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Abstract  

In this research, a facile fungal biomineralization method was developed for the synthesis of 

nanoscale zerovalent iron (nZVI) with a unique N-doped branching structure, which showed 

excellent stability and mediated high degradation of carbon tetrachloride (CCl4) in aqueous 

solution. The ureolytic fungus Neurospora crassa was cultured in medium containing Fe2+ and 

urea which resulted in iron carbonate biomineral precipitation. Following carbonization at 

900oC, the fungal-carbonate composite became highly porous and granular nanoparticles (~50 

nm diameter) were distributed evenly around the carbonized hyphae in a coralline manner. This 

‘iron coral’ composite was identified as a mixture of zerovalent iron (Fe0), carbon iron 

(Fe1.91C0.09) and iron oxide (Fe3O4). The porous branching hyphal framework improved the 

capture efficiency of CCl4, and the N-doped sites may accelerate the electron transfer between 

CCl4 and nZVI. Geochemical simulation was applied to verify the formation of the biominerals, 

and chemical analyses confirmed its significant degradation ability for CCl4. These findings 

have therefore demonstrated that ureolytic fungi can provide a promising environmental-

friendly system for the novel preparation of nZVI through biomineralization with the resulting 

‘iron coral’ capable of significant removal of a chlorinated compound and therefore indicating 

new bioremediation applications. 
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1. Introduction 1 

Chlorinated pollutants are the most common organic pollutants in groundwater which can 2 

cause serious problems for ecosystems and human health due to their volatility, carcinogenic 3 

effects and bioaccumulation potential [1]. Over the last three decades, zerovalent iron (ZVI) 4 

has been extensively applied for the remediation or removal of chlorinated substances, 5 

including hydrocarbons, from contaminated aqueous solution [2-5]. ZVI technology research 6 

has been mainly focused in three contexts: development of various synthesis methods to 7 

overcome limitations of ZVI during remediation applications; exploring the possibility of ZVI 8 

for the removal of novel contaminants arising from modern industrial and agricultural 9 

technologies; and practical applications of ZVI in contaminated sites [1, 5, 6]. Although ZVI 10 

can exhibit excellent performance in contaminant removal, nanoscale ZVI (nZVI) particles 11 

offer a much higher potential due to their large specific surface area, high reactivity and 12 

adequate mobility [7, 8]. However, nanoscale particles tend to aggregate due to weak van der 13 

Waals forces, high surface energy and intrinsic magnetic interactions which results in a 14 

decrease in the number of active sites and reduced mobility thus limiting reaction efficiency 15 

and practical applications [4].  16 

To improve dispersion and avoid nanoparticle aggregation, research has been carried out on 17 

the synthesis of novel nZVI-based materials, including surface modified nZVI (e.g., by 18 

chitosan or carboxyl methylated cellulose coatings and amino-functionalized nZVI) [8-10] and 19 

solid materials supporting nZVI (e.g., activated carbon, graphene and organic resins) [2, 11, 20 

12]. A novel stabilized nZVI-Ni catalyst was developed using polyvinylpyrrolidone (PVP) and 21 

this exhibited better mobility than bare nZVI-Ni [13]. The stabilized nZVI-Ni could degrade 22 

trichloroethylene (TCE) completely in 1 h with superior dechlorination kinetics. Carbon-based 23 

materials, e.g. activated carbon, graphene, and carbon nanotubes, have been evaluated as 24 

important supporting materials for nZVI due to their high surface area, gap structure and other 25 
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unique properties [14]. Graphene-supported nZVI (G-nZVI) was prepared for the removal of 26 

trichlorinitromethane (TGNM) from drinking water and 99% of TGNM was adsorbed and 27 

degraded using a 60 mg l-1 G-nZVI dosage within 120 min [15]. Although stabilized and solid 28 

supported nZVI can exhibit high dispersibility and reactivity, several stabilizing agents have 29 

been reported to compete for nZVI active sites with contaminants while a stable distribution of 30 

nZVI on solid supports is hard to achieve [4, 16].  31 

In the natural environment, fungi can interact with metal and minerals through various 32 

biomineralization, biosorption and biotransformation processes, which can be key components 33 

of biogeochemical cycles [17-20]. Biomineralization is the process of mineral formation by 34 

organisms and the final products commonly contain organic and inorganic components [17, 35 

19]. One mechanism for the biomineralization of metal carbonates is related to urea 36 

degradation. In a growth medium or habitat containing urea, ureolytic microorganisms degrade 37 

urea and release ammonium (NH4+) and carbonate (CO32-) ions, the latter reacting with free 38 

metal ions resulting in the precipitation of metal carbonates [17]. The surfaces of the branching 39 

mycelial network of filamentous fungi provide nucleation sites for mineral precipitation. 40 

Moreover, the secretion of metabolites (e.g. extracellular proteins, polysaccharides, amino 41 

acids, and organic acids) also play important roles in the formation of nano- and microscale 42 

minerals [21]. Previous research has demonstrated that the urease-positive fungi Neurospora 43 

crassa, Pestalotiopsis sp. and Myrothecium gramineum were able to precipitate toxic metal 44 

ions  (e.g. Co2+, Zn2+, Cd2+, Cu2+ and Ni2+) as carbonates in a urea-modified medium[19, 22, 45 

23]. It was shown that extracellular protein was responsible for governing mineral size and 46 

morphology and further studies proved that in the biomineralization process, the conformation 47 

of extracellular proteins preferentially formed β−structures rather than α-helixes [23]. Excreted 48 

amino acids, such as L-glutamic acid, were found to stabilize copper-containing minerals in 49 

the early stages of crystal growth and prevented crystal aggregation which resulted in the 50 
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bioprecipitation of nanoparticles [21]. Moreover, fungal biomass has been developed as a 51 

carbon precursor for various applications including electrochemical materials and 52 

electrocatalysis, through biomineralization and subsequent carbonization [22, 24]. In the 53 

process of biomineralization, the cross-linked branching hyphal structure can provide 54 

mechanical support and significant properties for the enhanced dispersion of reactants. The aim 55 

of this research was to examine the fungal biomineralization of nZVI by ureolytic fungi to 56 

provide understanding of the mechanisms involved and to identify possible applications for the 57 

degradation or bioremediation of chlorinated pollutants.  58 
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2. Materials and methods 59 

2.1 Geochemical simulation of iron carbonate precipitation using Geochemist’s 60 

Workbench (GWB)  61 

Previous studies have demonstrated that ureolytic fungi can precipitate metal carbonates (e.g. 62 

CaCO3, SrCO3 and CoCO3) in a carbonate-laden system produced by ureolysis [17-19, 21]. To 63 

understand the solubility of Fe2+ in the fungal biomineralization system, GWB 11.0.6 (Aqueous 64 

Solutions LLC, Urbana-Champaign, USA) was applied for the geochemical simulation of iron 65 

carbonate bioprecipitation, and this software can be used for the calculation of stability 66 

diagrams and determination of the chemical equilibrium states in aqueous solutions. Further 67 

details and application of the GWB software to examine carbonate bioprecipitation can be 68 

found in Li et al. [23]. In these experiments, the concentration of CO32- was set as 330 mM 69 

(330 mM urea is completely degraded by ureolytic fungi incubated in AP1 media producing 70 

equimolar carbonate [23]) and the other set components were the same as in the AP1 medium 71 

(6.1 mM Cl-, 0.83 mM SO42-, 0.66 M NH4+, 4 mM K+, 0.8 mM Mg2+, 1.7 mM Na+, 0.2 mM 72 

Ca2+, 0.02 mM Mn2+, 0.01 Mm Zn2+ and 9 µM Fe3+ at 25oC). According to previous 73 

experimentation, the pH of fungal supernatants was between pH 7.0 and 8.0 after incubation in 74 

urea-containing media and therefore minerals precipitated in this pH range will be investigated 75 

in the simulation system. 76 

 77 

2.2 Biomineralization of Fe-containing minerals by Neurospora crassa 78 

The experimental fungus used was Neurospora crassa (WT ACCC #32256, Agricultural 79 

Culture Collection of China (ACCC), Beijing, China). It was grown in malt extract (ME) liquid 80 

medium in a shaking incubator in the dark (125 rpm, 25oC). After 3 d incubation, fungal 81 

biomass was filtered using a sterilized sieve (80 mesh, i.e. 80 squares per linear inch, equivalent 82 

to squares of dimension 180 x 180 µm), resuspended in sterilized Milli-Q water and filtered 83 
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again. Fungal biomass was transferred to a modified liquid medium (AP1) for mineral 84 

precipitation. AP1 medium contained 111 mM glucose, 0.33 M urea, 4 mM K2HPO4, 0.8 mM 85 

MgSO4, 0.2 mM CaCl2, 2 mM NaCl and trace metals 1.4 × 10-2 mM ZnSO4, 1.8 × 10-2 mM 86 

MnSO4, and 1.6 × 10-3 mM CuSO4. To obtain an appropriate amount of biominerals (iron 87 

carbonate) and ensure good growth of N. crassa, 10 and 20 mM Fe2+ were the final 88 

concentrations chosen for mineral precipitation in liquid medium. The FeSO4 stock solutions 89 

(0.4 M) were filtered using 0.2 µm pore size membrane filters (Sartorius Stedim Biotech, 90 

Göttingen, Germany) prior to adding appropriate aliquots to the AP1 medium for the 91 

biomineralization experiments to achieve final concentrations of 10 and 20 mM FeSO4. All 92 

experiments were conducted at least in triplicate. 93 

 94 

2.3 Preparation of nZVI/fungal biomass composite 95 

To prepare the nano zerovalent iron (nZVI)/fungal biomass composite, fungal biomass was 96 

collected after 6 d incubation in Fe-modified AP1 medium by centrifugation (4770 g x 20 min, 97 

4oC), washed with Milli-Q water and dried in a vacuum freeze dryer (JOYN FD-1C-50, 98 

Shanghai, China) for several hours. The dried biomass was ground to a fine powder using an 99 

agate mortar and pestle and then put into a quartz boat. Carbonization of fungal biomass and 100 

the reduction of Fe2+ to Fe0 were achieved by increasing the temperature to 900oC in a tube 101 

furnace (KejingOTF-1200X, Hefei, China) at a heating rate of 5oC min-1 which was then 102 

maintained for 1 h. Nitrogen gas was used to keep the atmosphere anaerobic during the whole 103 

process. 104 

 105 

2.4 Characterization of minerals precipitated by N. crassa 106 

Samples were fixed using 2.5% glutaraldehyde in 5 mM PIPES buffer (pH = 6.5) for 24 h at 107 

room temperature and then washed twice using the same PIPES buffer. Dehydration was 108 
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performed using vacuum freeze drying (SCIENTZ-10YG/A, Ningbo, China). Morphological 109 

and elemental analysis of fungal biomass before and after heat treatment were conducted using 110 

scanning electron microscopy (SEM) (ZEISS Gemini 300, Oberkochen, Germany) and energy 111 

dispersive X-ray analysis (EDXA) operating at voltages of 15 kV and 20 kV, respectively. The 112 

identification of biominerals was carried out using X-ray diffraction (XRD) (Bruker D8 113 

Advance, Karlsruhe, Germany), Fourier transform infrared spectroscopy (FTIR) (Thermo 114 

Fisher 6700, Waltham, USA) and X-ray photoelectron spectroscopy (XPS) (Thermo Fisher, 115 

Waltham, MA, USA). Sample preparation and curve fitting analysis were conducted according 116 

to the procedures described in Li et al. [23].  117 

After carbonization and reduction of Fe2+，the surface properties and surface area of fungal 118 

biomass and the biogenic nZVI/fungal biomass composite were characterized by N2 119 

adsorption/desorption measurements using a surface area analyzer (Micromeritics ASAP 2020 120 

HD88, Norcross, GA, USA). The thermal stability of the sample was investigated using 121 

thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) (SDT Q600 V20.9 122 

Build 20, TA instruments, DE, USA) in a nitrogen atmosphere (100 ml min-1) from room 123 

temperature to 900oC at a rate of 5oC min-1. 124 

A 2 ml sample, from a 10% (w/v) solution in 10 ml MilliQ water, after heat treatment, was 125 

examined for stability using a LUMiSizer Dispersion Analyser (LUM GmbH, Berlin, 126 

Germany). The wavenumber for the space and time resolved extinction profiles (STEPTM) 127 

was 865 nm and the sedimentation speed was 4000 rpm. The transmitted light detector was 128 

used to scan along the height of the synthetic sample cell for 1 h.  129 

 130 

2.5 Removal of carbon tetrachloride from solution by the ‘iron coral’ composite 131 

For the degradation experiments, 0.1 g of biogenic nZVI/fungal biomass composite was added 132 

to 100 ml CCl4 solution (16 mg l-1, first dissolved in methanol) and kept in a shaking incubator 133 
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(125 rpm, 25oC) for 150 min. The concentration of CCl4 and the intermediate degradation 134 

products were measured every 30 min using a gas chromatography-mass spectrometer (GC-135 

MS) (7890B-5977A, Agilent Technologies, CA, USA), and the selected ion monitoring (SIM) 136 

method of quantitation was selected.  137 

 138 

2.6 Tafel scans of the ‘iron coral’ composite and commercial nZVI 139 

To investigate the ability of iron coral to lose electrons, Tafel scans were performed on a CHI-140 

660E electrochemical workstation fitted with a three electrode system enabling the free 141 

corrosion potentials to be recorded. Sample preparation was conducted according to the 142 

procedures described in Hu et al. [25].   143 
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3. Results 144 

3.1 Characterization of the biogenic nZVI/fungal biomass composite ‘iron coral’ 145 

The preparation of the biogenic nZVI/fungal biomass composite is illustrated in Fig. 1a. The 146 

ureolytic fungus was incubated in Fe-modified media to achieve biomineralization of Fe-147 

containing minerals, followed by carbonization to obtain the biogenic nZVI/fungal biomass 148 

composite,which was subsequently applied for the degradation of CCl4.  The solubility and 149 

stability of Fe2+, relevant Fe-containing minerals, and the predominance of aqueous Fe species 150 

were calculated individually in a simulated fungal growth supernatant system using GWB. The 151 

obtained results showed that siderite (FeCO3) and vivianite (Fe3(PO4)2･8H2O) were the main 152 

minerals in the simulated medium (Fig. 1b). Iron carbonate (FeCO3) could precipitate over a 153 

range of pH 1 to 8.3 while the lowest concentration of Fe2+ for carbonate precipitation was 154 

around 0.32 µM (here, a (Fe2+) was equal to Fe2+ concentration, log a (Fe2+) ≈ -6.5, c (Fe2+) ≈ 155 

a (Fe2+) ≈ 0.32 µM).  156 
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 157 

Figure 1. (a) Schematic illustration of the synthesis of nano zerovalent iron with a unique N-158 

doped branching structure. (b) Solubility diagram of Fe2+ versus pH at 25oC in a geochemically 159 

simulated medium containing 0.33 M CO32- after incubation with N. crassa. Chemical 160 

parameters of the simulated system were set at 0.33 M CO32-, 6.1 mM Cl-, 0.83 mM SO42-, 0.66 161 

M NH4+, 4 mM K+, 0.8 mM Mg2+, 1.7 mM Na+, 0.2 mM Ca2+, 0.02 mM Mn2+, 0.01 Mm Zn2+ 162 

and 9 µm Fe3+. The symbol a on the y-axis represents the effective concentration of a given 163 

chemical species in a mixture. (c) Images of N. crassa grown in control AP1 liquid medium or 164 

(d) AP1 containing 10 mM Fe2+ for 6 d at 25oC in the dark. Typical images are shown from 165 

many similar examples. 166 
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After 6 d incubation, fungal biomass in control medium was pale yellow and flocculent (cotton 167 

wool-like) (Fig. 1c) while in Fe-modified AP1 medium, the fungal biomass tended to aggregate 168 

and yellow minerals were precipitated around the hyphae as well as in the medium (Fig. 1d), 169 

the colour changes clearly visible to the naked eye. The SEM results showed that the fungal 170 

hyphae were enveloped by a compact layer of minerals (Fig. 2a). This mineral sheath was 171 

comprised of granular nanoscale particles (~80 nm) (Fig. 2b) and the main elements detected 172 

in the minerals were C, O and Fe (Fig. 2a) which suggested formation of iron carbonates and 173 

oxides according to previous experiments [22].  174 

After the carbonization and reduction process (heat treatment at 900oC), the surface of the 175 

fungal hyphae became porous with individual nanoparticles (~50 nm) adhering to the 176 

carbonized hyphae, resulting in a coralline appearance, for which we designated the epithet 177 

‘iron coral’ (Fig. 2c, d). EDXA analysis showed that C and Fe were the main elements in the 178 

‘iron coral’ and little O was detected (Fig. 2c). At the higher concentration of Fe2+ (20 mM), 179 

more minerals were precipitated around the hyphae and after the heat treatment, the Fe-180 

containing mineral sheath was still compact (Fig. 2e,f) but the mineral particles attached to the 181 

hyphae were larger (200~300 nm) than those forming at the lower concentration of Fe2+ (10 182 

mM) (Fig. 2d,f). To further confirm the location and distribution of iron within the biominerals 183 

after heat treatment, X-ray mapping was carried out. It was found that iron was distributed 184 

evenly around the carbonized fungal hyphae (Fig. S1). Simple qualitative analysis from EDXA 185 

estimated that the amount of Fe was around 40% while carbon and oxygen were 45% and 15%, 186 

respectively. 187 
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188 

Figure 2. Scanning electron microscopy (SEM) and elemental analysis of minerals precipitated 189 

by N. crassa in Fe-modified media. Images are (a, b, e) before and (c, d, f) after biomass 190 

carbonization at 900oC under nitrogen gas for 1 h. Insets show X-ray energy dispersive analysis 191 

(EDXA) of the minerals precipitated by N. crassa (a) before and (c) after carbonization. Scale 192 

bars: (a) = 20 µm, (b, d) = 400 nm, (c, e) = 10 µm, (f) = 600 nm. N. crassa was incubated with 193 

(a-d) 10 mM, or (e, f) 20 mM Fe2+ for 12 d at 25oC in the dark. Typical images and spectra are 194 

shown from many similar examples. 195 
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XRD showed that minerals precipitated by N. crassa grown in Fe-modified medium were 196 

amorphous (Fig. 3a), precluding accurate identification, which might be due to the 197 

bioprecipitation process being influenced by extracellular metabolites (e.g. protein, peptides, 198 

polysaccharide, amino acids) [23]. FTIR spectroscopy was further applied for identification of 199 

the biominerals precipitated (Fig. 3b). The broad absorption band at 3425 cm-1 was related to 200 

the O-H stretching vibrations arising from hydroxyl groups in water. The bands at 2920 and 201 

2850 cm-1 were due to C-H stretching corresponding to organic matter [26] in biomass. 202 

Previous experiments have demonstrated that peaks in the region of 1660 to 1381 cm-1 were 203 

attributable to the ν3 vibrational mode of the carbonate ion, while the peaks at 1074 and 1034 204 

cm-1 are due to the ν1 vibrational mode of CO32-. The adsorption band at 588 cm-1 can be 205 

assigned to the vibrations of Fe-O which refers to iron oxide [27, 28]. Compared with the 206 

EDXA results, it can be concluded that the biominerals precipitated were a mixture of hydrated 207 

iron carbonate with trace amounts of iron oxides and ferric hydroxide (the latter according to 208 

the medium colour) which was consistent with the geochemical simulation results. After the 209 

900oC heat treatment under a nitrogen atmosphere, the composite of fungal biomass and iron-210 

containing minerals (from medium containing 10 mM Fe) was identified as a mixture of 211 

zerovalent iron (Fe0), carbon iron (Fe1.91C0.09) and iron oxide (Fe3O4) (Fig.3c) which was 212 

consistent with the EDXA results (Fig. 2c). Therefore, after heat treatment, a mixture of 213 

carbonized fungal biomass with nanoscale zerovalent iron (‘iron coral’) was achieved. The 214 

existence of trace amount of oxides might due to the subsequent oxidation of Fe0 on the surface. 215 

To further investigate the formation process of ‘iron coral’, TGA was applied to analyse the 216 

thermal stability of prepared biogenic iron-containing minerals and fungal biomass before heat 217 

treatment (Fig. 3d). The main weight loss for fungal biomass and biogenic iron-containing 218 

minerals below 120oC can be attributed to the release of free water or structural water [29]. 219 

There were several thermal events occurring from 140-300oC which corresponded to 220 
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crystallization from the amorphous phase and subsequent decomposition of carbonates to 221 

oxides (Fig.3a, c). The peak at 358oC could be assigned to reduction of the iron oxide to 222 

zerovalent iron which was verified by the XRD results (Fig. 3c). For the fungal biomass, a 223 

series of events occurred with increasing temperature and the biomass dehydrated (below 224 

130oC) and then carbonized gradually from 130 to 341oC. 225 

 226 

Figure 3. Characteristics of minerals precipitated by N. crassa. (a) X-ray diffraction (XRD) 227 

and (b) infrared spectroscopy (IR) of iron-containing minerals precipitated before 228 

carbonization and iron reduction. (c) XRD of minerals precipitated by N. crassa after 229 

carbonization and reduction at 900oC for 1 h. N. crassa was cultured in AP1 liquid medium 230 

amended with 10 mM Fe2+ for 6 d at 25oC in the dark. (d) Thermogravimetric analysis (TGA) 231 

and derivative thermogravimetric (DTG) curves of biogenic iron-containing minerals and 232 

fungal biomass under nitrogen at a heating rate of 5oC min-1. Green and blue lines refer to TGA 233 
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and DTG, respectively. Solid and dashed lines are for iron-containing minerals and fungal 234 

biomass, respectively. Typical patterns and curves are shown from one of several 235 

determinations. 236 

 237 

XPS was employed to investigate the surface chemical properties of ‘iron coral’. The fully 238 

scanned spectrum of the sample showed five main peaks, at 977.1 eV, 716.3 eV, 530.7 eV, 400 239 

eV and 283.9 eV, corresponding to O KLL, Fe 2p, O 1s, N 1s and C 1s, respectively (Fig. 4a). 240 

Four characteristic peaks were identified in the Fe 2p region, and the XPS spectrum for Fe 2p3/2 241 

and Fe 2p1/2 core levels showed binding energies of 724.6 eV and 710.5 eV, respectively, which 242 

refer to Fe2O3 [30-32] (Fig. 4b). The peaks at 719.4 and 707.8 eV indicated the presence of 243 

carbon iron and elemental iron (Fe0) on the surface, respectively [30], . The peak at 712.7 eV 244 

represents the oxidized state of FeOOH.[32, 33]. The O 1s spectrum fitted with three 245 

components at 529.8, 531.1 and 532.2 eV, which correspond to oxide oxygen, hydroxyl groups 246 

and adsorbed water, respectively.[30, 32] (Fig. 4c). The presence of iron oxide suggested that 247 

the freshly prepared nano zerovalent iron was still partially oxidized. The XPS C 1s spectrum 248 

could be deconvoluted into four components, including C-Fe (283.8 eV), C-C (284.5 eV), C-249 

H (285.6 eV), and C-O (286.6 eV) [28, 34] (Fig. 4d).  250 

Pore size distributions of the carbonized fungal biomass and ‘iron coral’ composite were 251 

evaluated through N2 adsorption/desorption isotherms (Fig. S2). Both samples exhibited a type 252 

IV isotherm with type H4 hysteresis loops, indicating a typical microporous and mesoporous 253 

structure in accordance with the IUPAC classification [30, 35]. The BET surface area of 254 

carbonized fungal biomass and iron coral were calculated to be 289.3 and 160.4 m2 g-1, 255 

respectively. In terms of pore size distribution, both carbonized fungal biomass and ‘iron coral’ 256 

displayed a multimodal pore size distribution with the pore sizes being less than 100 nm 257 

diameter.  258 
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 259 

260 

Figure 4. (a) X-ray photoelectron spectroscopy (XPS) survey spectrum for the ‘iron coral’ 261 

composite and high resolution XPS spectra of (b) Fe 2p, (c) O 1s and (d) C 1s. A typical pattern 262 

and spectra are shown from one of several determinations. 263 

 264 

3.2 Stability of the iron coral composite 265 

The migration of biomineralized iron coral in an aqueous solution was conducted to evaluate 266 

stability (Fig. 5a, d, g) and the zeta potential measurements for iron coral are shown in Fig.S3. 267 

Once mixed with water, the carbonized fungal biomass dispersed into different layers due to 268 

weight differences while the iron coral composite and commercial nZVI distributed evenly in 269 

the solution within the first 10 s (Fig. 5b, e, h). However, both the carbonized fungal biomass 270 

and commercial nZVI subsequently settled with the solution clearing and becoming transparent 271 
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while the solution containing ‘iron coral’ remained dark (Fig. 5c, f, i) which illustrated its 272 

nanoparticulate nature, and properties of enhanced mobility and dispersability. To further 273 

investigate the stability and mobility of the iron coral composite, stability analysis was applied 274 

using a LUMi X-Ray Reader during the sedimentation process (Fig. 6). The different coloured 275 

curves represent the intensity of transmitted light from the meniscus to the vessel bottom at 276 

selected time intervals. The first red line at the bottom represents the intensity of transmitted 277 

light over the first 10 s. Except for the cell bottom, the transmitted light intensity of the cell 278 

with iron coral (Fig. 6b) and fungal biomass (Fig. 6c) increased gradually within 1 h (Fig. 6b). 279 

The sedimentation process of the iron coral composite was more stable and the transmitted 280 

light increased gradually from 45% to 60% (except over the first 10 s). For the fungal biomass, 281 

the sedimentation behaviour depended on its position: the sedimentation rate of the sample in 282 

the upper layer of the cell was rapid while the sample in the lower layer sedimented slowly 283 

(Fig. 6c) which may be due to size differences in the fungal biomass. The intensity of the cell 284 

containing commercial nZVI (Fig. 6d) decreased significantly and blocked the transmitted light 285 

which indicated the rapid sedimentation of these particles. These results clearly showed that 286 

the stability of the iron coral composite in aqueous solution was better than fungal biomass 287 

alone and commercial nZVI particles. 288 
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 289 

Figure 5. Mobility of (a-c) iron coral composite, (d-f) carbonized fungal biomass and (g-i) 290 

commercial nZVI in water at different time periods. The concentration of the solid materials 291 

was 1 g L-1 (dry weight). Typical images are shown from many similar samples. 292 
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 293 

Figure 6. Evolution of time dependent transmission profiles of iron coral, zerovalent iron or 294 

fungal biomass suspension. (a) Diagram of the measurement principle of the Stability Analyser. 295 

(b) iron coral composite, (c) carbonized fungal biomass, (d) commercial nano zerovalent iron. 296 

Different coloured curves represent the intensity of transmitted light from the meniscus to the 297 

bottom of the vessel at different scan times. Profiles were taken every 10 s at 1000 rpm over 1 298 

h.  299 
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3.3 Removal of carbon tetrachloride by iron coral 300 

The performance of iron coral (obtained using 10 mM Fe2+), carbonized fungal biomass and 301 

commercial nZVI was evaluated for the removal of carbon tetrachloride (CCl4) from aqueous 302 

solution. The three solid sample materials (0.1 g) were mixed with CCl4 (16 mg L-1) and the 303 

concentration of CCl4 in solution was measured at 30 min intervals. After 150 min reaction, 304 

the concentration of CCl4 decreased to different levels: the iron coral composite showed the 305 

highest removal rate of around 75% while only 40% of CCl4 was removed by carbonized fungal 306 

biomass and 66% of CCl4 was removed by commercial nZVI (Table 1). To further investigate 307 

the intermediate degradation products during the reaction with iron coral, the aqueous solution 308 

was analyzed at 30 min intervals. It was found that the main product detected was CCl4 with 309 

trace dichloromethane (CH2Cl2) and little trichloromethane (CHCl3) being detected (Fig. 7a). 310 

Concomitant with the decrease of CCl4 in solution, the amount of CH2Cl2 increased gradually 311 

with time (Fig.7b-d). The concentration of Cl- in the aqueous solution also increased with time 312 

(data not shown). 313 

 314 

Table 1 Concentrations of CCl4 in solution after reaction with iron coral, carbonized fungal 315 

biomass or commercial nZVI. 316 

 
Concentration of CCl4 (mg l-1) in solution after different reaction times 

(min) 
Proportion 
of CCl4 

removed (%) 0 30 60 90 120 150 

Iron coral 
composite 

10.77±0.
00 

6.18±0.6
9 

5.21±0.
98 

3.33±0
.39 

3.60±0
.20 2.73±0.30 74.7 

Carbonized 
fungal biomass 

10.77±0.
00 

13.72±3.
07 

10.26±2
.90 

7.16±1
.07 

7.53±1
.09 6.45±0.52 40.1 

Commercial 
nZVI 

11.67±0.
00 

10.34±2.
03 

9.71 ± 
0.47 

7.40±0
.87 

5.50±0
.64 3.97±0.03 

66.0 

 

 317 
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To further investigate the degradation kinetics of CCl4 by iron coral, the concentrations of CCl4 318 

in solution over reaction time were analyzed, the blue dots showing the experimental data and 319 

the red line representing the simulated data (Fig. 7e). The results showed that the kinetics of 320 

degradation by iron coral can be described as a pseudo-first-order kinetic reaction (eq. 1.1): 321 

ln(𝐶𝐶𝑡𝑡 𝐶𝐶0⁄ ) =  −𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 t                (1.1) 322 

𝑦𝑦 =  𝐶𝐶0 𝑒𝑒−𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥                     (1.2) 323 

𝑦𝑦 = 10.038 e−0.01𝑥𝑥                  (1.3) 324 

Here, Ct was the concentration of CCl4 remaining in solution after reaction, C0 is the initial 325 

concentration of CCl4 in the simulated model, kobs is the first-order rate constant and t is the 326 

reaction time. The relation between the concentration of CCl4 remaining in solution (y) and 327 

reaction time (x) can be described by equation 1.2 in Fig. 7e. In this experiment, the initial 328 

concentration of CCl4 in the simulated model was calculated as 10.038 mg L-1, kobs was -0.01 329 

and R2 was 0.9098 (eq.1.3), which shows that the experimental data fitted very well with the 330 

simulated model and the degradation kinetics of CCl4 followed a pseudo-first-order model. 331 

To unravel the reasons for the CCl4 degradation ability of iron coral, the electron transfer 332 

properties of iron coral were checked using a Tafel scan technique which was used to measure 333 

free corrosion potentials (Fig. 7f). The results showed that the free corrosion potentials for iron 334 

coral and commercial nZVI were -0.76 and -0.84 V, respectively. The lower free corrosion 335 

potential of the sample is easily recognized to reflect corrosion, which indicates a higher ability 336 

to lose electrons. This 80 mV gap in the free corrosion potentials between iron coral and 337 

commercial nZVI suggested that electron release from iron coral was faster than that from 338 

commercial nZVI, and this contributed to the superior CCl4 degradation performance of the 339 

iron coral. 340 
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 341 

Figure 7. Formation of degradation products in solution over reaction time with iron coral. (a) 342 

Products detected after 50 min and changes in the relative amounts of (b) CCl4, (c) CHCl3, (d) 343 

CH2Cl2 in solution according to changes in peak intensity. (e) Kinetics of CCl4 degradation by 344 

the iron coral composite and (f) Tafel scans of iron coral and commercial nZVI in 0.5 mol L-1 345 

NaSO4 solution. Typical chromatograms are shown from one of several determinations.346 
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4. Discussion 

Nanosized zerovalent iron nZVI has been widely investigated for the remediation or reductive 

dechlorination of chlorinated solvents from contaminated sites due to its high reactivity with 

contaminants and mobility in porous media [36-38]. However, the major technical challenge 

for preparing nZVI particles is to prevent aggregation and develop stabilized nZVI through 

appropriate surface modification technology and/or creating a network with an additional 

stabilizer (e.g. polymers, surfactants, silica) that separates the nanoparticles [39]. Not all those 

methods are applicable for preparation of nZVI and some polymers may not function properly 

in the aqueous phase while some stabilizers may cause secondary contamination. In this 

research, a fungal biomineralization process was used for the synthesis of nZVI. The biogenic 

nZVI distributed evenly around the fungal hyphae which we have termed ‘iron coral’ according 

to the morphology and the precipitation process. The biogenic iron coral showed an excellent 

removal capacity for CCl4 (~75%) compared with carbonized fungal biomass or a commercial 

nZVI product. 

Previous research has demonstrated that ureolytic fungi grown in urea-modified medium 

provide a promising method for the biomineralization of metal-containing minerals including 

carbonates, e.g. CaCO3, SrCO3, MnCO3, and oxides (MnO, Mn2O3), especially those in the 

nanoscale [18, 19, 23]. The process of biomineralization refers to the formation of minerals by 

organisms and the final products may contain both minerals and organic components. 

Biomineralization processes include biologically-induced mineralization (BIM) and 

biologically-controlled mineralization (BCM). The formation of a coral skeleton is 

representative of BCM, which can be described as a protein controlling the process of mineral 

crystallization with the organic matrix controlling and influencing the biomineralization 

process and end-stage densification [40]. For the BIM process, e.g. ureolytic fungi incubated 

in urea and Fe2+-supplemented medium, degradation of urea and the release of carbonate 
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increases the pH of the microenvironment, and results in the precipitation of iron carbonate. 

The geochemical simulation of iron and carbonate speciation in the reaction system matched 

very well with the experimental data. The filamentous hyphae were surrounded by iron-

containing minerals and after heat treatment, the iron nanoparticles (derived from the reduction 

of iron oxide by fungal biomass carbonization) were distributed evenly around the carbonized 

hyphae which resembled coral decorated with iron particles. Previous research has 

demonstrated that the conformation of extracellular proteins can play an important role in the 

fungal precipitation of nanoscale minerals [23], which is analogous to the formation of natural 

coral, hence ‘iron coral’. Compared with carbonized fungal biomass, the BET surface area of 

biogenic iron coral was lower (160.4 m2 g-1) which may be due to the nZVI being embedded 

in the fungal biomass and blocking the porous structure. This is consistent with findings for a 

nZVI synthesised through the reduction of Fe3+ by NaBH4 solution and supported by reductive 

graphene oxides [41].  

The stability of the iron coral composite was much better than the carbonized fungal biomass 

and commercial nZVI. Stability is one of the most important factors determining degradation 

ability in the aqueous phase. When mixed with CCl4 solution (16 mg L-1), little sedimentation 

occurred in the mixture containing the iron coral composite, which may be one of the reasons 

that the iron coral composite showed higher CCl4 degradation ability (75%) than that of 

carbonized fungal biomass and commercial nZVI. Some previous research has been carried out 

on the degradation of chlorinated organic compounds by nZVI. Formic acid was applied to 

enhance the degradation of CCl4 (2 mg L-1) by nZVI and the degradation efficiency increased 

from 11.4% to 85% [42], while the CCl4 (2 mg L-1) removal efficiency of nZVI assembled on 

the surface of Fe3O4 was around 66% [43]. Most of the obtained kinetic data fitted to a pseudo-

first-order kinetic model [43-46]. Ma et al. [47] reported that 94% of CCl4 (3 mg L-1) could be 

efficiently removed from aqueous solution by nanoscale palladized zero-valent iron-graphene 
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composites and that the degradation kinetics followed pseudo first-order reaction kinetics. 

Here, the dispersibility of nZVI was significantly improved by the graphene due to the larger 

specific surface area. In this experiment, the degradation kinetics of CCl4 well fitted a pseudo-

first-order reaction model, which was consistent with our reported findings. Moreover, the 

lower free corrosion potentials of iron coral composites (-0.84 V) indicated a higher ability to 

lose electrons, with the nitrogen in the fungal biomass inducing defects in the carbon 

framework which will also increase electron delocalization [48], thereby resulting in higher 

degradation of CCl4. This work shows that biogenic iron coral is an efficient and highly 

promising candidate for the removal of chlorinated hydrocarbon pollutants from aqueous 

solution. Furthermore, fungi are effective biosorbents for metal ions and the origin of Fe2+ 

could be from, e.g. electroplating or mining wastewaters.  

 

5. Conclusions 

In this study, fungal biomineralization provided a facile method for the synthesis of nanoscale 

zerovalent iron (nZVI) showing a unique N-doped branching structure. Compared with 

commercial nZVI and carbonized fungal biomass, the iron coral composite showed excellent 

stability and mediated high degradation of carbon tetrachloride (~75%). The growth of 

ureolytic fungi in urea-containing media therefore provides a promising system for novel 

preparation of nZVI through a biomineralization process, with the iron coral nZVI/carbonized 

biomass showing significant potential for chlorinated pollutant removal from solution as well 

as metal recovery.  
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