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Abstract:  

An antikinetoplastid pharmacomodulation study was done at position 8 of a previously 

identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives 

bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested 

in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI 

≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. 

Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi 

(EC50 amastigotes = 1.2 µM) as benznidazole and fexinidazole. An in vitro comet assay showed 

that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (-0.68 

V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and 

Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility 

while maintaining good activity and low cytotoxicity when the hydroxyl group was at position 

beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro 

pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life 

and a high albumin binding (98.5%). Moreover, compound 19 was orally absorbed and was well 

tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma 

half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in 

parasitized mouse models, looking for a novel antitrypanosomal lead compound. 
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1. Introduction  

Neglected tropical diseases (NTDs) constitute a heterogeneous group of communicable diseases 

that occur mainly in developing countries and are closely related to poverty [1]. Among the 20 

NTDs listed to date by the WHO, three are caused by trypanosomatid protozoa: leishmaniasis 

(caused by several Leishmania species) [2], human African trypanosomiasis (HAT, consequence 

of an infection by Trypanosoma brucei) [3] and Chagas disease (CD, related to an infection by 

Trypanosoma cruzi) [4]. Half a billion people, mainly in tropical and sub-tropical areas, are at risk 

of contracting one of these 3 NTDs. The number of individuals infected with these pathogens is 

estimated at nearly 20 million, causing up to 50,000 deaths per year [5]. Moreover, it is very likely 

that these values are underestimated due to difficulties in data collection in the most rural and 

isolated areas. In the absence of human vaccines or chemoprophylaxis to prevent the transmission 

of these parasitic diseases in human, the control of trypanosomatid infections relies on eradication 

of vectors, management of animal reservoirs and chemotherapy. Only a small number of molecules 

are currently available as antitrypanosomatid treatments, most of them associated with significant 

drawbacks such as a lack of efficacy, toxicities, constraining dosing regimens or non-oral route of 

administration. Likewise, very few new chemical entities have currently reached the clinical stage 

of development, even if significant results have been achieved in the treatment of HAT since the 

marketing authorization of the nitroaromatic drug fexinidazole in 2018 (Figure 1) [6]. Thus, there 

are currently only three new antileishmanial drugs in clinical trials according to DNDi, all being 

studied in the early phase 1 [7]. Regarding sleeping sickness, only acoziborole remains in phase 

IIb/III clinical trial and, more worryingly, no original anti-Trypanosoma cruzi molecule is under 

evaluation in humans at this time, despite major needs. Only fexinidazole is currently used in a 

phase II proof-of-concept study as a possible treatment of Chagas disease. Thus, efficient, safe and 

cheap orally available antikinetoplastid agents are awaited [8], particularly against VL and CD [9], 

considering both mortality but also the genotoxic character of the two molecules used against CD: 

nifurtimox and benznidazole [10]. Nevertheless, nitroaromatic derivatives are a major group of 



antikinetoplastid molecules (Figure 1)  and the recent introduction of fexinidazole (a non-

genotoxic 5-nitroimidazole derivative) as an oral drug for the treatment of HAT is certainly a 

pivotal milestone [6] which illustrates the interest of developing novel nitroheterocyclic drugs to 

fight against trypanosomatid infections [11]. In general, anti-infective nitroheterocycles act as 

prodrugs requiring a bioactivation step [12]. The accepted mechanism of action for these 

compounds involves, first of all, their entry into the parasite by passive diffusion, their reduction 

into various reactive metabolites (nitroso, hydroxylamine), and finally the reaction of these 

electrophilic metabolites with cellular components such as DNA or proteins, to form covalent 

adducts that are cytotoxic [13].  

 

 

Figure 1. Structures of nitroheterocyclic drug-compounds used in the treatments of 

trypanosomatid infections. 

 

The enzymes catalyzing nitrodrugs activation are nitroreductases (NTRs). Two NTRs have been 

identified in Leishmania (mitochondrial type 1 NTR1 [14], responsible for the activation of 5-

nitroimidazoles such as fexinidazole [15,16]; and cytosolic type 2 NTR2 [17], responsible for the 

activation of bicyclic nitroheterocycles such as delamanid or pretomanid [18]), whereas only one 

NTR was discovered in Trypanosoma (type 1 NTR, initiating the activation of nifurtimox [19] and 



benznidazole [20]).  As NTRs are absent from mammalian cells, substrates of these enzymes can 

be envisaged as selective antikinetoplastid candidates. Unfortunately, no X-ray structure of 

parasitic NTRs was reported and their low degree of homology with bacterial isoforms restricts 

the use of most classical rational medicinal chemistry approaches, such as molecular docking, for 

the design of new nitrodrug substrates of these enzymes. 

Looking for original nitroheterocyclic antikinetoplastid molecules, our group formerly identified 

a first antileishmanial hit molecule in 8-halogeno-3-nitroimidazo[1,2-a]pyridine series (hit A, 

Figure 2) [21]. Subsequent work demonstrated the key role of the substituent in position 8 of the 

scaffold. Introduction of an heteroaryl moiety in this position improved in vitro activity against 

Trypanosoma b. brucei but was not satisfying regarding water solubility (hit B, Figure 2) [22]. 

Introduction of a phenylthio moiety at position 8 slightly improved in vitro antileishmanial activity 

and aqueous solubility (hit C, Figure 2) [23]. Nevertheless, hit-compound C showed a poor mouse 

liver microsomal stability (T1/2 = 3 min). Then, in a view to improve both antitrypanosomal activity 

and microsomal stability of this series, we present herein the benefit of introducing a 

hydroxyalkynyl group at position 8 of the 3-nitroimidazo[1,2-a]pyridine scaffold, using the 

Sonogashira cross-coupling reaction.  

 

Figure 2. Structures and biological profiles of previously identified antikinetoplastid hit-

compounds in 3-nitroimidazo[1,2-a]pyridine series [21-23].  

 

 

 



2. Results and discussion 

The substrate 8-bromo-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridine 4 was 

prepared in four steps as previously described [22]. The use of the Sonogashira cross-coupling 

reaction for the antitrypanosomatid pharmacomodulation of a nitroaromatic scaffold is an 

interesting option that was already reported by our team [24]. Hence, the Sonogashira reaction 

conditions were optimized from previously described protocols [25-26] to afford 20 original 8-

alkynylimidazo[1,2-a]pyridine derivatives (Scheme 1). Primary alkyne reagents were chosen to 

display a large panel of lipophilicity and flexibility, varying from rigid and highly lipophilic 

aromatic derivatives to more flexible and hydrophilic hydroxyaliphatic derivatives. Coupling 

products were isolated with moderate to good yields (3090%). Finally, the reduction of the nitro 

group of 19 afforded the amino derivative 25, considered as a negative control. 

 

 

Scheme 1. Synthesis of compounds 1-25.  

Reagents and conditions: (i) NBS 1 equiv, ACN, 80°C, 1 h, 71%; (ii) 1,3-dichloroacetone 1.1 

equiv, EtOH, 80°C, 96 h, 60%; (iii) HNO3 6 equiv, H2SO4, 0°C→RT, 1 h, 60%; (iv) Sodium 

benzenesulfinate 3 equiv, DMSO, RT, 3 h, 80%. (v) appropriate alkyne 1.5 equiv, Pd(PPh3)4 0.1 



equiv, CuI 0.1 equiv, diisopropylamine 12 equiv, THF, RT, 1 to 24 h, 30% to 90%. (vi) Fe 10 

equiv, AcOH, reflux, 30 min, 75%.  

 

All 21 new compounds were evaluated in vitro, first on the HepG2 cell line to determine their 

influence on cell viability (cytotoxic concentration 50% = CC50), using doxorubicin as control. In 

vitro activity of these compounds was then measured on the promastigote form of L. donovani and 

on the trypomastigote blood stream form (BSF) of T. b. brucei. Their efficacy was compared to 

commercial reference drugs amphotericin B, miltefosine, fexinidazole, suramin, eflornithine and 

fexinidazole. The results obtained are presented in Table 1. 

 

Table 1. In vitro bioevaluation of molecules 5-25 on L. donovani promastigotes, T. b. brucei BSF 

trypomastigotes and on the human HepG2 cell line.  

 

Compd R 

Cell viability Activity 

CC50 HepG2 (µM) 
EC50 L. 

donovani 

pro. (µM) 

SI Leishmania 

EC50 T. b. 

brucei 

BSF (µM) 

SI Trypanosoma 

5 
 

>3.9a - - - - 

6 
 

>3.9a - - - - 

7 

 

>3.9a - - - - 

8 

 

>3.9a - - - - 

9 
 

>3.9a - - - - 

10 

 

>3.9a - - - - 

11 

 

>3.9a - - - - 

12 
 

>3.9a - - - - 

13 
 

>3.9a - - - - 

14 
 

>3.9a - - - - 

15 
 

8.4 ± 2.3 1.3 ± 0.1 6.5 0.16 ± 0.03 52.5 



16 
 

>15.6a 1.6 ± 0.1 >9.8 0.16 ± 0.03 >97.5 

17 

 

18.8 ± 2.2 1.0 ± 0.2 18.8 0.13 ± 0.04 >144.6 

18 
 

10.1 ± 1.4 3.9 ± 0.1 2.6 0.12 ± 0.03 84.2 

19 
 

>125a 7.4 ± 0.5 >16.9 0.07 ± 0.01 >1785.7 

20 
 

44.2 ± 11.2 4.7 ± 0.2 9.4 0.04 ± 0.01 1105 

21 

 

>62.5a 3.0 ± 0.4 >20.8 0.12 ± 0.03 >520.8 

22 

 

>62.5a 1.6 ± 0.7 >39.1 0.04 ± 0.008 >1562.5 

23 
 

>31.3a 1.7 ± 0.2 >18.4 0.10 ± 0.03 >313 

24 
 

>25a 1.0 ± 0.4 >25 0.10 ± 0.04 >250 

25 
 

>62.5a >62.5a - 6.8 ± 1.05 >9.2 

Ref. 1 Hit A molecule >31a 1.8 ± 0.8 >17.2 2.9 ± 0.5 >10.7 
Ref. 2 Hit B molecule >50 1.2 ± 0.4 >41.7 0.25 ± 0.01 >200 
Ref. 3 Hit C molecule >100 1.0 ± 0.3 >100 1.3 ± 0.1 >76.9 
Ref. 4 Doxorubicinb 0.2 ± 0.02 - - - - 
Ref. 5 Amphotericin Bd 8.8 ± 0.3 0.07 ± 0.01 125.7 - - 
Ref. 6 Miltefosined 85 ± 8.8 3.1 ± 0.2 27.4 - - 
Ref. 7 Fexinidazoled,e >200c 1.2 ± 0.2 >166.7 0.6 ± 0.2 >333 
Ref. 8 Suramine >100c - - 0.03 ± 0.009 >3333 
Ref. 9 Eflornithinee >100c - - 13.3 ± 2.1 >7.5 
Ref. 10 Nifurtimoxe 45.2 ± 1.3 - - 2.6 ± 0.8 17.4 

a The product could not be tested at higher concentrations due to a poor solubility in aqueous medium 
b Doxorubicin was used as a cytotoxic reference drug 
c The EC50 or CC50 value was not reached at the highest tested concentration 
d Amphotericin B, Miltefosine and Fexinidazole were used as antileishmanial reference drugs 
e Fexinidazole, Suramin, Eflornithine and Fexinidazole were used as anti-Trypanosoma brucei reference drugs 
f SI = CC50 HepG2 / EC50 L. infantum 
g SI = CC50 HepG2 / EC50 T. brucei brucei 

 

 

Compounds 5-14, which did not bear an alcohol function, could not be evaluated in vitro because 

of a lack of aqueous solubility. Most compounds in the series did not show a cytotoxic character 

in comparison with doxorubicin: four compounds (15 to 18) showed some decrease in cell viability 

with CC50 values below 20 µM whereas 6 molecules (19 to 24) displayed low values on the HepG2 

cell line (>25 to >125 µM). Eleven molecules (15-25) were tested on L. donovani promastigotes: 

their EC50 ranged from 1 µM to 7.4 µM, values comparable to the previously identified hit 

molecules in the series. These activities are also very similar to those of fexinidazole and 

miltefosine, respectively 1.2 µM and 3.1 µM. Good CC50 values in this series, due to better water 

solubility of hydroxylated molecules, allowed to reach selectivity indices (SI) that are comparable 

or superior to that of miltefosine, as for example with the two best antileishmanial molecules in 

this series, compounds 22 and 24 (>39.1 and >25, respectively). All soluble compounds in the 



experimental conditions (15-24) were evaluated on T. b. brucei BSF trypomastigotes. Quite 

interestingly, they all displayed significantly improved EC50 values (40 ≤ EC50 ≤ 160 nM) 

compared to previously identified hit molecules A, B and C (25 ≤ EC50 ≤ 2900 nM); these activity 

values were all better than the ones of fexinidazole (EC50 = 0.6 µM) and nifurtimox (EC50 = 2.6 

µM). High selectivity indices were achieved with most of these derivatives, hit molecule 19 

reaching the highest value (> 1786). This SI value appeared as quite significant when comparing 

to those of suramin (> 3333), fexinidazole (> 333), nifurtimox (17.4) and eflornithine (> 7.5) and 

hit B (best antitrypanosomal hit previously identified in the series with SI > 200). Derivatives with 

a tertiary alcohol function (17, 21, 23, 24) tend to show reduced activities on Trypanosoma brucei 

BSF trypomastigotes than those bearing a secondary alcohol function (20, 22). Likewise, 

molecules bearing a hydroxy group in alpha position of the alkyne function (17, 18, 20) tend to 

decrease cell viability on the HepG2 cell line more than those bearing a hydroxyl group in beta 

position of the triple bond (19, 22). As expected, compared with nitrated molecule 19, the amino-

derivative 25 showed a 2 log decrease in antitrypanosomal activity (EC50 = 6,8 µM), pointing out 

the key role of the nitro group in the pharmacophore. Thus, because molecule 19 presented the 

best compromise between in vitro activity, water solubility, cytotoxicity and selectivity index, it 

was selected as the hit-compound of this novel series. 

 

To deeper evaluate the antitrypanosomatid potential of 19, its activity was measured against L. 

infantum axenic amastigotes and T. cruzi amastigotes, in addition to its cytotoxicity on the human 

macrophage THP1 cell line (Table 2). Thus, molecule 19 did not show a very promising 

antileishmanial profile (EC50 = 7.4 & 10.7 µM) whereas it displayed a good anti-T. cruzi activity 

(EC50 = 1.2 µM), similar to those of benznidazole and fexinidazole (0.5 and 3.0 µM, respectively). 

 

 

 



 

Table 2. Summary of the in vitro antitrypanosomatid profile of hit compound 19. 

 

Compound 

EC50 (µM) CC50 (µM) 

L. donovani 

promast. 

L. inf. axenic 

amast. 

T. b. brucei 

BSF 

T. cruzi 

amast. 
HepG2 THP1 

19 7.4 ± 0.5 10.7 ± 0.7 0.07 ± 0.01 1.2 ± 0.8 >125d >100d 

Doxorubicina - - - - 0.2 ± 0.02 0.7 ± 0.07 

Miltefosineb 3.1 ± 0.2 0.8 ± 0.2 - - 85 ± 8.8 35 ± 2.4 

Fexinidazoleb,c 1.2 ± 0.2 3.4 ± 0.8 0.6 ± 0.2 3.0 ± 0.1 >200e >200e 

Benznidazolec - - 1.8 ± 0.3 0.5 ± 0.1 >200e >200e 

a Doxorubicin was used as a cytotoxic reference drug 
b Miltefosine and Fexinidazole were used as antileishmanial reference drugs 
c Fexinidazole and Benznidazole were used as antitrypanosomal reference drugs 
d The product could not be tested at higher concentrations in aqueous medium 
e The CC50 or EC50 value was not reached at the highest tested concentration 

 

In order to ensure that this novel series contained compounds that were substrates of parasitic 

NTRs (Table 3), hit molecules 19 and 22 were assayed against L. donovani promastigotes 

corresponding to the wild type, NTR1- and NTR2-overexpressing strains. Molecules 19 and 22 

were twenty to forty times more effective against the strain overexpressing (OE) NTR1 than on 

the NTR2-overexpressing strain, indicating that these compounds are selectively bioactivated by 

L. donovani type 1 NTR. In the same way in T. b. brucei, it was also demonstrated that 

trypanosomal type 1 NTR was responsible for the bioactivation of 19 and 22, these latter being 3 

to 5 times more potent on the NTR-overexpressing strain than on the wild type. These results were 

consistent with those obtained with previous hit molecules, suggesting that introducing an alkynyl 

group at position 8 of the imidazo[1,2-a]pyridine pharmacophore preserves its bioactivation by 

type 1 NTRs. 

 

 

 

 



Table 3. Sensitivity of wild-type and NTR-overexpressing L. donovani promastigotes and T. 

brucei BSF trypomastigotes strains to hit molecules 19 and 22. 

Compound 
L. donovani promastigote EC50 (µM) 

Wild-type NTR1OE NTR2OE 

19 21.4 ± 6 0.5 ± 0.05 24.5 ± 5.9 

22 7.3 ± 0.6 0.4 ± 0.01 8.5 ± 0.3 

Hit A[22] 1.9 ± 0.08 0.07 ± 0.002 3.0 ± 0.08 

Hit B[22] 1.5 ± 0.05 0.04 ± 0.009 2.0 ± 0.2 

Hit C[23] 0.26 ± 0.01 0.033 ± 0.007 0.3 ± 0.01 

Compound 
T. brucei BSF trypomastigote EC50 (nM) 

Wild-type NTR1OE 

19 124.3 ± 7.2 26.5 ± 1.4 

22 200.0 ± 10.5 66.3 ± 4.8 

Nifurtimox 1870 ± 0.05 600 ± 0.05 

 

With regard to a mechanism of action involving an initial reductive bioactivation by NTRs, an 

electrochemistry study was carried out by measuring, in DMSO, the redox potentials of six 8-

alkynylimidazo[1,2-a]pyridine derivatives, using cyclic voltammetry (Figure 3). The redox 

potentials values measured were corrected with respect to the normal hydrogen electrode (NHE). 

They correspond to a reversible one electron reduction/oxidation (redox couple = nitro group/anion 

radical counterpart).  



 

Figure 3: Redox potentials (E°) determined by cyclic voltammetry and given versus NHE. 

Conditions: selected compounds (10-3 mol.L-1) in non-aqueous medium (DMSO + 0.1 mol.L-1 (n-

Bu4N)[PF6]) on GC microdisk (r = 0.5 mm) at room temperature. Scan rate: 0.2 V.s-1. Corriger N° 

des molécules 

 

 

Redox potentials within this series appeared to be very homogeneous, with values of -0.67 V/NHE 

(21, 24) and -0.68 V/NHE (5, 19, 22, 23). The nature of the alkyne group at position 8 does not 

have an influence on the redox potential of the pharmacophore. However, in comparison with hit 

A (-0.59 V/NHE), hit B (-0.64 V/NHE) and hit C (-0.63 V/NHE), molecules with an alkynyl group 

at position 8 displayed lower redox potential values, ranging in between the ones of nifurtimox (- 

0.61 V/NHE) and fexinidazole (- 0.83 V/NHE). 

The mutagenicity of many nitroaromatic molecules has always been a major concern, limiting the 

development of many of these derivatives. For fexinidazole, NTR-dependent mutagenic activity 



was observed in Ames test, related to the expression of these enzymes by the Salmonella 

typhimurium strains used in this assay. However, evaluation of its genotoxicity by micronucleus 

test (in vitro on human cells and in vivo in rats) was negative [27]. Thus, a positive Ames test when 

evaluating nitroaromatic compounds has limited predictive values for humans, considering that 

there are no NTRs in mammalian cells and that most of nitroaromatics only display genotoxic 

properties after being bioactivated into reduced metabolites. Although the Ames test remains the 

most common method for assessing the mutagenicity of a substance, it is nowadays accepted that 

the comet assay or the micronucleus assay, using mammalian cells, are better in vitro alternatives 

for evaluating the potential genotoxicity of nitroheterocyclic molecules. Considering molecule 19, 

an Ames test in metabolizing conditions and a comet assay were performed simultaneously and 

showed that, despite presenting mutagenic properties (Ames test) at 0.25 or 2.5 mM, compound 

19 was not genotoxic in the comet assay after a 2 or 72 h exposure, at 20 or 30 µM. These results 

are consistent with those obtained with fexinidazole and with previously identified hit molecules 

in 3-nitroimidazo[1,2-a]pyridine series, representing an great improvement over nifurtimox and 

benznidazole which are known to be genotoxic over mammalian cells [9]. 

Then, some in vitro physicochemical and pharmacokinetic parameters of hit compound 19 were 

determined (Table 4): 19 is a lipophilic molecule (cLogP = 2.5) that shows good aqueous solubility 

(thermodynamic solubility = 71 µM), due to its hydroxyl group, that strongly binds to human 

albumin (98.5%) and whose microsomal stability was significantly improved (T1/2 = 16 min), in 

comparison with previously identified hit-compounds in the series (T1/2 = 3 to 9 min). Hit 

compound 19 was also shown to cross the blood brain barrier according to a PAMPA BBB assay, 

in accordance with its high CNS MPO score (4.35) [28]. 

 

 

 

 



Table 4. Physicochemical, pharmacokinetic and toxicological data regarding hit compound 19 

 

 

Compound 19 

cLogPa 2.49 

Thermodynamic solubility (µM) 70.7 ± 2.8 

Binding to human albumin (%) 98.5 

Microsomal stability: T1/2 (min) 16 

PAMPA Blood-brain barrier permeability assay : Pe (nm/s) 346.1 ± 89.2 

CNS MPO score 4.35 

Cmax in mouse (ng/mL) 393.96 ± 156.36 

Tmax in mouse (h) 0.83 ± 0.29 

Plasma half-life in mouse (h) 10.01 ± 3.02 

AUC0-inf (ng.h/mL) 1433.05  ± 69.92 

Clearance (mL/h) 2.44 ± 0.03 

Ames test (0.25 and 2.5 mM + S9mix on 4 strains) Positive 

Comet assay (after 2 and 72 h & 20 and 30 µM) Negative 

a Weighted clogP was computed by Marvin® (ChemAxon) 

 

 

Finally, compound 19 was administered orally to mice to determine its maximal tolerated dose and 

its main in vivo pharmacokinetic parameters. A once daily repeated oral administration 

(intragastrical gavage) of 19 at 100 mg/kg for 5 days was well tolerated in mice. Thus, the No 

Observed Adverse Event Level (NOAEL) in mice was set at 100 mg/kg/day. After euthanasia, no 

lesions were found on the different organs (kidney, liver, brain, heart and lung). Pharmacokinetics 

parameters were determined to understand the behavior of 19 after oral administration. The main 

pharmacokinetics parameters are shown in Table 4. Hit compound 19 is orally absorbed and shows 

a long plasma half-life (10 h), parameters that are encouraging for further development. 

 

 

 

 



3. Conclusion  

Pharmacomodulation at position 8 of the imidazo[1,2-a]pyridine scaffold, using the Sonogashira 

cross-coupling reaction, led to 20 original alkynyl derivatives. These displayed modest in vitro 

antileishmanial activity, whereas several hydroxylated derivatives showed very good in vitro 

activities on T. b. brucei bloodstream forms and low cytotoxicities against a human hepatocyte 

cell line (7 molecules with SI > 100 and 2 molecules with SI > 1000). The lead compound of this 

series (19) was also tested in vitro on T. cruzi and showed good EC50 values, two times lower than 

that of fexinidazole. Its mechanism of action involves activation by the parasite NTR1. Moreover, 

nitroaromatic hit-molecule 19 was not genotoxic in the comet assay which represents a significant 

improvement over nifurtimox and benznidazole. Study of in vitro physicochemical and 

pharmacokinetic parameters of molecule 19 showed improved properties in the imidazo[1,2-

a]pyridine series, regarding in particular water solubility and microsomal stability. In the mouse, 

19 was orally absorbed and well tolerated after repeated administrations of 100 mg/kg for 5 days. 

Its plasma half-life (10 h) is encouraging and allows further determination of its activity in an 

infected mouse model, to try to identify a novel antitrypanosomal lead compound. 

 

4. Experimental section 

4.1. Chemistry 

4.1.1. Synthesis 

Commercial reagents were used as received without additional purification. Melting points were 

determined in open capillary tubes with a Büchi apparatus and are uncorrected. Elemental analysis 

and HRMS were carried out at the Spectropole, Faculté des Sciences et Techniques de Saint-

Jérôme, Marseille, France. NMR spectra were recorded on a Bruker ARX 200 spectrometer or a 

Bruker AV 250 spectrometer at the Faculté de Pharmacie de Marseille, or a BRUKER Avance III 

nanobay 400 spectrometer at the the Spectropole, Faculté des Sciences et Techniques de Saint-

Jérôme, Marseille, or on a Bruker UltraShield 300 MHz or a Bruker IconNMR 400 MHz 

spectrometer at the Laboratoire de Chimie de Coordination, Toulouse (1H-NMR: 200, 250, 300 or 

400 MHz, 13C-NMR: 50, 63, 75 or 100 MHz). NMR references were the following: 1H: CHCl3 δ 

= 7.26, DMSO-d6 δ = 2.50, Acetone-d6 δ = 2.05 and 13C: CHCl3 δ = 76.9, DMSO-d6 δ = 39.5, 



Acetone-d6 δ = 29.9. Solvents were dried by conventional methods. The following adsorbent was 

used for column chromatography: silica gel 60 (Merck, particle size 0.063–0.200 mm, 70–230 

mesh ASTM). TLC was performed on 5 cm × 10 cm aluminium plates coated with silica gel 60F-

254 (Merck) in an appropriate eluent. Visualization was made with ultraviolet light (254 nm). 

HRMS spectra were recorded on QStar Elite (Applied Biosystems SCIEX) spectrometer. PEG was 

the matrix for HRMS. The experimental exact mass was given for the ion which has the maximum 

isotopic abundance. Purity of synthetized compounds was checked with LC-MS analyses which 

were realized at the Faculté de Pharmacie de Marseille with a Thermo Scientific Accela High 

Speed LC System® coupled with a single quadrupole mass spectrometer Thermo MSQ Plus®. The 

RP-HPLC column used is a Thermo Hypersil Gold® 50 × 2.1 mm (C18 bounded), with particles 

of 1.9 µm diameter. The volume of sample injected on the column was 1 µL. The chromatographic 

analysis, total duration of 8 min, is made with the gradient of following solvents: t = 0 min, 

water/methanol 50/50; 0 < t < 4 min, linear increase in the proportion of methanol to a ratio 

water/methanol 5/95; 4 < t < 6 min, water/methanol 5/95; 6 < t < 7 min, linear decrease in the 

proportion of methanol to return to a ratio 50/50 water/methanol; 6 < t < 7 min, water/methanol 

50/50. The water used was buffered with 5 mM ammonium acetate. The retention times (tR) of the 

molecules analyzed are indicated in min.  

Molecules 1-4 were previously described [22]. 

4.1.1.1. General procedure for the preparation of 8-alkynylimidazo[1,2-a]pyridine 

derivatives (5 to 24) 

A mixture of 8-bromo-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridine 4 (400 

mg, 1 equiv.), tetrakis(triphenylphosphine)palladium(0) (107.3 mg, 0.1 equiv.), copper iodide 

(17.7 mg, 0.1 equiv.), diisopropylamine (1.57 mL, 12 equiv.), appropriate alkyne (1.5 equiv.), in 

THF (15 mL) was stirred under N2 at room temperature until complete disappearance of the 

starting material (as monitored by LC/MS or TLC). Water was then added and the mixture was 

extracted three times with dichloromethane. The organic layer was washed three times with water, 

dried over MgSO4, filtered and evaporated. The crude residue was purified by column 

chromatography on silica gel (with appropriate eluent) and recrystallized from the appropriate 

solvent, affording compounds 1 to 20. 

4.1.1.2. 6-Chloro-3-nitro-8-(phenylethynyl)-2-(phenylsulfonylmethyl)imidazo[1,2-

a]pyridine (5) 

Compound 5 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane/diethyl ether 6.9/3/0.1) and recrystallization from acetonitrile as a 

yellow solid in 90% yield (0.38 g). mp 228 °C. 1H NMR (400 MHz, CDCl3) δ: 5.19 (2H, s), 7.40–



7.47 (3H, m), 7.50–7.54 (2H, m), 7.59–7.63 (3H, m), 7.79 (1H, d, J = 1.9 Hz), 7.88–7.91 (2H, m), 

9.41 (1H, d, J = 1.9 Hz). 13C NMR (100 MHz, CDCl3) δ: 56.9 (CH2), 81.5 (C), 99.8 (C), 115.7 

(C), 121.6 (C), 124.9 (CH), 125.5 (C), 128.7 (2 CH), 128.8 (2 CH), 129.3 (2 CH), 130.0 (CH), 

131.3 (C), 132.4 (2 CH), 134.2 (CH), 134.5 (CH), 139.3 (C), 139.8 (C), 143.0 (C). LC/MS ESI+ 

tR 3.99 min, (m/z) [M+H]+ 451.83/453.84. HRMS (+ESI): 452.0462 [M+H]+. Calcd for 

C22H14ClN3O4S: 452.0466. 

4.1.1.3. 6-Chloro-8-(4-methoxyphenylethynyl)-3-nitro-2-

(phenylsulfonylmethyl)imidazo[1,2-a]pyridine (6) 

Compound 6 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane 9/1) and recrystallization from acetonitrile as a yellow solid in 51% 

yield (0.29 g). mp 210 °C. 1H NMR (400 MHz, CDCl3) δ: 3.88 (3H, s), 5.19 (2H, s), 6.92–6.94 

(2H, m), 7.50–7.55 (4H, m), 7.60–7.64 (1H, m), 7.74 (1H, d, J = 1.9 Hz), 7.88–7.91 (2H, m), 9.37 

(1H, d, J = 1.9 Hz). 13C NMR (100 MHz, CDCl3) δ: 55.6 (CH3), 56.9 (CH2), 80.7 (C), 100.4 (C), 

113.6 (C), 114.3 (2 CH), 116.1 (C), 124.5 (CH), 125.5 (C), 128.8 (2 CH), 129.3 (2 CH), 131.3 (C), 

134.0 (CH), 134.1 (2 CH), 134.2 (CH), 139.3 (C), 139.8 (C), 143.0 (C), 161.0 (C). LC/MS ESI+ 

tR 4.09 min, (m/z) [M+H]+ 480.61/483.87. HRMS (+ESI): 482.0569 (M + H+). Calcd for 

C23H16ClN3O5S: 482.0572. 

4.1.1.4. 6-Chloro-8-(3-methoxyphenylethynyl)-3-nitro-2-

(phenylsulfonylmethyl)imidazo[1,2-a]pyridine (7) 

Compound 7 was obtained after purification by chromatography (eluent: chloroform/diethyl ether 

9.9/0.1) as a yellow solid in 47% yield (0.21 g). mp 171 °C. 1H NMR (400 MHz, Acetone-d6) δ: 

3.89 (3H, s), 5.22 (2H, s), 7.08–7.12 (2H, m), 7.17–7.19 (1H, m), 7.40–7.44 (1H, m), 7.58–7.62 

(2H, m), 7.69–7.73 (1H, m), 7.84–7.86 (2H, m), 8.04 (1H, d, J = 1.9 Hz), 9.42 (1H, d, J = 1.9 Hz). 

13C NMR (100 MHz, Acetone-d6) δ: 54.9 (CH3), 56.1 (CH2), 81.5 (C), 97.9 (C), 114.5 (C), 116.1 

(CH), 116.6 (CH), 122.6 (C), 124.1 (C), 124.2 (CH), 125.6 (CH), 128.5 (2 CH), 129.0 (2 CH), 

129.84 (CH), 131.5 (C), 133.9 (CH), 134.1 (CH), 139.5 (C), 139.7 (C), 142.7 (C), 159.7 (C). 

LC/MS ESI+ tR 4.09 min, (m/z) [M+H]+ 480.70/483.65. HRMS (+ESI): 482.0569 (M + H+). Calcd 

for C23H16ClN3O5S: 482.0572. 

4.1.1.5. 6-Chloro-8-(2-methoxyphenylethynyl)-3-nitro-2-

(phenylsulfonylmethyl)imidazo[1,2-a]pyridine (8) 

Compound 8 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane/diethyl ether 6.9/3/0.1) and recrystallization from acetonitrile as a 

yellow solid in 67% yield (0.30 g). mp 204 °C. 1H NMR (400 MHz, CDCl3) δ: 3.96 (3H, s), 5.19 



(2H, s), 6.94–7.01 (2H, m), 7.39–7.44 (1H, m), 7.49–7.54 (3H, m), 7.58–7.62 (1H, m), 7.80 (1H, 

d, J = 1.9 Hz), 7.89–7.91 (2H, m), 9.38 (1H, d, J = 1.9 Hz). 13C NMR (100 MHz, DMSO-d6) δ: 

56.3 (CH3), 56.4 (CH2), 86.0 (C), 95.4 (C), 110.4 (C), 112.1 (CH), 114.4 (C), 121.1 (CH), 124.2 

(C), 126.3 (CH), 128.7 (2 CH), 129.7 (2 CH), 131.7 (C), 132.2 (CH), 134.0 (CH), 134.6 (CH), 

134.9 (CH), 139.2 (C), 139.8 (C), 142.9 (C), 160.5 (C). LC/MS ESI+ tR 3.86 min, (m/z) [M+H]+ 

480.62/483.88. HRMS (+ESI): 482.0570 (M + H+). Calcd for C23H16ClN3O5S: 482.0572. 

4.1.1.6. 6-Chloro-8-(4-fluorophenylethynyl)-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-

a]pyridine (9) 

Compound 9 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane 7/3) and recrystallization from acetonitrile as a yellow solid in 49% 

yield (0.21 g). mp 245 °C. 1H NMR (250 MHz, DMSO-d6) δ: 5.31 (2H, s), 7.36–7.43 (2H, m), 

7.57–7.67 (4H, m), 7.70–7.73 (1H, m), 7.76–7.81 (2H, m), 8.26 (1H, s), 9.35 (1H, s). 13C NMR 

(100 MHz, DMF-d7) δ: 56.7 (CH2), 82.3 (C), 97.1 (C), 114.4 (C), 116.7 (2 CH, d, J = 22.6 Hz), 

118.3 (C, d, J = 3.3 Hz), 124.5 (C), 126.5 (CH), 128.9 (2 CH), 129.7 (2 CH), 132.1 (C), 134.6 

(CH), 134.8 (2 CH, d, J = 8.9 Hz), 135.0 (CH), 139.8 (C), 140.1 (C), 143.2 (C), 164.9 (C).  LC/MS 

ESI+ tR 4.01 min, (m/z) [M+H]+ 469.70/471.23. HRMS (+ESI): 470.0371 (M + H+). Calcd for 

C22H13ClFN3O4S: 470.0372. 

4.1.1.7. 6-Chloro-8-(3-fluorophenylethynyl)-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-

a]pyridine (10) 

Compound 10 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane/diethyl ether 6.8/3/0.2) and recrystallization from acetonitrile as a 

yellow solid in 38% yield (0.17 g). mp 240 °C. 1H NMR (400 MHz, CDCl3) δ: 5.19 (2H, s), 7.16–

7.18 (1H, m), 7.28–7.65 (6H, m), 7.79 (1H, s), 7.89 (2H, d, J = 7.6 Hz), 9.42 (1H, s). 13C NMR 

(100 MHz, CDCl3) δ: 56.8 (CH2), 82.2 (C), 98.1 (C), 115.2 (C), 117.4 (CH, d, J = 21.2 Hz), 119.1 

(CH, d, J = 23 Hz), 123.3 (C, d, J = 9.43 Hz), 125.3 (CH), 125.4 (C), 128.2 (CH, d, J = 3.23 Hz), 

128.2 (2 CH), 129.3 (2 CH), 130.3 (CH, d, J = 8.54 Hz), 131.3 (C), 134.3 (CH), 134.6 (CH), 139.3 

(C), 139.9 (C), 142.9 (C), 162.5 (C, d, J = 247.6 Hz). LC/MS ESI+ tR 4.03 min, (m/z) [M+H]+ 

469.85/471.98. HRMS (+ESI): 470.0372 (M + H+). Calcd for C22H13ClFN3O4S: 470.0372. 

4.1.1.8. 6-Chloro-8-(2-fluorophenylethynyl)-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-

a]pyridine (11) 

Compound 11 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane 8/2) and recrystallization from acetonitrile as a yellow solid in 65% 

yield (0.28 g). mp 229 °C. 1H NMR (400 MHz, DMSO-d6) δ: 5.30 (2H, s), 7.35–7.45 (2H, m), 



7.56–7.72 (5H, m), 7.80 (2H, d, J = 7.1 Hz), 8.28 (1H, d, J = 1.9 Hz), 9.36 (1H, d, J = 1.9 Hz). 13C 

NMR (100 MHz, DMSO-d6) δ: 55.8 (CH2), 86.7 (C), 90.7 (C), 109.4 (C, d, J = 15.4 Hz), 112.9 

(C), 116.0 (CH, d, J = 20.2 Hz), 123.6 (C), 125.1 (CH, d, J = 3.58 Hz), 126.4 (CH), 128.2 (2 CH), 

129.2 (2 CH), 131.3 (C), 132.5 (CH, d, J = 8.26 Hz), 133.8 (CH), 134.1 (CH), 135.1 (CH), 138.7 

(C), 139.4 (C), 142.3 (C), 161.9 (C, d, J = 251.5 Hz). LC/MS ESI+ tR 3.95 min, (m/z) [M+H]+ 

469.83/471.49. HRMS (+ESI): 470.0371 (M + H+). Calcd for C22H13ClFN3O4S: 470.0372. 

4.1.1.9. 4-[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-

yl]ethynylaniline (12) 

After washing the crude residue with acetone and filtration, compound 12 was obtained as an 

orange solid in 72% yield (0.31 g). mp 255 °C. 1H NMR (400 MHz, DMSO-d6) δ: 5.29 (2H, s), 

5.90 (2H, s), 6.63 (2H, s), 7.22 (2H, s), 7.60–7.81 (5H, m), 8.06 (1H, s), 9.24 (1H, s). 13C NMR 

(100 MHz, DMSO-d6) δ: 55.8 (CH2), 80.2 (C), 101.1 (C), 106.2 (C), 113.6 (2 CH), 114.8 (C), 

123.8 (C), 124.6 (CH), 128.2 (2 CH), 129.2 (2 CH), 131.2 (C), 133.1 (CH), 133.2 (2 CH), 134.1 

(CH), 138.7 (C), 139.2 (C), 142.4 (C), 150.8 (C). LC/MS ESI+ tR 3.28 min, (m/z) [M+H]+ 

466.80/468.68. HRMS (+ESI): 467.0572 (M + H+). Calcd for C22H15ClN4O4S: 467.0575. 

4.1.1.10. 6-Chloro-3-nitro-2-(phenylsulfonylmethyl)-8-(thiophen-2-ylethynyl)imidazo[1,2-

a]pyridine (13) 

Compound 13 was obtained after purification by chromatography (eluent: 

dichloromethane/cyclohexane/diethyl ether 5/4.5/0.5) and recrystallization from acetonitrile as a 

yellow solid in 65% yield (0.28 g). mp 220 °C. 1H NMR (400 MHz, CDCl3) δ: 5.19 (2H, s), 7.08–

7.11 (1H, m), 7.44–7.66 (5H, m), 7.77 (1H, s), 7.89 (2H, d, J = 7.7 Hz), 9.40 (1H, s). 13C NMR 

(100 MHz, CDCl3) δ: 56.8 (CH2), 85.3 (C), 93.2 (C), 115.4 (C), 121.4 (C), 124.9 (CH), 125.5 (C), 

127.6 (CH), 128.8 (2 CH), 129.3 (2 CH), 129.8 (CH), 131.3 (C), 134.2 (CH), 134.3 (CH), 134.5 

(CH), 139.2 (C), 139.8 (C), 142.6 (C). LC/MS ESI+ tR 3.79 min, (m/z) [M+H]+ 457.72/459.88. 

HRMS (+ESI): 458.0031 (M + H+). Calcd for C20H12ClN3O4S2: 458.0031. 

4.1.1.11. 6-Chloro-3-nitro-2-(phenylsulfonylmethyl)-8-(pyridin-3-ylethynyl)imidazo[1,2-

a]pyridine (14) 

Compound 14 was obtained after purification by chromatography (eluent: chloroform/diethyl ether 

8/2) as a yellow solid in 36% yield (0.15 g). mp 240 °C. 1H NMR (400 MHz, DMSO-d6) δ: 5.31 

(2H, s), 7.56–7.61 (3H, s), 7.68–7.72 (1H, s), 7.79–7.81 (2H, m), 7.99–8.02 (1H, m), 8.30 (1H, d, 

J = 1.9 Hz), 8.70 (1H, dd, J = 1.6 Hz and 4.9 Hz), 8.77 (1H, d, J = 1.6 Hz), 9.37 (1H, d, J = 1.9 

Hz). 13C NMR (100 MHz, DMSO-d6) δ: 55.8 (CH2), 85.0 (C), 94.2 (C), 112.8 (C), 118.2 (C), 

123.6 (C), 123.9 (CH), 126.5 (CH), 128.3 (2 CH), 129.2 (2 CH), 131.3 (C), 134.1 (CH), 135.1 



(CH), 138.7 (C), 138.9 (CH), 139.4 (C), 142.2 (C), 150.1 (CH), 151.8 (CH). LC/MS ESI+ tR 2.91 

min, (m/z) [M+H]+ 452.77/454.84. HRMS (+ESI): 453.0417 (M + H+). Calcd for C21H13ClN4O4S: 

453.0419. 

4.1.1.12. 6-Chloro-3-nitro-8-(3-phenoxyprop-1-yn-1-yl)-2-

(phenylsulfonylmethyl)imidazo[1,2-a]pyridine (15) 

Compound 15 was obtained after purification by chromatography (eluent: dichloromethane/ethyl 

acetate 9.8/0.2) as a dark solid in 74% yield (0.33 g). mp 72 °C. 1H NMR (250 MHz, DMSO-d6) 

δ: 5.17 (2H, s), 5.27 (2H, s), 6.98–7.09 (2H, m), 7.32–7.39 (3H, m), 7.56–7.62 (2H, m), 7.70–7.80 

(3H, m), 8.16 (1H, d, J = 1.7 Hz), 9.31 (1H, d, J = 1.9 Hz). 13C NMR (62.5 MHz, DMSO-d6) δ: 

55.8 (CH2), 56.0 (CH2), 79.0 (C), 93.8 (C), 112.6 (C), 114.9 (2 CH), 121.4 (CH), 123.5 (C), 126.3 

(CH), 128.1 (2 CH), 129.2 (2 CH), 129.5 (2 CH), 131.2 (C), 134.1 (CH), 135.2 (CH), 138.7 (C), 

139.2 (C), 142.5 (C), 157.3 (C). LC/MS ESI+ tR 3.73 min, (m/z) [M+H]+ 480.60/483.76. HRMS 

(+ESI): 482.0572 (M + H+). Calcd for C23H16ClN3O5S: 482.0572. 

4.1.1.13. 6-Chloro-8-[(4-hydroxymethyl)phenylethynyl]-3-nitro-2-

(phenylsulfonylmethyl)imidazo[1,2-a]pyridine (16) 

Compound 16 was obtained after purification by chromatography (eluent: dichloromethane/ethyl 

acetate 9/1) and recrystallization from propan-2-ol as a pale yellow solid in 68% yield (0.30 g). 

mp 187 °C. 1H NMR (250 MHz, DMSO-d6) δ: 4.58 (2H, d, J = 5.4 Hz), 5.31 (2H, s), 5.38 (1H, t, 

J = 5.6 Hz), 7.44–7.48 (2H, m), 7.52–7.63 (4H, m), 7.70–7.75 (1H, m), 7.79–7.82 (2H, m), 8.24 

(1H, d, J = 1.7 Hz), 9.33 (1H, d, J = 1.8 Hz). 13C NMR (62.5 MHz, DMSO-d6) δ: 55.8 (CH2), 62.4 

(CH2), 81.7 (C), 98.0 (C), 113.6 (C), 119.0 (C), 123.6 (C), 125.8 (CH), 126.7 (2 CH), 128.2 (2 

CH), 129.2 (2 CH), 131.2 (C), 131.5 (2 CH), 134.1 (CH), 134.5 (CH), 138.7 (C), 139.3 (C), 142.3 

(C), 144.8 (C). LC/MS ESI+ tR 3.29 min, (m/z) [M+H]+ 480.61/483.75. HRMS (+ESI): 482.0571 

(M + H+). Calcd for C23H16ClN3O5S: 482.0572. 

4.1.1.14. 4-[6-Chloro-3-nitro-2-(phenylsulfonylmethyl]imidazo[1,2-a]pyridin-8-yl)-2-

phenylbut-3-yn-2-ol (17) 

Compound 17 was obtained after purification by chromatography (eluent: 

dichloromethane/methanol 9.8/0.2) and recrystallization from propan-2-ol as a yellow solid in 

72% yield (0.33 g). mp 160 °C. 1H NMR (250 MHz, DMSO-d6) δ: 1.77 (3H, s), 5.30 (2H, s), 6.48 

(1H, s), 7.31–7.46 (3H, m), 7.56–7.62 (2H, m), 7.70–7.75 (3H, m), 7.81–7.84 (2H, m), 8.18 (1H, 

s), 9.35 (1H, s). 13C NMR (62.5 MHz, DMSO-d6) δ: 33.5 (CH3), 56.0 (CH2), 68.7 (C), 76.0 (C), 

103.4 (C), 113.5 (C), 123.6 (C), 125.0 (2 CH), 125.8 (CH), 127.2 (CH), 128.0 (2 CH), 128.1 (2 

CH), 129.2 (2 CH), 131.2 (C), 134.1 (CH), 134.7 (CH), 138.8 (C), 139.3 (C), 142.5 (C), 145.8 (C). 



LC/MS ESI+ tR 3.66 min, (m/z) [M+NH4]
+ 511.53/512.76/514.32. HRMS (+ESI): 518.0547 (M + 

Na+). Calcd for C24H18ClN3O5S, Na+: 518.0548. 

4.1.1.15. 3-[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-yl]prop-2-

yn-1-ol (18) 

Compound 18 was obtained after purification by chromatography (eluent: dichloromethane/ethyl 

acetate 9/1) as a white solid in 60% yield (0.23 g). mp 225 °C. 1H NMR (300 MHz, DMSO-d6) δ: 

4.42 (2H, d, J = 5.54 Hz), 5.56 (2H, s), 5.58 (1H, t, J = 6.2 Hz), 7.58–7.63 (2H, m), 7.74–7.80 (3H, 

m), 8.11 (1H, s), 9.30 (1H, s). 13C NMR (75 MHz, DMSO-d6) δ: 49.6 (CH2), 55.9 (CH2), 76.4 (C), 

99.0 (C), 113.5 (C), 123.6 (C), 125.9 (CH), 128.1 (2 CH), 129.3 (2 CH), 131.2 (C), 134.2 (CH), 

134.8 (CH), 138.7 (C), 139.1 (C), 142.6 (C). LC/MS ESI+ tR 1.79 min, (m/z) [M+NH4]
+ 

422.88/425.02. HRMS (+ESI): 406.0259 (M + H+). Calcd for C17H12ClN3O5S: 406.0259. 

4.1.1.16. 4-[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-yl]but-3-yn-

1-ol (19) 

Compound 19 was obtained after purification by chromatography (eluent: 

dichloromethane/methanol 9.5/0.5) and recrystallization from acetonitrile as a beige solid in 67% 

yield (0.26 g). mp 185 °C. 1H NMR (400 MHz, CDCl3) δ: 2.78–2.86 (3H, m), 3.89 (2H, s), 5.15 

(2H, s), 7.55–7.67 (4H, m), 7.87–7.90 (2H, m), 9.37 (1H, s). 13C NMR (100 MHz, CDCl3) δ: 24.6 

(CH2), 56.8 (CH2), 60.7 (CH2), 75.1 (C), 100.1 (C), 115.8 (C), 124.7 (CH), 125.6 (C), 128.6 (2 

CH), 129.4 (2 CH), 131.3 (C), 134.1 (CH), 134.3 (CH), 139.3 (C), 139.4 (C), 143.6 (C). LC/MS 

ESI+ tR 2.13 min, (m/z) [M+H]+ 419.81/421.93. HRMS (+ESI): 420.0416 (M + H+). Calcd for 

C18H14ClN3O5S: 420.0415. 

4.1.1.17. 4-[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-yl]but-3-yn-

2-ol (20) 

Compound 20 was obtained after purification by chromatography (eluent: 

dichloromethane/methanol 9.8/0.2) and recrystallization from propan-2-ol as a beige solid in 67% 

yield (0.26 g). mp 196 °C. 1H NMR (300 MHz, CDCl3) δ: 1.60 (3H, d, J = 6.1 Hz), 3.62 (1H, s), 

4.88 (1H, bs), 5.18 (2H, s), 7.51–7.56 (2H, m), 7.64–7.70 (2H, m), 7.85–7.87 (2H, m), 9.36 (1H, 

s). 13C NMR (75 MHz, CDCl3) δ: 23.6 (CH3), 56.6 (CH2), 58.5 (CH), 75.9 (C), 102.3 (C), 114.8 

(C), 125.0 (CH), 125.3 (C), 128.4 (2 CH), 129.3 (2 CH), 131.1 (C), 134.2 (CH), 134.7 (CH), 139.0 

(C), 139.4 (C), 142.9 (C). LC/MS ESI+ tR 2.28 min, (m/z) [M+NH4]
+ 436.88/438.9. HRMS (+ESI): 

420.0418 (M + H+). Calcd for C18H14ClN3O5S: 420.0415. 

4.1.1.18. 4-[6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-yl]-2-

methylbut-3-yn-2-ol (21) 



Compound 21 was obtained after purification by chromatography (eluent: dichloromethane/ethyl 

acetate 9/1) and recrystallization from propan-2-ol as a pale yellow solid in 78% yield (0.31 g). 

mp 193 °C. 1H NMR (400 MHz, DMSO-d6) δ: 1.50 (6H, s), 5.27 (2H, s), 5.71 (1H, s), 7.58–7.64 

(2H, m), 7.72–7.81 (3H, m), 8.04 (1H, s), 9.30 (1H, s). 13C NMR (100 MHz, DMSO-d6) δ: 31.2 (2 

CH3), 55.9 (CH2), 63.8 (C), 73.5 (C), 105.0 (C), 113.8 (C), 123.6 (C), 125.6 (CH), 128.1 (2 CH), 

129.2 (2 CH), 131.2 (C), 134.2 (CH), 134.8 (CH), 138.8 (C), 139.2 (C), 142.4 (C). LC/MS ESI+ 

tR 2.73 min, (m/z) [M+NH4]
+ 450.37/452.80. HRMS (+ESI): 434.0571 (M + H+). Calcd for 

C19H16ClN3O5S: 434.0572. 

4.1.1.19. 6-[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-yl]hex-5-yn-

3-ol (22) 

Compound 22 was obtained after purification by chromatography (eluent: cyclohexane/ethyl 

acetate 4/5) and recrystallization from propan-2-ol as a white solid in 60% yield (0.25 g). mp 154 

°C. 1H NMR (400 MHz, DMSO-d6) δ: 0.93 (3H, t, J = 7.4 Hz), 1.39–1.70 (2H, m), 2.63 (2H, d, J 

= 5.9 Hz), 3.59–3.69 (1H, m), 4.91 (1H, d, J = 5.2 Hz), 5.25 (2H, s), 7.58–7.63 (2H, m), 7.73–7.79 

(3H, m), 8.04 (1H, d, J = 1.9 Hz), 9.28 (1H, d, J = 1.9 Hz). 13C NMR (100 MHz, DMSO-d6) δ: 

10.0 (CH3), 27.9 (CH2), 28.9 (CH2), 55.9 (CH2), 69.9 (CH), 74.5 (C), 98.7 (C), 114.4 (C), 123.6 

(C), 125.3 (CH), 128.1 (2 CH), 129.3 (2 CH), 131.1 (C), 134.2 (CH), 134.6 (CH), 138.8 (C), 139.1 

(C), 142.8 (C). LC/MS ESI+ tR 2.88 min, (m/z) [M+H]+ 447.51/448.78/450.54. HRMS (+ESI): 

448.0728 (M + H+). Calcd for C20H18ClN3O5S: 448.0728. 

4.1.1.20. 1-{[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-

yl]ethynyl}cyclopentanol (23) 

Compound 23 was obtained after purification by chromatography (eluent: 

dichloromethane/methanol 9.8/0.2) and recrystallization from propan-2-ol as a white solid in 61% 

yield (0.26 g). mp 214 °C. 1H NMR (400 MHz, DMSO-d6) δ: 1.68–1.81 (4H, m), 1.87–1.99 (4H, 

m), 5.27 (2H, s), 5.55 (1H, s), 7.59–7.63 (2H, m), 7.73–7.80 (3H, m), 8.05 (1H, d, J = 1.9 Hz), 

9.30 (1H, d, J = 1.9 Hz). 13C NMR (100 MHz, DMSO-d6) δ: 23.1 (2 CH2), 41.9 (2 CH2), 55.9 

(CH2), 72.9 (C), 74.4 (C), 104.3 (C), 113.9 (C), 123.6 (C), 125.6 (CH), 128.1 (2 CH), 129.3 (2 

CH), 131.2 (C), 134.2 (CH), 134.7 (CH), 138.8 (C), 139.2 (C), 142.5 (C). LC/MS ESI+ tR 3.35 

min, (m/z) [M+NH4]
+ 476.91/478.71. HRMS (+ESI): 460.0727 (M + H+). Calcd for 

C21H18ClN3O5S: 460.0728. 

4.1.1.21. 1-{[6-Chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridin-8-

yl]ethynyl}cyclohexanol (24) 



Compound 24 was obtained after purification by chromatography (eluent: 

dichloromethane/methanol 9.6/0.4) and recrystallization from acetonitrile as a white solid in 77% 

yield (0.34 g). mp 232 °C. 1H NMR (400 MHz, DMSO-d6) δ: 1.26 (1H, bs), 1.49–1.65 (8H, m), 

1.84–1.90 (2H, m), 5.25 (2H, s), 7.56–7.63 (2H, m), 7.71–7.80 (3H, m), 8.07 (1H, d, J = 1.83 Hz), 

9.31 (1H, d, J = 1.81 Hz). 13C NMR (100 MHz, DMSO-d6) δ: 22.6 (2 CH2), 24.8 (CH2), 39.4 (2 

CH2), 56.0 (CH2), 67.3 (C), 75.7 (C), 104.2 (C), 113.9 (C), 123.6 (C), 125.6 (CH), 128.0 (2 CH), 

129.2 (2 CH), 131.2 (C), 134.1 (CH), 134.6 (CH), 138.8 (C), 139.3 (C), 142.5 (C). LC/MS ESI+ 

tR 3.58 min, (m/z) [M+NH4]
+ 490.94/492.91. HRMS (+ESI): 474.0887 (M + H+). Calcd for 

C22H20ClN3O5S: 474.0885. 

4.1.1.22. Preparation of 4-[3-amino-6-chloro-2-(phenylsulfonylmethyl)imidazo[1,2-

a]pyridin-8-yl]but-3-yn-1-ol (25) 

A mixture of 8-bromo-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridine 4 (400 

mg, 1 equiv.) in acetic acid (60 mL), iron powder (519 mg, 10 equiv.) was stirred and heated under 

reflux for 30 min. The mixture was then filtered through celite and the solvent was evaporated in 

vacuo. The resulting residue was diluted with H2O and basified with saturated aqueous NaHCO3. 

The mixture was extracted three times with dichloromethane, dried over MgSO4, filtered and 

evaporated. Then, a mixture of the previous residue (200 mg, 1 equiv.), 

tetrakis(triphenylphosphine)palladium(0) (57.8 mg, 0.1 equiv.), copper iodide (9.5 mg, 0.1 equiv.), 

diisopropylamine (843 µL, 12 equiv.) and but-3-yn-1-ol (57 µL, 1.5 equiv.) in THF (7 mL) was 

stirred under N2 at room temperature for 24 h. The reaction mixture was then slowly poured into 

an ice-water mixture. The resulting suspension was filtered. Compound 25 was obtained after 

purification by flash chromatography (eluent: dichloromethane/ethyl acetate 20/80) as a yellow 

solid in 57 % yield (111 mg). mp 190 °C. 1H NMR (400 MHz, DMSO-d6) δ: 2.63 (2H, t, J = 6.8 

Hz), 3.60 (2H, dd, J = 10.6, 6.4 Hz), 4.79 (2H, s), 4.94 (1H, s), 5.28 (2H, s), 7.12 (1H, d, J = 1.8 

Hz), 7.59 (2H, t, J = 7.7 Hz), 7.71 (1H, t, J = 7.4 Hz), 7.82 – 7.76 (2H, m), 8.20 (1H, d, J = 1.8 

Hz). 13C NMR (100 MHz, DMSO-d6) δ: 23.6 (CH2), 54.5 (CH2), 59.6 (CH2), 75.9 (CH), 95.2 

(CH), 113.0 (C), 115.9 (CH), 117.5 (C), 120.0 (C), 124.8 (CH), 128.1 (2 CH), 129.0 (2 CH), 132.3 

(C), 133.6 (C), 136.1 (CH), 139.5 (C). LC/MS ESI+ tR 1.86 min, (m/z) [M+H]+ 390.02/392.02. 

HRMS (+ESI): 390.0671 [M+H]+ ; Calcd for C18H16ClN3O3S : 390.0674. 

4.1.2. Electrochemistry 

Voltammetric measurements were carried out with a potentiostat  Autolab PGSTAT100 (ECO 

Chemie, The Netherlands) controlled by GPES 4.09 software. Experiments were performed at 

room temperature in a homemade airtight three–electrode cell connected to a vacuum/argon line. 

The reference electrode consisted of a saturated calomel electrode (SCE) separated from the 



solution by a bridge compartment. The counter electrode was a platinum wire of 1 cm² apparent 

surface. The working electrode was GC microdisk (1.0 mm of diameter – Bio-logic SAS). The 

supporting electrolyte (nBu4N)[PF6] (Fluka, 99% puriss electrochemical grade) and the solvent 

DMSO (Sigma-Aldrich puriss p.a. dried <0.02% water) were used as received and simply degassed 

under argon. The solutions used during the electrochemical studies were typically 10-3 M in 

compound and 0.1 M in supporting electrolyte. Before each measurement, the solutions were 

degassed by bubbling Ar and the working electrode was polished with a polishing machine (Presi 

P230). Under these experimental conditions employed in this work, the half-wave potential (E1/2) 

of the ferrocene Fc+/Fc couple in DMSO was E1/2 = 0.45 V vs SCE. Experimental peak potentials 

have been measured versus SCE and converted to NHE by adding 0.241 V. 

 

4.2. Biology 

4.2.1. Antileishmanial activity against L. donovani promastigotes 

Leishmania species used in this study were L. donovani (MHOM/IN/00/DEVI) purchased from 

CNR Leishmania (Montpellier, France). Leishmania promastigotes forms were grown in 

Schneider’s Drosophila medium (Life Technologies, Saint-Aubin, France) supplemented with 100 

U/mL penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine and 20% FCS (Life Technologies, 

Saint-Aubin, France) at 27 °C. The in vitro evaluation of the antileishmanial activity on 

promastigote forms of the tested compound was carried out by an MTT assay according to the 

protocol of Mosmann with some modifications. [29] Briefly, promastigotes in log-phase were 

incubated at an average density of 106 parasites/mL in sterile 96-well plates with various 

concentrations of compound dissolved in DMSO (final concentration less than 0.5% v/v), in 

duplicate. Appropriate controls treated by DMSO, miltefosine, amphotericin B, fexinidazole and 

doxorubicin (reference drugs purchased from Sigma-Aldrich, Saint-Louis, Missouri, USA) were 

added to each set of experiments. After a 72h incubation period at 27 °C, parasitic metabolic 

activity was determined. Each plate-well was then microscope-analyzed for detecting possible 

precipitate formation. 20 µL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) (Sigma-Aldrich, Saint-Louis, Missouri, USA) solution (5 mg/mL in PBS) were added to 

each well followed and incubated 4 h at 27 °C. The enzyme reaction was then stopped by addition 

of 100 µL of 50% isopropanol – 10% sodium dodecyl sulfate. Plates were shaken vigorously at 

300 rpm for 10 min. The absorbance was finally measured at 570 nm in a BIO-TEK Elx808 

(Biotek, Colmar, France) absorbance microplate reader. Inhibitory concentration 50% (EC50) was 

defined as the concentration of drug required to inhibit by 50% the metabolic activity of 

Leishmanial promastigotes forms compared to the control. EC50 were calculated by non-linear 



regression analysis processed dose-response curves, using TableCurve 2D V5.0 software. EC50 

values represent the mean value calculated from at least three independent experiments. 

4.2.2. Antileishmanial activity on L. infantum axenic amastigotes [30] 

L. infantum promastigotes (MHOM/MA/67/ITMAP-263, CNR Leishmania, Montpellier, France, 

expressing luciferase activity) were cultivated in RPMI 1640 medium supplemented with 10% 

foetal calf serum (FCS), 2 mM L-glutamine and antibiotics (100 U/mL penicillin and 100 µg/mL 

streptomycin) and harvested in logarithmic phase of growth by centrifugation at 900 g for 10 min. 

The supernatant was removed carefully and was replaced by the same volume of RPMI 1640 

complete medium at pH 5.4 and incubated for 24 h at 24 °C. The acidified promastigotes were 

then incubated for 24 h at 37 °C in a ventilated flask to transform promastigotes into axenic 

amastigotes. The amastigote stage was checked both by electron microscopy (short flagellum with 

small bulbous tip extending beyond a spherical cell body) and RT-PCR for confirming the 

overexpression of ATG8 and amastin genes in amastigotes, compared to promastigotes.  The 

effects of the tested compounds on the growth of L. infantum axenic amastigotes were assessed as 

follows. L. infantum amastigotes were incubated at a density of 2 × 106 parasites/mL in sterile 96-

well plates with various concentrations of compounds dissolved in DMSO (final concentration 

less than 0.5% v/v), in duplicate. Appropriate controls DMSO, amphotericin B, miltefosine and 

fexinidazole (reference drugs purchased from Sigma Aldrich) were added to each set of 

experiments. After a 48 h incubation period at 37 °C, each plate-well was then microscopically-

examined to detect any precipitate formation. To estimate the luciferase activity of axenic 

amastigotes, 80 µL of each well were transferred to white 96-well plates, Steady Glow® reagent 

(Promega) was added according to manufacturer's instructions, and plates were incubated for 2 

min. The luminescence was measured in Microbeta Luminescence Counter (PerkinElmer). 

Efficient concentration 50% (EC50) was defined as the concentration of drug required to inhibit by 

50% the metabolic activity of L. infantum amastigotes compared to control. EC50 values were 

calculated by non-linear regression analysis processed on dose response curves, using TableCurve 

2D V5 software. EC50 values represent the mean of three independent experiments. 

4.2.3. Antitrypanosomal evaluation on T. b. brucei BSF trypomastigotes 

The effects of the tested compounds on the growth of T. b. brucei were assessed by Alamar Blue® 

assay described by Räz et al. [31] T. b. brucei AnTat 1.9 (IMTA, Antwerpen, Belgium) was 

cultured in MEM with Earle’s salts, supplemented according to the protocol of Baltz et al. [32] 

with the following modifications: 0.5 mM mercaptoethanol (Sigma Aldrich®, France), 1.5 mM L-

cysteine (Sigma Aldrich®), 0.05 mM bathocuproïne sulfate (Sigma Aldrich®) and 20% heat-

inactivated horse serum (Gibco®, France), at 37 °C and 5% CO2. They were incubated at an 



average density of 2000 parasites/100 µL in sterile 96-wells plates (Fisher®, France) with various 

concentrations of compounds dissolved in DMSO, in duplicate. Appropriate controls treated by 

DMSO on sterile water, suramin, eflornithine and fexinidazole (reference drugs purchased from 

Sigma Aldrich, France and Fluorochem, UK) were added to each set of experiments. After a 69 h 

incubation period at 37 °C, 10 µL of the viability marker Alamar Blue® (Fisher, France) was then 

added to each well, and the plates were incubated for 5 h. The plates were read in a ENSPIRE 

microplate reader (PerkinElmer) using an excitation wavelength of 530 nm and an emission 

wavelength of 590 nm. EC50 was defined as the concentration of drug necessary to inhibit by 50% 

the activity of T. b. brucei compared to the control. EC50 were calculated by nonlinear regression 

analysis processed on dose-response curves, using GraphPad Prism software (USA). EC50 values 

were calculated from three independent experiments. 

4.2.4. Antitrypanosomal evaluation on the development of T. cruzi amastigotes 

Vero cells (normal kidney epithelial cells of Cercopithecus aethiops) were obtained from the 

Virology Laboratory of the Pitié Salpêtrière Hospital (Paris, France). At late exponential growth 

phase, trypsin-treated Vero cells were subcultured every seven days in RPMI-1640 medium (Life 

technologies) supplemented with streptomycin/penicillin (Life technologies) and 5% heat-

inactivated fœtal bovine serum (FBS) (Life technologies). Subcultures were maintained at 37 °C 

in a humidified atmosphere of 5% CO2. CL Brener strain (collection number: MNHN-CEU- 2016-

0159) was a gift from Pr. P. Grellier of the Muséum National d’Histoire Naturelle (Paris, France). 

T. cruzi stocks were maintained by weekly passage in Vero cells. Infectious trypomastigotes were 

collected from culture supernatants. 

Then, sterile, 6-well plates were seeded with exponentially growing Vero cells (40,000 cells per 

cm2 in 2, 2 mL RPMI with serum per well) harvested from the preceding subcultures, were added 

to each well. After incubation at 37 °C for 2 days in 5% CO2 in air, the cells were infected with T. 

cruzi trypomastigotes in ratio 3:1 (parasites : host cells). After 24 h, the non-infecting 

trypomastigotes removed by washing twice with HBSS buffer (without Ca2+ and Mg2+) and the 

chemical compounds in completed RPMI media were added immediately, to be tested to their 

inhibitory effects on parasite growth and development.  Culture plates were incubated for an 

additional 120 h at 37 °C with 5% CO2.Three replicate wells for each condition were done. On 

days 5 and 6 post-infection, trypomastigotes were released from the cells. On day 6, the culture 

medium was removed and transferred to a centrifuge tube. Attached infected cells were washed 

with 5 mL of HBSS buffer. The culture medium and wash containing trypomastigotes were mixed 

and centrifuged at 1000 g for 15 min at room temperature. Subsequently, trypomastigotes re-

suspended in 2 mL and counted in a haemocytometer (Kova cells) using a light microscope. For 

50% effective concentration (EC50) determinations, compounds were serially diluted 2 to 4-fold 



in RPMI media, with final assay concentrations ranging from 0.1 to 25 µM. The 50% inhibiting 

concentrations (EC50), defined as the drug concentration that resulted in a 50% reduction of 

trypomastigotes compared to the non-treated controls was estimated by non-linear regression 

analysis. EC50 values represent the mean value calculated from two independent experiments that 

were performed in triplicate. 

4.2.5. Antileishmanial activity on L. donovani promastigotes NTR1 and NTR2 over-

expressing strain. 

The clonal Leishmania donovani cell line LdBOB (derived from MHOM/SD/62/1S-CL2D) was 

grown as promastigotes at 26 °C in modified M199 media, as previously described [33]. LdBOB 

promastigotes overexpressing NTR1 (LinJ.05.0660) [16] and NTR2 (LinJ.12.0730) [17] were 

grown in the presence of nourseothricin (100 µg/mL). To examine the effects of test compounds 

on growth, triplicate promastigote cultures were seeded with 5 × 104 parasites/mL. Parasites were 

grown in 10 mL cultures in the presence of drug for 72 h, after which 200 μL aliquots of each 

culture were added to 96-well plates, 50 μM resazurin was added to each well and fluorescence 

(excitation of 528 nm and emission of 590 nm) measured after a further 4 h incubation [15]. Data 

were processed using GRAFIT (version 5.0.4; Erithacus software) and fitted to a 2-parameter 

equation, where the data are corrected for background fluorescence, to obtain the effective 

concentration inhibiting growth by 50% (EC50): 
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In this equation, [I] represents inhibitor concentration and m is the slope factor. Experiments were 

repeated at least two times and the data is presented as the mean plus standard deviation. 

4.2.6 Antitrypanosomal activity on T. brucei NTR1 over-expressing strain. 

Trypanosoma brucei bloodstream-form 'single marker' S427 (T7RPOL TETR NEO) and drug-

resistant cell lines were cultured at 37 °C in HMI9-T medium [34] supplemented with 2.5 μg/mL 

G418 to maintain expression of T7 RNA polymerase and the tetracycline repressor protein. 

Bloodstream trypanosomes overexpressing the T. brucei nitroreductase (NTR1) [35] were grown 

in medium supplemented with 2.5 μg/mL phleomycin and expression of NTR was induced by the 

addition of 1 μg/mL tetracycline. Cultures were initiated with 1 × 105 cells/mL and sub-cultured 

when cell densities approached 1–2 (× 106)/mL. 

In order to examine the effects of inhibitors on the growth of these parasites, triplicate cultures 

containing the inhibitor were seeded at 1 × 105 trypanosomes/mL. Cells overexpressing NTR were 

induced with tetracycline 48 h prior to EC50 analysis. Cell densities were determined after culture 



for 72 h, as previously described [36]. EC50 values were determined using the following two-

parameter equation by non-linear regression using GRAFIT:  

where the experimental data were corrected for background cell density and expressed as a 

percentage of the uninhibited control cell density.  
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In this equation, [I] represents inhibitor concentration and m is the slope factor. 

4.2.7. Cytotoxicity evaluation on HepG2 cell line 

HepG2 cell line was maintained at 37 °C, 6% CO2 with 90% humidity in RPMI supplemented 

with 10% fœtal bovine serum, 1% L-glutamine (200 mM) and penicillin (100 U/mL)/streptomycin 

(100 mg/mL) (complete RPMI medium). The evaluation of the tested molecules cytotoxicity on 

the HepG2 (hepatocarcinoma cell line purchased from ATCC, ref HB-8065) cell line was 

performed according to the method of Mosmann [29] with slight modifications. Briefly, 5 × 103 

cells in 100 mL of complete medium were inoculated into each well of 96-well plates and 

incubated at 37 °C in a humidified 6% CO2. After 24 h incubation, 100 mL of medium with various 

product concentrations dissolved in DMSO (final concentration less than 0.5% v/v) were added 

and the plates were incubated for 72 h at 37 °C. Triplicate assays were performed for each sample. 

Each plate-well was then microscope-examined for detecting possible precipitate formation before 

the medium was aspirated from the wells. 100 mL of MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide) solution (0.5 mg/mL in medium without FCS) were then added 

to each well. Cells were incubated for 2 h at 37 °C. After this time, the MTT solution was removed 

and DMSO (100 mL) was added to dissolve the resulting blue formazan crystals. Plates were 

shaken vigorously (700 rpm) for 10 min. The absorbance was measured at 570 nm with 630 nm 

as reference wavelength using a BIO-TEK ELx808 Absorbance Microplate Reader. DMSO was 

used as blank and doxorubicin (purchased from Sigma Aldrich) as positive control. Cell viability 

was calculated as percentage of control (cells incubated without compound). The 50% cytotoxic 

concentration (CC50) was determined from the dose–response curve by using the TableCurve 2D 

v.5.0 software (Jandel scientific). CC50 values represent the mean value calculated from three 

independent experiments. 

4.2.8. Cytotoxicity on THP-1 cell line 

The evaluation of the tested molecules cytotoxicity on the THP-1 cell line (acute monocytic 

leukemia cell line purchased from ATCC, ref TIB-202) was performed according to the method 

of Mosman [29] with slight modifications. Briefly, cells in 100 µL of complete RPMI medium, 



were incubated at an average density of 5 × 104 cells/mL in sterile 96-well plates with various 

concentrations of compounds dissolved in DMSO (final concentration less than 0.5% v/v), in 

duplicate. The plates were incubated for 72 h at 37 °C. Each well plate was then microscope-

examined for detecting possible precipitate formation before the medium was aspirated from the 

wells. 100 µL of MTT solution (0.5 mg/mL in medium without FCS) were then added to each 

well. Cells were incubated for 2 h at 37 °C. After this time, the MTT solution was removed and 

DMSO (100 µL) was added to dissolve the resulting blue formazan crystals. Plates were shaken 

vigorously (300 rpm) for 10 min. The absorbance was measured at 570 nm with 630 nm as 

reference wavelength spectrophotometer using a BIO-TEK ELx808 Absorbance Microplate 

Reader. DMSO was used as blank and doxorubicin (purchased from Sigma Aldrich) as positive 

control. Cell viability was calculated as percentage of control (cells incubated without compound). 

The 50% cytotoxic concentration (CC50) was determined from the dose–response curve by using 

the TableCurve 2D v.5.0 software. CC50 values represent the mean value calculated from three 

independent experiments. 

4.2.9. Ames test  

Mutagenicity test was carried out by using a modified version of the liquid incubation assay of the 

classical Ames test [37]. S. typhimurium tester strains (TA97a, TA98, TA100 and TA102) were 

grown overnight in a Nutrient Broth n°2 (Oxoid, France). After this period, 5 - 50 mM DMSO 

solutions of the tested drugs were added to 0.1 mL of culture and incubated with 4% S9 mix for 1 

h at 37 °C with shaking. Each sample was assayed in duplicate. After incubation, 2 mL of molten 

top agar were mixed gently with the pre-incubated solution and poured onto Vogel-Bonner 

minimal agar plates. After 48 h at 37 °C in the dark, the number of spontaneous and drug induced 

revertants per plate was determined for each dose with a laser bacterial colony counter. A product 

was considered mutagenic when it induces a two-fold increase of the number of revertants 

compared with the spontaneous frequency (negative control). For each Salmonella strain, a 

positive- (using benzo[a]pyrene) and solvent-control were performed with S9mix. 

4.2.10. Comet assay 

The alkaline comet assay was used to detect DNA strand breaks and alkali-labile sites. Trypsinized 

HepG2 cells were embedded in 0.7% low-melting point agarose (Sigma “Low Gelling 

Temperature”) and laid on pre-cut sheets of polyester film (Gelbond® film) to perform minigel 

deposits as previously described [38]. Film were then placed in lysis solution (NaCl 2.5 M, 

Na2EDTA 0.1 M, Tris 10 mM, 1 % Triton X-100, 10 % DMSO pH 10) for 18h at 4 °C. 

Electrophoresis (with a solution which contained 0.3 M NaOH, 1 mM Na2EDTA, pH > 13) was 

processed for 24 min in a tank with a power supply giving 28 V (resulting in 0.8 V/cm). After 



electrophoresis, films were immersed 2 × 5 min in PBS for neutralization, followed by fixation in 

100% ethanol for 1.5 h and drying. After staining with SYBR® Gold (Life Technologies) at 10 

000 X dilution for 20 min, films were observed at 20 × magnification with an epifluorescence 

microscope equipped with an automated platform (Nikon NiE) and coupled to a camera (DS-

Q1Mc) and the software Nikon NiS Element Advanced Research to automatically capture images. 

In these images, for each cell, the level of DNA damage was evaluated using a semi-automated 

scoring system, by measurement of the intensity of all tail pixels divided by the total intensity of 

all pixels in head and tail of comet, by means of the software “Lucia comet assay” (Laboratory 

Imaging, Prague Czech Republic). Fifty cells per deposit and three deposits per sample were 

analyzed. The median from these values was calculated, and named “% tail DNA”. 

 

4.3. In vitro Pharmacokinetic and physicochemical studies  

4.3.1. Plasma protein binding procedure 

Plasma doped with the tested compound is incubated at 37 °C in triplicate in one of the 

compartments of the insert, the other compartment containing a phosphate buffer solution at pH 

7.2. After stirring for 4 h at 300 rpm, a 25 μL aliquot of each compartment is taken and diluted; 

the dilution solution is adapted to obtain an identical matrix for all the compartments after dilution. 

In parallel, the reprocessing of a plasma doped but not incubated will allow to evaluate the recovery 

of the study. The LC-MS used for this study is a Waters® Acquity I-Class / Xevo TQD, equipped 

with a Waters® Acquity BEH C18 column, 50 × 2.1 mm, 1.7 µM. The mobile phases are (A) 

ammonium acetate 10 mM and (B) acetonitrile with 0.1% formic acid. The injection volume is 1 

µL and the flow rate is 600 µL/min. The chromatographic analysis, total duration of 4 min, is made 

with the following gradient: 0 < t < 0.2 min, 2% (B); 0.2 < t < 2 min, linear increase to 98% (B); 

2 < t < 2.5 min, 98% (B); 2.5 < t < 2.6 min, linear decrease to 2% (B); 2.6 < t < 4 min, 2% (B). 

Carbamazepine, oxazepam, warfarin and diclofenac are used as reference drugs and propranolol 

is used as internal standard. The unbound fraction (fu) is calculated according to the following 

formula: fu =
APlasma,4h−APBS,4h

APlasma,4h
× 100. The percentage of recovery is calculated according to the 

following formula: 

% 𝐑𝐞𝐜𝐨𝐯𝐞𝐫𝐲 =  
(𝐕𝐏𝐁𝐒 × 𝐀𝐏𝐁𝐒,𝟒𝐡) + (𝐕𝐏𝐥𝐚𝐬𝐦𝐚 × 𝐀𝐏𝐥𝐚𝐬𝐦𝐚,𝟒𝐡)

(𝐕𝐏𝐥𝐚𝐬𝐦𝐚 × 𝐀𝐏𝐥𝐚𝐬𝐦𝐚,𝟎𝐡)
 

Where A is the ratio of the area under peak of the studied molecule and the area under peak of the 

internal standard (propranolol 200 nM). V is the volume of solution present in the compartments 

(VPBS = 350 µL and Vplasma = 200 µL). 



4.3.2. Microsomal stability protocol 

The tested product and propranolol, used as reference, are incubated in duplicate (reaction volume 

of 0.5 mL) with female mouse microsomes (CD-1, 20 mg/mL, BD Gentest™) at 37 °C in a 50 

mM phosphate buffer, pH 7.4, in the presence of MgCl2 (5 mM), NADP (1 mM), glucose-6-

phosphate dehydrogenase (0.4 U/mL) and glucose-6-phosphate (5 mM). For the estimation of the 

intrinsic clearance: 50 µL aliquot at 0, 5, 10, 20, 30 and 40 min are collected and the reaction is 

stopped with 4 volumes of acetonitrile (ACN) containing the internal standard. After 

centrifugation at 10000 g, 10 min, 4 °C, the supernatants are kept at 4 °C for immediate analysis 

or placed at -80 °C in case of postponement of the analysis. Controls (t0 and tfinal) in triplicate are 

prepared by incubation of the internal standard with microsomes denatured by acetonitrile. The 

LC-MS used for this study is a Waters® Acquity I-Class / Xevo TQD, equipped with a Waters® 

Acquity BEH C18 column, 50 × 2.1 mm, 1.7 µm. The mobile phases are (A) ammonium acetate 

10 mM and (B) acetonitrile with 0.1% formic acid. The injection volume is 1 µL and the flow rate 

is 600 µL/min. The chromatographic analysis, total duration of 4 min, is made with the following 

gradient: 0 < t < 0.2 min, 2% (B); 0.2 < t < 2 min, linear increase to 98% (B); 2 < t < 2.5 min, 98% 

(B); 2.5 < t < 2.6 min, linear decrease to 2% (B); 2.6 < t < 4 min, 2% (B). 8-Bromo-6-chloro-3-

nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridine is used as internal standard. The 

quantification of each compound is obtained by converting the average of the ratios of the 

analyte/internal standard surfaces to the percentage of consumed product. The ratio of the control 

at t0 corresponds to 0% of product consumed. The calculation of the half-life (t1/2) of each 

compound in the presence of microsomes is done according to the equation: t1

2

=
ln(2)

k
, where k is 

the first-order degradation constant (the slope of the logarithm of compound concentration versus 

incubation time). The intrinsic clearance in vitro (Clint expressed in μL/min/mg) is calculated 

according to the equation: 

Clint =

dose

AUC∞

[microsomes]
⁄   

Where dose is the initial concentration of product in the sample, AUC∞ is the area under the 

concentration-time curve extrapolated to infinity and [microsomes] is the microsome 

concentration expressed in mg/µL. 

4.3.3. Blood brain barrier parallel artificial membrane permeability assay (BBB-PAMPA) 

The BBB-Pampa experiments were conducted using the Pampa Explorer Kit (Pion Inc) according 

to manufacturer's protocol. Briefly, the stock compound solution (20 mM in DMSO) was diluted 

in Prisma HT buffer pH 7.4 (pION) to 100 µM. 200 µL of this solution (n = 6) was added to donor 

plate (P/N 110243). 5 µL of the BBB-1 Lipid (P/N 110672) was used to coat the membrane filter 



of the acceptor plate (P/N 110243). 200 µL of the Brain Sink Buffer (P/N 110674) was added to 

each well of the acceptor plate. The sandwich was incubated at room temperature for 4 h, without 

stirring. After the incubation the UV-visible spectra were measured with the microplate reader 

(Tecan infinite M200) and the permeability value (Pe) was calculated by the PAMPA Explorer 

software v.3.7 (pION). Corticosterone (Pe = 138.6 ± 22.0 nm/s), and theophylline (Pe = 5.5 ± 0.3 

nm/s) were used as high and low permeability standards, respectively. Each measure was 

performed in sixplicate. 

4.3.4. Thermodynamic solubility at pH 7.4 of compound 19 

Thermodynamic solubility at pH 7.4 of compounds was determined according to 

a miniaturized shake-flask method (Organisation for Economic Cooperation and Development 

guideline n°105) [39]. Phosphate Buffer solutions (pH 7.4, 10 µM, ionic strength 150 µM) were 

prepared from Na2HPO4, KH2PO4 and KCl (Sigma Aldrich, Saint Quentin Fallavier, France); 10 

µL of 20 mM stock solution were added to 5 mL glass tube containing 990 mL buffer (n = 3). Tubes 

were briefly sonicated and shacked by inversion during 24 h at room temperature. Then, 

tube contents were put in a microtube which was centrifuged at 12,225 g for 10 min; 100 µL 

supernatant was mixed with 100 µL acetonitrile in a Greiner UV microplate. Standard solutions 

were prepared extemporaneously diluting 20 mM DMSO stock solutions at 0, 5, 10 and 20 mM; 

5 µL each working solution was diluted with 995 µL buffer and 100 µL was then mixed in 

microplate with 100 µL acetonitrile to keep unchanged the final proportions of each solvent in 

standard solutions and samples. Determination of solubility at pH 7.4 was made with an Infinite 

M200Pro (Tecan, Lyon, France) microplate reader in spectrophotometric mode (230 to 450 nm) 

from the specific λmax of each compound. The calibration curve obtained from the three standard 

solutions of tested compounds at 0, 25, 50, and 100 µM in a 50:50 (vol/vol) mixture of buffer with 

acetonitrinile/DMSO (99:1; vol/vol). Calibration curves were linear with R² > 0.99. 

 

 

4.4. In vivo studies 

Female Swiss mice of 8 weeks (weight 30-32 g) are used. All animals were kept under the same 

conditions according to laboratory animal care guidelines (European convention SPE123), and all 

protocols were approved by the ethical committee and the Ministry of Higher Education, Research 

and Innovation with the agreement number APAFIS#19730-2019031215178087 v1. 

The determination of maximal tolerated dose used one group of 4 mice which received an oral 

administration (intragastrical gavage) of 15 at 100 mg/kg. 15 was prepared as a suspension 

comprising 5% Tween 80/ 95% carboxymethylcellulose 0.5% in water. 



Observations of side effects were codified. The same protocol was used with repeated dose during 

5 days. 

 

4.4.1. Chemicals 

The internal standard (IS), ornidazole, was obtained from Sigma Aldrich. LC-MS Optima grade 

Acetonitrile (ACN) and Methanol (MeOH), acetic acid and formic acid (FA) were purchased from 

Fisher Scientific. Ready-to-use QuEChERS salts (6 g MgSO4/1.5 g NaCl/1.5 g sodium citrate 

dihydrate/750 mg sodium citrate sesquihydrate) were supplied by VWR. 

4.4.2. Sample preparation 

Samples were stored at -20 °C until extraction. 200 µL of ACN containing ornidazole (internal 

standard; IS) at a concentration of 625 ng/mL were added to 100 µL blood samples. The mixture 

was vortexed during 30 sec. After 10 min, 40 mg of QuEChERS salts were added. Samples were 

briefly vortexed and centrifuged at 16,000 g for 10 min. Ten microliters of the upper layer was 

directly transferred in an injection vial before being diluted (1/10; v/v) in a 0.1 % formic acid in 

water. Finally, 5μL was injected in the LC-MS-MS system. Calibrations standards (9 levels, from 

5 to 1,000 ng/mL) and quality controls (QC) (10, 75 and 625 ng/mL) were obtained by adding 

appropriate 20 × working standard solutions in blank whole blood. 

4.4.3. LC-MS/MS conditions 

The chromatographic system consisted in two Shimadzu LC-30 AD pumps (NexeraX2), a CTO 

20AC oven, and a SIL-30AC autosampler (Shimadzu, Marne-la-Vallée, France). 

Chromatographic separation was performed using a EC-C8 column (Poroshell 120, 2.1 mm × 75 

mm, 2.7 µM; Agilent) at a flow rate of 0.25 mL/min using a gradient of 0.1% acetic acid in water 

(A) and 0.1% acetic acid in MeOH/ACN 50:50 (B) programmed as follows: 0.0‒0.1, 20% (B); 

0.1‒1.0, 20 to 70% (B); 1.0‒4.0, 70% to 100% (B); 4.0‒5.5, 100% (B); 5.5‒6.0, 100 to 20% (B); 

and 6.0‒8.0 column equilibration with 20% (B). Oven temperature was set at 60 °C. 

A Shimadzu 8060 triple quadrupole mass spectrometer was used in the positive electrospray 

ionization mode. The main common parameter settings were as follows: interface voltage, 1.5 kV; 

nebulizing gas flow, 3 L/min; heating gas flow, 10 L/min; interface temperature, 300 °C; 

desolvatation line (DL) temperature, 250 °C; heat block temperature, 400 °C; and drying gas flow, 

10 L/min. All parameters (collision energy, Q1/Q3 pre-bias) were optimized from standard flow 

injection analysis. Dwell time was set at 100 ms per transition. 

4.4.4. Validation procedure for whole blood 

Validation protocol and the set of acceptance criteria were as follows: 



- Linearity: Calibration curve was generated by plotting the peak area ratios (analyte/internal 

standard) vs the expected concentration. Linearity of the calibration curve was evaluated by a 

quadratic regression analysis using a 1/x² weighting. A value greater than 0.99 was expected for 

the coefficient of determination (r2). 

- Precision and accuracy of the method were assessed at lower limit of quantitation (LLOQ; 5 

ng/mL) and at the two quality control concentrations (10, 75 and 625 ng/mL). Precision is 

calculated as the coefficient of variation (CV%) within a single run (intra-assay; n = 5) and 

between different assays (inter-assay; n = 5), and accuracy is the percentage of deviation between 

nominal and found concentration with the established calibration curve. Acceptance criteria were 

intra-assay and inter-assay precision (CV%) and an accuracy (bias) less than 20%. 

- The lower limit of quantification (LLOQ) was estimated to be the minimal concentration with 

accuracy and precision within ± 20%. The lower limit of detection (LLOD) was calculated based 

on a signal-to-noise ratio >3. 

- Extraction recoveries were determined by comparing the LLOQ and the quality controls samples 

(n = 5) with their extracted blank whole blood counterparts spiked at the correct concentration 

after extraction (n = 3). CV% in the extraction recovery had to be less than 20%. 

- The effect of dilution was investigated on samples spiked at MQC and HQC then analyzed after 1.25-

, two- and four-fold dilutions. Precision CV and bias were set less than 25% to successfully validate. 

- The absence of carryover was checked by injecting blank samples just after the analysis of the 

most concentrated sample (1,000 ng/mL). 

4.4.5. Pharmacokinetics  

The same samples used for the validation were used for the analysis. Monolix Lixoft software was 

used to analyze data by noncompartmental model to fit pharmacokinetics parameters. 
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