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I  Introduction 

Fluorescence light-sheet microscopy is increasingly 

adopted by developmental biologists to study how cells 

divide and differentiate to form organs and even entire 

organisms [7]. A light-sheet microscope differs from the 

conventional microscope in that the sample is illuminated 

by a plane of light orthogonal to the detection axis, thus 

keeping out-of-focus areas dark while limiting potentially 

detrimental exposure of the sample. Light-sheet 

microscopy has become a key technology for long-term 

and non-invasive studies of intact, and therefore three-

dimensional, fluorescent specimen. 

While the light-sheet microscope is able to rapidly image 

larger samples such as the developing zebrafish, this 

comes with a trade-off between resolution and field-of-

view. Diffraction prevents the conventional Gaussian 

light-sheet to remain focused to a thin plane throughout 

the entire width of the sample. High axial resolution can 

only be obtained near the beam waist, while other regions 

suffer from reduced axial resolution and increased out-

of-focus blur. Propagation-invariant Bessel beams can 

form extended light-sheets; however, their extended 

transverse profile is detrimental to contrast without 

relying on two-photon excitation [8,11], or blocking of 

the out-of-focus light using a confocal slit [3]. Both 

solutions do lead to a significant increase in sample 

exposure when the same number of fluorescence photons 

is collected. It is unfortunate that this diminishes the low 

sample exposure advantage of light-sheet microscopy, a 

primary reason for using the technique. We demonstrate 

how the asymmetric profile of the Airy beam can 

overcome the trade-off between axial resolution and 

field-of-view without sacrificing the scarce fluorescence 

signal and without relying on the high—often photo-

bleaching and damaging—peak-powers associated with 

two-photon excitation. The Airy light-sheet enables sub-

cellular resolution throughout a 10× larger volume [5]. 

  
Figure 1 The Airy light-sheet fluorescence microscope. A 

collimated laser beam (green) is modulated by a cubic-

polynomial phase mask and focused into the sample to produce 

a propagation-invariant Airy light sheet. The emitted 

fluorescence (red) is collected by the objective and reimaged 

onto the camera (CAM). The asymmetry of its profile enables 

high-resolution image reconstruction over an order of 

magnitude larger field-of-view. 
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Abstract 
Fluorescence light-sheet microscopy is gaining rapid adoption in developmental biology. With irradiation levels well 

below that of confocal and multi-photon microscopy, it enables the study of intact organs and organisms for prolonged 

time periods during development. Minimal sample exposure is achieved by selectively illuminating the focal plane with a 

second objective orthogonal to the detection axis. The light-sheet microscope’s ability to study intact biological samples 

as and when they grow highlights the importance of imaging deeper into biological samples. Yet, deep-tissue microscopy 

is hampered by autofluorescence and the scattering of light. Direct observations are therefore limited to highly transparent 

and thin samples. Here, we show how autofluorescence can be eliminated effectively by relying on reversible photo-

switching fluorescence while we propose a way forward to study and control light propagation in optically-thick tissues.  
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Figure 2 Reversible photo-switching contrast light-sheet 

microscopy. Microspheres labeled with the reversible photo-

switchable protein rsEGFP within a highly fluorescent medium. 

(a) Conventional light-sheet fluorescence image. (b) The 

fluorescence intensity fluctuations, in lock-step with the 

activation laser, at the pixel indicated by the cross-hair in panel 

(a).  (c) Photoswitching-enabled contrast enhancement of the 

light-sheet image. (d-f) Photo-switching contrast used to 

identify E-coli bacteria. (d) Conventional fluorescence image of 

a green-fluorescent HaCaT (aneuploid immortal keratinocyte) 

cell. (e) Photo-switching contrast overlaid on conventional 

image in magenta. (f) Diagonal cross-section through the cell 

shows that the small dot on the top right is the photo-switching 

E-coli bacterium. Adapted with permission from [12]. 

Copyright 2017 American Chemical Society. 

The larger imaging volume also comes with new 

challenges. Optical aberrations are a reflection of the 

natural inhomogeneity of biological specimen, and 

scattering quickly become significant when imaging 

through multiple layers of cells. Conventional light-sheet 

microscopy is therefore restricted to thin or quasi-

transparent specimen such as the zebrafish (Danio rerio).  

Nevertheless, most biological samples tend to be turbid 

or opaque to light, in particular after the later stages of 

development. Moreover, the indigenous auto-

fluorescence of biological tissues can severely reduce 

contrast and hamper the correct interpretation of the 

light-sheet fluorescence microscopy images. We 

demonstrated that reversibly photo-switching fluorescent 

proteins such as rsEGFP can be successfully used to 

boost weakly fluorescent features by two orders of 

magnitude (Figure 2). This enables high contrast and 

resolution, even under the adverse conditions of turbid, 

highly auto-fluorescent, samples. 

Auto-fluorescence is not the only obstacle to deep-tissue 

microscopy. Light scattering becomes progressively 

more important as one attempts to image deeper into 

biological specimen. The issue is two-fold in light-sheet 

microscopy. Since the illumination and detection light 

paths traverse different areas of the specimen, adaptive 

optics are required in both independent light paths. While 

early forms of light-sheet microscopy were relatively 

forgiving when the light-sheet deteriorates; novel forms 

of light-sheet microscopy increasingly rely on precisely 

patterned illumination to form a higher resolution image 

through computational methods [1,5]. 

 

 
Figure 3 Structured illumination light-wave propagation 

through biological tissue from left to right. Cell membranes are 

indicated with blue lines, nucleus membranes with orange lines, 

dense regions are indicated in red. The sample is illuminated 

from the left (along the x-axis) with a periodic pattern. The 

periodic pattern is distorted after propagation through six layers 

of cells as it exits the sample on the right-hand side. 

Understanding the effects of heterogeneity on light 

propagation requires adequate models of the sample as 

well as novel algorithms that enable accurate and 



efficient calculation of the light field in optical materials 

as complex as biological tissue. Conventional methods 

such as Finite-difference time-domain (FDTD) and 

finite-element methods do not scale well to the volumes 

of interest to biological microscopy. A novel class of 

modified Born-series methods was recently discovered 

and put forward to bridge this gap [9]. We show that this 

type of method can be extended to Maxwell’s electro-

magnetic vector fields [6], and applied to very general 

materials, including biological tissues and metamaterials 

[13]. Figure 3 shows how this can be used to study how 

structured illumination is refracted and scattered by the 

heterogeneities within a model specimen. The highly-

accurate map of the internal electro-magnetic field can 

complement experiments that only have access to the 

field as and when it exits the sample. 

Accurate information of the light propagation can drive 

adaptive optics techniques and aid in the study of 

different optical memory effects [4,10]. Commonly, 

adaptive optics are introduced to correct the detection 

light path. We demonstrate how also light-sheet 

illumination can be controlled in turbid samples to 

achieve high axial resolution even in turbid samples [2]. 
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