 1 119 112 39 92 104 103 57 11 

(±1) (±2) (±6) (±1) (±5) (±1) (±4) (±1) (±6) (±0) (±32) (±8) (±11) (±4) (±2) (±6) (±0) 

 

Method LOQ  

(ng·L-1) 
9.07 0.78 4.48 1.31 1.88 0.66 1.61 0.27 0.69 4.46 0.08 0.09 0.39 0.11 0.07 0.10 0.70 

 

Where clearest reductions in recovery are evident (i.e., matrix effects most likely), these have been shaded grey for ease of noting (>50% dark grey; 20-40% light grey; reduction owing to suspended particulate 
matter- medium grey). .Metformin MET; Paracetamol PARA; Trimethoprim TMP; Ciprofloxacin CFX; Carbamazepine-10-11-epoxide CBZ; Propranolol PPL; Carbamazepine CBZ; Clarithromycin CTM; 

Fluoxetine FLX; Atorvastatin ATV; Ibuprofen IBU; Diclofenac DCF; Estriol E3; 17β-Estradiol E2; 17α-ethynylestradiol EE2; Estrone E1; Triclosan TCS. Trimethoprim-D9 TMP-D9; Carbamazepine-D10 

CBZ-D10; Roxythromycin RTM; Fluoxetine-D5 FLX-D5; Diclofenac-D4 DCF-D4; Estrone-D2 E1-D2; Triclosan-D3 TCS-D3. Methanol MEOH; acetone ACE; ethyl acetate EAC.



 

2.4 Analysis of real water samples 466 

To validate the applicability of this method, it was applied to identify and quantify 8 467 

priority pharmaceuticals and EDCs in various real water samples (to fit in the target of 468 

the hospital monitoring project – possible detected analytes based on local description 469 

data). Given the matrix effects observed in testing, an additional ILIS (paracetamol-D4) 470 

was applied (relevant recovery data was provided in Supporting information Table S3). 471 

Monitoring results are presented in Table 7. 472 

Table 7. Summary of the field monitoring results obtained for 8 target compounds (ng·L-1) in 473 
real water samples. Samples collected from a combined rural hospital discharge (Wick General, 474 
Scotland), and, the influent and effluent from Wick municipal WWTP  475 

Compound 

Hospital discharge (n = 20) Wastewater influent (n = 20) Wastewater effluent (n = 20) 

Detection 

frequency (%) 

Mean 

(range) 

Detection 

frequency (%) 

Mean 

(range) 

Detection 

frequency (%) 

Mean 

(range) 

Paracetamol 100 
33,267 

(7,959-105,910) 
100 

67,483 

(5,849-105,780) 
100 

8,567 

(516-36,201) 

Trimethoprim 85 
818 

(<LOD-9,111) 
100 

621 

(155-2,170) 
84 

440 

(<LOD-634) 

Carbamazepine 100 
13 

(3-47) 
100 

306 

(40-684) 
100 

459 

(212-709) 

Clarithromycin 45 
1,271 

(<LOD-7,940) 
57 

246 

(<LOD-830) 
100 

371 

(60-836) 

Fluoxetine 32 
16 

(<LOD-37) 
26 

19 

(<LOD-46) 
15 

16 

(<LOD-29) 

Ibuprofen 45 
139 

(<LOD-675) 
100 

471 

(5-6,018) 
73 

73 

(<LOD-178) 

Diclofenac 75 
77 

(<LOD-593) 
63 

196 

(<LOD-392) 
36 

102 

(<LOD-250) 

EE2 0 <LOD 0 <LOD 0 <LOD 

Beyond those sites shown in Table 7, no target pharmaceuticals were detected (>LOQ) 476 

in the surface source water or the treated hospital drinking water supply tested. Likewise, 477 

EE2 was never found (< LOQ = 1.88 ng·L-1), the method LOD standard of which has 478 

been updated to 0.035 ng·L-1 based on the Commission Implementing Decision 479 

(European Commission, 2018), suggesting the challenge and necessity of improving the 480 

analytical methodology to monitor such compounds at lower concentrations. In the 481 

hospital discharge, all the targeted pharmaceuticals were detected except EE2, with 482 

paracetamol and carbamazepine detected in every sample. The highest concentrations 483 

were recorded for paracetamol, with a maximum of 105,910 ng·L-1, followed by 484 

trimethoprim (9,111 ng·L-1) and clarithromycin (7,940 ng·L-1). Regarding the WWTP 485 

wastewater influent tested, the highest levels were noted for paracetamol (105,780 ng·L-486 

1) and ibuprofen (6,018 ng·L-1). The increased mean detection level of paracetamol 487 

(33267 ng·L-1 to 67483 ng·L-1) and ibuprofen (139 ng·L-1 to 471 ng·L-1) between the 488 



 

hospital discharge and wastewater influent indicated the possible presence of other 489 

inputting sources of such pharmaceuticals besides the hospital discharge. Lower levels of 490 

trimethoprim (818 ng·L-1 to 621 ng·L-1) and clarithromycin (1271 ng·L-1 to 246 ng·L-1)  491 

in WWTP influent versus the hospital discharge may be attributed to the degradation 492 

and/or dilution in the aquatic environment between those two sites (Gracia-Lor et al., 493 

2011). Higher levels of carbamazepine and ibuprofen may reflect greater (human) intakes 494 

in the community versus the hospital. In terms of the final WWTP effluent, all the 495 

previously detected pharmaceuticals remained detectable – albeit at reduced levels in 496 

some cases. Five of the pharmaceuticals monitored were at lower mean levels in discharge 497 

versus influent – but, two (carbamazepine, clarithromycin) were more elevated in 498 

discharge water. These results reinforce the need to apply multiclass pharmaceutical 499 

monitoring methods in order to gain a better understanding of the fate/behaviour of these 500 

compounds at the catchment scale. Likewise, they highlight the ongoing need to create 501 

WWTP processes that can efficiently eliminate these bioactive pollutants of concern. 502 

Compared to levels reported in other European countries for these target compounds 503 

(Gros et al., 2010; Gros et al., 2007; López-Serna et al., 2011), the surface water data 504 

collected here demonstrated how relatively ‘pristine’ source water can be in the Scottish 505 

Highlands (in a remote inland lake, currently entirely ‘free’ of these contaminants). 506 

However, the WWTP concentrations seen here (both influent and effluent) were highly 507 

comparable with data from Germany, Belgium and the US (Cahill et al., 2004; Gurke et 508 

al., 2015a; Rossmann et al., 2014; Vergeynst et al., 2015). This clearly highlights the 509 

impact that pharmaceutical consumption is and can have – even in remote and otherwise 510 

pristine hydrological systems.  511 

3. Conclusion 512 

A sensitive analytical methodology for the simultaneous determination of up to 17 513 

priority pharmaceuticals and EDCs was developed and validated using an optimised SPE 514 

protocol and HPLC-ESI-MS/MS detection. A risk-based approach was applied to identify 515 

compounds that may pose the greatest environmental concern. The diversity of analytes 516 

selected meant that some compromises were needed when applying this analysis (i.e., 517 

accepting reduced recovery for certain compounds). The optimal SPE protocol used Oasis 518 

HLB Prime cartridges with no pH adjustment and elution with methanol. The use of ILIS 519 

improved the reliability of the entire process and helped evaluation of matrix effects. 520 



 

Application of the method to ‘real’ environmental samples from a rural catchment in 521 

Scotland, illustrated the occurrence of pharmaceuticals in various wastewater matrices. 522 

The highest concentrations found were for paracetamol, with a mean level of 67,483 ng·L-523 

1 in municipal WWTP influent. The successful application of this method to real water 524 

matrices validated its applicability within routine monitoring studies regarding these 525 

priority pharmaceutical and EDC contaminants.  526 

Appendix A. Supplementary material 527 

Supplementary data associated with this article is present in the Supporting 528 

Information. 529 
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